toxiclibs 0.4.0 → 0.8.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +16 -0
- data/.mvn/extensions.xml +8 -0
- data/.mvn/wrapper/maven-wrapper.properties +1 -0
- data/.travis.yml +23 -0
- data/CHANGELOG.md +7 -0
- data/COPYING.md +14 -0
- data/Gemfile +10 -0
- data/LICENSE +675 -0
- data/README.md +9 -7
- data/Rakefile +25 -81
- data/examples/README.md +5 -0
- data/examples/attract_repel/attract_repel.rb +30 -0
- data/examples/attract_repel/attractor.rb +23 -0
- data/examples/attract_repel/particle.rb +27 -0
- data/examples/data/ReplicaBold.ttf +0 -0
- data/examples/data/ti_yong.png +0 -0
- data/examples/force_directed/cluster.rb +76 -0
- data/examples/force_directed/force_directed_graph.rb +92 -0
- data/examples/force_directed/node.rb +26 -0
- data/examples/gray_scott_image.rb +74 -0
- data/examples/gray_scott_tone_map.rb +77 -0
- data/examples/implicit.rb +139 -0
- data/examples/inflate_mesh.rb +89 -0
- data/examples/model_align.rb +43 -0
- data/examples/physics_type.rb +77 -0
- data/examples/povmesh/data/mask.jpg +0 -0
- data/examples/povmesh/ftest.rb +59 -0
- data/examples/povmesh/mesh_align.rb +47 -0
- data/examples/povmesh/tentacle.rb +71 -0
- data/examples/simple_cluster/cluster.rb +47 -0
- data/examples/simple_cluster/node.rb +27 -0
- data/examples/simple_cluster/simple_cluster.rb +60 -0
- data/examples/soft_body/blanket.rb +45 -0
- data/examples/soft_body/connection.rb +16 -0
- data/examples/soft_body/particle.rb +22 -0
- data/examples/soft_body/soft_body_square_adapted.rb +55 -0
- data/examples/spherical_harmonics_mesh.rb +50 -0
- data/examples/test_rect.rb +32 -0
- data/lib/toxiclibs.jar +0 -0
- data/lib/toxiclibs.rb +72 -22
- data/lib/toxiclibs/version.rb +1 -1
- data/pom.rb +63 -0
- data/pom.xml +124 -0
- data/src/com/toxi/net/ClientListener.java +41 -0
- data/src/com/toxi/net/ServerListener.java +70 -0
- data/src/com/toxi/net/ServerListenerAdapter.java +47 -0
- data/src/com/toxi/net/ServerState.java +18 -0
- data/src/com/toxi/net/UDPConnection.java +66 -0
- data/src/com/toxi/net/UDPSyncClient.java +81 -0
- data/src/com/toxi/net/UDPSyncServer.java +450 -0
- data/src/com/toxi/nio/UDPClient.java +121 -0
- data/src/com/toxi/nio/UDPClientState.java +32 -0
- data/src/com/toxi/nio/UDPServer.java +129 -0
- data/src/toxi/audio/AudioBuffer.java +229 -0
- data/src/toxi/audio/AudioSource.java +288 -0
- data/src/toxi/audio/DecompressInputStream.java +159 -0
- data/src/toxi/audio/IIRFilter.java +197 -0
- data/src/toxi/audio/JOALUtil.java +388 -0
- data/src/toxi/audio/MultiTimbralManager.java +162 -0
- data/src/toxi/audio/SoundListener.java +154 -0
- data/src/toxi/audio/SynthUtil.java +109 -0
- data/src/toxi/color/AccessCriteria.java +114 -0
- data/src/toxi/color/AlphaAccessor.java +67 -0
- data/src/toxi/color/CMYKAccessor.java +122 -0
- data/src/toxi/color/CMYKDistanceProxy.java +40 -0
- data/src/toxi/color/ColorGradient.java +260 -0
- data/src/toxi/color/ColorList.java +699 -0
- data/src/toxi/color/ColorRange.java +671 -0
- data/src/toxi/color/ColorTheme.java +163 -0
- data/src/toxi/color/DistanceProxy.java +44 -0
- data/src/toxi/color/HSVAccessor.java +113 -0
- data/src/toxi/color/HSVDistanceProxy.java +40 -0
- data/src/toxi/color/HistEntry.java +85 -0
- data/src/toxi/color/Histogram.java +185 -0
- data/src/toxi/color/Hue.java +249 -0
- data/src/toxi/color/LuminanceAccessor.java +78 -0
- data/src/toxi/color/NamedColor.java +935 -0
- data/src/toxi/color/ProximityComparator.java +70 -0
- data/src/toxi/color/RGBAccessor.java +113 -0
- data/src/toxi/color/RGBDistanceProxy.java +41 -0
- data/src/toxi/color/ReadonlyTColor.java +296 -0
- data/src/toxi/color/TColor.java +1677 -0
- data/src/toxi/color/TColorAdapter.java +68 -0
- data/src/toxi/color/ToneMap.java +218 -0
- data/src/toxi/color/theory/AnalogousStrategy.java +140 -0
- data/src/toxi/color/theory/ColorTheoryRegistry.java +139 -0
- data/src/toxi/color/theory/ColorTheoryStrategy.java +56 -0
- data/src/toxi/color/theory/ComplementaryStrategy.java +111 -0
- data/src/toxi/color/theory/CompoundTheoryStrategy.java +143 -0
- data/src/toxi/color/theory/LeftSplitComplementaryStrategy.java +82 -0
- data/src/toxi/color/theory/MonochromeTheoryStrategy.java +103 -0
- data/src/toxi/color/theory/RightSplitComplementaryStrategy.java +82 -0
- data/src/toxi/color/theory/SingleComplementStrategy.java +76 -0
- data/src/toxi/color/theory/SplitComplementaryStrategy.java +77 -0
- data/src/toxi/color/theory/TetradTheoryStrategy.java +114 -0
- data/src/toxi/color/theory/TriadTheoryStrategy.java +77 -0
- data/src/toxi/data/csv/CSVAdapter.java +74 -0
- data/src/toxi/data/csv/CSVFieldMapper.java +212 -0
- data/src/toxi/data/csv/CSVListener.java +61 -0
- data/src/toxi/data/csv/CSVParser.java +202 -0
- data/src/toxi/data/feeds/AtomAuthor.java +49 -0
- data/src/toxi/data/feeds/AtomContent.java +50 -0
- data/src/toxi/data/feeds/AtomEntry.java +111 -0
- data/src/toxi/data/feeds/AtomFeed.java +129 -0
- data/src/toxi/data/feeds/AtomLink.java +62 -0
- data/src/toxi/data/feeds/RSSChannel.java +88 -0
- data/src/toxi/data/feeds/RSSEnclosure.java +60 -0
- data/src/toxi/data/feeds/RSSFeed.java +99 -0
- data/src/toxi/data/feeds/RSSItem.java +104 -0
- data/src/toxi/data/feeds/util/EntityStripper.java +2480 -0
- data/src/toxi/data/feeds/util/Iso8601DateAdapter.java +101 -0
- data/src/toxi/data/feeds/util/Rfc822DateAdapter.java +93 -0
- data/src/toxi/geom/AABB.java +658 -0
- data/src/toxi/geom/Axis3D.java +116 -0
- data/src/toxi/geom/AxisAlignedCylinder.java +163 -0
- data/src/toxi/geom/BernsteinPolynomial.java +94 -0
- data/src/toxi/geom/BezierCurve2D.java +159 -0
- data/src/toxi/geom/BezierCurve3D.java +148 -0
- data/src/toxi/geom/BooleanShapeBuilder.java +185 -0
- data/src/toxi/geom/BoxIntersector.java +52 -0
- data/src/toxi/geom/Circle.java +230 -0
- data/src/toxi/geom/CircleIntersector.java +85 -0
- data/src/toxi/geom/Cone.java +150 -0
- data/src/toxi/geom/ConvexPolygonClipper.java +136 -0
- data/src/toxi/geom/CoordinateExtractor.java +16 -0
- data/src/toxi/geom/Ellipse.java +250 -0
- data/src/toxi/geom/GMatrix.java +2599 -0
- data/src/toxi/geom/GVector.java +833 -0
- data/src/toxi/geom/GlobalGridTesselator.java +54 -0
- data/src/toxi/geom/GridTesselator.java +108 -0
- data/src/toxi/geom/Intersector2D.java +49 -0
- data/src/toxi/geom/Intersector3D.java +51 -0
- data/src/toxi/geom/IsectData2D.java +103 -0
- data/src/toxi/geom/IsectData3D.java +103 -0
- data/src/toxi/geom/Line2D.java +534 -0
- data/src/toxi/geom/Line3D.java +471 -0
- data/src/toxi/geom/LineStrip2D.java +430 -0
- data/src/toxi/geom/LineStrip3D.java +230 -0
- data/src/toxi/geom/LocalGridTesselator.java +57 -0
- data/src/toxi/geom/Matrix3d.java +3048 -0
- data/src/toxi/geom/Matrix4f.java +3446 -0
- data/src/toxi/geom/Matrix4x4.java +1076 -0
- data/src/toxi/geom/MatrixSizeException.java +58 -0
- data/src/toxi/geom/OctreeVisitor.java +44 -0
- data/src/toxi/geom/Origin3D.java +148 -0
- data/src/toxi/geom/Plane.java +293 -0
- data/src/toxi/geom/PlaneIntersector.java +57 -0
- data/src/toxi/geom/PointCloud3D.java +253 -0
- data/src/toxi/geom/PointOctree.java +502 -0
- data/src/toxi/geom/PointQuadtree.java +375 -0
