whispercpp 1.2.0.2 → 1.3.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +5 -0
- data/LICENSE +1 -1
- data/README.md +165 -434
- data/Rakefile +46 -86
- data/ext/.gitignore +13 -0
- data/ext/cpu.mk +9 -0
- data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
- data/ext/extconf.rb +185 -7
- data/ext/ggml/include/ggml-alloc.h +76 -0
- data/ext/ggml/include/ggml-backend.h +352 -0
- data/ext/ggml/include/ggml-blas.h +25 -0
- data/ext/ggml/include/ggml-cann.h +123 -0
- data/ext/ggml/include/ggml-cpp.h +38 -0
- data/ext/ggml/include/ggml-cpu.h +135 -0
- data/ext/ggml/include/ggml-cuda.h +47 -0
- data/ext/ggml/include/ggml-kompute.h +50 -0
- data/ext/ggml/include/ggml-metal.h +66 -0
- data/ext/ggml/include/ggml-opencl.h +26 -0
- data/ext/ggml/include/ggml-opt.h +216 -0
- data/ext/ggml/include/ggml-rpc.h +28 -0
- data/ext/ggml/include/ggml-sycl.h +49 -0
- data/ext/ggml/include/ggml-vulkan.h +31 -0
- data/ext/ggml/include/ggml.h +2285 -0
- data/ext/ggml/src/ggml-alloc.c +1037 -0
- data/ext/ggml/src/ggml-amx/common.h +94 -0
- data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
- data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
- data/ext/ggml/src/ggml-amx/mmq.h +17 -0
- data/ext/ggml/src/ggml-backend-impl.h +256 -0
- data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
- data/ext/ggml/src/ggml-backend.cpp +1999 -0
- data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
- data/ext/ggml/src/ggml-cann/common.h +286 -0
- data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
- data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
- data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
- data/ext/ggml/src/ggml-common.h +1853 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
- data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
- data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
- data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
- data/ext/ggml/src/ggml-impl.h +556 -0
- data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
- data/ext/ggml/src/ggml-opt.cpp +854 -0
- data/ext/ggml/src/ggml-quants.c +5238 -0
- data/ext/ggml/src/ggml-quants.h +100 -0
- data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
- data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
- data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
- data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
- data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
- data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
- data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
- data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
- data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
- data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
- data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
- data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
- data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
- data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
- data/ext/ggml/src/ggml-threading.cpp +12 -0
- data/ext/ggml/src/ggml-threading.h +14 -0
- data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
- data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
- data/ext/ggml/src/ggml.c +7694 -0
- data/ext/include/whisper.h +672 -0
- data/ext/metal-embed.mk +17 -0
- data/ext/metal.mk +6 -0
- data/ext/ruby_whisper.cpp +1608 -159
- data/ext/ruby_whisper.h +10 -0
- data/ext/scripts/get-flags.mk +38 -0
- data/ext/src/coreml/whisper-decoder-impl.h +146 -0
- data/ext/src/coreml/whisper-decoder-impl.m +201 -0
- data/ext/src/coreml/whisper-encoder-impl.h +142 -0
- data/ext/src/coreml/whisper-encoder-impl.m +197 -0
- data/ext/src/coreml/whisper-encoder.h +26 -0
- data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
- data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
- data/ext/src/whisper.cpp +7393 -0
- data/extsources.rb +6 -0
- data/lib/whisper/model/uri.rb +157 -0
- data/lib/whisper.rb +2 -0
- data/tests/helper.rb +7 -0
- data/tests/jfk_reader/.gitignore +5 -0
- data/tests/jfk_reader/extconf.rb +3 -0
- data/tests/jfk_reader/jfk_reader.c +68 -0
- data/tests/test_callback.rb +160 -0
- data/tests/test_error.rb +20 -0
- data/tests/test_model.rb +71 -0
- data/tests/test_package.rb +31 -0
- data/tests/test_params.rb +160 -0
- data/tests/test_segment.rb +83 -0
- data/tests/test_whisper.rb +211 -123
- data/whispercpp.gemspec +36 -0
- metadata +137 -11
- data/ext/ggml.c +0 -8616
- data/ext/ggml.h +0 -748
- data/ext/whisper.cpp +0 -4829
- data/ext/whisper.h +0 -402
@@ -0,0 +1,1030 @@
|
|
1
|
+
#include "common.hpp"
|
2
|
+
#include "element_wise.hpp"
|
3
|
+
|
4
|
+
void acc_f32(const float * x, const float * y, float * dst, const int ne,
|
5
|
+
const int ne10, const int ne11, const int ne12,
|
6
|
+
const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
|
7
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
8
|
+
item_ct1.get_local_id(2);
|
9
|
+
if (i >= ne) {
|
10
|
+
return;
|
11
|
+
}
|
12
|
+
int src1_idx = i - offset;
|
13
|
+
int oz = src1_idx / nb2;
|
14
|
+
int oy = (src1_idx - (oz * nb2)) / nb1;
|
15
|
+
int ox = src1_idx % nb1;
|
16
|
+
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
|
17
|
+
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
|
18
|
+
} else {
|
19
|
+
dst[i] = x[i];
|
20
|
+
}
|
21
|
+
}
|
22
|
+
|
23
|
+
void gelu_f32(const float * x, float * dst, const int k,
|
24
|
+
const sycl::nd_item<3> &item_ct1) {
|
25
|
+
const float GELU_COEF_A = 0.044715f;
|
26
|
+
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
27
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
