whispercpp 1.2.0.2 → 1.3.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +5 -0
- data/LICENSE +1 -1
- data/README.md +165 -434
- data/Rakefile +46 -86
- data/ext/.gitignore +13 -0
- data/ext/cpu.mk +9 -0
- data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
- data/ext/extconf.rb +185 -7
- data/ext/ggml/include/ggml-alloc.h +76 -0
- data/ext/ggml/include/ggml-backend.h +352 -0
- data/ext/ggml/include/ggml-blas.h +25 -0
- data/ext/ggml/include/ggml-cann.h +123 -0
- data/ext/ggml/include/ggml-cpp.h +38 -0
- data/ext/ggml/include/ggml-cpu.h +135 -0
- data/ext/ggml/include/ggml-cuda.h +47 -0
- data/ext/ggml/include/ggml-kompute.h +50 -0
- data/ext/ggml/include/ggml-metal.h +66 -0
- data/ext/ggml/include/ggml-opencl.h +26 -0
- data/ext/ggml/include/ggml-opt.h +216 -0
- data/ext/ggml/include/ggml-rpc.h +28 -0
- data/ext/ggml/include/ggml-sycl.h +49 -0
- data/ext/ggml/include/ggml-vulkan.h +31 -0
- data/ext/ggml/include/ggml.h +2285 -0
- data/ext/ggml/src/ggml-alloc.c +1037 -0
- data/ext/ggml/src/ggml-amx/common.h +94 -0
- data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
- data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
- data/ext/ggml/src/ggml-amx/mmq.h +17 -0
- data/ext/ggml/src/ggml-backend-impl.h +256 -0
- data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
- data/ext/ggml/src/ggml-backend.cpp +1999 -0
- data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
- data/ext/ggml/src/ggml-cann/common.h +286 -0
- data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
- data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
- data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
- data/ext/ggml/src/ggml-common.h +1853 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
- data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
- data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
- data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
- data/ext/ggml/src/ggml-impl.h +556 -0
- data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
- data/ext/ggml/src/ggml-opt.cpp +854 -0
- data/ext/ggml/src/ggml-quants.c +5238 -0
- data/ext/ggml/src/ggml-quants.h +100 -0
- data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
- data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
- data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
- data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
- data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
- data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
- data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
- data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
- data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
- data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
- data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
- data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
- data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
- data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
- data/ext/ggml/src/ggml-threading.cpp +12 -0
- data/ext/ggml/src/ggml-threading.h +14 -0
- data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
- data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
- data/ext/ggml/src/ggml.c +7694 -0
- data/ext/include/whisper.h +672 -0
- data/ext/metal-embed.mk +17 -0
- data/ext/metal.mk +6 -0
- data/ext/ruby_whisper.cpp +1608 -159
- data/ext/ruby_whisper.h +10 -0
- data/ext/scripts/get-flags.mk +38 -0
- data/ext/src/coreml/whisper-decoder-impl.h +146 -0
- data/ext/src/coreml/whisper-decoder-impl.m +201 -0
- data/ext/src/coreml/whisper-encoder-impl.h +142 -0
- data/ext/src/coreml/whisper-encoder-impl.m +197 -0
- data/ext/src/coreml/whisper-encoder.h +26 -0
- data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
- data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
- data/ext/src/whisper.cpp +7393 -0
- data/extsources.rb +6 -0
- data/lib/whisper/model/uri.rb +157 -0
- data/lib/whisper.rb +2 -0
- data/tests/helper.rb +7 -0
- data/tests/jfk_reader/.gitignore +5 -0
- data/tests/jfk_reader/extconf.rb +3 -0
- data/tests/jfk_reader/jfk_reader.c +68 -0
- data/tests/test_callback.rb +160 -0
- data/tests/test_error.rb +20 -0
- data/tests/test_model.rb +71 -0
- data/tests/test_package.rb +31 -0
- data/tests/test_params.rb +160 -0
- data/tests/test_segment.rb +83 -0
- data/tests/test_whisper.rb +211 -123
- data/whispercpp.gemspec +36 -0
- metadata +137 -11
- data/ext/ggml.c +0 -8616
- data/ext/ggml.h +0 -748
- data/ext/whisper.cpp +0 -4829
- data/ext/whisper.h +0 -402
@@ -0,0 +1,2251 @@
|
|
1
|
+
#include "ggml-impl.h"
|
2
|
+
#include "ggml-backend.h"
|
3
|
+
#include "ggml-backend-impl.h"
|
4
|
+
#include "ggml-kompute.h"
|
5
|
+
|
6
|
+
// These are generated at build time by cmake custom command
|
7
|
+
#include "shaderop_scale.h"
|
8
|
+
#include "shaderop_scale_8.h"
|
9
|
+
#include "shaderop_add.h"
|
10
|
+
#include "shaderop_addrow.h"
|
11
|
+
#include "shaderop_mul.h"
|
12
|
+
#include "shaderop_silu.h"
|
13
|
+
#include "shaderop_relu.h"
|
14
|
+
#include "shaderop_gelu.h"
|
15
|
+
#include "shaderop_softmax.h"
|
16
|
+
#include "shaderop_norm.h"
|
17
|
+
#include "shaderop_rmsnorm.h"
|
18
|
+
#include "shaderop_diagmask.h"
|
19
|
+
#include "shaderop_mul_mat_f16.h"
|
20
|
+
#include "shaderop_mul_mat_q8_0.h"
|
21
|
+
#include "shaderop_mul_mat_q4_0.h"
|
22
|
+
#include "shaderop_mul_mat_q4_1.h"
|
23
|
+
#include "shaderop_mul_mat_q4_k.h"
|
24
|
+
#include "shaderop_mul_mat_q6_k.h"
|
25
|
+
#include "shaderop_mul_mat_mat_f32.h"
|
26
|
+
#include "shaderop_getrows_f32.h"
|
27
|
+
#include "shaderop_getrows_f16.h"
|
28
|
+
#include "shaderop_getrows_q4_0.h"
|
29
|
+
#include "shaderop_getrows_q4_1.h"
|
30
|
+
#include "shaderop_getrows_q6_k.h"
|
31
|
+
#include "shaderop_rope_norm_f16.h"
|
32
|
+
#include "shaderop_rope_norm_f32.h"
|
33
|
+
#include "shaderop_rope_neox_f16.h"
|
34
|
+
#include "shaderop_rope_neox_f32.h"
|
35
|
+
#include "shaderop_cpy_f16_f16.h"
|
36
|
+
#include "shaderop_cpy_f16_f32.h"
|
37
|
+
#include "shaderop_cpy_f32_f16.h"
|
38
|
+
#include "shaderop_cpy_f32_f32.h"
|
39
|
+
|
40
|
+
#include <algorithm>
|
41
|
+
#include <array>
|
42
|
+
#include <cassert>
|
43
|
+
#include <cstdint>
|
44
|
+
#include <cstdio>
|
45
|
+
#include <cstring>
|
46
|
+
#include <iostream>
|
47
|
+
#include <memory>
|
48
|
+
#include <mutex>
|
49
|
+
#include <stdexcept>
|
50
|
+
#include <string>
|
51
|
+
#include <unordered_map>
|
52
|
+
#include <utility>
|
53
|
+
#include <vector>
|
54
|
+
|
55
|
+
#include <kompute/Kompute.hpp>
|
56
|
+
#include <vulkan/vulkan.hpp>
|
57
|
+
|
58
|
+
#ifdef __linux__
|
59
|
+
#include <cstdlib> // for setenv
|
60
|
+
#endif
|
61
|
+
|
62
|
+
#define QK4_0 32
|
63
|
+
#define QR4_0 2
|
64
|
+
#define QK4_1 32
|
65
|
+
#define QK_NL 16
|
66
|
+
|
67
|
+
typedef ggml_fp16_t half;
|
68
|
+
|
69
|
+
static std::string ggml_kompute_format_name(int device) {
|
70
|
+
return "Kompute" + std::to_string(device);
|
71
|
+
}
|
72
|
+
|
73
|
+
struct ggml_kompute_context {
|
74
|
+
int device;
|
75
|
+
std::string name;
|
76
|
+
std::shared_ptr<vk::DescriptorPool> pool;
|
77
|
+
|
78
|
+
ggml_kompute_context(int device)
|
79
|
+
: device(device), name(ggml_kompute_format_name(device)) {}
|
80
|
+
};
|
81
|
+
|
82
|
+
// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object
|
83
|
+
// and consolidate the init functions and simplify object lifetime management. As it currently stands,
|
84
|
+
// we *have* to have the kompute manager no matter what for device discovery, but the kompute context
|
85
|
+
// is only created when a device is set and vulkan is explicitly turned on.
|
86
|
+
static ggml_kompute_context *s_kompute_context = nullptr;
|
87
|
+
|
88
|
+
class kompute_manager {
|
89
|
+
kp::Manager *s_mgr = nullptr;
|
90
|
+
|
91
|
+
public:
|
92
|
+
kp::Manager *operator()() {
|
93
|
+
if (s_mgr && !s_mgr->hasInstance()) {
|
94
|
+
destroy();
|
95
|
+
}
|
96
|
+
if (!s_mgr) {
|
97
|
+
s_mgr = new kp::Manager;
|
98
|
+
}
|
99
|
+
return s_mgr;
|
100
|
+
}
|
101
|
+
|
102
|
+
void destroy() {
|
103
|
+
delete s_mgr;
|
104
|
+
s_mgr = nullptr;
|
105
|
+
}
|
106
|
+
};
|
107
|
+
|
108
|
+
static kompute_manager komputeManager;
|
109
|
+
|
110
|
+
struct ggml_vk_memory {
|
111
|
+
void *data = nullptr;
|
112
|
+
size_t size = 0;
|
113
|
+
vk::DeviceMemory *primaryMemory = nullptr;
|
114
|
+
vk::Buffer *primaryBuffer = nullptr;
|
115
|
+
vk::DeviceMemory *stagingMemory = nullptr;
|
116
|
+
vk::Buffer *stagingBuffer = nullptr;
|
117
|
+
};
|
118
|
+
|
119
|
+
#ifdef __linux__
|
120
|
+
__attribute__((constructor))
|
121
|
+
static void enable_sam() {
|
122
|
+
setenv("RADV_PERFTEST", "sam", false);
|
123
|
+
}
|
124
|
+
#endif
|
125
|
+
|
126
|
+
static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) {
|
127
|
+
vk::PhysicalDeviceFeatures availableFeatures;
|
128
|
+
physical_device.getFeatures(&availableFeatures);
|
129
|
+
|
130
|
+
if (!availableFeatures.shaderInt16)
|
131
|
+
return false;
|
132
|
+
|
133
|
+
vk::PhysicalDeviceVulkan11Features availableFeatures11;
|
134
|
+
vk::PhysicalDeviceVulkan12Features availableFeatures12;
|
135
|
+
|
136
|
+
availableFeatures11.pNext = &availableFeatures12;
|
137
|
+
availableFeatures12.pNext = nullptr;
|
138
|
+
|
139
|
+
vk::PhysicalDeviceFeatures2 features2;
|
140
|
+
features2.pNext = &availableFeatures11;
|
141
|
+
|
142
|
+
physical_device.getFeatures2(&features2);
|
143
|
+
|
144
|
+
if (!availableFeatures11.uniformAndStorageBuffer16BitAccess ||
|
145
|
+
!availableFeatures11.storageBuffer16BitAccess) {
|
146
|
+
return false;
|
147
|
+
}
|
148
|
+
|
149
|
+
if (!availableFeatures12.storageBuffer8BitAccess ||
|
150
|
+
!availableFeatures12.uniformAndStorageBuffer8BitAccess ||
|
151
|
+
!availableFeatures12.shaderFloat16 ||
|
152
|
+
!availableFeatures12.shaderInt8) {
|
153
|
+
return false;
|
154
|
+
}
|
155
|
+
|
156
|
+
return true;
|
157
|
+
}
|
158
|
+
|
159
|
+
static const char * ggml_vk_getVendorName(uint32_t vendorID) {
|
160
|
+
switch (vendorID) {
|
161
|
+
case 0x10DE:
|
162
|
+
return "nvidia";
|
163
|
+
case 0x1002:
|
164
|
+
return "amd";
|
165
|
+
case 0x8086:
|
166
|
+
return "intel";
|
167
|
+
default:
|
168
|
+
return "unknown";
|
169
|
+
}
|
170
|
+
}
|
171
|
+
|
172
|
+
static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) {
|
173
|
+
std::vector<ggml_vk_device> results;
|
174
|
+
if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance())
|
175
|
+
return results;
|
176
|
+
|
177
|
+
std::vector<vk::PhysicalDevice> physical_devices;
|
178
|
+
try {
|
179
|
+
physical_devices = komputeManager()->listDevices();
|
180
|
+
} catch (vk::SystemError & err) {
|
181
|
+
std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n";
|
182
|
+
return results;
|
183
|
+
}
|
184
|
+
|
185
|
+
uint32_t deviceCount = physical_devices.size();
|
186
|
+
if (deviceCount == 0)
|
187
|
+
return results;
|
188
|
+
|
189
|
+
std::unordered_map<std::string, size_t> count_by_name;
|
190
|
+
|
191
|
+
for (uint32_t i = 0; i < deviceCount; i++) {
|
192
|
+
const auto & physical_device = physical_devices[i];
|
193
|
+
|
194
|
+
VkPhysicalDeviceProperties dev_props = physical_device.getProperties();
|
195
|
+
VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties();
|
196
|
+
const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion);
|
197
|
+
const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion);
|
198
|
+
if (major < 1 || minor < 2)
|
199
|
+
continue;
|
200
|
+
|
201
|
+
if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device))
|
202
|
+
continue;
|
203
|
+
|
204
|
+
size_t heapSize = 0;
|