- data/src/toxi/geom/Polygon2D.java +1038 -0
- data/src/toxi/geom/PolygonClipper2D.java +45 -0
- data/src/toxi/geom/PolygonTesselator.java +20 -0
- data/src/toxi/geom/QuadtreeVisitor.java +44 -0
- data/src/toxi/geom/Quaternion.java +641 -0
- data/src/toxi/geom/Ray2D.java +146 -0
- data/src/toxi/geom/Ray3D.java +150 -0
- data/src/toxi/geom/Ray3DIntersector.java +75 -0
- data/src/toxi/geom/ReadonlyVec2D.java +575 -0
- data/src/toxi/geom/ReadonlyVec3D.java +628 -0
- data/src/toxi/geom/ReadonlyVec4D.java +431 -0
- data/src/toxi/geom/Rect.java +720 -0
- data/src/toxi/geom/Reflector3D.java +58 -0
- data/src/toxi/geom/Shape2D.java +94 -0
- data/src/toxi/geom/Shape3D.java +42 -0
- data/src/toxi/geom/SingularMatrixException.java +57 -0
- data/src/toxi/geom/SpatialBins.java +182 -0
- data/src/toxi/geom/SpatialIndex.java +61 -0
- data/src/toxi/geom/Sphere.java +224 -0
- data/src/toxi/geom/SphereIntersectorReflector.java +196 -0
- data/src/toxi/geom/Spline2D.java +349 -0
- data/src/toxi/geom/Spline3D.java +351 -0
- data/src/toxi/geom/SutherlandHodgemanClipper.java +151 -0
- data/src/toxi/geom/Triangle2D.java +422 -0
- data/src/toxi/geom/Triangle3D.java +456 -0
- data/src/toxi/geom/TriangleIntersector.java +105 -0
- data/src/toxi/geom/Vec2D.java +1328 -0
- data/src/toxi/geom/Vec3D.java +1832 -0
- data/src/toxi/geom/Vec4D.java +985 -0
- data/src/toxi/geom/VecMathUtil.java +100 -0
- data/src/toxi/geom/XAxisCylinder.java +64 -0
- data/src/toxi/geom/YAxisCylinder.java +65 -0
- data/src/toxi/geom/ZAxisCylinder.java +64 -0
- data/src/toxi/geom/mesh/BezierPatch.java +200 -0
- data/src/toxi/geom/mesh/BoxSelector.java +62 -0
- data/src/toxi/geom/mesh/DefaultSTLColorModel.java +67 -0
- data/src/toxi/geom/mesh/DefaultSelector.java +50 -0
- data/src/toxi/geom/mesh/Face.java +176 -0
- data/src/toxi/geom/mesh/LaplacianSmooth.java +80 -0
- data/src/toxi/geom/mesh/MaterialiseSTLColorModel.java +150 -0
- data/src/toxi/geom/mesh/Mesh3D.java +224 -0
- data/src/toxi/geom/mesh/MeshIntersector.java +91 -0
- data/src/toxi/geom/mesh/OBJWriter.java +194 -0
- data/src/toxi/geom/mesh/PLYWriter.java +167 -0
- data/src/toxi/geom/mesh/PlaneSelector.java +90 -0
- data/src/toxi/geom/mesh/STLColorModel.java +54 -0
- data/src/toxi/geom/mesh/STLReader.java +185 -0
- data/src/toxi/geom/mesh/STLWriter.java +323 -0
- data/src/toxi/geom/mesh/SphereFunction.java +156 -0
- data/src/toxi/geom/mesh/SphericalHarmonics.java +110 -0
- data/src/toxi/geom/mesh/SuperEllipsoid.java +110 -0
- data/src/toxi/geom/mesh/SurfaceFunction.java +75 -0
- data/src/toxi/geom/mesh/SurfaceMeshBuilder.java +149 -0
- data/src/toxi/geom/mesh/Terrain.java +451 -0
- data/src/toxi/geom/mesh/TriangleMesh.java +1201 -0
- data/src/toxi/geom/mesh/Vertex.java +78 -0
- data/src/toxi/geom/mesh/VertexSelector.java +193 -0
- data/src/toxi/geom/mesh/WEFace.java +100 -0
- data/src/toxi/geom/mesh/WEMeshFilterStrategy.java +51 -0
- data/src/toxi/geom/mesh/WETriangleMesh.java +761 -0
- data/src/toxi/geom/mesh/WEVertex.java +134 -0
- data/src/toxi/geom/mesh/WingedEdge.java +115 -0
- data/src/toxi/geom/mesh/subdiv/CentroidSubdiv.java +37 -0
- data/src/toxi/geom/mesh/subdiv/DisplacementSubdivision.java +85 -0
- data/src/toxi/geom/mesh/subdiv/DualDisplacementSubdivision.java +94 -0
- data/src/toxi/geom/mesh/subdiv/DualSubdivision.java +49 -0
- data/src/toxi/geom/mesh/subdiv/EdgeLengthComparator.java +50 -0
- data/src/toxi/geom/mesh/subdiv/FaceCountComparator.java +51 -0
- data/src/toxi/geom/mesh/subdiv/MidpointDisplacementSubdivision.java +80 -0
- data/src/toxi/geom/mesh/subdiv/MidpointSubdiv.java +42 -0
- data/src/toxi/geom/mesh/subdiv/MidpointSubdivision.java +48 -0
- data/src/toxi/geom/mesh/subdiv/NewSubdivStrategy.java +23 -0
- data/src/toxi/geom/mesh/subdiv/NormalDisplacementSubdivision.java +74 -0
- data/src/toxi/geom/mesh/subdiv/SubdivisionStrategy.java +83 -0
- data/src/toxi/geom/mesh/subdiv/TriSubdivision.java +51 -0
- data/src/toxi/geom/mesh2d/DelaunayTriangle.java +222 -0
- data/src/toxi/geom/mesh2d/DelaunayTriangulation.java +327 -0
- data/src/toxi/geom/mesh2d/DelaunayVertex.java +560 -0
- data/src/toxi/geom/mesh2d/Voronoi.java +149 -0
- data/src/toxi/geom/nurbs/BasicNurbsCurve.java +210 -0
- data/src/toxi/geom/nurbs/BasicNurbsSurface.java +233 -0
- data/src/toxi/geom/nurbs/ControlNet.java +148 -0
- data/src/toxi/geom/nurbs/CurveCreator.java +112 -0
- data/src/toxi/geom/nurbs/CurveUtils.java +259 -0
- data/src/toxi/geom/nurbs/InterpolationException.java +65 -0
- data/src/toxi/geom/nurbs/KnotVector.java +333 -0
- data/src/toxi/geom/nurbs/NurbsCreator.java +815 -0
- data/src/toxi/geom/nurbs/NurbsCurve.java +120 -0
- data/src/toxi/geom/nurbs/NurbsMeshCreator.java +145 -0
- data/src/toxi/geom/nurbs/NurbsSurface.java +147 -0
- data/src/toxi/image/util/Filter8bit.java +331 -0
- data/src/toxi/image/util/TiledFrameExporter.java +162 -0
- data/src/toxi/math/BezierInterpolation.java +102 -0
- data/src/toxi/math/CircularInterpolation.java +88 -0
- data/src/toxi/math/CosineInterpolation.java +51 -0
- data/src/toxi/math/DecimatedInterpolation.java +77 -0
- data/src/toxi/math/ExponentialInterpolation.java +68 -0
- data/src/toxi/math/InterpolateStrategy.java +60 -0
- data/src/toxi/math/Interpolation2D.java +93 -0
- data/src/toxi/math/LinearInterpolation.java +46 -0
- data/src/toxi/math/MathUtils.java +990 -0
- data/src/toxi/math/NonLinearScaleMap.java +101 -0
- data/src/toxi/math/ScaleMap.java +183 -0
- data/src/toxi/math/SigmoidInterpolation.java +78 -0
- data/src/toxi/math/SinCosLUT.java +141 -0
- data/src/toxi/math/ThresholdInterpolation.java +58 -0
- data/src/toxi/math/ZoomLensInterpolation.java +126 -0
- data/src/toxi/math/conversion/UnitTranslator.java +161 -0
- data/src/toxi/math/noise/PerlinNoise.java +281 -0
- data/src/toxi/math/noise/SimplexNoise.java +542 -0
- data/src/toxi/math/waves/AMFMSineWave.java +143 -0
- data/src/toxi/math/waves/AbstractWave.java +248 -0
- data/src/toxi/math/waves/ConstantWave.java +48 -0
- data/src/toxi/math/waves/FMHarmonicSquareWave.java +155 -0
- data/src/toxi/math/waves/FMSawtoothWave.java +144 -0
- data/src/toxi/math/waves/FMSineWave.java +142 -0
- data/src/toxi/math/waves/FMSquareWave.java +143 -0
- data/src/toxi/math/waves/FMTriangleWave.java +126 -0
- data/src/toxi/math/waves/SineWave.java +81 -0
- data/src/toxi/math/waves/Wave2D.java +68 -0
- data/src/toxi/math/waves/WaveState.java +69 -0
- data/src/toxi/music/scale/AbstractScale.java +117 -0
- data/src/toxi/music/scale/GenericScale.java +66 -0
- data/src/toxi/music/scale/MajorScale.java +41 -0
- data/src/toxi/newmesh/AttributedEdge.java +106 -0
- data/src/toxi/newmesh/AttributedFace.java +63 -0
- data/src/toxi/newmesh/IndexedTriangleMesh.java +809 -0
- data/src/toxi/newmesh/MeshAttributeCompiler.java +45 -0
- data/src/toxi/newmesh/MeshFaceNormalCompiler.java +52 -0
- data/src/toxi/newmesh/MeshUVCompiler.java +52 -0
- data/src/toxi/newmesh/MeshVertexColorCompiler.java +49 -0
- data/src/toxi/newmesh/MeshVertexCompiler.java +54 -0
- data/src/toxi/newmesh/MeshVertexNormalCompiler.java +55 -0
- data/src/toxi/newmesh/SpatialIndex.java +78 -0
- data/src/toxi/physics2d/ParticlePath2D.java +100 -0
- data/src/toxi/physics2d/ParticleString2D.java +184 -0