28
|
+
item_ct1.get_local_id(2);
|
29
|
+
|
30
|
+
if (i >= k) {
|
31
|
+
return;
|
32
|
+
}
|
33
|
+
|
34
|
+
float xi = x[i];
|
35
|
+
dst[i] = 0.5f * xi *
|
36
|
+
(1.0f +
|
37
|
+
sycl::tanh(SQRT_2_OVER_PI * xi * (1.0f + GELU_COEF_A * xi * xi)));
|
38
|
+
}
|
39
|
+
|
40
|
+
void silu_f32(const float * x, float * dst, const int k,
|
41
|
+
const sycl::nd_item<3> &item_ct1) {
|
42
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
43
|
+
item_ct1.get_local_id(2);
|
44
|
+
|
45
|
+
if (i >= k) {
|
46
|
+
return;
|
47
|
+
}
|
48
|
+
dst[i] = x[i] / (1.0f + sycl::native::exp(-x[i]));
|
49
|
+
}
|
50
|
+
|
51
|
+
void gelu_quick_f32(const float *x, float *dst, int k,
|
52
|
+
const sycl::nd_item<3> &item_ct1) {
|
53
|
+
const float GELU_QUICK_COEF = -1.702f;
|
54
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
55
|
+
item_ct1.get_local_id(2);
|
56
|
+
if (i >= k) {
|
57
|
+
return;
|
58
|
+
}
|
59
|
+
dst[i] = x[i] * (1.0f / (1.0f + sycl::native::exp(GELU_QUICK_COEF * x[i])));
|
60
|
+
}
|
61
|
+
|
62
|
+
void tanh_f32(const float *x, float *dst, int k,
|
63
|
+
const sycl::nd_item<3> &item_ct1) {
|
64
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
65
|
+
item_ct1.get_local_id(2);
|
66
|
+
if (i >= k) {
|
67
|
+
return;
|
68
|
+
}
|
69
|
+
dst[i] = sycl::tanh((float)(x[i]));
|
70
|
+
}
|
71
|
+
|
72
|
+
void relu_f32(const float * x, float * dst, const int k,
|
73
|
+
const sycl::nd_item<3> &item_ct1) {
|
74
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
75
|
+
item_ct1.get_local_id(2);
|
76
|
+
|
77
|
+
if (i >= k) {
|
78
|
+
return;
|
79
|
+
}
|
80
|
+
dst[i] = sycl::fmax((float)(x[i]), (float)0);
|
81
|
+
}
|
82
|
+
|
83
|
+
void sigmoid_f32(const float * x, float * dst, const int k,
|
84
|
+
const sycl::nd_item<3> &item_ct1) {
|
85
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
86
|
+
item_ct1.get_local_id(2);
|
87
|
+
|
88
|
+
if (i >= k) {
|
89
|
+
return;
|
90
|
+
}
|
91
|
+
dst[i] = 1.0f / (1.0f + sycl::native::exp(-x[i]));
|
92
|
+
}
|
93
|
+
|
94
|
+
void sqrt_f32(const float * x, float * dst, const int k,
|
95
|
+
const sycl::nd_item<3> &item_ct1) {
|
96
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
97
|
+
item_ct1.get_local_id(2);
|
98
|
+
|
99
|
+
if (i >= k) {
|
100
|
+
return;
|
101
|
+
}
|
102
|
+
dst[i] = sycl::sqrt(x[i]);
|
103
|
+
}
|
104
|
+
|
105
|
+
void sin_f32(const float * x, float * dst, const int k,
|
106
|
+
const sycl::nd_item<3> &item_ct1) {
|
107
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
108
|
+
item_ct1.get_local_id(2);
|
109
|
+
|
110
|
+
if (i >= k) {
|
111
|
+
return;
|
112
|
+
}
|
113
|
+
dst[i] = sycl::sin(x[i]);
|
114
|
+
}
|
115
|
+
|
116
|
+
void cos_f32(const float * x, float * dst, const int k,
|
117
|
+
const sycl::nd_item<3> &item_ct1) {
|
118
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
119
|
+
item_ct1.get_local_id(2);
|
120
|
+
|
121
|
+
if (i >= k) {
|
122
|
+
return;
|
123
|
+
}
|
124
|
+
dst[i] = sycl::cos(x[i]);
|
125
|
+
}
|
126
|
+
|
127
|
+
void hardsigmoid_f32(const float * x, float * dst, const int k,
|
128
|
+
const sycl::nd_item<3> &item_ct1) {
|
129
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
130
|
+
item_ct1.get_local_id(2);
|
131
|
+
|
132
|
+
if (i >= k) {
|
133
|
+
return;
|
134
|
+
}
|
135
|
+
dst[i] = sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
|
136
|
+
}
|
137
|
+
|
138
|
+
void hardswish_f32(const float * x, float * dst, const int k,
|
139
|
+
const sycl::nd_item<3> &item_ct1) {
|
140
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
141
|
+
item_ct1.get_local_id(2);
|
142
|
+
|
143
|
+
if (i >= k) {
|
144
|
+
return;
|
145
|
+
}
|
146
|
+
dst[i] = x[i] * sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
|
147
|
+
}
|
148
|
+
|
149
|
+
void exp_f32(const float * x, float * dst, const int k,
|
150
|
+
const sycl::nd_item<3> &item_ct1) {
|
151
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
152
|
+
item_ct1.get_local_id(2);
|
153
|
+
|
154
|
+
if (i >= k) {
|
155
|
+
return;
|
156
|
+
}
|
157
|
+
dst[i] = sycl::exp(x[i]);
|
158
|
+
}
|
159
|
+
|
160
|
+
void log_f32(const float * x, float * dst, const int k,
|
161
|
+
const sycl::nd_item<3> &item_ct1) {
|
162
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
163
|
+
item_ct1.get_local_id(2);
|
164
|
+
|
165
|
+
if (i >= k) {
|
166
|
+
return;
|
167
|
+
}
|
168
|
+
float xi = x[i];
|
169
|
+
if (xi <= 0) {
|
170
|
+
dst[i] = -INFINITY;
|
171
|
+
} else {
|
172
|
+
dst[i] = sycl::log(xi);
|
173
|
+
}
|
174
|
+
}
|
175
|
+
|
176
|
+
void neg_f32(const float * x, float * dst, const int k,
|
177
|
+
const sycl::nd_item<3> &item_ct1) {
|
178
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
179
|
+
item_ct1.get_local_id(2);
|
180
|
+
|
181
|
+
if (i >= k) {
|
182
|
+
return;
|
183
|
+
}
|
184
|
+
dst[i] = -x[i];
|
185
|
+
}
|
186
|
+
|
187
|
+
void step_f32(const float * x, float * dst, const int k,
|
188
|
+
const sycl::nd_item<3> &item_ct1) {
|
189
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
190
|
+
item_ct1.get_local_id(2);
|
191
|
+
|
192
|
+
if (i >= k) {
|
193
|
+
return;
|
194
|
+
}
|
195
|
+
dst[i] = x[i] > 0.0f;
|
196
|
+
}
|
197
|
+
|
198
|
+
void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
|
199
|
+
const sycl::nd_item<3> &item_ct1) {
|
200
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
201
|
+
item_ct1.get_local_id(2);
|
202
|
+
if (i >= k) {
|
203
|
+
return;
|
204
|
+
}
|
205
|
+
dst[i] = sycl::fmax((float)(x[i]), (float)0) +
|
206
|
+
sycl::fmin((float)(x[i]), 0.0f) * negative_slope;
|
207
|
+
}
|
208
|
+
|
209