205
|
+
for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) {
|
206
|
+
VkMemoryHeap heap = memoryProperties.memoryHeaps[j];
|
207
|
+
if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) {
|
208
|
+
heapSize = heap.size;
|
209
|
+
break;
|
210
|
+
}
|
211
|
+
}
|
212
|
+
|
213
|
+
if (heapSize < memoryRequired)
|
214
|
+
continue;
|
215
|
+
|
216
|
+
auto ext_props = physical_device.enumerateDeviceExtensionProperties();
|
217
|
+
bool has_maintenance4 = false;
|
218
|
+
|
219
|
+
// Check if maintenance4 is supported
|
220
|
+
for (const auto & properties : ext_props) {
|
221
|
+
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
|
222
|
+
has_maintenance4 = true;
|
223
|
+
}
|
224
|
+
}
|
225
|
+
|
226
|
+
vk::PhysicalDeviceSubgroupProperties subgroup_props;
|
227
|
+
vk::PhysicalDeviceProperties2 dev_props2;
|
228
|
+
vk::PhysicalDeviceMaintenance3Properties dev_props3;
|
229
|
+
vk::PhysicalDeviceMaintenance4Properties dev_props4;
|
230
|
+
dev_props2.pNext = &dev_props3;
|
231
|
+
dev_props3.pNext = &subgroup_props;
|
232
|
+
if (has_maintenance4) {
|
233
|
+
subgroup_props.pNext = &dev_props4;
|
234
|
+
}
|
235
|
+
physical_device.getProperties2(&dev_props2);
|
236
|
+
|
237
|
+
if (subgroup_props.subgroupSize < 32)
|
238
|
+
continue;
|
239
|
+
|
240
|
+
ggml_vk_device d;
|
241
|
+
d.index = i;
|
242
|
+
d.type = dev_props.deviceType;
|
243
|
+
d.heapSize = heapSize;
|
244
|
+
d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID));
|
245
|
+
d.subgroupSize = subgroup_props.subgroupSize;
|
246
|
+
d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment;
|
247
|
+
|
248
|
+
if (has_maintenance4) {
|
249
|
+
d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize);
|
250
|
+
} else {
|
251
|
+
d.maxAlloc = dev_props3.maxMemoryAllocationSize;
|
252
|
+
}
|
253
|
+
|
254
|
+
std::string name(dev_props.deviceName);
|
255
|
+
size_t n_idx = ++count_by_name[name];
|
256
|
+
if (n_idx > 1) {
|
257
|
+
name += " (" + std::to_string(n_idx) + ")";
|
258
|
+
}
|
259
|
+
d.name = strdup(name.c_str());
|
260
|
+
|
261
|
+
results.push_back(d);
|
262
|
+
}
|
263
|
+
|
264
|
+
std::stable_sort(results.begin(), results.end(),
|
265
|
+
[](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool {
|
266
|
+
if (lhs.type != rhs.type) {
|
267
|
+
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true;
|
268
|
+
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false;
|
269
|
+
|
270
|
+
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true;
|
271
|
+
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false;
|
272
|
+
}
|
273
|
+
return lhs.heapSize < rhs.heapSize;
|
274
|
+
}
|
275
|
+
);
|
276
|
+
|
277
|
+
return results;
|
278
|
+
}
|
279
|
+
|
280
|
+
static std::vector<ggml_vk_device>& ggml_vk_available_devices() {
|
281
|
+
static std::vector<ggml_vk_device> devices = ggml_vk_available_devices_internal(0);
|
282
|
+
return devices;
|
283
|
+
}
|
284
|
+
|
285
|
+
static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
|
286
|
+
devices.erase(
|
287
|
+
std::remove_if(devices.begin(), devices.end(),
|
288
|
+
[&targetVendor](const ggml_vk_device& device) {
|
289
|
+
return device.vendor != targetVendor;
|
290
|
+
}),
|
291
|
+
devices.end()
|
292
|
+
);
|
293
|
+
}
|
294
|
+
|
295
|
+
static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) {
|
296
|
+
devices.erase(
|
297
|
+
std::remove_if(devices.begin(), devices.end(),
|
298
|
+
[&targetName](const ggml_vk_device& device) {
|
299
|
+
return device.name != targetName;
|
300
|
+
}),
|
301
|
+
devices.end()
|
302
|
+
);
|
303
|
+
}
|
304
|
+
|
305
|
+
static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) {
|
306
|
+
if (name.empty())
|
307
|
+
return false;
|
308
|
+
|
309
|
+
auto devices = ggml_vk_available_devices_internal(memoryRequired);
|
310
|
+
if (name == "amd" || name == "nvidia" || name == "intel") {
|
311
|
+
ggml_vk_filterByVendor(devices, name);
|
312
|
+
} else if (name != "gpu") {
|
313
|
+
ggml_vk_filterByName(devices, name);
|
314
|
+
}
|
315
|
+
|
316
|
+
if (devices.empty())
|
317
|
+
return false;
|
318
|
+
|
319
|
+
*device = devices.front();
|
320
|
+
return true;
|
321
|
+
}
|
322
|
+
|
323
|
+
bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) {
|
324
|
+
return ggml_vk_get_device(device, memoryRequired, std::string(name));
|
325
|
+
}
|
326
|
+
|
327
|
+
bool ggml_vk_has_vulkan() {
|
328
|
+
return komputeManager()->hasVulkan();
|
329
|
+
}
|
330
|
+
|
331
|
+
bool ggml_vk_has_device() {
|
332
|
+
return komputeManager()->hasDevice();
|
333
|
+
}
|
334
|
+
|
335
|
+
ggml_vk_device ggml_vk_current_device() {
|
336
|
+
if (!komputeManager()->hasDevice())
|
337
|
+
return ggml_vk_device();
|
338
|
+
|
339
|
+
auto devices = ggml_vk_available_devices();
|
340
|
+
ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
|
341
|
+
GGML_ASSERT(!devices.empty());
|
342
|
+
return devices.front();
|
343
|
+
}
|
344
|
+
|
345
|
+
static
|
346
|
+
void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) {
|
347
|
+
std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
|
348
|
+
vk::DescriptorPoolSize(
|
349
|
+
vk::DescriptorType::eStorageBuffer,
|
350
|
+
4 * size // Descriptor count is number of possible tensors to pass into an algorithm
|
351
|
+
)
|
352
|
+
};
|
353
|
+
|
354
|
+
vk::DescriptorPoolCreateInfo descriptorPoolInfo(
|
355
|
+
vk::DescriptorPoolCreateFlags(),
|
356
|
+
size, // Max sets
|
357
|
+
static_cast<uint32_t>(descriptorPoolSizes.size()),
|
358
|
+
descriptorPoolSizes.data());
|
359
|
+
|
360
|
+
ctx->pool = std::make_shared<vk::DescriptorPool>();
|
361
|
+
vk::Result r = komputeManager()->device()->createDescriptorPool(
|
362
|
+
&descriptorPoolInfo, nullptr, ctx->pool.get());
|
363
|
+
if (r != vk::Result::eSuccess)
|
364
|
+
std::cerr << "Error allocating descriptor pool" << vk::to_string(r);
|
365
|
+
}
|
366
|
+
|
367
|
+
static
|
368
|
+
void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) {
|
369
|
+
if (ctx->pool) {
|
370
|
+
komputeManager()->device()->destroy(
|
371
|
+
*ctx->pool,
|
372
|
+
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
373
|
+
ctx->pool = nullptr;
|
374
|
+
}
|
375
|
+
}
|
376
|
+
|
377
|
+
static
|
378
|
+
vk::Buffer *ggml_vk_allocate_buffer(size_t size) {
|
379
|
+
vk::BufferCreateInfo bufferCreateInfo;
|
380
|
+
bufferCreateInfo.size = size;
|
381
|
+
bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer |
|
382
|
+
vk::BufferUsageFlagBits::eTransferSrc |
|
383
|
+
vk::BufferUsageFlagBits::eTransferDst;
|
384
|
+
bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
|
385
|
+
|
386
|
+
vk::Buffer *vkBuffer = new vk::Buffer;
|
387
|
+
vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer);
|
388
|
+
if (r != vk::Result::eSuccess)
|
389
|
+
std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl;
|
390
|
+
return vkBuffer;
|
391
|
+
}
|
392
|
+
|
393
|
+
static
|
394
|
+
vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) {
|
395
|
+
|
396
|
+
uint32_t memoryTypeIndex = -1;
|
397
|
+
bool memoryTypeIndexFound = false;
|
398
|
+
vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties();
|
399
|
+
for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
|
400
|
+
const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i];
|
401
|
+
const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
|
402
|
+
if (memoryHeap.size < size) {
|
403
|
+
continue;
|
404
|
+
}
|
405
|
+
|
406
|
+
if (requirements.memoryTypeBits & (1 << i)) {
|
407
|
+
if (((memoryProperties.memoryTypes[i]).propertyFlags &
|
408
|
+
flags) == flags) {
|
409
|
+
memoryTypeIndex = i;
|
410
|
+
memoryTypeIndexFound = true;
|
411
|
+
if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
|
412
|
+
*isHostVisible = true;
|
413
|
+
}
|
414
|
+
break;
|
415
|
+
}
|
416
|
+
}
|
417
|
+
}
|
418
|
+
if (!memoryTypeIndexFound) {
|
419
|
+
throw std::runtime_error(
|
420
|
+
"Memory type index for buffer creation not found");
|
421
|
+
}
|
422
|
+
|
423
|
+
vk::MemoryAllocateInfo allocInfo;
|
424
|
+
allocInfo.allocationSize = size;
|
425
|
+
allocInfo.memoryTypeIndex = memoryTypeIndex;
|
426
|
+
vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory;
|
427
|
+
vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory);
|
428
|
+
if (r != vk::Result::eSuccess) {
|
429
|
+
std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl;
|
430
|
+
throw std::runtime_error("Error allocating vulkan memory.");
|
431
|
+
}
|
432
|
+
return vkDeviceMemory;
|
433
|
+
}
|
434
|
+
|
435
|
+
static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) {
|
436
|
+
size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer);
|
437
|
+
|
438
|
+
// If offset is already aligned, return it directly
|
439
|
+
if (offset % minStorageBufferOffsetAlignment == 0) {
|
440
|
+
return offset;
|
441
|
+
}
|
442
|
+
|
443
|
+
// Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset
|
444
|
+
return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment;
|
445
|
+
}
|
446
|
+
|
447
|
+
static ggml_vk_memory ggml_vk_allocate(size_t size) {
|
448
|
+
ggml_vk_memory memory;
|
449
|
+
bool isHostVisible = false;
|
450
|
+
{
|
451
|
+
memory.primaryBuffer = ggml_vk_allocate_buffer(size);
|
452
|
+
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer);
|
453
|
+
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal;
|
454
|
+
memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
|
455
|
+
komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0);
|
456
|
+
if (isHostVisible) {
|
457
|
+
vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
|
458
|
+
if (r != vk::Result::eSuccess)
|
459
|
+
std::cerr << "Error mapping memory" << vk::to_string(r);
|
460
|
+
}
|
461
|
+
}
|
462
|
+
|
463
|
+
if (!isHostVisible) {
|
464
|
+
memory.stagingBuffer = ggml_vk_allocate_buffer(size);
|
465
|
+
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer);
|
466
|
+
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
|
467
|
+
vk::MemoryPropertyFlagBits::eHostCoherent |
|
468
|
+
vk::MemoryPropertyFlagBits::eHostCached;
|
469
|
+
memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
|
470
|
+
komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0);
|
471
|
+
vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
|
472
|
+
if (r != vk::Result::eSuccess)
|
473
|
+
std::cerr << "Error mapping memory" << vk::to_string(r);
|
474
|
+
}
|
475
|
+
|
476
|
+
memory.size = size;
|
477
|
+
return memory;
|
478
|
+
}
|
479
|
+
|
480
|
+
static void ggml_vk_free_memory(ggml_vk_memory &memory)
|
481
|
+
{
|
482
|
+
komputeManager()->device()->destroy(
|
483
|
+
*memory.primaryBuffer,
|
484
|
+
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
485
|
+
if (memory.stagingBuffer) {
|
486
|
+
komputeManager()->device()->destroy(
|
487
|
+
*memory.stagingBuffer,
|
488
|
+
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
489
|
+
}
|
490
|
+
komputeManager()->device()->freeMemory(
|
491
|
+
*memory.primaryMemory,
|
492
|
+
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
493
|
+
if (memory.stagingMemory) {
|
494
|
+
komputeManager()->device()->freeMemory(
|
495
|
+
*memory.stagingMemory,
|
496
|
+
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
497
|
+
}
|
498
|
+
}
|
499
|
+
|
500
|
+
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft);
|
501
|
+
|
502
|
+
static
|
503
|
+
ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) {
|
504
|
+
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
|
505
|
+
|
506
|
+
// compatibility with ggml-backend
|
507
|
+
GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name);
|
508
|
+
|
509
|
+
ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context);
|
510
|
+
|
511
|
+
const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data);
|
512
|
+
|
513
|
+
GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size));
|
514
|
+
|
515
|
+
offset = uint64_t(ioffs);
|
516
|
+
return buf_ctx;
|
517
|
+
}
|
518
|
+
|
519
|
+
static
|
520
|
+
const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) {
|
521
|
+
uint64_t originalOffset = 0;
|
522
|
+
auto * res = ggml_vk_find_tensor(t, originalOffset);
|
523
|
+
if (!res) {
|
524
|
+
static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
|
525
|
+
return nullTensor;
|
526
|
+
}
|
527
|
+
|
528
|
+
// Create a tensor whose memory will be composed of our buffers at the correct offset
|
529
|
+
const size_t nelements = ggml_nelements(t);
|
530
|
+
size_t nbytes = ggml_nbytes(t);
|
531
|
+
|
532
|
+
size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset);
|
533
|
+
if (alignedOffset) {
|
534
|
+
*alignedOffset = originalOffset - vulkanOffset;
|
535
|
+
nbytes += *alignedOffset;
|
536
|
+
}
|
537
|
+
|
538
|
+
return komputeManager()->tensor(
|
539
|
+
t->data,
|
540
|
+
nelements,
|
541
|
+
nbytes, kp::Tensor::TensorDataTypes::eFloat,
|
542
|
+
res->primaryMemory, res->primaryBuffer,
|
543
|
+
res->stagingMemory, res->stagingBuffer,
|
544
|
+
vulkanOffset);
|
545
|
+
}
|
546
|
+
|
547
|
+
static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) {
|
548
|
+
if (size % sizeof(uint32_t) != 0) {
|
549
|
+
throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)");
|
550
|
+
}
|
551
|
+
|
552
|
+
const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData);
|
553
|
+
size_t count = size / sizeof(uint32_t);
|
554
|
+
return std::vector<uint32_t>(data_ptr, data_ptr + count);
|
555
|
+
}
|
556
|
+
|
557
|
+
inline static
|
558
|
+
uint32_t safe_divide(uint32_t a, uint32_t b) {
|
559
|
+
if (b <= 1) {
|
560
|
+
return a;
|
561
|
+
}
|
562
|
+
if ((a % b) != 0) {
|
563
|
+
fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
|
564
|
+
GGML_ABORT("safe_divide result would've had remainder");
|
565
|
+
}
|
566
|
+
return a / b;
|
567
|
+
}
|
568
|
+
|
569
|
+
static void ggml_vk_add(
|
570
|
+
kp::Sequence& seq,
|
571
|
+
const std::shared_ptr<kp::Tensor>& inA,
|
572
|
+
const std::shared_ptr<kp::Tensor>& inB,
|
573
|
+
const std::shared_ptr<kp::Tensor>& out,
|
574
|
+
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
575
|
+
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
|
576
|
+
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
|
577
|
+
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
578
|
+
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
|
579
|
+
int32_t ne0,
|
580
|
+
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
|
581
|
+
) {
|
582
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv,
|
583
|
+
kp::shader_data::op_add_comp_spv_len);
|
584
|
+
|
585
|
+
struct PushConstants {
|
586
|
+
uint32_t inAOff, inBOff, outOff;
|
587
|
+
int32_t ne00;
|
588
|
+
int32_t nb00, nb01, nb02, nb03;
|
589
|
+
int32_t ne10, ne11, ne12, ne13;
|
590
|
+
int32_t nb10, nb11, nb12, nb13;
|
591
|
+
int32_t ne0;
|
592
|
+
int32_t nb0, nb1, nb2, nb3;
|
593
|
+
} const pushConsts {
|
594
|
+
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
595
|
+
ne00,
|
596
|
+
nb00, nb01, nb02, nb03,
|
597
|
+
ne10, ne11, ne12, ne13,
|
598
|
+
nb10, nb11, nb12, nb13,
|
599
|
+
ne0,
|
600
|
+
nb0, nb1, nb2, nb3
|
601
|
+
};
|
602
|
+
|
603
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
604
|
+
if (!komputeManager()->hasAlgorithm(__func__)) {
|
605
|
+
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
|
606
|
+
} else {
|
607
|
+
s_algo = komputeManager()->getAlgorithm(__func__);
|
608
|
+
s_algo->setTensors({inA, inB, out});
|
609
|
+
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
610
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
611
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
612
|
+
}
|
613
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
614
|
+
}
|
615
|
+
|
616
|
+
static void ggml_vk_addrow(kp::Sequence& seq,
|
617
|
+
const std::shared_ptr<kp::Tensor>& inA,
|
618
|
+
const std::shared_ptr<kp::Tensor>& inB,
|
619
|
+
const std::shared_ptr<kp::Tensor>& out,
|
620
|
+
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
621
|
+
uint32_t size, uint32_t row = 0) {
|
622
|
+
|
623
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv,
|
624
|
+
kp::shader_data::op_addrow_comp_spv_len);
|
625
|
+
|
626
|
+
struct PushConstants {
|
627
|
+
uint32_t inAOff, inBOff, outOff;
|
628
|
+
uint32_t row;
|
629
|
+
} const pushConsts {
|
630
|
+
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
631
|
+
row
|
632
|
+
};
|
633
|
+
|
634
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
635
|
+
if (!komputeManager()->hasAlgorithm(__func__))
|
636
|
+
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
|
637
|
+
else {
|
638
|
+
s_algo = komputeManager()->getAlgorithm(__func__);
|
639
|
+
s_algo->setTensors({inA, inB, out});
|
640
|
+
s_algo->setWorkgroup({size});
|
641
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
642
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
643
|
+
}
|
644
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
645
|
+
}
|
646
|
+
|
647
|
+
static void ggml_vk_mul(
|
648
|
+
kp::Sequence& seq,
|
649
|
+
const std::shared_ptr<kp::Tensor>& inA,
|
650
|
+
const std::shared_ptr<kp::Tensor>& inB,
|
651
|
+
const std::shared_ptr<kp::Tensor>& out,
|
652
|
+
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
653
|
+
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
|
654
|
+
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
|
655
|
+
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
656
|
+
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
|
657
|
+
int32_t ne0,
|
658
|
+
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
|
659
|
+
) {
|
660
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv,
|
661
|
+
kp::shader_data::op_mul_comp_spv_len);
|
662
|
+
|
663
|
+
struct PushConstants {
|
664
|
+
uint32_t inAOff, inBOff, outOff;
|
665
|
+
int32_t ne00;
|
666
|
+
int32_t nb00, nb01, nb02, nb03;
|
667
|
+
int32_t ne10, ne11, ne12, ne13;
|
668
|
+
int32_t nb10, nb11, nb12, nb13;
|
669
|
+
int32_t ne0;
|
670
|
+
int32_t nb0, nb1, nb2, nb3;
|
671
|
+
} const pushConsts {
|
672
|
+
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
673
|
+
ne00,
|
674
|
+
nb00, nb01, nb02, nb03,
|
675
|
+
ne10, ne11, ne12, ne13,
|
676
|
+
nb10, nb11, nb12, nb13,
|
677
|
+
ne0,
|
678
|
+
nb0, nb1, nb2, nb3
|
679
|
+
};
|
680
|
+
|
681
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
682
|
+
if (!komputeManager()->hasAlgorithm(__func__)) {
|
683
|
+
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
|
684
|
+
} else {
|
685
|
+
s_algo = komputeManager()->getAlgorithm(__func__);
|
686
|
+
s_algo->setTensors({inA, inB, out});
|
687
|
+
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
688
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
689
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
690
|
+
}
|
691
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
692
|
+
}
|
693
|
+
|
694
|
+
static void ggml_vk_scale(kp::Sequence& seq,
|
695
|
+
const std::shared_ptr<kp::Tensor>& in,
|
696
|
+
const std::shared_ptr<kp::Tensor>& out,
|
697
|
+
uint32_t inOff, uint32_t outOff,
|
698
|
+
uint32_t size, float scale) {
|
699
|
+
const static auto spirv_1 = getSpirvShader(
|
700
|
+
kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len
|
701
|
+
);
|
702
|
+
const static auto spirv_8 = getSpirvShader(
|
703
|
+
kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len
|
704
|
+
);
|
705
|
+
|
706
|
+
struct PushConstants {
|
707
|
+
uint32_t inOff, outOff;
|
708
|
+
float scale;
|
709
|
+
} const pushConsts {
|
710
|
+
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
711
|
+
scale
|
712
|
+
};
|
713
|
+
|
714
|
+
const auto * spirv = &spirv_1;
|
715
|
+
std::string name(__func__);
|
716
|
+
if (size % 8 == 0) {
|
717
|
+
size /= 8;
|
718
|
+
name += "_8";
|
719
|
+
spirv = &spirv_8;
|
720
|
+
}
|
721
|
+
|
722
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
723
|
+
if (!komputeManager()->hasAlgorithm(name)) {
|
724
|
+
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts});
|
725
|
+
} else {
|
726
|
+
s_algo = komputeManager()->getAlgorithm(name);
|
727
|
+
s_algo->setTensors({in, out});
|
728
|
+
s_algo->setWorkgroup({size});
|
729
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
730
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
731
|
+
}
|
732
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
733
|
+
}
|
734
|
+
|
735
|
+
static void ggml_vk_xxlu(
|
736
|
+
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
|
737
|
+
const std::shared_ptr<kp::Tensor>& in,
|
738
|
+
const std::shared_ptr<kp::Tensor>& out,
|
739
|
+
uint32_t inOff, uint32_t outOff,
|
740
|
+
uint32_t size
|
741
|
+
) {
|
742
|
+
struct PushConstants {
|
743
|
+
uint32_t inOff, outOff;
|
744
|
+
} const pushConsts {
|
745
|
+
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
746
|
+
};
|
747
|
+
|
748
|
+
auto name = std::string(__func__) + "_" + suffix;
|
749
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
750
|
+
if (!komputeManager()->hasAlgorithm(name)) {
|
751
|
+
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts});
|
752
|
+
} else {
|
753
|
+
s_algo = komputeManager()->getAlgorithm(name);
|
754
|
+
s_algo->setTensors({in, out});
|
755
|
+
s_algo->setWorkgroup({size});
|
756
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
757
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
758
|
+
}
|
759
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
760
|
+
}
|
761
|
+
|
762
|
+
template <typename... Args>
|
763
|
+
static void ggml_vk_silu(Args&&... args) {
|
764
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv,
|
765
|
+
kp::shader_data::op_silu_comp_spv_len);
|
766
|
+
|
767
|
+
ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...);
|
768
|
+
}
|
769
|
+
|
770
|
+
template <typename... Args>
|
771
|
+
static void ggml_vk_relu(Args&&... args) {
|
772
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv,
|
773
|
+
kp::shader_data::op_relu_comp_spv_len);
|
774
|
+
|
775
|
+
ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...);
|
776
|
+
}
|
777
|
+
|
778
|
+
template <typename... Args>
|
779
|
+
static void ggml_vk_gelu(Args&&... args) {
|
780
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv,
|
781
|
+
kp::shader_data::op_gelu_comp_spv_len);
|
782
|
+
|
783
|
+
ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...);
|
784
|
+
}
|
785
|
+
|
786
|
+
static void ggml_vk_soft_max(
|
787
|
+
kp::Sequence& seq,
|
788
|
+
const std::shared_ptr<kp::Tensor>& inA,
|
789
|
+
const std::shared_ptr<kp::Tensor>& inB,
|
790
|
+
const std::shared_ptr<kp::Tensor>& out,
|
791
|
+
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
792
|
+
int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
|
793
|
+
float scale, float max_bias, float m0, float m1,
|
794
|
+
uint32_t n_head_log2
|
795
|
+
) {
|
796
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
|
797
|
+
kp::shader_data::op_softmax_comp_spv_len);
|
798
|
+
|
799
|
+
struct PushConstants {
|
800
|
+
uint32_t inAOff, inBOff, outOff;
|
801
|
+
int32_t ne00, ne01, ne02;
|
802
|
+
float scale, max_bias, m0, m1;
|
803
|
+
uint32_t n_head_log2;
|
804
|
+
int32_t mask;
|
805
|
+
} pushConsts {
|
806
|
+
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
807
|
+
ne00, ne01, ne02,
|
808
|
+
scale, max_bias, m0, m1,
|
809
|
+
n_head_log2,
|
810
|
+
bool(inB)
|
811