- data/src/toxi/physics2d/PullBackSpring2D.java +51 -0
- data/src/toxi/physics2d/VerletConstrainedSpring2D.java +89 -0
- data/src/toxi/physics2d/VerletMinDistanceSpring2D.java +57 -0
- data/src/toxi/physics2d/VerletParticle2D.java +457 -0
- data/src/toxi/physics2d/VerletPhysics2D.java +448 -0
- data/src/toxi/physics2d/VerletSpring2D.java +181 -0
- data/src/toxi/physics2d/behaviors/AttractionBehavior2D.java +212 -0
- data/src/toxi/physics2d/behaviors/ConstantForceBehavior2D.java +112 -0
- data/src/toxi/physics2d/behaviors/GravityBehavior2D.java +61 -0
- data/src/toxi/physics2d/behaviors/ParticleBehavior2D.java +66 -0
- data/src/toxi/physics2d/constraints/AngularConstraint.java +83 -0
- data/src/toxi/physics2d/constraints/AxisConstraint.java +71 -0
- data/src/toxi/physics2d/constraints/CircularConstraint.java +69 -0
- data/src/toxi/physics2d/constraints/MaxConstraint.java +66 -0
- data/src/toxi/physics2d/constraints/MinConstraint.java +66 -0
- data/src/toxi/physics2d/constraints/ParticleConstraint2D.java +47 -0
- data/src/toxi/physics2d/constraints/PolygonConstraint.java +93 -0
- data/src/toxi/physics2d/constraints/RectConstraint.java +114 -0
- data/src/toxi/physics3d/ParticlePath3D.java +100 -0
- data/src/toxi/physics3d/ParticleString3D.java +184 -0
- data/src/toxi/physics3d/PullBackSpring3D.java +50 -0
- data/src/toxi/physics3d/VerletConstrainedSpring3D.java +88 -0
- data/src/toxi/physics3d/VerletMinDistanceSpring3D.java +56 -0
- data/src/toxi/physics3d/VerletParticle3D.java +385 -0
- data/src/toxi/physics3d/VerletPhysics3D.java +417 -0
- data/src/toxi/physics3d/VerletSpring3D.java +180 -0
- data/src/toxi/physics3d/behaviors/AttractionBehavior3D.java +182 -0
- data/src/toxi/physics3d/behaviors/ConstantForceBehavior3D.java +92 -0
- data/src/toxi/physics3d/behaviors/GravityBehavior3D.java +61 -0
- data/src/toxi/physics3d/behaviors/ParticleBehavior3D.java +52 -0
- data/src/toxi/physics3d/constraints/AxisConstraint.java +68 -0
- data/src/toxi/physics3d/constraints/BoxConstraint.java +121 -0
- data/src/toxi/physics3d/constraints/CylinderConstraint.java +87 -0
- data/src/toxi/physics3d/constraints/MaxConstraint.java +65 -0
- data/src/toxi/physics3d/constraints/MinConstraint.java +65 -0
- data/src/toxi/physics3d/constraints/ParticleConstraint3D.java +49 -0
- data/src/toxi/physics3d/constraints/PlaneConstraint.java +78 -0
- data/src/toxi/physics3d/constraints/SoftBoxConstraint.java +87 -0
- data/src/toxi/physics3d/constraints/SphereConstraint.java +108 -0
- data/src/toxi/processing/ArrowModifier.java +116 -0
- data/src/toxi/processing/DashedLineModifier.java +48 -0
- data/src/toxi/processing/DeltaOrientationMapper.java +57 -0
- data/src/toxi/processing/Line2DRenderModifier.java +18 -0
- data/src/toxi/processing/MeshToVBO.java +127 -0
- data/src/toxi/processing/NormalMapper.java +18 -0
- data/src/toxi/processing/POVInterface.java +121 -0
- data/src/toxi/processing/POVMesh.java +219 -0
- data/src/toxi/processing/POVWriter.java +460 -0
- data/src/toxi/processing/RCOpaque.java +77 -0
- data/src/toxi/processing/RCTransp.java +78 -0
- data/src/toxi/processing/TextureBuilder.java +232 -0
- data/src/toxi/processing/Textures.java +110 -0
- data/src/toxi/processing/ToxiclibsSupport.java +1239 -0
- data/src/toxi/processing/Tracing.java +25 -0
- data/src/toxi/processing/XYZNormalMapper.java +30 -0
- data/src/toxi/sim/automata/CAMatrix.java +297 -0
- data/src/toxi/sim/automata/CARule.java +76 -0
- data/src/toxi/sim/automata/CARule2D.java +354 -0
- data/src/toxi/sim/automata/CAWolfram1D.java +309 -0
- data/src/toxi/sim/automata/EvolvableMatrix.java +61 -0
- data/src/toxi/sim/automata/MatrixEvolver.java +42 -0
- data/src/toxi/sim/dla/BottomUpOrder.java +76 -0
- data/src/toxi/sim/dla/DLA.java +497 -0
- data/src/toxi/sim/dla/DLAConfiguration.java +364 -0
- data/src/toxi/sim/dla/DLAEventAdapter.java +64 -0
- data/src/toxi/sim/dla/DLAEventListener.java +57 -0
- data/src/toxi/sim/dla/DLAGuideLines.java +219 -0
- data/src/toxi/sim/dla/DLAParticle.java +102 -0
- data/src/toxi/sim/dla/DLASegment.java +88 -0
- data/src/toxi/sim/dla/PipelineOrder.java +50 -0
- data/src/toxi/sim/dla/RadialDistanceOrder.java +92 -0
- data/src/toxi/sim/erosion/ErosionFunction.java +122 -0
- data/src/toxi/sim/erosion/TalusAngleErosion.java +145 -0
- data/src/toxi/sim/erosion/ThermalErosion.java +75 -0
- data/src/toxi/sim/fluids/FluidSolver2D.java +762 -0
- data/src/toxi/sim/fluids/FluidSolver3D.java +326 -0
- data/src/toxi/sim/grayscott/GrayScott.java +469 -0
- data/src/toxi/util/DateUtils.java +141 -0
- data/src/toxi/util/FileSequenceDescriptor.java +181 -0
- data/src/toxi/util/FileUtils.java +467 -0
- data/src/toxi/util/datatypes/ArraySet.java +128 -0
- data/src/toxi/util/datatypes/ArrayUtil.java +404 -0
- data/src/toxi/util/datatypes/BiasedDoubleRange.java +141 -0
- data/src/toxi/util/datatypes/BiasedFloatRange.java +141 -0
- data/src/toxi/util/datatypes/BiasedIntegerRange.java +141 -0
- data/src/toxi/util/datatypes/DoubleRange.java +251 -0
- data/src/toxi/util/datatypes/FloatRange.java +251 -0
- data/src/toxi/util/datatypes/GenericSet.java +215 -0
- data/src/toxi/util/datatypes/IntegerRange.java +247 -0
- data/src/toxi/util/datatypes/IntegerSet.java +149 -0
- data/src/toxi/util/datatypes/ItemIndex.java +72 -0
- data/src/toxi/util/datatypes/SingletonRegistry.java +91 -0
- data/src/toxi/util/datatypes/TypedProperties.java +291 -0
- data/src/toxi/util/datatypes/UndirectedGraph.java +134 -0
- data/src/toxi/util/datatypes/UniqueItemIndex.java +223 -0
- data/src/toxi/util/datatypes/WeightedRandomEntry.java +76 -0
- data/src/toxi/util/datatypes/WeightedRandomSet.java +125 -0
- data/src/toxi/util/events/EventDispatcher.java +86 -0
- data/src/toxi/volume/AdditiveBrush.java +19 -0
- data/src/toxi/volume/ArrayIsoSurface.java +297 -0
- data/src/toxi/volume/BoxBrush.java +100 -0
- data/src/toxi/volume/BrushMode.java +16 -0
- data/src/toxi/volume/HashIsoSurface.java +354 -0
- data/src/toxi/volume/IsoSurface.java +59 -0
- data/src/toxi/volume/MarchingCubesIndex.java +312 -0
- data/src/toxi/volume/MeshLatticeBuilder.java +358 -0
- data/src/toxi/volume/MeshVoxelizer.java +216 -0
- data/src/toxi/volume/MultiplyBrush.java +20 -0
- data/src/toxi/volume/PeakBrush.java +21 -0
- data/src/toxi/volume/ReplaceBrush.java +19 -0
- data/src/toxi/volume/RoundBrush.java +113 -0
- data/src/toxi/volume/VolumetricBrush.java +160 -0
- data/src/toxi/volume/VolumetricHashMap.java +179 -0
- data/src/toxi/volume/VolumetricSpace.java +195 -0
- data/src/toxi/volume/VolumetricSpaceArray.java +214 -0
- data/toxiclibs.gemspec +28 -0
- metadata +442 -31
@@ -0,0 +1,2599 @@
|
|
1
|
+
/*
|
2
|
+
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
|
3
|
+
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
4
|
+
*
|
5
|
+
* This code is free software; you can redistribute it and/or modify it
|
6
|
+
* under the terms of the GNU General Public License version 2 only, as
|
7
|
+
* published by the Free Software Foundation. Sun designates this
|
8
|
+
* particular file as subject to the "Classpath" exception as provided
|
9
|
+
* by Sun in the LICENSE file that accompanied this code.