|
+
void sqr_f32(const float * x, float * dst, const int k,
|
210
|
+
const sycl::nd_item<3> &item_ct1) {
|
211
|
+
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
212
|
+
item_ct1.get_local_id(2);
|
213
|
+
|
214
|
+
if (i >= k) {
|
215
|
+
return;
|
216
|
+
}
|
217
|
+
dst[i] = x[i] * x[i];
|
218
|
+
}
|
219
|
+
|
220
|
+
void upscale_f32(const float *x, float *dst, const int nb00, const int nb01,
|
221
|
+
const int nb02, const int nb03, const int ne10, const int ne11,
|
222
|
+
const int ne12, const int ne13, const float sf0, const float sf1,
|
223
|
+
const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) {
|
224
|
+
int index = item_ct1.get_local_id(0) +
|
225
|
+
item_ct1.get_group(0) * item_ct1.get_local_range(0);
|
226
|
+
if (index >= ne10 * ne11 * ne12 * ne13) {
|
227
|
+
return;
|
228
|
+
}
|
229
|
+
// operation
|
230
|
+
int i10 = index % ne10;
|
231
|
+
int i11 = (index / ne10) % ne11;
|
232
|
+
int i12 = (index / (ne10 * ne11)) % ne12;
|
233
|
+
int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
|
234
|
+
|
235
|
+
int i00 = i10 / sf0;
|
236
|
+
int i01 = i11 / sf1;
|
237
|
+
int i02 = i12 / sf2;
|
238
|
+
int i03 = i13 / sf3;
|
239
|
+
|
240
|
+
dst[index] = *(const float *)((const char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
|
241
|
+
}
|
242
|
+
|
243
|
+
void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
|
244
|
+
const sycl::nd_item<3> &item_ct1) {
|
245
|
+
int nidx = item_ct1.get_local_id(2) +
|
246
|
+
item_ct1.get_group(2) * item_ct1.get_local_range(2);
|
247
|
+
if (nidx >= ne0) {
|
248
|
+
return;
|
249
|
+
}
|
250
|
+
|
251
|
+
// operation
|
252
|
+
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
|
253
|
+
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
|
254
|
+
if (nidx < ne00 && item_ct1.get_group(1) < (size_t) ne01 && item_ct1.get_group(0) < (size_t) ne02) {
|
255
|
+
int offset_src = nidx + item_ct1.get_group(1) * ne00 +
|
256
|
+
item_ct1.get_group(0) * ne00 * ne01;
|
257
|
+
dst[offset_dst] = x[offset_src];
|
258
|
+
} else {
|
259
|
+
dst[offset_dst] = 0.0f;
|
260
|
+
}
|
261
|
+
}
|
262
|
+
|
263
|
+
|
264
|
+
|
265
|
+
void acc_f32_sycl(const float *x, const float *y, float *dst,
|
266
|
+
const int n_elements, const int ne10, const int ne11,
|
267
|
+
const int ne12, const int nb1, const int nb2,
|
268
|
+
const int offset, queue_ptr stream) {
|
269
|
+
int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
|
270
|
+
stream->parallel_for(
|
271
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
272
|
+
sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
|
273
|
+
sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
|
274
|
+
[=](sycl::nd_item<3> item_ct1) {
|
275
|
+
acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
|
276
|
+
item_ct1);
|
277
|
+
});
|
278
|
+
}
|
279
|
+
|
280
|
+
void gelu_f32_sycl(const float *x, float *dst, const int k,
|
281
|
+
queue_ptr stream) {
|
282
|
+
const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
|
283
|
+
stream->parallel_for(
|
284
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
285
|
+
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
|
286
|
+
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
|
287
|
+
[=](sycl::nd_item<3> item_ct1) {
|
288
|
+
gelu_f32(x, dst, k, item_ct1);
|
289
|
+
});
|
290
|
+
}
|
291
|
+
|
292
|
+
void silu_f32_sycl(const float *x, float *dst, const int k,
|
293
|
+
queue_ptr stream) {
|
294
|
+
const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
|
295
|
+
stream->parallel_for(
|
296
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
297
|
+
sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
|
298
|
+
sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
|
299
|
+
[=](sycl::nd_item<3> item_ct1) {
|
300
|
+
silu_f32(x, dst, k, item_ct1);
|
301
|
+
});
|
302
|
+
}
|
303
|
+
|
304
|
+
void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
|
305
|
+
queue_ptr stream) {
|
306
|
+
const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
|
307
|
+
stream->parallel_for(
|
308
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
309
|
+
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
|
310
|
+
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
|
311
|
+
[=](sycl::nd_item<3> item_ct1) {
|
312
|
+
gelu_quick_f32(x, dst, k, item_ct1);
|
313
|
+
});
|
314
|
+
}
|
315
|
+
|
316
|
+
void tanh_f32_sycl(const float *x, float *dst, const int k,
|
317
|
+
queue_ptr stream) {
|
318
|
+
const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
|
319
|
+
stream->parallel_for(
|
320
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
321
|
+
sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
|
322
|
+
sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
|
323
|
+
[=](sycl::nd_item<3> item_ct1) {
|
324
|
+
tanh_f32(x, dst, k, item_ct1);
|
325
|
+
});
|
326
|
+
}
|
327
|
+
|
328
|
+
void relu_f32_sycl(const float *x, float *dst, const int k,
|
329
|
+
queue_ptr stream) {
|
330
|
+
const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
|
331
|
+
stream->parallel_for(
|
332
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
333
|
+
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
|
334
|
+
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
|
335
|
+
[=](sycl::nd_item<3> item_ct1) {
|
336
|
+
relu_f32(x, dst, k, item_ct1);
|
337
|
+
});
|
338
|
+
}
|
339
|
+
|
340
|
+
void hardsigmoid_f32_sycl(const float *x, float *dst, const int k,
|
341
|
+
queue_ptr stream) {
|
342
|
+
const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE;
|
343
|
+
stream->parallel_for(