|
+
};
|
812
|
+
|
813
|
+
auto & inB_ = inB ? inB : inA;
|
814
|
+
|
815
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
816
|
+
if (!komputeManager()->hasAlgorithm(__func__)) {
|
817
|
+
// FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device
|
818
|
+
const uint32_t local_x = 32;
|
819
|
+
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts});
|
820
|
+
} else {
|
821
|
+
s_algo = komputeManager()->getAlgorithm(__func__);
|
822
|
+
s_algo->setTensors({inA, inB_, out});
|
823
|
+
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
824
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
825
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
826
|
+
}
|
827
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
828
|
+
}
|
829
|
+
|
830
|
+
static void ggml_vk_norm_(
|
831
|
+
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
|
832
|
+
const std::shared_ptr<kp::Tensor>& in,
|
833
|
+
const std::shared_ptr<kp::Tensor>& out,
|
834
|
+
uint32_t inOff, uint32_t outOff,
|
835
|
+
int32_t ne00, int32_t nb01,
|
836
|
+
int32_t nrows, float epsilon
|
837
|
+
) {
|
838
|
+
GGML_ASSERT(nb01%sizeof(float) == 0);
|
839
|
+
GGML_ASSERT(ne00%sizeof(float) == 0);
|
840
|
+
|
841
|
+
struct PushConstants {
|
842
|
+
uint32_t inOff, outOff;
|
843
|
+
uint32_t ne00, nb01;
|
844
|
+
float eps;
|
845
|
+
} pushConsts {
|
846
|
+
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
847
|
+
(uint32_t)ne00, (uint32_t)nb01, epsilon
|
848
|
+
};
|
849
|
+
|
850
|
+
auto name = std::string(__func__) + "_" + suffix;
|
851
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
852
|
+
if (!komputeManager()->hasAlgorithm(name)) {
|
853
|
+
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts});
|
854
|
+
} else {
|
855
|
+
s_algo = komputeManager()->getAlgorithm(name);
|
856
|
+
s_algo->setTensors({in, out});
|
857
|
+
s_algo->setWorkgroup({(uint32_t)nrows});
|
858
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
859
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
860
|
+
}
|
861
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
862
|
+
}
|
863
|
+
|
864
|
+
template <typename... Args>
|
865
|
+
static void ggml_vk_norm(Args&&... args) {
|
866
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv,
|
867
|
+
kp::shader_data::op_norm_comp_spv_len);
|
868
|
+
|
869
|
+
ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...);
|
870
|
+
}
|
871
|
+
|
872
|
+
template <typename... Args>
|
873
|
+
static void ggml_vk_rms_norm(Args&&... args) {
|
874
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv,
|
875
|
+
kp::shader_data::op_rmsnorm_comp_spv_len);
|
876
|
+
|
877
|
+
ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...);
|
878
|
+
}
|
879
|
+
|
880
|
+
static void ggml_vk_diag_mask_inf(kp::Sequence& seq,
|
881
|
+
const std::shared_ptr<kp::Tensor>& in,
|
882
|
+
const std::shared_ptr<kp::Tensor>& out,
|
883
|
+
uint32_t inOff, uint32_t outOff,
|
884
|
+
uint32_t n_past,
|
885
|
+
int32_t ne00, int32_t ne01, int32_t ne02) {
|
886
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv,
|
887
|
+
kp::shader_data::op_diagmask_comp_spv_len);
|
888
|
+
|
889
|
+
struct PushConstants {
|
890
|
+
uint32_t inOff, outOff;
|
891
|
+
uint32_t n_past;
|
892
|
+
int32_t ne00, ne01;
|
893
|
+
} pushConsts {
|
894
|
+
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
895
|
+
n_past,
|
896
|
+
ne00, ne01
|
897
|
+
};
|
898
|
+
|
899
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
900
|
+
if (!komputeManager()->hasAlgorithm(__func__))
|
901
|
+
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts});
|
902
|
+
else {
|
903
|
+
s_algo = komputeManager()->getAlgorithm(__func__);
|
904
|
+
s_algo->setTensors({in, out});
|
905
|
+
s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)});
|
906
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
907
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
908
|
+
}
|
909
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
910
|
+
}
|
911
|
+
|
912
|
+
static void ggml_vk_mul_mat_f16(
|
913
|
+
kp::Sequence& seq,
|
914
|
+
const std::shared_ptr<kp::Tensor>& inA,
|
915
|
+
const std::shared_ptr<kp::Tensor>& inB,
|
916
|
+
const std::shared_ptr<kp::Tensor>& out,
|
917
|
+
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
918
|
+
int32_t ne00, int32_t ne01, int32_t ne02,
|
919
|
+
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
920
|
+
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
921
|
+
uint32_t nb10, uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
922
|
+
int32_t ne0, int32_t ne1,
|
923
|
+
uint32_t r2, uint32_t r3
|
924
|
+
) {
|
925
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv,
|
926
|
+
kp::shader_data::op_mul_mat_f16_comp_spv_len);
|
927
|
+
|
928
|
+
struct PushConstants {
|
929
|
+
uint32_t inAOff, inBOff, outOff;
|
930
|
+
int32_t ne00, ne01, ne02;
|
931
|
+
uint32_t nb00, nb01, nb02, nb03;
|
932
|
+
int32_t ne10, ne11, ne12;
|
933
|
+
uint32_t nb10, nb11, nb12, nb13;
|
934
|
+
int32_t ne0, ne1;
|
935
|
+
uint32_t r2, r3;
|
936
|
+
} pushConsts {
|
937
|
+
safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
938
|
+
ne00, ne01, ne02,
|
939
|
+
nb00, nb01, nb02, nb03,
|
940
|
+
ne10, ne11, ne12,
|
941
|
+
nb10, nb11, nb12, nb13,
|
942
|
+
ne0, ne1,
|
943
|
+
r2, r3
|
944
|
+
};
|
945
|
+
|
946
|
+
const unsigned ny = unsigned((ne11 + 4 - 1)/4);
|
947
|
+
|
948
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
949
|
+
if (!komputeManager()->hasAlgorithm(__func__)) {
|
950
|
+
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
|
951
|
+
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts});
|
952
|
+
} else {
|
953
|
+
s_algo = komputeManager()->getAlgorithm(__func__);
|
954
|
+
s_algo->setTensors({inA, inB, out});
|
955
|
+
s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)});
|
956
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
957
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
958
|
+
}
|
959
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
960
|
+
}
|
961
|
+
|
962
|
+
static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq,
|
963
|
+
const std::shared_ptr<kp::Tensor>& inA,
|
964
|
+
const std::shared_ptr<kp::Tensor>& inB,
|
965
|
+
const std::shared_ptr<kp::Tensor>& out,
|
966
|
+
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
967
|
+
int32_t ne00, int32_t ne01, int32_t ne02,
|
968
|
+
uint32_t nb01, uint32_t nb02,
|
969
|
+
int32_t ne11, int32_t ne12,
|
970
|
+
uint32_t nb11, uint32_t nb12,
|
971
|
+
uint32_t nb1, uint32_t nb2) {
|
972
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv,
|
973
|
+
kp::shader_data::op_mul_mat_mat_f32_comp_spv_len);
|
974
|
+
|
975
|
+
struct PushConstants {
|
976
|
+
uint32_t inAOff, inBOff, outOff;
|
977
|
+
int32_t ne00, ne01, ne02, ne11, ne12;
|
978
|
+
uint32_t nb01, nb02;
|
979
|
+
uint32_t nb11, nb12;
|
980
|
+
uint32_t nb1, nb2;
|
981
|
+
} pushConsts {
|
982
|
+
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
983
|
+
ne00, ne01, ne02, ne11, ne12,
|
984
|
+
nb01, nb02, nb11, nb12,
|
985
|
+
nb1, nb2
|
986
|
+
};
|
987
|
+
|
988
|
+
const uint32_t local_x = ggml_vk_current_device().subgroupSize;
|
989
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
990
|
+
if (!komputeManager()->hasAlgorithm(__func__)) {
|
991
|
+
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(),
|
992
|
+
{inA, inB, out}, spirv,
|
993
|
+
{unsigned(ne01),
|
994
|
+
unsigned(ne11),
|
995
|
+
unsigned(std::max(ne12, ne02))
|
996
|
+
},
|
997
|
+
{local_x},
|
998
|
+
{pushConsts});
|
999
|
+
} else {
|
1000
|
+
s_algo = komputeManager()->getAlgorithm(__func__);
|
1001
|
+
s_algo->setTensors({inA, inB, out});
|
1002
|
+
s_algo->setWorkgroup({unsigned(ne01),
|
1003
|
+
unsigned(ne11),
|
1004
|
+
unsigned(std::max(ne12, ne02)),
|
1005
|
+
});
|
1006
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1007
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1008
|
+
}
|
1009
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1010
|
+
}
|
1011
|
+
|
1012
|
+
static void ggml_vk_mul_mat_impl(
|
1013
|
+
const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq,
|
1014
|
+
const std::shared_ptr<kp::Tensor>& inA,
|
1015
|
+
const std::shared_ptr<kp::Tensor>& inB,
|
1016
|
+
const std::shared_ptr<kp::Tensor>& out,
|
1017
|
+
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
1018
|
+
int32_t ne00, int32_t ne01, int32_t ne02,
|
1019
|
+
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
1020
|
+
int32_t ne0, int32_t ne1,
|
1021
|
+
uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
1022
|
+
uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
1023
|
+
uint32_t r2, uint32_t r3
|
1024
|
+
) {
|
1025
|
+
struct PushConstants {
|
1026
|
+
uint32_t inAOff, inBOff, outOff;
|
1027
|
+
int32_t ne00, ne01, ne02;
|
1028
|
+
int32_t ne10, ne12;
|
1029
|
+
int32_t ne0, ne1;
|
1030
|
+
uint32_t nb01, nb02, nb03;
|
1031
|
+
uint32_t nb11, nb12, nb13;
|
1032
|
+
uint32_t r2, r3;
|
1033
|
+
} pushConsts {
|
1034
|
+
safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
1035
|
+
ne00, ne01, ne02,
|
1036
|
+
ne10, ne12,
|
1037
|
+
ne0, ne1,
|
1038
|
+
nb01, nb02, nb03,
|
1039
|
+
nb11, nb12, nb13,
|
1040
|
+
r2, r3
|
1041
|
+
};
|
1042
|
+
|
1043
|
+
auto name = std::string(__func__) + "_" + suffix;
|
1044
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
1045
|
+
if (!komputeManager()->hasAlgorithm(name)) {
|
1046
|
+
const uint32_t local_x = (ggml_vk_current_device().subgroupSize * 2) / 8;
|
1047
|
+
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts});
|
1048
|
+
} else {
|
1049
|
+
s_algo = komputeManager()->getAlgorithm(name);
|
1050
|
+
s_algo->setTensors({inA, inB, out});
|
1051
|
+
s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)});
|
1052
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1053
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1054
|
+
}
|
1055
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1056
|
+
}
|
1057
|
+
|
1058
|
+
template <typename... Args>
|
1059
|
+
static void ggml_vk_mul_mat_q4_0(Args&&... args) {
|
1060
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv,
|
1061
|
+
kp::shader_data::op_mul_mat_q4_0_comp_spv_len);
|
1062
|
+
|
1063
|
+
ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
|
1064
|
+
}
|
1065
|
+
|
1066
|
+
template <typename... Args>
|
1067
|
+
static void ggml_vk_mul_mat_q4_1(Args&&... args) {
|
1068
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv,
|
1069
|
+
kp::shader_data::op_mul_mat_q4_1_comp_spv_len);
|
1070
|
+
|
1071
|
+
ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
|
1072
|
+
}
|
1073
|
+
|
1074
|
+
template <typename... Args>
|
1075
|
+
static void ggml_vk_mul_mat_q8_0(Args&&... args) {
|
1076
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv,
|
1077
|
+
kp::shader_data::op_mul_mat_q8_0_comp_spv_len);
|
1078
|
+
|
1079
|
+
ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
|
1080
|
+
}
|
1081
|
+
|
1082
|
+
static void ggml_vk_mul_mat_q4_k(
|
1083
|
+
kp::Sequence& seq,
|
1084
|
+
const std::shared_ptr<kp::Tensor>& inA,
|
1085
|
+
const std::shared_ptr<kp::Tensor>& inB,
|
1086
|
+
const std::shared_ptr<kp::Tensor>& out,
|
1087
|
+
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
1088
|
+
int32_t ne00, int32_t ne01, int32_t ne02,
|
1089
|
+
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
1090
|
+
int32_t ne0, int32_t ne1,
|
1091
|
+
uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
1092
|
+
uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
1093
|
+
uint32_t r2, uint32_t r3
|
1094
|
+
) {
|
1095
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_k_comp_spv,
|
1096