|
10
|
+
*
|
11
|
+
* This code is distributed in the hope that it will be useful, but WITHOUT
|
12
|
+
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
13
|
+
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
14
|
+
* version 2 for more details (a copy is included in the LICENSE file that
|
15
|
+
* accompanied this code).
|
16
|
+
*
|
17
|
+
* You should have received a copy of the GNU General Public License version
|
18
|
+
* 2 along with this work; if not, write to the Free Software Foundation,
|
19
|
+
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
20
|
+
*
|
21
|
+
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
22
|
+
* CA 95054 USA or visit www.sun.com if you need additional information or
|
23
|
+
* have any questions.
|
24
|
+
*/
|
25
|
+
package toxi.geom;
|
26
|
+
|
27
|
+
import java.util.Arrays;
|
28
|
+
import toxi.math.MathUtils;
|
29
|
+
|
30
|
+
/**
|
31
|
+
* A double precision, row major, general and dynamically-resizable,
|
32
|
+
* two-dimensional matrix class. Row and column numbering begins with zero.
|
33
|
+
*/
|
34
|
+
public class GMatrix implements java.io.Serializable, Cloneable {
|
35
|
+
|
36
|
+
static final long serialVersionUID = 1L;
|
37
|
+
|
38
|
+
/**
|
39
|
+
* Solves a set of linear equations. The input parameters "matrix1", and
|
40
|
+
* "row_perm" come from luDecompostion and do not change here. The parameter
|
41
|
+
* "matrix2" is a set of column vectors assembled into a nxn matrix of
|
42
|
+
* floating-point values. The procedure takes each column of "matrix2" in
|
43
|
+
* turn and treats it as the right-hand side of the matrix equation Ax = LUx
|
44
|
+
* = b. The solution vector replaces the original column of the matrix.
|
45
|
+
*
|
46
|
+
* If "matrix2" is the identity matrix, the procedure replaces its contents
|
47
|
+
* with the inverse of the matrix from which "matrix1" was originally
|
48
|
+
* derived.
|
49
|
+
*
|
50
|
+
* @param dim
|
51
|
+
* @param matrix1
|
52
|
+
* @param row_perm
|
53
|
+
* @param matrix2
|
54
|
+
*/
|
55
|
+
//
|
56
|
+
// Reference: Press, Flannery, Teukolsky, Vetterling,
|
57
|
+
// _Numerical_Recipes_in_C_, Cambridge University Press,
|
58
|
+
// 1988, pp 44-45.
|
59
|
+
//
|
60
|
+
public static void backSubstituteLU(int dim, double[] matrix1,
|
61
|
+
int[] row_perm, double[] matrix2) {
|
62
|
+
|
63
|
+
int i, ii, ip, j, k;
|
64
|
+
int rp;
|
65
|
+
int cv, rv, ri;
|
66
|
+
double tt;
|
67
|
+
|
68
|
+
// rp = row_perm;
|
69
|
+
rp = 0;
|
70
|
+
|
71
|
+
// For each column vector of matrix2 ...
|
72
|
+
for (k = 0; k < dim; k++) {
|
73
|
+
// cv = &(matrix2[0][k]);
|
74
|
+
cv = k;
|
75
|
+
ii = -1;
|
76
|
+
|
77
|
+
// Forward substitution
|
78
|
+
for (i = 0; i < dim; i++) {
|
79
|
+
double sum;
|
80
|
+
|
81
|
+
ip = row_perm[rp + i];
|
82
|
+
sum = matrix2[cv + dim * ip];
|
83
|
+
matrix2[cv + dim * ip] = matrix2[cv + dim * i];
|
84
|
+
if (ii >= 0) {
|
85
|
+
// rv = &(matrix1[i][0]);
|
86
|
+
rv = i * dim;
|
87
|
+
for (j = ii; j <= i - 1; j++) {
|
88
|
+
sum -= matrix1[rv + j] * matrix2[cv + dim * j];
|
89
|
+
}
|
90
|
+
} else if (sum != 0.0) {
|
91
|
+
ii = i;
|
92
|
+
}
|
93
|
+
matrix2[cv + dim * i] = sum;
|
94
|
+
}
|
95
|
+
|
96
|
+
// Backsubstitution
|
97
|
+
for (i = 0; i < dim; i++) {
|
98
|
+
ri = (dim - 1 - i);
|
99
|
+
rv = dim * (ri);
|
100
|
+
tt = 0.0;
|
101
|
+
for (j = 1; j <= i; j++) {
|
102
|
+
tt += matrix1[rv + dim - j] * matrix2[cv + dim * (dim - j)];
|
103
|
+
}
|
104
|
+
matrix2[cv + dim * ri] = (matrix2[cv + dim * ri] - tt)
|
105
|
+
/ matrix1[rv + ri];
|
106
|
+
}
|
107
|
+
}
|
108
|
+
}
|
109
|
+
|
110
|
+
private static void chase_across(double[] s, double[] e, int k, GMatrix u) {
|
111
|
+
double f, g, r;
|
112
|
+
double[] cosl = new double[1];
|
113
|
+
double[] sinl = new double[1];
|
114
|
+
int i;
|
115
|
+
GMatrix t = new GMatrix(u.nRow, u.nCol);
|
116
|
+
GMatrix m = new GMatrix(u.nRow, u.nCol);
|
117
|
+
|
118
|
+
g = e[k];
|
119
|
+
f = s[k + 1];
|
120
|
+
|
121
|
+
for (i = k; i < u.nCol - 2; i++) {
|
122
|
+
r = compute_rot(f, g, sinl, cosl);
|
123
|
+
g = -e[i + 1] * sinl[0];
|
124
|
+
f = s[i + 2];
|
125
|
+
s[i + 1] = r;
|
126
|
+
e[i + 1] = e[i + 1] * cosl[0];
|
127
|
+
update_u_split(k, i + 1, u, cosl, sinl, t, m);
|
128
|
+
}
|
129
|
+
|
130
|
+
s[i + 1] = compute_rot(f, g, sinl, cosl);
|
131
|
+
update_u_split(k, i + 1, u, cosl, sinl, t, m);
|
132
|
+
}
|
133
|
+
|
134
|
+
private static void chase_up(double[] s, double[] e, int k, GMatrix v) {
|
135
|
+
double f, g, r;
|
136
|
+
double[] cosr = new double[1];
|
137
|
+
double[] sinr = new double[1];
|
138
|
+
int i;
|
139
|
+
GMatrix t = new GMatrix(v.nRow, v.nCol);
|
140
|
+
GMatrix m = new GMatrix(v.nRow, v.nCol);
|
141
|
+
|
142
|
+
f = e[k];
|
143
|
+
g = s[k];
|
144
|
+
|
145
|
+
for (i = k; i > 0; i--) {
|
146
|
+
r = compute_rot(f, g, sinr, cosr);
|
147
|
+
f = -e[i - 1] * sinr[0];
|
148
|
+
g = s[i - 1];
|
149
|
+
s[i] = r;
|
150
|
+
e[i - 1] = e[i - 1] * cosr[0];
|
151
|
+
update_v_split(i, k + 1, v, cosr, sinr, t, m);
|
152
|
+
}
|
153
|
+
|
154
|
+
s[i + 1] = compute_rot(f, g, sinr, cosr);
|
155
|
+
update_v_split(i, k + 1, v, cosr, sinr, t, m);
|
156
|
+
}
|
157
|
+
|
158
|
+
private static void checkMatrix(GMatrix m) {
|
159
|
+
int i, j;
|
160
|
+
|
161
|
+
for (i = 0; i < m.nRow; i++) {
|
162
|
+
for (j = 0; j < m.nCol; j++) {
|
163
|
+
if (MathUtils.abs(m.values[i][j]) < 0.0000000001) {
|
164
|
+
System.out.print(" 0.0 ");
|
165
|
+
} else {
|
166
|
+
System.out.print(" " + m.values[i][j]);
|
167
|
+
}
|
168
|
+
}
|
169
|
+
System.out.print("\n");
|
170
|
+
}
|
171
|
+
}
|
172
|
+
|
173
|
+
private static int compute_2X2(double f, double g, double h,
|
174
|
+
double[] single_values, double[] snl, double[] csl, double[] snr,
|
175
|
+
double[] csr, int index) {
|