|
344
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
345
|
+
sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE),
|
346
|
+
sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE)),
|
347
|
+
[=](sycl::nd_item<3> item_ct1) {
|
348
|
+
hardsigmoid_f32(x, dst, k, item_ct1);
|
349
|
+
});
|
350
|
+
}
|
351
|
+
|
352
|
+
void hardswish_f32_sycl(const float *x, float *dst, const int k,
|
353
|
+
queue_ptr stream) {
|
354
|
+
const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE;
|
355
|
+
stream->parallel_for(
|
356
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
357
|
+
sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE),
|
358
|
+
sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE)),
|
359
|
+
[=](sycl::nd_item<3> item_ct1) {
|
360
|
+
hardswish_f32(x, dst, k, item_ct1);
|
361
|
+
});
|
362
|
+
}
|
363
|
+
|
364
|
+
void exp_f32_sycl(const float *x, float *dst, const int k,
|
365
|
+
queue_ptr stream) {
|
366
|
+
const int num_blocks = (k + SYCL_EXP_BLOCK_SIZE - 1) / SYCL_EXP_BLOCK_SIZE;
|
367
|
+
stream->parallel_for(
|
368
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
369
|
+
sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE),
|
370
|
+
sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE)),
|
371
|
+
[=](sycl::nd_item<3> item_ct1) {
|
372
|
+
exp_f32(x, dst, k, item_ct1);
|
373
|
+
});
|
374
|
+
}
|
375
|
+
|
376
|
+
void log_f32_sycl(const float *x, float *dst, const int k,
|
377
|
+
queue_ptr stream) {
|
378
|
+
const int num_blocks = (k + SYCL_EXP_BLOCK_SIZE - 1) / SYCL_EXP_BLOCK_SIZE;
|
379
|
+
stream->parallel_for(
|
380
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
381
|
+
sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE),
|
382
|
+
sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE)),
|
383
|
+
[=](sycl::nd_item<3> item_ct1) {
|
384
|
+
log_f32(x, dst, k, item_ct1);
|
385
|
+
});
|
386
|
+
}
|
387
|
+
|
388
|
+
void neg_f32_sycl(const float *x, float *dst, const int k,
|
389
|
+
queue_ptr stream) {
|
390
|
+
const int num_blocks = (k + SYCL_NEG_BLOCK_SIZE - 1) / SYCL_NEG_BLOCK_SIZE;
|
391
|
+
stream->parallel_for(
|
392
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
393
|
+
sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE),
|
394
|
+
sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE)),
|
395
|
+
[=](sycl::nd_item<3> item_ct1) {
|
396
|
+
neg_f32(x, dst, k, item_ct1);
|
397
|
+
});
|
398
|
+
}
|
399
|
+
|
400
|
+
void step_f32_sycl(const float *x, float *dst, const int k,
|
401
|
+
queue_ptr stream) {
|
402
|
+
const int num_blocks = (k + SYCL_NEG_BLOCK_SIZE - 1) / SYCL_NEG_BLOCK_SIZE;
|
403
|
+
stream->parallel_for(
|
404
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
405
|
+
sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE),
|
406
|
+
sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE)),
|
407
|
+
[=](sycl::nd_item<3> item_ct1) {
|
408
|
+
step_f32(x, dst, k, item_ct1);
|
409
|
+
});
|
410
|
+
}
|
411
|
+
|
412
|
+
void sigmoid_f32_sycl(const float *x, float *dst, const int k,
|
413
|
+
queue_ptr stream) {
|
414
|
+
const int num_blocks = (k + SYCL_SIGMOID_BLOCK_SIZE - 1) / SYCL_SIGMOID_BLOCK_SIZE;
|
415
|
+
stream->parallel_for(
|
416
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
417
|
+
sycl::range<3>(1, 1, SYCL_SIGMOID_BLOCK_SIZE),
|
418
|
+
sycl::range<3>(1, 1, SYCL_SIGMOID_BLOCK_SIZE)),
|
419
|
+
[=](sycl::nd_item<3> item_ct1) {
|
420
|
+
sigmoid_f32(x, dst, k, item_ct1);
|
421
|
+
});
|
422
|
+
}
|
423
|
+
|
424
|
+
void sqrt_f32_sycl(const float *x, float *dst, const int k,
|
425
|
+
queue_ptr stream) {
|
426
|
+
const int num_blocks = (k + SYCL_SQRT_BLOCK_SIZE - 1) / SYCL_SQRT_BLOCK_SIZE;
|
427
|
+
stream->parallel_for(
|
428
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
429
|
+
sycl::range<3>(1, 1, SYCL_SQRT_BLOCK_SIZE),
|
430
|
+
sycl::range<3>(1, 1, SYCL_SQRT_BLOCK_SIZE)),
|
431
|
+
[=](sycl::nd_item<3> item_ct1) {
|
432
|
+
sqrt_f32(x, dst, k, item_ct1);
|
433
|
+
});
|
434
|
+
}
|
435
|
+
|
436
|
+
void sin_f32_sycl(const float *x, float *dst, const int k,
|
437
|
+
queue_ptr stream) {
|
438
|
+
const int num_blocks = (k + SYCL_SIN_BLOCK_SIZE - 1) / SYCL_SIN_BLOCK_SIZE;
|
439
|
+
stream->parallel_for(
|
440
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
441
|
+
sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE),
|
442
|
+
sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE)),
|
443
|
+
[=](sycl::nd_item<3> item_ct1) {
|
444
|
+
sin_f32(x, dst, k, item_ct1);
|
445
|
+
});
|
446
|
+
}
|
447
|
+
|
448
|
+
void cos_f32_sycl(const float *x, float *dst, const int k,
|
449
|
+
queue_ptr stream) {
|
450
|
+
const int num_blocks = (k + SYCL_SIN_BLOCK_SIZE - 1) / SYCL_SIN_BLOCK_SIZE;
|
451
|
+
stream->parallel_for(
|
452
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
453
|
+
sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE),
|
454
|
+
sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE)),
|
455
|
+
[=](sycl::nd_item<3> item_ct1) {
|
456
|
+
cos_f32(x, dst, k, item_ct1);
|
457
|
+
});
|
458
|
+
}
|
459
|
+
|
460
|
+
void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
|
461
|
+
const float negative_slope,
|
462
|
+
queue_ptr stream) {
|
463
|
+
const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
|
464
|
+
stream->parallel_for(
|
465
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
466
|
+
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
|
467
|
+
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
|
468
|
+
[=](sycl::nd_item<3> item_ct1) {
|
469
|
+
leaky_relu_f32(x, dst, k, negative_slope, item_ct1);