|
+
kp::shader_data::op_mul_mat_q4_k_comp_spv_len);
|
1097
|
+
|
1098
|
+
struct PushConstants {
|
1099
|
+
uint32_t inAOff, inBOff, outOff;
|
1100
|
+
int32_t ne00, ne10, ne0, ne1, ne01, ne02, ne12;
|
1101
|
+
uint32_t nb01, nb02, nb03, nb11, nb12, nb13;
|
1102
|
+
uint32_t r2, r3;
|
1103
|
+
} pushConsts {
|
1104
|
+
inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
1105
|
+
ne00, ne10, ne0, ne1, ne01, ne02, ne12,
|
1106
|
+
nb01, nb02, nb03, nb11, nb12, nb13,
|
1107
|
+
r2, r3
|
1108
|
+
};
|
1109
|
+
|
1110
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
1111
|
+
if (!komputeManager()->hasAlgorithm(__func__)) {
|
1112
|
+
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 3)/4), unsigned(ne11), unsigned(ne12) * unsigned(ne13)}, {}, {pushConsts});
|
1113
|
+
} else {
|
1114
|
+
s_algo = komputeManager()->getAlgorithm(__func__);
|
1115
|
+
s_algo->setTensors({inA, inB, out});
|
1116
|
+
s_algo->setWorkgroup({unsigned((ne01 + 3)/4), unsigned(ne11), unsigned(ne12) * unsigned(ne13)});
|
1117
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1118
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1119
|
+
}
|
1120
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1121
|
+
}
|
1122
|
+
|
1123
|
+
static void ggml_vk_mul_mat_q6_k(
|
1124
|
+
kp::Sequence& seq,
|
1125
|
+
const std::shared_ptr<kp::Tensor>& inA,
|
1126
|
+
const std::shared_ptr<kp::Tensor>& inB,
|
1127
|
+
const std::shared_ptr<kp::Tensor>& out,
|
1128
|
+
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
1129
|
+
int32_t ne00, int32_t ne01, int32_t ne02,
|
1130
|
+
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
1131
|
+
int32_t ne0, int32_t ne1,
|
1132
|
+
uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
1133
|
+
uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
1134
|
+
uint32_t r2, uint32_t r3
|
1135
|
+
) {
|
1136
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv,
|
1137
|
+
kp::shader_data::op_mul_mat_q6_k_comp_spv_len);
|
1138
|
+
|
1139
|
+
struct PushConstants {
|
1140
|
+
uint32_t inAOff, inBOff, outOff;
|
1141
|
+
int32_t ne00, ne10, ne0, ne1, ne01, ne02, ne12;
|
1142
|
+
uint32_t nb01, nb02, nb03, nb11, nb12, nb13;
|
1143
|
+
uint32_t r2, r3;
|
1144
|
+
} pushConsts {
|
1145
|
+
inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
1146
|
+
ne00, ne10, ne0, ne1, ne01, ne02, ne12,
|
1147
|
+
nb01, nb02, nb03, nb11, nb12, nb13,
|
1148
|
+
r2, r3
|
1149
|
+
};
|
1150
|
+
|
1151
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
1152
|
+
if (!komputeManager()->hasAlgorithm(__func__)) {
|
1153
|
+
const uint32_t local_x = 2;
|
1154
|
+
const uint32_t local_y = ggml_vk_current_device().subgroupSize;
|
1155
|
+
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)*unsigned(ne13)}, {local_x, local_y}, {pushConsts});
|
1156
|
+
} else {
|
1157
|
+
s_algo = komputeManager()->getAlgorithm(__func__);
|
1158
|
+
s_algo->setTensors({inA, inB, out});
|
1159
|
+
s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)*unsigned(ne13)});
|
1160
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1161
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1162
|
+
}
|
1163
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1164
|
+
}
|
1165
|
+
|
1166
|
+
static void ggml_vk_get_rows(
|
1167
|
+
const std::vector<uint32_t>& spirv,
|
1168
|
+
const char * suffix,
|
1169
|
+
unsigned element_size, unsigned qk,
|
1170
|
+
kp::Sequence& seq,
|
1171
|
+
const std::shared_ptr<kp::Tensor>& inA,
|
1172
|
+
const std::shared_ptr<kp::Tensor>& inB,
|
1173
|
+
const std::shared_ptr<kp::Tensor>& out,
|
1174
|
+
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
1175
|
+
int32_t ne00, int32_t nb01, int32_t nb1,
|
1176
|
+
uint32_t size
|
1177
|
+
) {
|
1178
|
+
GGML_ASSERT(nb01%element_size == 0);
|
1179
|
+
GGML_ASSERT(nb1%sizeof(float) == 0);
|
1180
|
+
if (qk) GGML_ASSERT(ne00%qk == 0);
|
1181
|
+
|
1182
|
+
struct PushConstants {
|
1183
|
+
uint32_t inAOff, inBOff, outOff;
|
1184
|
+
int32_t ne00, nb01, nb1;
|
1185
|
+
} pushConsts {
|
1186
|
+
safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
1187
|
+
ne00, nb01, nb1
|
1188
|
+
};
|
1189
|
+
|
1190
|
+
auto name = std::string(__func__) + "_" + suffix;
|
1191
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
1192
|
+
if (!komputeManager()->hasAlgorithm(name)) {
|
1193
|
+
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
|
1194
|
+
} else {
|
1195
|
+
s_algo = komputeManager()->getAlgorithm(name);
|
1196
|
+
s_algo->setTensors({inA, inB, out});
|
1197
|
+
s_algo->setWorkgroup({size});
|
1198
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1199
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1200
|
+
}
|
1201
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1202
|
+
}
|
1203
|
+
|
1204
|
+
template <typename... Args>
|
1205
|
+
static void ggml_vk_get_rows_f32(Args&&... args) {
|
1206
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f32_comp_spv,
|
1207
|
+
kp::shader_data::op_getrows_f32_comp_spv_len);
|
1208
|
+
|
1209
|
+
ggml_vk_get_rows(spirv, "f32", sizeof(float), 0, std::forward<Args>(args)...);
|
1210
|
+
}
|
1211
|
+
|
1212
|
+
template <typename... Args>
|
1213
|
+
static void ggml_vk_get_rows_f16(Args&&... args) {
|
1214
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv,
|
1215
|
+
kp::shader_data::op_getrows_f16_comp_spv_len);
|
1216
|
+
|
1217
|
+
ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...);
|
1218
|
+
}
|
1219
|
+
|
1220
|
+
template <typename... Args>
|
1221
|
+
static void ggml_vk_get_rows_q4_0(Args&&... args) {
|
1222
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv,
|
1223
|
+
kp::shader_data::op_getrows_q4_0_comp_spv_len);
|
1224
|
+
|
1225
|
+
ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...);
|
1226
|
+
}
|
1227
|
+
|
1228
|
+
template <typename... Args>
|
1229
|
+
static void ggml_vk_get_rows_q4_1(Args&&... args) {
|
1230
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv,
|
1231
|
+
kp::shader_data::op_getrows_q4_1_comp_spv_len);
|
1232
|
+
|
1233
|
+
ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...);
|
1234
|
+
}
|
1235
|
+
|
1236
|
+
template <typename... Args>
|
1237
|
+
static void ggml_vk_get_rows_q6_k(Args&&... args) {
|
1238
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv,
|
1239
|
+
kp::shader_data::op_getrows_q6_k_comp_spv_len);
|
1240
|
+
ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...);
|
1241
|
+
}
|
1242
|
+
|
1243
|
+
static void ggml_vk_rope(
|
1244
|
+
kp::Sequence& seq,
|
1245
|
+
const std::shared_ptr<kp::Tensor>& inA,
|
1246
|
+
const std::shared_ptr<kp::Tensor>& inB,
|
1247
|
+
const std::shared_ptr<kp::Tensor>& inC,
|
1248
|
+
const std::shared_ptr<kp::Tensor>& out,
|
1249
|
+
uint32_t inAOff, uint32_t inBOff, uint32_t inCOff, uint32_t outOff,
|
1250
|
+
ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig,
|
1251
|
+
float freq_base, float freq_scale, bool has_freq_factors, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
|
1252
|
+
int32_t ne01, int32_t ne02, int32_t ne03,
|
1253
|
+
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
1254
|
+
int32_t ne0,
|
1255
|
+
uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
|
1256
|
+
) {
|
1257
|
+
GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32);
|
1258
|
+
|
1259
|
+
static const auto spirv_norm_f16 = getSpirvShader(
|
1260
|
+
kp::shader_data::op_rope_norm_f16_comp_spv, kp::shader_data::op_rope_norm_f16_comp_spv_len
|
1261
|
+
);
|
1262
|
+
static const auto spirv_norm_f32 = getSpirvShader(
|
1263
|
+
kp::shader_data::op_rope_norm_f32_comp_spv, kp::shader_data::op_rope_norm_f32_comp_spv_len
|
1264
|
+
);
|
1265
|
+
static const auto spirv_neox_f16 = getSpirvShader(
|
1266
|
+
kp::shader_data::op_rope_neox_f16_comp_spv, kp::shader_data::op_rope_neox_f16_comp_spv_len
|
1267
|
+
);
|
1268
|
+
static const auto spirv_neox_f32 = getSpirvShader(
|
1269
|
+
kp::shader_data::op_rope_neox_f32_comp_spv, kp::shader_data::op_rope_neox_f32_comp_spv_len
|
1270
|
+
);
|
1271
|
+
|
1272
|
+
int type_size = src0t == GGML_TYPE_F16 ? 2 : 4;
|
1273
|
+
|
1274
|
+
GGML_ASSERT(nb03 % type_size == 0);
|
1275
|
+
GGML_ASSERT(nb02 % type_size == 0);
|
1276
|
+
GGML_ASSERT(nb01 % type_size == 0);
|
1277
|
+
GGML_ASSERT(nb00 % type_size == 0);
|
1278
|
+
GGML_ASSERT(nb3 % type_size == 0);
|
1279
|
+
GGML_ASSERT(nb2 % type_size == 0);
|
1280
|
+
GGML_ASSERT(nb1 % type_size == 0);
|
1281
|
+
GGML_ASSERT(nb0 % type_size == 0);
|
1282
|
+
|
1283
|
+
struct PushConstants {
|
1284
|
+
uint32_t inAOff, inBOff, inCOff, outOff;
|
1285
|
+
int32_t n_dims, mode, n_ctx_orig;
|
1286
|
+
float freq_base, freq_scale;
|
1287
|
+
bool has_freq_factors;
|
1288
|
+
float ext_factor, attn_factor, beta_fast, beta_slow;
|
1289
|
+
uint32_t nb00, nb01, nb02, nb03;
|
1290
|
+
int32_t ne0;
|
1291
|
+
uint32_t nb0, nb1, nb2, nb3;
|
1292
|
+
} pushConsts {
|
1293
|
+
safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(inCOff, type_size), safe_divide(outOff, type_size),
|
1294
|
+
n_dims, mode, n_ctx_orig,
|
1295
|
+
freq_base, freq_scale,
|
1296
|
+
has_freq_factors,
|
1297
|
+
ext_factor, attn_factor, beta_fast, beta_slow,
|
1298
|
+
nb00, nb01, nb02, nb03,
|
1299
|
+
ne0,
|
1300
|
+
nb0, nb1, nb2, nb3
|
1301
|
+
};
|
1302
|
+
|
1303
|
+
auto & inC_ = inC ? inC : inA;
|
1304
|
+
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
1305
|
+
const bool is_f16 = src0t == GGML_TYPE_F16;
|
1306
|
+
|
1307
|
+
auto name = std::string(__func__) + (is_neox ? "_neox" : "_norm") + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
|
1308
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
1309
|
+
if (!komputeManager()->hasAlgorithm(name)) {
|
1310
|
+
auto & spirv = is_neox ? is_f16 ? spirv_neox_f16 : spirv_neox_f32 : is_f16 ? spirv_norm_f16 : spirv_norm_f32;
|
1311
|
+
s_algo = komputeManager()->algorithm<float, PushConstants>(
|
1312
|
+
name, s_kompute_context->pool.get(), {inA, inB, inC_, out}, spirv,
|
1313
|
+
{unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}
|
1314
|
+
);
|
1315
|
+
} else {
|
1316
|
+
s_algo = komputeManager()->getAlgorithm(name);
|
1317
|
+
s_algo->setTensors({inA, inB, inC_, out});
|
1318
|
+
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
1319
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1320
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1321
|
+
}
|
1322
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1323
|
+
}
|
1324
|
+
|
1325
|
+
static void ggml_vk_cpy(
|
1326
|
+
const std::vector<uint32_t>& spirv,
|
1327
|
+
uint32_t in_element_size, uint32_t out_element_size,
|
1328
|
+
kp::Sequence& seq,
|
1329
|
+
const std::shared_ptr<kp::Tensor>& in,
|
1330
|
+
const std::shared_ptr<kp::Tensor>& out,
|
1331
|
+
uint32_t inOff, uint32_t outOff,
|
1332
|
+
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
|
1333
|
+
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
1334
|
+
int32_t ne0, int32_t ne1, int32_t ne2,
|
1335
|
+
uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
|
1336
|
+
) {
|
1337
|
+
struct PushConstants {
|
1338
|
+
uint32_t inOff, outOff;
|
1339
|
+
int32_t ne00, ne01, ne02;
|
1340
|
+
uint32_t nb00, nb01, nb02, nb03;
|
1341
|
+
int32_t ne0, ne1, ne2;
|
1342
|
+
uint32_t nb0, nb1, nb2, nb3;
|
1343
|
+
} pushConsts {
|
1344
|
+
safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size),
|
1345
|
+
ne00, ne01, ne02,
|
1346
|
+
nb00, nb01, nb02, nb03,
|
1347
|
+
ne0, ne1, ne2,
|
1348
|
+
nb0, nb1, nb2, nb3
|
1349
|
+
};
|
1350
|
+
|
1351
|
+
std::string name = std::string(__func__)
|
1352
|
+
+ "_i_" + std::to_string(in_element_size)
|
1353
|
+
+ "_o_" + std::to_string(out_element_size);