176
|
+
|
177
|
+
double c_b3 = 2.0;
|
178
|
+
double c_b4 = 1.0;
|
179
|
+
|
180
|
+
double d__1;
|
181
|
+
int pmax;
|
182
|
+
double temp;
|
183
|
+
boolean swap;
|
184
|
+
double a, d, l, m, r, s, t, tsign, fa, ga, ha;
|
185
|
+
double ft, gt, ht, mm;
|
186
|
+
boolean gasmal;
|
187
|
+
double tt, clt, crt, slt, srt;
|
188
|
+
double ssmin, ssmax;
|
189
|
+
|
190
|
+
ssmax = single_values[0];
|
191
|
+
ssmin = single_values[1];
|
192
|
+
clt = 0.0;
|
193
|
+
crt = 0.0;
|
194
|
+
slt = 0.0;
|
195
|
+
srt = 0.0;
|
196
|
+
tsign = 0.0;
|
197
|
+
|
198
|
+
ft = f;
|
199
|
+
fa = MathUtils.abs(ft);
|
200
|
+
ht = h;
|
201
|
+
ha = MathUtils.abs(h);
|
202
|
+
|
203
|
+
pmax = 1;
|
204
|
+
swap = ha > fa;
|
205
|
+
|
206
|
+
if (swap) {
|
207
|
+
pmax = 3;
|
208
|
+
temp = ft;
|
209
|
+
ft = ht;
|
210
|
+
ht = temp;
|
211
|
+
temp = fa;
|
212
|
+
fa = ha;
|
213
|
+
ha = temp;
|
214
|
+
|
215
|
+
}
|
216
|
+
|
217
|
+
gt = g;
|
218
|
+
ga = MathUtils.abs(gt);
|
219
|
+
if (ga == 0.0) {
|
220
|
+
single_values[1] = ha;
|
221
|
+
single_values[0] = fa;
|
222
|
+
clt = 1.0;
|
223
|
+
crt = 1.0;
|
224
|
+
slt = 0.0;
|
225
|
+
srt = 0.0;
|
226
|
+
} else {
|
227
|
+
gasmal = true;
|
228
|
+
if (ga > fa) {
|
229
|
+
pmax = 2;
|
230
|
+
if (fa / ga < EPS) {
|
231
|
+
gasmal = false;
|
232
|
+
ssmax = ga;
|
233
|
+
|
234
|
+
if (ha > 1.0) {
|
235
|
+
ssmin = fa / (ga / ha);
|
236
|
+
} else {
|
237
|
+
ssmin = fa / ga * ha;
|
238
|
+
}
|
239
|
+
clt = 1.0;
|
240
|
+
slt = ht / gt;
|
241
|
+
srt = 1.0;
|
242
|
+
crt = ft / gt;
|
243
|
+
}
|
244
|
+
}
|
245
|
+
if (gasmal) {
|
246
|
+
d = fa - ha;
|
247
|
+
if (d == fa) {
|
248
|
+
|
249
|
+
l = 1.0;
|
250
|
+
} else {
|
251
|
+
l = d / fa;
|
252
|
+
}
|
253
|
+
|
254
|
+
m = gt / ft;
|
255
|
+
t = 2.0 - l;
|
256
|
+
mm = m * m;
|
257
|
+
tt = t * t;
|
258
|
+
s = Math.sqrt(tt + mm);
|
259
|
+
|
260
|
+
if (l == 0.0) {
|
261
|
+
r = MathUtils.abs(m);
|
262
|
+
} else {
|
263
|
+
r = Math.sqrt(l * l + mm);
|
264
|
+
}
|
265
|
+
|
266
|
+
a = (s + r) * 0.5;
|
267
|
+
if (ga > fa) {
|
268
|
+
pmax = 2;
|
269
|
+
if (fa / ga < EPS) {
|
270
|
+
gasmal = false;
|
271
|
+
ssmax = ga;
|
272
|
+
if (ha > 1.0) {
|
273
|
+
ssmin = fa / (ga / ha);
|
274
|
+
} else {
|
275
|
+
ssmin = fa / ga * ha;
|
276
|
+
}
|
277
|
+
clt = 1.0;
|
278
|
+
slt = ht / gt;
|
279
|
+
srt = 1.0;
|
280
|
+
crt = ft / gt;
|
281
|
+
}
|
282
|
+
}
|
283
|
+
if (gasmal) {
|
284
|
+
d = fa - ha;
|
285
|
+
if (d == fa) {
|
286
|
+
l = 1.0;
|
287
|
+
} else {
|
288
|
+
l = d / fa;
|
289
|
+
}
|
290
|
+
|
291
|
+
m = gt / ft;
|
292
|
+
t = 2.0 - l;
|
293
|
+
|
294
|
+
mm = m * m;
|
295
|
+
tt = t * t;
|
296
|
+
s = Math.sqrt(tt + mm);
|
297
|
+
|
298
|
+
if (l == 0.) {
|
299
|
+
r = MathUtils.abs(m);
|
300
|
+
} else {
|
301
|
+
r = Math.sqrt(l * l + mm);
|
302
|
+
}
|
303
|
+
|
304
|
+
a = (s + r) * 0.5;
|
305
|
+
ssmin = ha / a;
|
306
|
+
ssmax = fa * a;
|
307
|
+
|
308
|
+
if (mm == 0.0) {
|
309
|
+
if (l == 0.0) {
|
310
|
+
t = MathUtils.dualSign(c_b3, ft)
|
311
|
+
* MathUtils.dualSign(c_b4, gt);
|
312
|
+
} else {
|
313
|
+
t = gt / MathUtils.dualSign(d, ft) + m / t;
|
314
|
+
}
|
315
|
+
} else {
|
316
|
+
t = (m / (s + t) + m / (r + l)) * (a + 1.0);
|
317
|
+
}
|
318
|
+
|
319
|
+
l = Math.sqrt(t * t + 4.0);
|
320
|
+
crt = 2.0 / l;
|
321
|
+
srt = t / l;
|
322
|
+
clt = (crt + srt * m) / a;
|
323
|
+
slt = ht / ft * srt / a;
|
324
|
+
}
|
325
|
+
}
|
326
|
+
if (swap) {
|
327
|
+
csl[0] = srt;
|
328
|
+
snl[0] = crt;
|
329
|
+
csr[0] = slt;
|
330
|
+
snr[0] = clt;
|
331
|
+
} else {
|
332
|
+
csl[0] = clt;
|
333
|
+
snl[0] = slt;
|
334
|
+
csr[0] = crt;
|
335
|
+
snr[0] = srt;
|
336
|
+
}
|
337
|
+
|
338
|
+
if (pmax == 1) {
|
339
|
+
tsign = MathUtils.dualSign(c_b4, csr[0])
|
340
|
+
* MathUtils.dualSign(c_b4, csl[0])
|
341
|
+
* MathUtils.dualSign(c_b4, f);
|
342
|
+
}
|
343
|
+
if (pmax == 2) {
|
344
|
+
tsign = MathUtils.dualSign(c_b4, snr[0])
|
345
|
+
* MathUtils.dualSign(c_b4, csl[0])
|
346
|
+
* MathUtils.dualSign(c_b4, g);
|
347
|
+
}
|
348
|
+
if (pmax == 3) {
|
349
|
+
tsign = MathUtils.dualSign(c_b4, snr[0])
|
350
|
+
* MathUtils.dualSign(c_b4, snl[0])
|
351
|
+
* MathUtils.dualSign(c_b4, h);
|
352
|
+
}
|
353
|
+
|
354
|
+
single_values[index] = MathUtils.dualSign(ssmax, tsign);
|
355
|
+
d__1 = tsign * MathUtils.dualSign(c_b4, f)
|
356
|
+
* MathUtils.dualSign(c_b4, h);
|
357
|
+
single_values[index + 1] = MathUtils.dualSign(ssmin, d__1);
|
358
|
+
}
|
359
|
+
|
360
|
+
return 0;
|
361
|
+
}
|
362
|
+
|
363
|
+
private static double compute_rot(double f, double g, double[] sin,
|
364
|
+
double[] cos) {
|
365
|
+
double cs, sn;
|
366
|
+
int i;
|
367
|
+
double scale;
|
368
|
+
int count;
|
369
|
+
double f1, g1;
|
370
|
+
double r;
|
371
|
+
final double safmn2 = 2.002083095183101E-146;
|
372
|
+
final double safmx2 = 4.994797680505588E+145;
|
373
|
+
|
374
|
+
if (g == 0.0) {
|
375
|
+
cs = 1.0;
|
376
|
+
sn = 0.0;
|
377
|
+
r = f;
|
378
|
+
} else if (f == 0.0) {
|
379
|
+
cs = 0.0;
|
380
|
+
sn = 1.0;
|
381
|
+
r = g;
|
382
|
+
} else {
|
383
|
+
f1 = f;
|
384
|
+
g1 = g;
|
385
|
+
scale = MathUtils.max(MathUtils.abs(f1), MathUtils.abs(g1));
|
386
|
+
if (scale >= safmx2) {
|
387
|
+
count = 0;
|
388
|
+
while (scale >= safmx2) {
|
389
|
+
++count;
|
390
|
+
f1 *= safmn2;
|
391
|
+
g1 *= safmn2;
|
392
|
+
scale = MathUtils.max(MathUtils.abs(f1), MathUtils.abs(g1));
|
393
|
+
}
|
394
|
+
r = Math.sqrt(f1 * f1 + g1 * g1);
|
395
|
+
cs = f1 / r;
|
396
|
+
sn = g1 / r;
|
397
|
+
for (i = 1; i <= count; ++i) {
|
398
|
+
r *= safmx2;
|
399
|
+
}
|
400
|
+
} else if (scale <= safmn2) {
|
401
|
+
count = 0;
|
402
|
+
while (scale <= safmn2) {
|
403
|
+
++count;
|
404
|
+
f1 *= safmx2;
|
405
|
+
g1 *= safmx2;
|
406
|
+
scale = MathUtils.max(MathUtils.abs(f1), MathUtils.abs(g1));
|