|
470
|
+
});
|
471
|
+
}
|
472
|
+
|
473
|
+
void sqr_f32_sycl(const float *x, float *dst, const int k,
|
474
|
+
queue_ptr stream) {
|
475
|
+
const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
|
476
|
+
stream->parallel_for(
|
477
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
478
|
+
sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
|
479
|
+
sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
|
480
|
+
[=](sycl::nd_item<3> item_ct1) {
|
481
|
+
sqr_f32(x, dst, k, item_ct1);
|
482
|
+
});
|
483
|
+
}
|
484
|
+
|
485
|
+
void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01,
|
486
|
+
const int nb02, const int nb03, const int ne10, const int ne11,
|
487
|
+
const int ne12, const int ne13, const float sf0, const float sf1,
|
488
|
+
const float sf2, const float sf3, queue_ptr stream) {
|
489
|
+
int dst_size = ne10 * ne11 * ne12 * ne13;
|
490
|
+
int num_blocks = (dst_size + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
|
491
|
+
sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
|
492
|
+
stream->parallel_for(
|
493
|
+
sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)),
|
494
|
+
[=](sycl::nd_item<1> item_ct1) {
|
495
|
+
upscale_f32(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
|
496
|
+
});
|
497
|
+
}
|
498
|
+
|
499
|
+
void pad_f32_sycl(const float *x, float *dst, const int ne00,
|
500
|
+
const int ne01, const int ne02, const int ne0,
|
501
|
+
const int ne1, const int ne2, queue_ptr stream) {
|
502
|
+
int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
|
503
|
+
sycl::range<3> gridDim(ne2, ne1, num_blocks);
|
504
|
+
stream->parallel_for(
|
505
|
+
sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
|
506
|
+
sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
|
507
|
+
[=](sycl::nd_item<3> item_ct1) {
|
508
|
+
pad_f32(x, dst, ne0, ne00, ne01, ne02, item_ct1);
|
509
|
+
});
|
510
|
+
}
|
511
|
+
|
512
|
+
inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
513
|
+
ggml_tensor *dst, const float *src0_dd,
|
514
|
+
const float *src1_dd, float *dst_dd,
|
515
|
+
const queue_ptr &main_stream) {
|
516
|
+
|
517
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
518
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
519
|
+
|
520
|
+
silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
521
|
+
|
522
|
+
GGML_UNUSED(src1);
|
523
|
+
GGML_UNUSED(dst);
|
524
|
+
GGML_UNUSED(src1_dd);
|
525
|
+
GGML_UNUSED(ctx);
|
526
|
+
}
|
527
|
+
|
528
|
+
inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
529
|
+
ggml_tensor *dst, const float *src0_dd,
|
530
|
+
const float *src1_dd, float *dst_dd,
|
531
|
+
const queue_ptr &main_stream) {
|
532
|
+
|
533
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
534
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
535
|
+
|
536
|
+
gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
537
|
+
|
538
|
+
GGML_UNUSED(src1);
|
539
|
+
GGML_UNUSED(dst);
|
540
|
+
GGML_UNUSED(src1_dd);
|
541
|
+
GGML_UNUSED(ctx);
|
542
|
+
}
|
543
|
+
inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
544
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
545
|
+
const float *src0_dd, const float *src1_dd,
|
546
|
+
float *dst_dd,
|
547
|
+
const queue_ptr &main_stream) {
|
548
|
+
|
549
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
550
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
551
|
+
|
552
|
+
gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
553
|
+
|
554
|
+
GGML_UNUSED(src1);
|
555
|
+
GGML_UNUSED(dst);
|
556
|
+
GGML_UNUSED(src1_dd);
|
557
|
+
GGML_UNUSED(ctx);
|
558
|
+
}
|
559
|
+
|
560
|
+
inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
561
|
+
ggml_tensor *dst, const float *src0_dd,
|
562
|
+
const float *src1_dd, float *dst_dd,
|
563
|
+
const queue_ptr &main_stream) {
|
564
|
+
|
565
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
566
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
567
|
+
tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
568
|
+
|
569
|
+
GGML_UNUSED(src1);
|
570
|
+
GGML_UNUSED(dst);
|
571
|
+
GGML_UNUSED(src1_dd);
|
572
|
+
GGML_UNUSED(ctx);
|
573
|
+
}
|
574
|
+
|
575
|
+
inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
576
|
+
ggml_tensor *dst, const float *src0_dd,
|
577
|
+
const float *src1_dd, float *dst_dd,
|
578
|
+
const queue_ptr &main_stream) {
|
579
|
+
|
580
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
581
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
582
|
+
|
583
|
+
relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
584
|
+
|
585
|
+
GGML_UNUSED(src1);
|
586
|
+
GGML_UNUSED(dst);
|
587
|
+
GGML_UNUSED(src1_dd);
|
588
|
+
GGML_UNUSED(ctx);
|
589
|
+
}
|
590
|
+
|
591
|
+
inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
592
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
593
|
+
const float *src0_dd, const float *src1_dd,
|
594
|
+
float *dst_dd,
|
595
|
+
const queue_ptr &main_stream) {
|
596
|
+
|
597
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
598
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
599
|
+
|
600
|
+
hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
601
|
+
|
602
|
+
GGML_UNUSED(src1);
|
603
|
+
GGML_UNUSED(dst);
|
604
|
+
GGML_UNUSED(src1_dd);
|
605
|
+
GGML_UNUSED(ctx);
|
606
|
+
}
|
607
|
+
|
608
|
+
inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
609
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
610
|
+
const float *src0_dd, const float *src1_dd,
|
611
|
+
float *dst_dd, const queue_ptr &main_stream) {
|
612
|
+
|
613
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