|
1354
|
+
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
1355
|
+
if (!komputeManager()->hasAlgorithm(name))
|
1356
|
+
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
|
1357
|
+
else {
|
1358
|
+
s_algo = komputeManager()->getAlgorithm(name);
|
1359
|
+
s_algo->setTensors({in, out});
|
1360
|
+
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
1361
|
+
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1362
|
+
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1363
|
+
}
|
1364
|
+
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1365
|
+
}
|
1366
|
+
|
1367
|
+
template <typename... Args>
|
1368
|
+
static void ggml_vk_cpy_f32_f16(Args&&... args) {
|
1369
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv,
|
1370
|
+
kp::shader_data::op_cpy_f32_f16_comp_spv_len);
|
1371
|
+
ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...);
|
1372
|
+
}
|
1373
|
+
|
1374
|
+
template <typename... Args>
|
1375
|
+
static void ggml_vk_cpy_f32_f32(Args&&... args) {
|
1376
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv,
|
1377
|
+
kp::shader_data::op_cpy_f32_f32_comp_spv_len);
|
1378
|
+
ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...);
|
1379
|
+
}
|
1380
|
+
|
1381
|
+
template <typename... Args>
|
1382
|
+
static void ggml_vk_cpy_f16_f16(Args&&... args) {
|
1383
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv,
|
1384
|
+
kp::shader_data::op_cpy_f16_f16_comp_spv_len);
|
1385
|
+
ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...);
|
1386
|
+
}
|
1387
|
+
|
1388
|
+
template <typename... Args>
|
1389
|
+
static void ggml_vk_cpy_f16_f32(Args&&... args) {
|
1390
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv,
|
1391
|
+
kp::shader_data::op_cpy_f16_f32_comp_spv_len);
|
1392
|
+
ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...);
|
1393
|
+
}
|
1394
|
+
|
1395
|
+
static bool ggml_backend_kompute_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
1396
|
+
int64_t n = ggml_nelements(op);
|
1397
|
+
switch (op->op) {
|
1398
|
+
case GGML_OP_UNARY:
|
1399
|
+
if (n % 4 != 0) return false;
|
1400
|
+
switch (ggml_get_unary_op(op)) {
|
1401
|
+
case GGML_UNARY_OP_GELU:
|
1402
|
+
if (n % 8 != 0) return false;
|
1403
|
+
// fall through
|
1404
|
+
case GGML_UNARY_OP_RELU:
|
1405
|
+
case GGML_UNARY_OP_SILU:
|
1406
|
+
return ggml_is_contiguous(op->src[0]);
|
1407
|
+
default:
|
1408
|
+
;
|
1409
|
+
}
|
1410
|
+
break;
|
1411
|
+
case GGML_OP_NONE:
|
1412
|
+
case GGML_OP_RESHAPE:
|
1413
|
+
case GGML_OP_VIEW:
|
1414
|
+
case GGML_OP_TRANSPOSE:
|
1415
|
+
case GGML_OP_PERMUTE:
|
1416
|
+
case GGML_OP_ADD:
|
1417
|
+
case GGML_OP_MUL:
|
1418
|
+
case GGML_OP_SCALE:
|
1419
|
+
case GGML_OP_SOFT_MAX:
|
1420
|
+
case GGML_OP_RMS_NORM:
|
1421
|
+
case GGML_OP_NORM:
|
1422
|
+
return true;
|
1423
|
+
case GGML_OP_ROPE:
|
1424
|
+
{
|
1425
|
+
const int mode = ((const int32_t *) op->op_params)[2];
|
1426
|
+
if (mode & GGML_ROPE_TYPE_MROPE) {
|
1427
|
+
return false;
|
1428
|
+
}
|
1429
|
+
if (mode & GGML_ROPE_TYPE_VISION) {
|
1430
|
+
return false;
|
1431
|
+
}
|
1432
|
+
return true;
|
1433
|
+
}
|
1434
|
+
case GGML_OP_DUP:
|
1435
|
+
case GGML_OP_CPY:
|
1436
|
+
case GGML_OP_CONT:
|
1437
|
+
switch (op->src[0]->type) {
|
1438
|
+
case GGML_TYPE_F32:
|
1439
|
+
case GGML_TYPE_F16:
|
1440
|
+
break;
|
1441
|
+
default:
|
1442
|
+
return false;
|
1443
|
+
}
|
1444
|
+
switch (op->type) {
|
1445
|
+
case GGML_TYPE_F32:
|
1446
|
+
case GGML_TYPE_F16:
|
1447
|
+
break;
|
1448
|
+
default:
|
1449
|
+
return false;
|
1450
|
+
}
|
1451
|
+
return true;
|
1452
|
+
case GGML_OP_DIAG_MASK_INF:
|
1453
|
+
return op->ne[3] == 1;
|
1454
|
+
case GGML_OP_GET_ROWS:
|
1455
|
+
switch (op->src[0]->type) {
|
1456
|
+
case GGML_TYPE_F32:
|
1457
|
+
case GGML_TYPE_F16:
|
1458
|
+
case GGML_TYPE_Q4_0:
|
1459
|
+
case GGML_TYPE_Q4_1:
|
1460
|
+
case GGML_TYPE_Q6_K:
|
1461
|
+
return op->ne[2] == 1 && op->ne[3] == 1;
|
1462
|
+
default:
|
1463
|
+
;
|
1464
|
+
}
|
1465
|
+
return false;
|
1466
|
+
case GGML_OP_MUL_MAT:
|
1467
|
+
if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1]))
|
1468
|
+
return false;
|
1469
|
+
|
1470
|
+
switch (op->src[0]->type) {
|
1471
|
+
case GGML_TYPE_F32:
|
1472
|
+
return op->ne[3] == 1;
|
1473
|
+
case GGML_TYPE_Q6_K:
|
1474
|
+
case GGML_TYPE_F16:
|
1475
|
+
case GGML_TYPE_Q8_0:
|
1476
|
+
case GGML_TYPE_Q4_0:
|
1477
|
+
case GGML_TYPE_Q4_1:
|
1478
|
+
case GGML_TYPE_Q4_K:
|
1479
|
+
return true;
|
1480
|
+
default:
|
1481
|
+
;
|
1482
|
+
}
|
1483
|
+
default:
|
1484
|
+
;
|
1485
|
+
}
|
1486
|
+
return false;
|
1487
|
+
|
1488
|
+
GGML_UNUSED(dev);
|
1489
|
+
}
|
1490
|
+
|
1491
|
+
static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
|
1492
|
+
const int n_seq = 8;
|
1493
|
+
|
1494
|
+
// FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting
|
1495
|
+
// it to the size of the graph, but I think it can be made smaller?
|
1496
|
+
ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes);
|
1497
|
+
|
1498
|
+
std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq);
|
1499
|
+
|
1500
|
+
for (auto& sequence : sequences) {
|
1501
|
+
sequence = komputeManager()->sequence();
|
1502
|
+
}
|
1503
|
+
for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) {
|
1504
|
+
const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq;
|
1505
|
+
|
1506
|
+
auto& seq = *sequences[seq_idx];
|
1507
|
+
|
1508
|
+
const int node_start = (seq_idx + 0) * n_nodes_per_seq;
|
1509
|
+
const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes);
|
1510
|
+
|
1511
|
+
bool any_commands_recorded = false;
|
1512
|
+
|
1513
|
+
for (int i = node_start; i < node_end; ++i) {
|
1514
|
+
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
|
1515
|
+
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
|
1516
|
+
struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2);
|
1517
|
+
struct ggml_tensor * dst = gf->nodes[i];
|
1518
|
+
GGML_ASSERT(dst->data != nullptr);
|
1519
|
+
|
1520
|
+
if (ggml_is_empty(dst)) {
|
1521
|
+
continue;
|
1522
|
+
}
|
1523
|
+
|
1524
|
+
switch (dst->op) {
|
1525
|
+
case GGML_OP_NONE:
|
1526
|
+
case GGML_OP_RESHAPE:
|
1527
|
+
case GGML_OP_VIEW:
|
1528
|
+
case GGML_OP_TRANSPOSE:
|
1529
|
+
case GGML_OP_PERMUTE:
|
1530
|
+
continue; // noop -> next node
|
1531
|
+
default:
|
1532
|
+
break;
|
1533
|
+
}
|
1534
|
+
|
1535
|
+
any_commands_recorded = true;
|
1536
|
+
|
1537
|
+
const int32_t ne00 = src0 ? src0->ne[0] : 0;
|
1538
|
+
const int32_t ne01 = src0 ? src0->ne[1] : 0;
|
1539
|
+
const int32_t ne02 = src0 ? src0->ne[2] : 0;
|
1540
|
+
const int32_t ne03 = src0 ? src0->ne[3] : 0;
|
1541
|
+
|
1542
|
+
const uint32_t nb00 = src0 ? src0->nb[0] : 0;
|
1543
|
+
const uint32_t nb01 = src0 ? src0->nb[1] : 0;
|
1544
|
+
const uint32_t nb02 = src0 ? src0->nb[2] : 0;
|
1545
|
+
const uint32_t nb03 = src0 ? src0->nb[3] : 0;
|
1546
|
+
|
1547
|
+
const int32_t ne10 = src1 ? src1->ne[0] : 0;
|
1548
|
+
const int32_t ne11 = src1 ? src1->ne[1] : 0;
|
1549
|
+
const int32_t ne12 = src1 ? src1->ne[2] : 0;
|
1550
|
+
const int32_t ne13 = src1 ? src1->ne[3] : 0;
|
1551
|
+
|
1552
|
+
const uint32_t nb10 = src1 ? src1->nb[0] : 0;
|
1553
|
+
const uint32_t nb11 = src1 ? src1->nb[1] : 0;
|
1554
|
+
const uint32_t nb12 = src1 ? src1->nb[2] : 0;
|
1555
|
+
const uint32_t nb13 = src1 ? src1->nb[3] : 0;
|
1556
|
+
|
1557
|
+
const int32_t ne0 = dst ? dst->ne[0] : 0;
|
1558
|
+
const int32_t ne1 = dst ? dst->ne[1] : 0;
|
1559
|
+
const int32_t ne2 = dst ? dst->ne[2] : 0;
|
1560
|
+
// const int32_t ne3 = dst ? dst->ne[3] : 0;
|
1561
|
+
|
1562
|
+
const uint32_t nb0 = dst ? dst->nb[0] : 0;
|
1563
|
+
const uint32_t nb1 = dst ? dst->nb[1] : 0;
|
1564
|
+
const uint32_t nb2 = dst ? dst->nb[2] : 0;
|
1565
|
+
const uint32_t nb3 = dst ? dst->nb[3] : 0;
|
1566
|
+
|
1567
|
+
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
|
1568
|
+
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
|
1569
|
+
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
|
1570
|
+
|
1571
|
+
const static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
|
1572
|
+
uint32_t off_src0 = 0;
|
1573
|
+
uint32_t off_src1 = 0;
|
1574
|
+
uint32_t off_src2 = 0;
|
1575
|
+
uint32_t off_dst = 0;
|
1576
|
+
const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor;
|
1577
|
+
const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor;
|
1578
|
+
const std::shared_ptr<kp::Tensor>& id_src2 = src2 ? ggml_vk_get_tensor(src2, &off_src2) : nullTensor;
|
1579
|
+
const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor;
|
1580
|
+
|
1581
|
+
switch (dst->op) {
|
1582
|
+
case GGML_OP_ADD:
|
1583
|
+
{
|
1584
|
+
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
1585
|
+
// src1 is a row
|
1586
|
+
ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00);
|
1587
|
+
} else {
|
1588
|
+
ggml_vk_add(
|
1589
|
+
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1590
|
+
ne00, ne01, ne02, ne03,
|
1591
|
+
nb00, nb01, nb02, nb03,
|
1592
|
+
ne10, ne11, ne12, ne13,
|
1593
|
+
nb10, nb11, nb12, nb13,
|
1594
|
+
ne0,
|
1595
|
+
nb0, nb1, nb2, nb3
|
1596
|
+
);
|
1597
|
+
}
|
1598
|
+
} break;
|
1599
|
+
case GGML_OP_MUL:
|
1600
|
+
{
|
1601
|
+
ggml_vk_mul(
|
1602
|
+
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1603
|
+
ne00, ne01, ne02, ne03,
|
1604
|
+
nb00, nb01, nb02, nb03,
|
1605
|
+
ne10, ne11, ne12, ne13,
|
1606
|
+
nb10, nb11, nb12, nb13,
|
1607
|
+
ne0,
|
1608
|
+
nb0, nb1, nb2, nb3
|
1609
|
+
);
|
1610
|
+
} break;
|
1611
|
+
case GGML_OP_SCALE:
|
1612
|
+
{
|
1613
|
+
float scale; memcpy(&scale, dst->op_params, sizeof(float));
|
1614
|
+
|
1615
|
+
ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale);
|
1616
|
+
} break;
|
1617
|
+
case GGML_OP_UNARY:
|
1618
|
+
{
|
1619
|
+
int64_t n = ggml_nelements(dst);
|
1620
|
+
GGML_ASSERT(n % 4 == 0);
|
1621
|
+
switch (ggml_get_unary_op(gf->nodes[i])) {
|
1622
|
+
case GGML_UNARY_OP_SILU:
|
1623
|
+
{
|
1624
|
+
ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
|
1625
|
+
} break;
|
1626
|
+
case GGML_UNARY_OP_RELU:
|
1627
|
+
{
|
1628
|
+
ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
|
1629
|
+
} break;
|
1630
|
+
case GGML_UNARY_OP_GELU:
|
1631
|
+
{
|
1632
|
+
GGML_ASSERT(n % 8 == 0);
|
1633
|
+
ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8);
|
1634
|
+
} break;
|
1635
|
+
default:
|
1636
|
+
{
|
1637
|
+
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
1638
|
+
GGML_ABORT("fatal error");
|
1639
|
+
}
|
1640
|
+
}
|
1641
|
+
} break;
|
1642
|
+
case GGML_OP_SOFT_MAX:
|
1643
|
+
{
|
1644
|
+
float scale;
|
1645
|
+
float max_bias;
|
1646
|
+
|
1647
|
+
memcpy(&scale, (float *)dst->op_params + 0, sizeof(float));
|
1648
|
+
memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float));
|
1649
|
+
|
1650
|
+
#pragma message("TODO: add ggml_vk_soft_max() F16 src1 support")
|
1651
|
+
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
|
1652
|
+
GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32);
|
1653
|
+
|
1654
|
+
const int64_t nrows_x = ggml_nrows(src0);
|
1655
|
+
const int64_t nrows_y = src0->ne[1];
|
1656
|
+
|
1657
|
+
const uint32_t n_head = nrows_x/nrows_y;
|
1658
|
+
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
1659
|
+
|
1660
|
+
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
1661
|
+
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
1662
|
+
|
1663
|
+
ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale, max_bias, m0, m1, n_head_log2);
|
1664
|
+
} break;
|
1665
|
+
case GGML_OP_DIAG_MASK_INF:
|
1666
|
+
{
|
1667
|
+
const int n_past = ((int32_t *)(dst->op_params))[0];
|
1668
|
+
ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02);
|
1669
|
+
} break;
|
1670
|
+
case GGML_OP_NORM:
|
1671
|
+
{
|
1672
|
+
float eps;
|
1673
|
+
memcpy(&eps, dst->op_params, sizeof(float));
|
1674
|
+
ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
|
1675
|
+
} break;
|
1676
|
+
case GGML_OP_RMS_NORM:
|
1677
|
+
{
|
1678
|
+
GGML_ASSERT(ne00 % 4 == 0);
|
1679
|
+
|
1680
|
+
float eps;
|
1681
|
+
memcpy(&eps, dst->op_params, sizeof(float));
|
1682
|
+
ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
|
1683
|
+
} break;
|
1684
|
+
case GGML_OP_MUL_MAT:
|
1685
|
+
{
|
1686
|
+
GGML_ASSERT(ne00 == ne10);
|
1687
|
+
|
1688
|
+
GGML_ASSERT(ne12 % ne02 == 0);
|
1689
|
+
GGML_ASSERT(ne13 % ne03 == 0);
|
1690
|
+
|
1691
|
+
const uint32_t r2 = ne12/ne02;
|
1692
|
+
const uint32_t r3 = ne13/ne03;
|
1693
|
+
|
1694
|
+
if (src1t != GGML_TYPE_F32) {
|
1695
|
+
fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
|
1696
|
+
goto not_implemented;
|
1697
|
+
}
|
1698
|
+
|
1699
|
+
if (ggml_is_transposed(src0) ||
|
1700
|
+
ggml_is_transposed(src1)) {
|
1701
|
+
fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
|
1702
|
+
goto not_implemented;
|
1703
|
+
}
|
1704
|
+
|
1705
|
+
switch (src0t) {
|
1706
|
+
case GGML_TYPE_F32:
|
1707
|
+
ggml_vk_mul_mat_mat_f32(
|
1708
|
+
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1709
|
+
ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2
|
1710
|
+
);
|
1711
|
+
break;
|
1712
|
+
case GGML_TYPE_F16:
|
1713
|
+
ggml_vk_mul_mat_f16(
|
1714
|
+
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1715
|
+
ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
1716
|
+
ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13,
|
1717
|
+
ne0, ne1, r2, r3
|
1718
|
+
);
|
1719
|
+
break;
|
1720
|
+
case GGML_TYPE_Q8_0:
|
1721
|
+
ggml_vk_mul_mat_q8_0(
|
1722
|
+
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1723
|
+
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
1724
|
+
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
1725
|
+
);
|
1726
|
+
break;
|
1727
|
+
case GGML_TYPE_Q4_0:
|
1728
|
+
ggml_vk_mul_mat_q4_0(
|
1729
|
+
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1730
|
+
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
1731
|
+
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
1732
|
+
);
|
1733
|
+
break;
|
1734
|
+
case GGML_TYPE_Q4_1:
|
1735
|
+
ggml_vk_mul_mat_q4_1(
|
1736
|
+
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1737
|
+
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
1738
|
+
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
1739
|
+
);
|
1740
|
+
break;
|
1741
|
+
case GGML_TYPE_Q4_K:
|
1742
|
+
ggml_vk_mul_mat_q4_k(
|
1743
|
+
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1744
|
+
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
1745
|
+
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
1746
|
+
);
|
1747
|
+
break;
|
1748
|
+
case GGML_TYPE_Q6_K:
|
1749
|
+
ggml_vk_mul_mat_q6_k(
|
1750
|
+
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1751
|
+
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
1752
|
+
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
1753
|
+
);
|
1754
|
+
break;
|
1755
|
+
default: {
|
1756
|
+
fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
|
1757
|
+
goto not_implemented;
|
1758
|
+
}
|
1759
|
+
}
|
1760
|
+
|
1761
|
+
} break;
|
1762
|
+
case GGML_OP_GET_ROWS:
|
1763
|
+
{
|
1764
|
+
if (src0t == GGML_TYPE_F32) {
|
1765
|
+
ggml_vk_get_rows_f32(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1766
|
+
} else if (src0t == GGML_TYPE_F16) {
|
1767
|
+
ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1768
|
+
} else if (src0t == GGML_TYPE_Q4_0) {
|
1769
|
+
ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1770
|
+
} else if (src0t == GGML_TYPE_Q4_1) {
|
1771
|
+
ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1772
|
+
} else if (src0t == GGML_TYPE_Q6_K) {
|
1773
|
+
ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1774
|
+
} else {
|
1775
|
+
fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t);
|
1776
|
+
goto not_implemented;
|
1777
|
+
}
|
1778
|
+
} break;
|
1779
|
+
case GGML_OP_ROPE:
|
1780
|
+
{
|
1781
|
+
GGML_ASSERT(ne10 == ne02);
|
1782
|
+
GGML_ASSERT(src0t == dstt);
|
1783
|
+
// const int n_past = ((int32_t *) dst->op_params)[0];
|
1784
|
+
const int n_dims = ((int32_t *) dst->op_params)[1];
|
1785
|
+
const int mode = ((int32_t *) dst->op_params)[2];
|
1786
|
+
// skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
|
1787
|
+
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
1788
|
+
|
1789
|
+
const bool has_freq_factors = dst->src[2] != nullptr;
|
1790
|
+
|
1791
|
+
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
1792
|
+
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
1793
|
+
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
1794
|
+
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
1795
|
+
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
1796
|
+
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
1797
|
+
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
1798
|
+
ggml_vk_rope(
|
1799
|
+
seq, id_src0, id_src1, id_src2, id_dst, off_src0, off_src1, off_src2, off_dst, src0t, n_dims, mode, n_ctx_orig,
|
1800
|
+
freq_base, freq_scale, has_freq_factors, ext_factor, attn_factor, beta_fast, beta_slow,
|
1801
|
+
ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
|
1802
|
+
);
|
1803
|
+
} break;
|
1804
|
+
case GGML_OP_DUP:
|
1805
|
+
case GGML_OP_CPY:
|
1806
|
+
case GGML_OP_CONT:
|
1807
|
+
{
|
1808
|
+
switch (src0t) {
|
1809
|
+
case GGML_TYPE_F32:
|
1810
|
+
{
|
1811
|
+
switch (dstt) {
|
1812
|
+
case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
1813
|
+
case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
1814
|
+
default: goto not_implemented;
|
1815
|
+
}
|
1816
|
+
} break;
|
1817
|
+
case GGML_TYPE_F16:
|
1818
|
+
{
|
1819
|
+
switch (dstt) {
|
1820
|
+
case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
1821
|
+
case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
1822
|
+
default: goto not_implemented;
|
1823
|
+
} break;
|
1824
|
+
default: goto not_implemented;
|
1825
|
+
}
|
1826
|
+
}
|
1827
|
+
} break;
|
1828
|
+
default: goto not_implemented;
|
1829
|
+
}
|
1830
|
+
continue;
|
1831
|
+
not_implemented: {}
|
1832
|
+
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
1833
|
+
//GGML_ABORT("fatal error");
|
1834
|
+
}
|
1835
|
+
|
1836
|
+
// Evaluate sequence
|
1837
|
+
if (any_commands_recorded) {
|
1838
|
+
seq.evalAsync();
|
1839
|
+
}
|
1840
|
+
}
|
1841
|
+
|
1842
|
+
// Wait for all sequences to finish
|
1843
|
+
for (auto& sequence : sequences) {
|
1844
|
+
if (sequence->isRunning())
|
1845
|
+
sequence->evalAwait();
|
1846
|
+
}
|
1847
|
+
|
1848
|
+
ggml_vk_free_descriptor_pool(ctx);
|
1849
|
+
}
|
1850
|
+
|
1851
|
+
template<>
|
1852
|
+
kp::Tensor::TensorDataTypes
|
1853
|
+
kp::TensorT<half>::dataType()
|
1854
|
+
{
|
1855
|
+
return TensorDataTypes::eFloat;
|
1856
|
+
}
|
1857
|
+
|
1858
|
+
template<>
|
1859
|
+
kp::Tensor::TensorDataTypes
|
1860
|
+
kp::TensorT<uint8_t>::dataType()
|
1861
|
+
{
|
1862
|
+
return TensorDataTypes::eUnsignedInt;
|
1863
|
+
}
|
1864
|
+
|
1865
|
+
////////////////////////////////////////////////////////////////////////////////
|
1866
|
+
|
1867
|
+
// backend interface
|
1868
|
+
|
1869
|
+
struct ggml_backend_kompute_buffer_type_context {
|
1870
|
+
int device;
|
1871
|
+
int device_ref = 0;
|
1872
|
+
uint64_t buffer_alignment;
|
1873
|
+
uint64_t max_alloc;
|
1874
|
+
std::string name;
|
1875
|
+
|
1876
|
+
ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc)
|
1877
|
+
: device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {}
|
1878
|
+
};
|
1879
|
+
|
1880
|
+
static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) {
|
1881
|
+
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
1882
|
+
|
1883
|
+
if (!ctx->device_ref) {
|
1884
|
+
komputeManager()->initializeDevice(
|
1885
|
+
ctx->device, {}, {
|
1886
|
+
"VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage",
|
1887
|
+
"VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info"
|
1888
|
+
}
|
1889
|
+
);
|
1890
|
+
}
|
1891
|
+
|
1892
|
+
assert(ggml_vk_has_device());
|
1893
|
+
ctx->device_ref++;
|
1894
|
+
}
|
1895
|
+
|
1896
|
+
static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) {
|
1897
|
+
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
1898
|
+
|
1899
|
+
assert(ctx->device_ref > 0);
|
1900
|
+
|
1901
|
+
ctx->device_ref--;
|
1902
|
+
|
1903
|
+
if (!ctx->device_ref) {
|
1904
|
+
komputeManager.destroy();
|
1905
|
+
}
|
1906
|
+
}
|
1907
|
+
|
1908
|
+
static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
1909
|
+
auto * memory = (ggml_vk_memory *)buffer->context;
|
1910
|
+
if (ggml_vk_has_device()) {
|
1911
|
+
ggml_vk_free_memory(*memory);
|
1912
|
+
}
|
1913
|
+
delete memory;
|
1914
|
+
}
|
1915
|
+
|
1916
|
+
static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
|
1917
|
+
return ((ggml_vk_memory *)buffer->context)->data;
|
1918
|
+
}
|
1919
|
+
|
1920
|
+
static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
1921
|
+
GGML_UNUSED(buffer);
|
1922
|
+
|
1923
|
+
const auto res = ggml_vk_get_tensor(tensor);
|
1924
|
+
GGML_ASSERT(res);
|
1925
|
+
|
1926
|
+
memcpy((char *)tensor->data + offset, data, size);
|
1927
|
+
|
1928
|
+
komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res});
|
1929
|
+
}
|
1930
|
+
|
1931
|
+
static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
1932
|
+
GGML_UNUSED(buffer);
|
1933
|
+
|
1934
|
+
const auto res = ggml_vk_get_tensor(tensor);
|
1935
|
+
GGML_ASSERT(res);
|
1936
|
+
|
1937
|
+
komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res});
|
1938
|
+
|
1939
|
+
memcpy(data, (const char *)tensor->data + offset, size);
|
1940
|
+
}
|
1941
|
+
|
1942
|
+
static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
1943
|
+
auto * memory = (ggml_vk_memory *)buffer->context;
|
1944
|
+
memset(memory->data, value, buffer->size);
|
1945
|
+
|
1946
|
+
if (memory->stagingBuffer)
|
1947
|
+
komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size);
|
1948
|
+
}
|
1949
|
+
|
1950
|
+
static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
|
1951
|
+
/* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer,
|
1952
|
+
/* .get_base = */ ggml_backend_kompute_buffer_get_base,
|
1953
|
+
/* .init_tensor = */ NULL,
|
1954
|
+
/* .memset_tensor = */ NULL,
|
1955
|
+
/* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor,
|
1956
|
+
/* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor,
|
1957
|
+
/* .cpy_tensor = */ NULL,
|
1958
|
+
/* .clear = */ ggml_backend_kompute_buffer_clear,
|
1959
|
+
/* .reset = */ NULL,
|
1960
|
+
};
|
1961
|
+
|
1962
|
+
// default buffer type
|
1963
|
+
|
1964
|
+
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
1965
|
+
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
1966
|
+
return ctx->name.c_str();
|
1967
|
+
}
|
1968
|
+
|
1969
|
+
static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
1970
|
+
ggml_backend_kompute_device_ref(buft);
|
1971
|
+
auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size));
|
1972
|
+
return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size);
|
1973
|
+
}
|
1974
|
+
|
1975
|
+
static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
1976
|
+
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
1977
|
+
return ctx->buffer_alignment;
|
1978
|
+
}
|
1979
|
+
|
1980
|
+
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
1981
|
+
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