407
|
+
}
|
408
|
+
r = Math.sqrt(f1 * f1 + g1 * g1);
|
409
|
+
cs = f1 / r;
|
410
|
+
sn = g1 / r;
|
411
|
+
for (i = 1; i <= count; ++i) {
|
412
|
+
r *= safmn2;
|
413
|
+
}
|
414
|
+
} else {
|
415
|
+
r = Math.sqrt(f1 * f1 + g1 * g1);
|
416
|
+
cs = f1 / r;
|
417
|
+
sn = g1 / r;
|
418
|
+
}
|
419
|
+
if (MathUtils.abs(f) > MathUtils.abs(g) && cs < 0.0) {
|
420
|
+
cs = -cs;
|
421
|
+
sn = -sn;
|
422
|
+
r = -r;
|
423
|
+
}
|
424
|
+
}
|
425
|
+
sin[0] = sn;
|
426
|
+
cos[0] = cs;
|
427
|
+
return r;
|
428
|
+
}
|
429
|
+
|
430
|
+
private static double compute_shift(double f, double g, double h) {
|
431
|
+
double d__1, d__2;
|
432
|
+
double fhmn, fhmx, c, fa, ga, ha, as, at, au;
|
433
|
+
double ssmin;
|
434
|
+
|
435
|
+
fa = MathUtils.abs(f);
|
436
|
+
ga = MathUtils.abs(g);
|
437
|
+
ha = MathUtils.abs(h);
|
438
|
+
fhmn = MathUtils.min(fa, ha);
|
439
|
+
fhmx = MathUtils.max(fa, ha);
|
440
|
+
|
441
|
+
if (fhmn == 0.0) {
|
442
|
+
ssmin = 0.0;
|
443
|
+
if (fhmx == 0.0) {
|
444
|
+
} else {
|
445
|
+
d__1 = MathUtils.min(fhmx, ga) / MathUtils.max(fhmx, ga);
|
446
|
+
}
|
447
|
+
} else {
|
448
|
+
if (ga < fhmx) {
|
449
|
+
as = fhmn / fhmx + 1.0;
|
450
|
+
at = (fhmx - fhmn) / fhmx;
|
451
|
+
d__1 = ga / fhmx;
|
452
|
+
au = d__1 * d__1;
|
453
|
+
c = 2.0 / (Math.sqrt(as * as + au) + Math.sqrt(at * at + au));
|
454
|
+
ssmin = fhmn * c;
|
455
|
+
} else {
|
456
|
+
au = fhmx / ga;
|
457
|
+
if (au == 0.0) {
|
458
|
+
ssmin = fhmn * fhmx / ga;
|
459
|
+
} else {
|
460
|
+
as = fhmn / fhmx + 1.0;
|
461
|
+
at = (fhmx - fhmn) / fhmx;
|
462
|
+
d__1 = as * au;
|
463
|
+
d__2 = at * au;
|
464
|
+
c = 1.0 / (Math.sqrt(d__1 * d__1 + 1.0) + Math.sqrt(d__2
|
465
|
+
* d__2 + 1.0));
|
466
|
+
ssmin = fhmn * c * au;
|
467
|
+
ssmin += ssmin;
|
468
|
+
}
|
469
|
+
}
|
470
|
+
}
|
471
|
+
|
472
|
+
return ssmin;
|
473
|
+
}
|
474
|
+
|
475
|
+
/**
|
476
|
+
*
|
477
|
+
* @param start
|
478
|
+
* @param end
|
479
|
+
* @param s
|
480
|
+
* @param e
|
481
|
+
* @param u
|
482
|
+
* @param v
|
483
|
+
*/
|
484
|
+
public static void computeQR(int start, int end, double[] s, double[] e,
|
485
|
+
GMatrix u, GMatrix v) {
|
486
|
+
|
487
|
+
int i, k, n, sl;
|
488
|
+
double shift, r, f, g;
|
489
|
+
double[] cosl = new double[1];
|
490
|
+
double[] cosr = new double[1];
|
491
|
+
double[] sinl = new double[1];
|
492
|
+
double[] sinr = new double[1];
|
493
|
+
|
494
|
+
final int MAX_INTERATIONS = 2;
|
495
|
+
final double CONVERGE_TOL = 4.89E-15;
|
496
|
+
|
497
|
+
boolean converged = false;
|
498
|
+
|
499
|
+
f = 0.0;
|
500
|
+
g = 0.0;
|
501
|
+
|
502
|
+
for (k = 0; k < MAX_INTERATIONS && !converged; k++) {
|
503
|
+
for (i = start; i <= end; i++) {
|
504
|
+
|
505
|
+
// if at start of iterfaction compute shift
|
506
|
+
if (i == start) {
|
507
|
+
if (e.length == s.length) {
|
508
|
+
sl = end;
|
509
|
+
} else {
|
510
|
+
sl = end + 1;
|
511
|
+
}
|
512
|
+
|
513
|
+
shift = compute_shift(s[sl - 1], e[end], s[sl]);
|
514
|
+
|
515
|
+
f = (MathUtils.abs(s[i]) - shift)
|
516
|
+
* (MathUtils.dualSign(1.0, s[i]) + shift / s[i]);
|
517
|
+
g = e[i];
|
518
|
+
}
|
519
|
+
|
520
|
+
r = compute_rot(f, g, sinr, cosr);
|
521
|
+
if (i != start) {
|
522
|
+
e[i - 1] = r;
|
523
|
+
}
|
524
|
+
|
525
|
+
f = cosr[0] * s[i] + sinr[0] * e[i];
|
526
|
+
e[i] = cosr[0] * e[i] - sinr[0] * s[i];
|
527
|
+
g = sinr[0] * s[i + 1];
|
528
|
+
s[i + 1] = cosr[0] * s[i + 1];
|
529
|
+
|
530
|
+
update_v(i, v, cosr, sinr);
|
531
|
+
|
532
|
+
r = compute_rot(f, g, sinl, cosl);
|
533
|
+
s[i] = r;
|
534
|
+
f = cosl[0] * e[i] + sinl[0] * s[i + 1];
|
535
|
+
s[i + 1] = cosl[0] * s[i + 1] - sinl[0] * e[i];
|
536
|
+
|
537
|
+
if (i < end) {
|
538
|
+
// if not last
|
539
|
+
g = sinl[0] * e[i + 1];
|
540
|
+
e[i + 1] = cosl[0] * e[i + 1];
|
541
|
+
}
|
542
|
+
update_u(i, u, cosl, sinl);
|
543
|
+
}
|
544
|
+
|
545
|
+
// if extra off diagonal perform one more right side rotation
|
546
|
+
if (s.length == e.length) {
|
547
|
+
r = compute_rot(f, g, sinr, cosr);
|
548
|
+
f = cosr[0] * s[i] + sinr[0] * e[i];
|
549
|
+
e[i] = cosr[0] * e[i] - sinr[0] * s[i];
|
550
|
+
s[i + 1] = cosr[0] * s[i + 1];
|
551
|
+
|
552
|
+
update_v(i, v, cosr, sinr);
|
553
|
+
}
|
554
|
+
|
555
|
+
// check for convergence on off diagonals and reduce
|
556
|
+
while ((end - start > 1) && (MathUtils.abs(e[end]) < CONVERGE_TOL)) {
|
557
|
+
end--;
|
558
|
+
}
|
559
|
+
|
560
|
+
// check if need to split
|
561
|
+
for (n = end - 2; n > start; n--) {
|
562
|
+
if (MathUtils.abs(e[n]) < CONVERGE_TOL) { // split
|
563
|
+
computeQR(n + 1, end, s, e, u, v); // do lower matrix
|
564
|
+
end = n - 1; // do upper matrix
|
565
|
+
|
566
|
+
// check for convergence on off diagonals and reduce
|
567
|
+
while ((end - start > 1)
|
568
|
+
&& (MathUtils.abs(e[end]) < CONVERGE_TOL)) {
|
569
|
+
end--;
|
570
|
+
}
|
571
|
+
}
|
572
|
+
}
|
573
|
+
|
574
|
+
if ((end - start <= 1)
|
575
|
+
&& (MathUtils.abs(e[start + 1]) < CONVERGE_TOL)) {
|
576
|
+
converged = true;
|
577
|
+
} else {
|
578
|
+
// check if zero on the diagonal
|
579
|
+
}
|
580
|
+
|
581
|
+
}
|
582
|
+
|
583
|
+
if (MathUtils.abs(e[1]) < CONVERGE_TOL) {
|
584
|
+
compute_2X2(s[start], e[start], s[start + 1], s, sinl, cosl, sinr,
|
585
|
+
cosr, 0);
|
586
|
+
e[start] = 0.0;
|
587
|
+
e[start + 1] = 0.0;
|
588
|
+
}
|
589
|
+
|
590
|
+
i = start;
|
591
|
+
update_u(i, u, cosl, sinl);
|
592
|
+
update_v(i, v, cosr, sinr);
|
593
|
+
}
|
594
|
+
|
595
|
+
/**
|
596
|
+
*
|
597
|
+
* @param mat
|
598
|
+
* @param U
|
599
|
+
* @param W
|
600
|
+
* @param V
|
601
|
+
* @return
|
602
|
+
*/
|
603
|
+
public static int computeSVD(GMatrix mat, GMatrix U, GMatrix W, GMatrix V) {
|
604
|
+
int i, j, k;
|
605
|
+
int nr, nc, si;
|
606
|
+
|
607
|
+
int rank;
|
608
|
+
double mag, scale, t;
|
609
|