614
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
615
|
+
|
616
|
+
hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
617
|
+
|
618
|
+
GGML_UNUSED(src1);
|
619
|
+
GGML_UNUSED(dst);
|
620
|
+
GGML_UNUSED(src1_dd);
|
621
|
+
GGML_UNUSED(ctx);
|
622
|
+
}
|
623
|
+
|
624
|
+
inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
625
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
626
|
+
const float *src0_dd, const float *src1_dd,
|
627
|
+
float *dst_dd, const queue_ptr &main_stream) {
|
628
|
+
|
629
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
630
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
631
|
+
|
632
|
+
exp_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
633
|
+
|
634
|
+
GGML_UNUSED(src1);
|
635
|
+
GGML_UNUSED(dst);
|
636
|
+
GGML_UNUSED(src1_dd);
|
637
|
+
GGML_UNUSED(ctx);
|
638
|
+
}
|
639
|
+
|
640
|
+
inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
641
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
642
|
+
const float *src0_dd, const float *src1_dd,
|
643
|
+
float *dst_dd, const queue_ptr &main_stream) {
|
644
|
+
|
645
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
646
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
647
|
+
|
648
|
+
log_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
649
|
+
|
650
|
+
GGML_UNUSED(src1);
|
651
|
+
GGML_UNUSED(dst);
|
652
|
+
GGML_UNUSED(src1_dd);
|
653
|
+
GGML_UNUSED(ctx);
|
654
|
+
}
|
655
|
+
|
656
|
+
inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
657
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
658
|
+
const float *src0_dd, const float *src1_dd,
|
659
|
+
float *dst_dd, const queue_ptr &main_stream) {
|
660
|
+
|
661
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
662
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
663
|
+
|
664
|
+
sigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
665
|
+
|
666
|
+
GGML_UNUSED(src1);
|
667
|
+
GGML_UNUSED(dst);
|
668
|
+
GGML_UNUSED(src1_dd);
|
669
|
+
GGML_UNUSED(ctx);
|
670
|
+
}
|
671
|
+
|
672
|
+
inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
673
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
674
|
+
const float *src0_dd, const float *src1_dd,
|
675
|
+
float *dst_dd, const queue_ptr &main_stream) {
|
676
|
+
|
677
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
678
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
679
|
+
|
680
|
+
sqrt_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
681
|
+
|
682
|
+
GGML_UNUSED(src1);
|
683
|
+
GGML_UNUSED(dst);
|
684
|
+
GGML_UNUSED(src1_dd);
|
685
|
+
GGML_UNUSED(ctx);
|
686
|
+
}
|
687
|
+
|
688
|
+
inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
689
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
690
|
+
const float *src0_dd, const float *src1_dd,
|
691
|
+
float *dst_dd, const queue_ptr &main_stream) {
|
692
|
+
|
693
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
694
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
695
|
+
|
696
|
+
sin_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
697
|
+
|
698
|
+
GGML_UNUSED(src1);
|
699
|
+
GGML_UNUSED(dst);
|
700
|
+
GGML_UNUSED(src1_dd);
|
701
|
+
GGML_UNUSED(ctx);
|
702
|
+
}
|
703
|
+
|
704
|
+
inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
705
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
706
|
+
const float *src0_dd, const float *src1_dd,
|
707
|
+
float *dst_dd, const queue_ptr &main_stream) {
|
708
|
+
|
709
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
710
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
711
|
+
|
712
|
+
cos_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
713
|
+
|
714
|
+
GGML_UNUSED(src1);
|
715
|
+
GGML_UNUSED(dst);
|
716
|
+
GGML_UNUSED(src1_dd);
|
717
|
+
GGML_UNUSED(ctx);
|
718
|
+
}
|
719
|
+
|
720
|
+
inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
721
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
722
|
+
const float *src0_dd, const float *src1_dd,
|
723
|
+
float *dst_dd, const queue_ptr &main_stream) {
|
724
|
+
|
725
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
726
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
727
|
+
|
728
|
+
step_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
729
|
+
|
730
|
+
GGML_UNUSED(src1);
|
731
|
+
GGML_UNUSED(dst);
|
732
|
+
GGML_UNUSED(src1_dd);
|
733
|
+
GGML_UNUSED(ctx);
|
734
|
+
}
|
735
|
+
|
736
|
+
inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
737
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
738
|
+
const float *src0_dd, const float *src1_dd,
|
739
|
+
float *dst_dd, const queue_ptr &main_stream) {
|
740
|
+
|
741
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
742
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
743
|
+
|
744
|
+
neg_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
745
|
+
|
746
|
+
GGML_UNUSED(src1);
|
747
|
+
GGML_UNUSED(dst);
|
748
|
+
GGML_UNUSED(src1_dd);
|
749
|
+
GGML_UNUSED(ctx);
|
750
|
+
}
|
751
|
+
|
752
|
+
inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
753
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
754
|
+
const float *src0_dd, const float *src1_dd,
|
755
|
+
float *dst_dd,
|
756
|
+
const queue_ptr &main_stream) {
|
757
|
+
|
758
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
759
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
760
|
+
|
761
|
+
float negative_slope;
|
762
|
+
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
763
|
+
|
764
|
+
leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
|
765
|
+
|
766
|
+
GGML_UNUSED(src1);
|
767
|
+