1982
|
+
return ctx->max_alloc;
|
1983
|
+
}
|
1984
|
+
|
1985
|
+
static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
|
1986
|
+
/* .get_name = */ ggml_backend_kompute_buffer_type_get_name,
|
1987
|
+
/* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer,
|
1988
|
+
/* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment,
|
1989
|
+
/* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
|
1990
|
+
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
1991
|
+
/* .is_host = */ NULL,
|
1992
|
+
};
|
1993
|
+
|
1994
|
+
ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
|
1995
|
+
static std::mutex mutex;
|
1996
|
+
std::lock_guard<std::mutex> lock(mutex);
|
1997
|
+
|
1998
|
+
auto devices = ggml_vk_available_devices();
|
1999
|
+
int32_t device_count = (int32_t) devices.size();
|
2000
|
+
GGML_ASSERT(device < device_count);
|
2001
|
+
GGML_ASSERT(devices.size() <= GGML_KOMPUTE_MAX_DEVICES);
|
2002
|
+
|
2003
|
+
static ggml_backend_buffer_type
|
2004
|
+
ggml_backend_kompute_buffer_types[GGML_KOMPUTE_MAX_DEVICES];
|
2005
|
+
|
2006
|
+
static bool ggml_backend_kompute_buffer_type_initialized = false;
|
2007
|
+
|
2008
|
+
if (!ggml_backend_kompute_buffer_type_initialized) {
|
2009
|
+
for (int32_t i = 0; i < device_count; i++) {
|
2010
|
+
ggml_backend_kompute_buffer_types[i] = {
|
2011
|
+
/* .iface = */ ggml_backend_kompute_buffer_type_interface,
|
2012
|
+
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_kompute_reg(), i),
|
2013
|
+
/* .context = */ new ggml_backend_kompute_buffer_type_context{ i, devices[i].bufferAlignment, devices[i].maxAlloc },
|
2014
|
+
};
|
2015
|
+
}
|
2016
|
+
ggml_backend_kompute_buffer_type_initialized = true;
|
2017
|
+
}
|
2018
|
+
|
2019
|
+
return &ggml_backend_kompute_buffer_types[device];
|
2020
|
+
}
|
2021
|
+
|
2022
|
+
// backend
|
2023
|
+
|
2024
|
+
static const char * ggml_backend_kompute_name(ggml_backend_t backend) {
|
2025
|
+
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
|
2026
|
+
return ctx->name.c_str();
|
2027
|
+
}
|
2028
|
+
|
2029
|
+
static void ggml_backend_kompute_free(ggml_backend_t backend) {
|
2030
|
+
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
|
2031
|
+
|
2032
|
+
assert(ctx == s_kompute_context);
|
2033
|
+
s_kompute_context = nullptr;
|
2034
|
+
if (ctx != nullptr) {
|
2035
|
+
delete ctx;
|
2036
|
+
}
|
2037
|
+
|
2038
|
+
delete backend;
|
2039
|
+
}
|
2040
|
+
|
2041
|
+
static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
2042
|
+
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
|
2043
|
+
ggml_vk_graph_compute(ctx, cgraph);
|
2044
|
+
return GGML_STATUS_SUCCESS;
|
2045
|
+
}
|
2046
|
+
|
2047
|
+
static struct ggml_backend_i kompute_backend_i = {
|
2048
|
+
/* .get_name = */ ggml_backend_kompute_name,
|
2049
|
+
/* .free = */ ggml_backend_kompute_free,
|
2050
|
+
/* .set_tensor_async = */ NULL,
|
2051
|
+
/* .get_tensor_async = */ NULL,
|
2052
|
+
/* .cpy_tensor_async = */ NULL,
|
2053
|
+
/* .synchronize = */ NULL,
|
2054
|
+
/* .graph_plan_create = */ NULL,
|
2055
|
+
/* .graph_plan_free = */ NULL,
|
2056
|
+
/* .graph_plan_update = */ NULL,
|
2057
|
+
/* .graph_plan_compute = */ NULL,
|
2058
|
+
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
|
2059
|
+
/* .event_record = */ NULL,
|
2060
|
+
/* .event_wait = */ NULL,
|
2061
|
+
};
|
2062
|
+
|
2063
|
+
static ggml_guid_t ggml_backend_kompute_guid() {
|
2064
|
+
static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca };
|
2065
|
+
return &guid;
|
2066
|
+
}
|
2067
|
+
|
2068
|
+
ggml_backend_t ggml_backend_kompute_init(int device) {
|
2069
|
+
GGML_ASSERT(s_kompute_context == nullptr);
|
2070
|
+
s_kompute_context = new ggml_kompute_context(device);
|
2071
|
+
|
2072
|
+
ggml_backend_t kompute_backend = new ggml_backend {
|
2073
|
+
/* .guid = */ ggml_backend_kompute_guid(),
|
2074
|
+
/* .interface = */ kompute_backend_i,
|
2075
|
+
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_kompute_reg(), device),
|
2076
|
+
/* .context = */ s_kompute_context,
|
2077
|
+
};
|
2078
|
+
|
2079
|
+
return kompute_backend;
|
2080
|
+
}
|
2081
|
+
|
2082
|
+
bool ggml_backend_is_kompute(ggml_backend_t backend) {
|
2083
|
+
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
|
2084
|
+
}
|
2085
|
+
|
2086
|
+
static size_t ggml_backend_kompute_get_device_count() {
|
2087
|
+
auto devices = ggml_vk_available_devices();
|
2088
|
+
return devices.size();
|
2089
|
+
}
|
2090
|
+
|
2091
|
+
static void ggml_backend_kompute_get_device_description(int device, char * description, size_t description_size) {
|
2092
|
+
auto devices = ggml_vk_available_devices();
|
2093
|
+
GGML_ASSERT((size_t) device < devices.size());
|
2094
|
+
snprintf(description, description_size, "%s", devices[device].name);
|
2095
|
+
}
|
2096
|
+
|
2097
|
+
static void ggml_backend_kompute_get_device_memory(int device, size_t * free, size_t * total) {
|
2098
|
+
auto devices = ggml_vk_available_devices();
|
2099
|
+
GGML_ASSERT((size_t) device < devices.size());
|
2100
|
+
*total = devices[device].heapSize;
|
2101
|
+
*free = devices[device].heapSize;
|
2102
|
+
}
|
2103
|
+
|
2104
|
+
//////////////////////////
|
2105
|
+
|
2106
|
+
struct ggml_backend_kompute_device_context {
|
2107
|
+
int device;
|
2108
|
+
std::string name;
|
2109
|
+
std::string description;
|
2110
|
+
};
|
2111
|
+
|
2112
|
+
static const char * ggml_backend_kompute_device_get_name(ggml_backend_dev_t dev) {
|
2113
|
+
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
2114
|
+
return ctx->name.c_str();
|
2115
|
+
}
|
2116
|
+
|
2117
|
+
static const char * ggml_backend_kompute_device_get_description(ggml_backend_dev_t dev) {
|
2118
|
+
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
2119
|
+
return ctx->description.c_str();
|
2120
|
+
}
|
2121
|
+
|
2122
|
+
static void ggml_backend_kompute_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
2123
|
+
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
2124
|
+
ggml_backend_kompute_get_device_memory(ctx->device, free, total);
|
2125
|
+
}
|
2126
|
+
|
2127
|
+
static ggml_backend_buffer_type_t ggml_backend_kompute_device_get_buffer_type(ggml_backend_dev_t dev) {
|
2128
|
+
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
2129
|
+
return ggml_backend_kompute_buffer_type(ctx->device);
|
2130
|
+
}
|
2131
|
+
|
2132
|
+
static bool ggml_backend_kompute_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
2133
|
+
if (buft->iface.get_name != ggml_backend_kompute_buffer_type_get_name) {
|
2134
|
+
return false;
|
2135
|
+
}
|
2136
|
+
|
2137
|
+
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
2138
|
+
ggml_backend_kompute_buffer_type_context * buft_ctx = (ggml_backend_kompute_buffer_type_context *)buft->context;
|
2139
|
+
|
2140
|
+
return buft_ctx->device == ctx->device;
|
2141
|
+
}
|
2142
|
+
|
2143
|
+
static enum ggml_backend_dev_type ggml_backend_kompute_device_get_type(ggml_backend_dev_t dev) {
|
2144
|
+
GGML_UNUSED(dev);
|
2145
|
+
return GGML_BACKEND_DEVICE_TYPE_GPU;
|
2146
|
+
}
|
2147
|
+
|
2148
|
+
static void ggml_backend_kompute_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
2149
|
+
props->name = ggml_backend_kompute_device_get_name(dev);
|
2150
|
+
props->description = ggml_backend_kompute_device_get_description(dev);
|
2151
|
+
props->type = ggml_backend_kompute_device_get_type(dev);
|
2152
|
+
ggml_backend_kompute_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
2153
|
+
props->caps = {
|
2154
|
+
/* async = */ false,
|
2155
|
+
/* host_buffer = */ false,
|
2156
|
+
/* .buffer_from_host_ptr = */ false,
|
2157
|
+
/* events = */ false,
|
2158
|
+
};
|
2159
|
+
}
|
2160
|
+
|
2161
|
+
static ggml_backend_t ggml_backend_kompute_device_init(ggml_backend_dev_t dev, const char * params) {
|
2162
|
+
GGML_UNUSED(params);
|
2163
|
+
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
2164
|
+
return ggml_backend_kompute_init(ctx->device);
|
2165
|
+
}
|
2166
|
+
|
2167
|
+
static bool ggml_backend_kompute_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
|
2168
|
+
const int min_batch_size = 32;
|
2169
|
+
|
2170
|
+
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
|
2171
|
+
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
|
2172
|
+
|
2173
|
+
GGML_UNUSED(dev);
|
2174
|
+
}
|
2175
|
+
|
2176
|
+
static const struct ggml_backend_device_i ggml_backend_kompute_device_i = {
|
2177
|
+
/* .get_name = */ ggml_backend_kompute_device_get_name,
|
2178
|
+
/* .get_description = */ ggml_backend_kompute_device_get_description,
|
2179
|
+
/* .get_memory = */ ggml_backend_kompute_device_get_memory,
|
2180
|
+
/* .get_type = */ ggml_backend_kompute_device_get_type,
|
2181
|
+
/* .get_props = */ ggml_backend_kompute_device_get_props,
|
2182
|
+
/* .init_backend = */ ggml_backend_kompute_device_init,
|
2183
|
+
/* .get_buffer_type = */ ggml_backend_kompute_device_get_buffer_type,
|
2184
|
+
/* .get_host_buffer_type = */ NULL,
|
2185
|
+
/* .buffer_from_host_ptr = */ NULL,
|
2186
|
+
/* .supports_op = */ ggml_backend_kompute_device_supports_op,
|
2187
|
+
/* .supports_buft = */ ggml_backend_kompute_device_supports_buft,
|
2188
|
+
/* .offload_op = */ ggml_backend_kompute_device_offload_op,
|
2189
|
+
/* .event_new = */ NULL,
|
2190
|
+
/* .event_free = */ NULL,
|
2191
|
+
/* .event_synchronize = */ NULL,
|
2192
|
+
};
|
2193
|
+
|
2194
|
+
static const char * ggml_backend_kompute_reg_get_name(ggml_backend_reg_t reg) {
|
2195
|
+
GGML_UNUSED(reg);
|
2196
|
+
return "Kompute";
|
2197
|
+
}
|
2198
|
+
|
2199
|
+
static size_t ggml_backend_kompute_reg_get_device_count(ggml_backend_reg_t reg) {
|
2200
|
+
GGML_UNUSED(reg);
|
2201
|
+
return ggml_backend_kompute_get_device_count();
|
2202
|
+
}
|
2203
|
+
|
2204
|
+
static ggml_backend_dev_t ggml_backend_kompute_reg_get_device(ggml_backend_reg_t reg, size_t device) {
|
2205
|
+
static std::vector<ggml_backend_dev_t> devices;
|
2206
|
+
|
2207
|
+
static bool initialized = false;
|
2208
|
+
|
2209
|
+
{
|
2210
|
+
static std::mutex mutex;
|
2211
|
+
std::lock_guard<std::mutex> lock(mutex);
|
2212
|
+
if (!initialized) {
|
2213
|
+
for (size_t i = 0; i < ggml_backend_kompute_get_device_count(); i++) {
|
2214
|
+
ggml_backend_kompute_device_context * ctx = new ggml_backend_kompute_device_context;
|
2215
|
+
char desc[256];
|
2216
|
+
ggml_backend_kompute_get_device_description(i, desc, sizeof(desc));
|
2217
|
+
ctx->device = i;
|
2218
|
+
ctx->name = "Kompute" + std::to_string(i);
|
2219
|
+
ctx->description = desc;
|
2220
|
+
devices.push_back(new ggml_backend_device {
|
2221
|
+
/* .iface = */ ggml_backend_kompute_device_i,
|
2222
|
+
/* .reg = */ reg,
|
2223
|
+
/* .context = */ ctx,
|
2224
|
+
});
|
2225
|
+
}
|
2226
|
+
initialized = true;
|
2227
|
+
}
|
2228
|
+
}
|
2229
|
+
|
2230
|
+
GGML_ASSERT(device < devices.size());
|
2231
|
+
return devices[device];
|
2232
|
+
}
|
2233
|
+
|
2234
|
+
static const struct ggml_backend_reg_i ggml_backend_kompute_reg_i = {
|
2235
|
+
/* .get_name = */ ggml_backend_kompute_reg_get_name,
|
2236
|
+
/* .get_device_count = */ ggml_backend_kompute_reg_get_device_count,
|
2237
|
+
/* .get_device = */ ggml_backend_kompute_reg_get_device,
|
2238
|
+
/* .get_proc_address = */ NULL,
|
2239
|
+
};
|
2240
|
+
|
2241
|
+
ggml_backend_reg_t ggml_backend_kompute_reg() {
|
2242
|
+
static ggml_backend_reg reg = {
|
2243
|
+
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
2244
|
+
/* .iface = */ ggml_backend_kompute_reg_i,
|
2245
|
+
/* .context = */ nullptr,
|
2246
|
+
};
|
2247
|
+
|
2248
|
+
return ®
|
2249
|
+
}
|
2250
|
+
|
2251
|
+
GGML_BACKEND_DL_IMPL(ggml_backend_kompute_reg)
|