+
int eLength, sLength, vecLength;
|
610
|
+
|
611
|
+
GMatrix tmp = new GMatrix(mat.nRow, mat.nCol);
|
612
|
+
GMatrix u = new GMatrix(mat.nRow, mat.nCol);
|
613
|
+
GMatrix v = new GMatrix(mat.nRow, mat.nCol);
|
614
|
+
GMatrix m = new GMatrix(mat);
|
615
|
+
|
616
|
+
// compute the number of singular values
|
617
|
+
if (m.nRow >= m.nCol) {
|
618
|
+
sLength = m.nCol;
|
619
|
+
eLength = m.nCol - 1;
|
620
|
+
} else {
|
621
|
+
sLength = m.nRow;
|
622
|
+
eLength = m.nRow;
|
623
|
+
}
|
624
|
+
|
625
|
+
if (m.nRow > m.nCol) {
|
626
|
+
vecLength = m.nRow;
|
627
|
+
} else {
|
628
|
+
vecLength = m.nCol;
|
629
|
+
}
|
630
|
+
|
631
|
+
double[] vec = new double[vecLength];
|
632
|
+
double[] single_values = new double[sLength];
|
633
|
+
double[] e = new double[eLength];
|
634
|
+
|
635
|
+
rank = 0;
|
636
|
+
|
637
|
+
U.identity();
|
638
|
+
V.identity();
|
639
|
+
|
640
|
+
nr = m.nRow;
|
641
|
+
nc = m.nCol;
|
642
|
+
|
643
|
+
// householder reduction
|
644
|
+
for (si = 0; si < sLength; si++) {
|
645
|
+
// for each singular value
|
646
|
+
|
647
|
+
if (nr > 1) {
|
648
|
+
// compute reflector
|
649
|
+
mag = 0.0;
|
650
|
+
for (i = 0; i < nr; i++) {
|
651
|
+
mag += m.values[i + si][si] * m.values[i + si][si];
|
652
|
+
}
|
653
|
+
|
654
|
+
mag = Math.sqrt(mag);
|
655
|
+
if (m.values[si][si] == 0.0) {
|
656
|
+
vec[0] = mag;
|
657
|
+
} else {
|
658
|
+
vec[0] = m.values[si][si]
|
659
|
+
+ MathUtils.dualSign(mag, m.values[si][si]);
|
660
|
+
}
|
661
|
+
|
662
|
+
for (i = 1; i < nr; i++) {
|
663
|
+
vec[i] = m.values[si + i][si];
|
664
|
+
}
|
665
|
+
|
666
|
+
scale = 0.0;
|
667
|
+
for (i = 0; i < nr; i++) {
|
668
|
+
scale += vec[i] * vec[i];
|
669
|
+
}
|
670
|
+
|
671
|
+
scale = 2.0 / scale;
|
672
|
+
for (j = si; j < m.nRow; j++) {
|
673
|
+
for (k = si; k < m.nRow; k++) {
|
674
|
+
u.values[j][k] = -scale * vec[j - si] * vec[k - si];
|
675
|
+
}
|
676
|
+
}
|
677
|
+
|
678
|
+
for (i = si; i < m.nRow; i++) {
|
679
|
+
u.values[i][i] += 1.0;
|
680
|
+
}
|
681
|
+
|
682
|
+
// compute s
|
683
|
+
t = 0.0;
|
684
|
+
for (i = si; i < m.nRow; i++) {
|
685
|
+
t += u.values[si][i] * m.values[i][si];
|
686
|
+
}
|
687
|
+
m.values[si][si] = t;
|
688
|
+
|
689
|
+
// apply reflector
|
690
|
+
for (j = si; j < m.nRow; j++) {
|
691
|
+
for (k = si + 1; k < m.nCol; k++) {
|
692
|
+
tmp.values[j][k] = 0.0;
|
693
|
+
for (i = si; i < m.nCol; i++) {
|
694
|
+
tmp.values[j][k] += u.values[j][i] * m.values[i][k];
|
695
|
+
}
|
696
|
+
}
|
697
|
+
}
|
698
|
+
|
699
|
+
for (j = si; j < m.nRow; j++) {
|
700
|
+
for (k = si + 1; k < m.nCol; k++) {
|
701
|
+
m.values[j][k] = tmp.values[j][k];
|
702
|
+
}
|
703
|
+
}
|
704
|
+
|
705
|
+
// update U matrix
|
706
|
+
for (j = si; j < m.nRow; j++) {
|
707
|
+
for (k = 0; k < m.nCol; k++) {
|
708
|
+
tmp.values[j][k] = 0.0;
|
709
|
+
for (i = si; i < m.nCol; i++) {
|
710
|
+
tmp.values[j][k] += u.values[j][i] * U.values[i][k];
|
711
|
+
}
|
712
|
+
}
|
713
|
+
}
|
714
|
+
|
715
|
+
for (j = si; j < m.nRow; j++) {
|
716
|
+
for (k = 0; k < m.nCol; k++) {
|
717
|
+
U.values[j][k] = tmp.values[j][k];
|
718
|
+
}
|
719
|
+
}
|
720
|
+
nr--;
|
721
|
+
}
|
722
|
+
|
723
|
+
if (nc > 2) {
|
724
|
+
mag = 0.0;
|
725
|
+
for (i = 1; i < nc; i++) {
|
726
|
+
mag += m.values[si][si + i] * m.values[si][si + i];
|
727
|
+
}
|
728
|
+
// generate the reflection vector, compute the first entry and
|
729
|
+
// copy the rest from the row to be zeroed
|
730
|
+
mag = Math.sqrt(mag);
|
731
|
+
if (m.values[si][si + 1] == 0.0) {
|
732
|
+
vec[0] = mag;
|
733
|
+
} else {
|
734
|
+
vec[0] = m.values[si][si + 1]
|
735
|
+
+ MathUtils.dualSign(mag, m.values[si][si + 1]);
|
736
|
+
}
|
737
|
+
|
738
|
+
for (i = 1; i < nc - 1; i++) {
|
739
|
+
vec[i] = m.values[si][si + i + 1];
|
740
|
+
}
|
741
|
+
|
742
|
+
// use reflection vector to compute v matrix
|
743
|
+
scale = 0.0;
|
744
|
+
for (i = 0; i < nc - 1; i++) {
|
745
|
+
scale += vec[i] * vec[i];
|
746
|
+
}
|
747
|
+
|
748
|
+
scale = 2.0 / scale;
|
749
|
+
for (j = si + 1; j < nc; j++) {
|
750
|
+
for (k = si + 1; k < m.nCol; k++) {
|
751
|
+
v.values[j][k] = -scale * vec[j - si - 1]
|
752
|
+
* vec[k - si - 1];
|
753
|
+
}
|
754
|
+
}
|
755
|
+
|
756
|
+
for (i = si + 1; i < m.nCol; i++) {
|
757
|
+
v.values[i][i] += 1.0;
|
758
|
+
}
|
759
|
+
|
760
|
+
t = 0.0;
|
761
|
+
for (i = si; i < m.nCol; i++) {
|
762
|
+
t += v.values[i][si + 1] * m.values[si][i];
|
763
|
+
}
|
764
|
+
m.values[si][si + 1] = t;
|
765
|
+
|
766
|
+
// apply reflector
|
767
|
+
for (j = si + 1; j < m.nRow; j++) {
|
768
|
+
for (k = si + 1; k < m.nCol; k++) {
|
769
|
+
tmp.values[j][k] = 0.0;
|
770
|
+
for (i = si + 1; i < m.nCol; i++) {
|
771
|
+
tmp.values[j][k] += v.values[i][k] * m.values[j][i];
|
772
|
+
}
|
773
|
+
}
|
774
|
+
}
|
775
|
+
|
776
|
+
for (j = si + 1; j < m.nRow; j++) {
|
777
|
+
for (k = si + 1; k < m.nCol; k++) {
|
778
|
+
m.values[j][k] = tmp.values[j][k];
|
779
|
+
}
|
780
|
+
}
|
781
|
+
|
782
|
+
// update V matrix
|
783
|
+
for (j = 0; j < m.nRow; j++) {
|
784
|
+
for (k = si + 1; k < m.nCol; k++) {
|
785
|
+
tmp.values[j][k] = 0.0;
|
786
|
+
for (i = si + 1; i < m.nCol; i++) {
|
787
|
+
tmp.values[j][k] += v.values[i][k] * V.values[j][i];
|
788
|
+
}
|
789
|
+
}
|
790
|
+
}
|
791
|
+
|
792
|
+
for (j = 0; j < m.nRow; j++) {
|
793
|
+
for (k = si + 1; k < m.nCol; k++) {
|
794
|
+
V.values[j][k] = tmp.values[j][k];
|
795
|
+
}
|
796
|
+
}
|
797
|
+
nc--;
|
798
|
+
}
|
799
|
+
}
|
800
|
+
|
801
|
+
for (i = 0; i < sLength; i++) {
|
802
|
+
single_values[i] = m.values[i][i];
|
803
|
+
}
|
804
|
+
|
805
|
+
for (i = 0; i < eLength; i++) {
|
806
|
+
e[i] = m.values[i][i + 1];
|
807
|
+
}
|
808
|
+
|
809
|
+
// Fix ArrayIndexOutOfBounds for 2x2 matrices, which partially
|
810
|
+
// addresses bug 4348562 for J3D 1.2.1.