GGML_UNUSED(dst);
|
768
|
+
GGML_UNUSED(src1_dd);
|
769
|
+
GGML_UNUSED(ctx);
|
770
|
+
}
|
771
|
+
|
772
|
+
inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
773
|
+
ggml_tensor *dst, const float *src0_dd,
|
774
|
+
const float *src1_dd, float *dst_dd,
|
775
|
+
const queue_ptr &main_stream) {
|
776
|
+
|
777
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
778
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
779
|
+
|
780
|
+
sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
781
|
+
|
782
|
+
GGML_UNUSED(src1);
|
783
|
+
GGML_UNUSED(dst);
|
784
|
+
GGML_UNUSED(src1_dd);
|
785
|
+
GGML_UNUSED(ctx);
|
786
|
+
}
|
787
|
+
|
788
|
+
inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
789
|
+
const ggml_tensor *src1, ggml_tensor *dst,
|
790
|
+
const float *src0_dd, const float *src1_dd,
|
791
|
+
float *dst_dd,
|
792
|
+
const queue_ptr &main_stream) {
|
793
|
+
|
794
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
795
|
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
796
|
+
|
797
|
+
const float sf0 = (float)dst->ne[0]/src0->ne[0];
|
798
|
+
const float sf1 = (float)dst->ne[1]/src0->ne[1];
|
799
|
+
const float sf2 = (float)dst->ne[2]/src0->ne[2];
|
800
|
+
const float sf3 = (float)dst->ne[3]/src0->ne[3];
|
801
|
+
|
802
|
+
upscale_f32_sycl(src0_dd, dst_dd, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
|
803
|
+
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3,
|
804
|
+
main_stream);
|
805
|
+
|
806
|
+
GGML_UNUSED(src1);
|
807
|
+
GGML_UNUSED(dst);
|
808
|
+
GGML_UNUSED(src1_dd);
|
809
|
+
GGML_UNUSED(ctx);
|
810
|
+
}
|
811
|
+
|
812
|
+
inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
813
|
+
ggml_tensor *dst, const float *src0_dd,
|
814
|
+
const float *src1_dd, float *dst_dd,
|
815
|
+
const queue_ptr &main_stream) {
|
816
|
+
|
817
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
818
|
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
819
|
+
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
820
|
+
|
821
|
+
pad_f32_sycl(src0_dd, dst_dd,
|
822
|
+
src0->ne[0], src0->ne[1], src0->ne[2],
|
823
|
+
dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
|
824
|
+
|
825
|
+
GGML_UNUSED(src1);
|
826
|
+
GGML_UNUSED(dst);
|
827
|
+
GGML_UNUSED(src1_dd);
|
828
|
+
GGML_UNUSED(ctx);
|
829
|
+
}
|
830
|
+
|
831
|
+
inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
832
|
+
ggml_tensor *dst, const float *src0_dd,
|
833
|
+
const float *src1_dd, float *dst_dd,
|
834
|
+
const queue_ptr &main_stream) {
|
835
|
+
|
836
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
837
|
+
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
838
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
839
|
+
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
|
840
|
+
|
841
|
+
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
842
|
+
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
843
|
+
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
844
|
+
int offset = dst->op_params[3] / 4; // offset in bytes
|
845
|
+
|
846
|
+
acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
|
847
|
+
|
848
|
+
GGML_UNUSED(dst);
|
849
|
+
GGML_UNUSED(ctx);
|
850
|
+
}
|
851
|
+
|
852
|
+
inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
853
|
+
ggml_tensor *dst, const float *src0_dd,
|
854
|
+
const float *src1_dd, float *dst_dd,
|
855
|
+
const queue_ptr &main_stream) {
|
856
|
+
|
857
|
+
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
858
|
+
}
|
859
|
+
|
860
|
+
inline void ggml_sycl_op_sub(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
861
|
+
ggml_tensor *dst, const float *src0_dd,
|
862
|
+
const float *src1_dd, float *dst_dd,
|
863
|
+
const queue_ptr &main_stream) {
|
864
|
+
|
865
|
+
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_sub>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
866
|
+
}
|
867
|
+
|
868
|
+
inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
869
|
+
ggml_tensor *dst, const float *src0_dd,
|
870
|
+
const float *src1_dd, float *dst_dd,
|
871
|
+
const queue_ptr &main_stream) {
|
872
|
+
|
873
|
+
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
874
|
+
}
|
875
|
+
|
876
|
+
inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
877
|
+
ggml_tensor *dst, const float *src0_dd,
|
878
|
+
const float *src1_dd, float *dst_dd,
|
879
|
+
const queue_ptr &main_stream) {
|
880
|
+
|
881
|
+
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
882
|
+
}
|
883
|
+
|
884
|
+
|
885
|
+
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
886
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
887
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sqrt);
|
888
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
889
|
+
}
|
890
|
+
|
891
|
+
void ggml_sycl_sin(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
892
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
893
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sin);
|
894
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
895
|
+
}
|
896
|
+
|
897
|
+
void ggml_sycl_cos(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
898
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
899
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_cos);
|
900
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
901
|
+
}
|
902
|
+
|
903
|
+
void ggml_sycl_acc(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
904
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
905
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_acc);
|
906
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
907
|
+
}
|
908
|
+
|
909
|
+
void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
910
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
911
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu);
|
912
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
913
|
+
}
|
914
|
+
|
915
|
+
void ggml_sycl_silu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
916
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
917
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_silu);
|
918
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
919
|
+
}
|
920
|
+
|
921
|
+
void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
922
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
923
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu_quick);
|
924
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
925
|
+
}
|
926
|
+
|
927
|
+
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
928
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
929
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_tanh);
|
930
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
931
|
+
}
|
932
|
+
|
933
|
+
void ggml_sycl_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
934
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
935
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_relu);
|
936
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
937
|
+
}
|
938
|
+
|
939
|
+
void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
940
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
941
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sigmoid);
|
942
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
943
|
+
}
|
944
|
+
|
945
|
+
void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
946
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
947
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardsigmoid);
|
948
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
949
|
+
}
|
950
|
+
|
951
|
+
void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
952
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
953
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardswish);
|
954
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
955
|
+
}
|
956
|
+
|
957
|
+
|
958
|
+
void ggml_sycl_exp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
959
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
960
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_exp);
|
961
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
962
|
+
}
|
963
|
+
|
964
|
+
void ggml_sycl_log(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
965
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
966
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_log);
|
967
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
968
|
+
}
|
969
|
+
|
970
|
+
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
971
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
972
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_neg);
|
973
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
974
|
+
}
|
975
|
+
|
976
|
+
void ggml_sycl_step(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
977
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
978
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_step);
|
979
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
980
|
+
}
|
981
|
+
|
982
|
+
void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
983
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
984
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_leaky_relu);
|
985
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
986
|
+
}
|
987
|
+
|
988
|
+
void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
989
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
990
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sqr);
|
991
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
992
|
+
}
|
993
|
+
|
994
|
+
void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
995
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
996
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_upscale);
|
997
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
998
|
+
}
|
999
|
+
|
1000
|
+
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
1001
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
1002
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pad);
|
1003
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
1004
|
+
}
|
1005
|
+
|
1006
|
+
|
1007
|
+
|
1008
|
+
void ggml_sycl_add(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
1009
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
1010
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_add);
|
1011
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
1012
|
+
}
|
1013
|
+
|
1014
|
+
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
1015
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
1016
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sub);
|
1017
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
1018
|
+
}
|
1019
|
+
|
1020
|
+
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
1021
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
1022
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_mul);
|
1023
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
1024
|
+
}
|
1025
|
+
|
1026
|
+
void ggml_sycl_div(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
1027
|
+
GGML_SYCL_DEBUG("call %s\n", __func__);
|
1028
|
+
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_div);
|
1029
|
+
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
1030
|
+
}
|