|
811
|
+
//
|
812
|
+
// Does *not* fix the following problems reported in 4348562,
|
813
|
+
// which will wait for J3D 1.3:
|
814
|
+
//
|
815
|
+
// 1) no output of W
|
816
|
+
// 2) wrong transposition of U
|
817
|
+
// 3) wrong results for 4x4 matrices
|
818
|
+
// 4) slow performance
|
819
|
+
if (m.nRow == 2 && m.nCol == 2) {
|
820
|
+
double[] cosl = new double[1];
|
821
|
+
double[] cosr = new double[1];
|
822
|
+
double[] sinl = new double[1];
|
823
|
+
double[] sinr = new double[1];
|
824
|
+
|
825
|
+
compute_2X2(single_values[0], e[0], single_values[1],
|
826
|
+
single_values, sinl, cosl, sinr, cosr, 0);
|
827
|
+
|
828
|
+
update_u(0, U, cosl, sinl);
|
829
|
+
update_v(0, V, cosr, sinr);
|
830
|
+
return 2;
|
831
|
+
}
|
832
|
+
|
833
|
+
// compute_qr causes ArrayIndexOutOfBounds for 2x2 matrices
|
834
|
+
computeQR(0, e.length - 1, single_values, e, U, V);
|
835
|
+
|
836
|
+
// compute rank = number of non zero singular values
|
837
|
+
rank = single_values.length;
|
838
|
+
|
839
|
+
// sort by order of size of single values
|
840
|
+
// and check for zero's
|
841
|
+
return rank;
|
842
|
+
}
|
843
|
+
|
844
|
+
/**
|
845
|
+
* Given a nxn array "matrix0", this function replaces it with the LU
|
846
|
+
* decomposition of a row-wise permutation of itself. The input parameters
|
847
|
+
* are "matrix0" and "dim". The array "matrix0" is also an output parameter.
|
848
|
+
* The vector "row_perm[]" is an output parameter that contains the row
|
849
|
+
* permutations resulting from partial pivoting. The output parameter
|
850
|
+
* "even_row_xchg" is 1 when the number of row exchanges is even, or -1
|
851
|
+
* otherwise. Assumes data type is always double.
|
852
|
+
*
|
853
|
+
* @param dim
|
854
|
+
* @param matrix0
|
855
|
+
* @param row_perm
|
856
|
+
* @param even_row_xchg
|
857
|
+
* @return true if the matrix is nonsingular, or false otherwise.
|
858
|
+
*/
|
859
|
+
//
|
860
|
+
// Reference: Press, Flannery, Teukolsky, Vetterling,
|
861
|
+
// _Numerical_Recipes_in_C_, Cambridge University Press,
|
862
|
+
// 1988, pp 40-45.
|
863
|
+
//
|
864
|
+
public static boolean decomposeLU(int dim, double[] matrix0,
|
865
|
+
int[] row_perm, int[] even_row_xchg) {
|
866
|
+
|
867
|
+
double row_scale[] = new double[dim];
|
868
|
+
|
869
|
+
// Determine implicit scaling information by looping over rows
|
870
|
+
int i, j;
|
871
|
+
int ptr, rs, mtx;
|
872
|
+
double big, temp;
|
873
|
+
|
874
|
+
ptr = 0;
|
875
|
+
rs = 0;
|
876
|
+
even_row_xchg[0] = 1;
|
877
|
+
|
878
|
+
// For each row ...
|
879
|
+
i = dim;
|
880
|
+
while (i-- != 0) {
|
881
|
+
big = 0.0;
|
882
|
+
|
883
|
+
// For each column, find the largest element in the row
|
884
|
+
j = dim;
|
885
|
+
while (j-- != 0) {
|
886
|
+
temp = matrix0[ptr++];
|
887
|
+
temp = MathUtils.abs(temp);
|
888
|
+
if (temp > big) {
|
889
|
+
big = temp;
|
890
|
+
}
|
891
|
+
}
|
892
|
+
|
893
|
+
// Is the matrix singular?
|
894
|
+
if (big == 0.0) {
|
895
|
+
return false;
|
896
|
+
}
|
897
|
+
row_scale[rs++] = 1.0 / big;
|
898
|
+
}
|
899
|
+
|
900
|
+
// For all columns, execute Crout's method
|
901
|
+
mtx = 0;
|
902
|
+
for (j = 0; j < dim; j++) {
|
903
|
+
int imax, k;
|
904
|
+
int target, p1, p2;
|
905
|
+
double sum;
|
906
|
+
|
907
|
+
// Determine elements of upper diagonal matrix U
|
908
|
+
for (i = 0; i < j; i++) {
|
909
|
+
target = mtx + (dim * i) + j;
|
910
|
+
sum = matrix0[target];
|
911
|
+
k = i;
|
912
|
+
p1 = mtx + (dim * i);
|
913
|
+
p2 = mtx + j;
|
914
|
+
while (k-- != 0) {
|
915
|
+
sum -= matrix0[p1] * matrix0[p2];
|
916
|
+
p1++;
|
917
|
+
p2 += dim;
|
918
|
+
}
|
919
|
+
matrix0[target] = sum;
|
920
|
+
}
|
921
|
+
|
922
|
+
// Search for largest pivot element and calculate
|
923
|
+
// intermediate elements of lower diagonal matrix L.
|
924
|
+
big = 0.0;
|
925
|
+
imax = -1;
|
926
|
+
for (i = j; i < dim; i++) {
|
927
|
+
target = mtx + (dim * i) + j;
|
928
|
+
sum = matrix0[target];
|
929
|
+
k = j;
|
930
|
+
p1 = mtx + (dim * i);
|
931
|
+
p2 = mtx + j;
|
932
|
+
while (k-- != 0) {
|
933
|
+
sum -= matrix0[p1] * matrix0[p2];
|
934
|
+
p1++;
|
935
|
+
p2 += dim;
|
936
|
+
}
|
937
|
+
matrix0[target] = sum;
|
938
|
+
|
939
|
+
// Is this the best pivot so far?
|
940
|
+
if ((temp = row_scale[i] * MathUtils.abs(sum)) >= big) {
|
941
|
+
big = temp;
|
942
|
+
imax = i;
|
943
|
+
}
|
944
|
+
}
|
945
|
+
|
946
|
+
if (imax < 0) {
|
947
|
+
throw new RuntimeException();
|
948
|
+
}
|
949
|
+
|
950
|
+
// Is a row exchange necessary?
|
951
|
+
if (j != imax) {
|
952
|
+
// Yes: exchange rows
|
953
|
+
k = dim;
|
954
|
+
p1 = mtx + (dim * imax);
|
955
|
+
p2 = mtx + (dim * j);
|
956
|
+
while (k-- != 0) {
|
957
|
+
temp = matrix0[p1];
|
958
|
+
matrix0[p1++] = matrix0[p2];
|
959
|
+
matrix0[p2++] = temp;
|
960
|
+
}
|
961
|
+
|
962
|
+
// Record change in scale factor
|
963
|
+
row_scale[imax] = row_scale[j];
|
964
|
+
even_row_xchg[0] = -even_row_xchg[0]; // change exchange parity
|
965
|
+
}
|
966
|
+
|
967
|
+
// Record row permutation
|
968
|
+
row_perm[j] = imax;
|
969
|
+
|
970
|
+
// Is the matrix singular
|
971
|
+
if (matrix0[(mtx + (dim * j) + j)] == 0.0) {
|
972
|
+
return false;
|
973
|
+
}
|
974
|
+
|
975
|
+
// Divide elements of lower diagonal matrix L by pivot
|
976
|
+
if (j != (dim - 1)) {
|
977
|
+
temp = 1.0 / (matrix0[(mtx + (dim * j) + j)]);
|
978
|
+
target = mtx + (dim * (j + 1)) + j;
|
979
|
+
i = (dim - 1) - j;
|
980
|
+
while (i-- != 0) {
|
981
|
+
matrix0[target] *= temp;
|
982
|
+
target += dim;
|
983
|
+
}
|
984
|
+
}
|
985
|
+
|
986
|
+
}
|
987
|
+
|
988
|
+
return true;
|
989
|
+
}
|
990
|
+
|
991
|
+
private static void print_m(GMatrix m, GMatrix u, GMatrix v) {
|
992
|
+
GMatrix mtmp = new GMatrix(m.nCol, m.nRow);
|
993
|
+
|
994
|
+
mtmp.mul(u, mtmp);
|
995
|
+
mtmp.mul(mtmp, v);
|
996
|
+
System.out.println("\n m = \n" + GMatrix.toString(mtmp));
|
997
|
+
|
998
|
+
}
|
999
|
+
|
1000
|
+
private static void print_se(double[] s, double[] e) {
|
1001
|
+
System.out.println("\ns =" + s[0] + " " + s[1] + " " + s[2]);
|
1002
|
+
System.out.println("e =" + e[0] + " " + e[1]);
|
1003
|
+
}
|
1004
|
+
|
1005
|
+
private static void print_svd(double[] s, double[] e, GMatrix u, GMatrix v) {
|
1006
|
+
int i;
|
1007
|
+
GMatrix mtmp = new GMatrix(u.nCol, v.nRow);
|
1008
|
+
|
1009
|
+
System.out.println(" \ns = ");
|
1010
|
+
for (i = 0; i < s.length; i++) {
|
1011
|
+
System.out.println(" " + s[i]);
|
1012
|
+
}
|
1013
|
+
|
1014
|
+
System.out.println(" \ne = ");
|
1015
|
+
for (i = 0; i < e.length; i++) {
|
1016
|
+
System.out.println(" " + e[i]);
|
1017
|
+
}
|
1018
|
+
|
1019
|
+
System.out.println(" \nu = \n" + u.toString());
|
1020
|
+
System.out.println(" \nv = \n" + v.toString());
|
1021
|
+
|
1022
|
+
mtmp.identity();
|
1023
|
+
for (i = 0; i < s.length; i++) {
|
1024
|
+
mtmp.values[i][i] = s[i];
|
1025
|
+
}
|
1026
|
+
for (i = 0; i < e.length; i++) {
|
1027
|
+
mtmp.values[i][i + 1] = e[i];
|
1028
|
+
}
|
1029
|
+
System.out.println(" \nm = \n" + mtmp.toString());
|
1030
|
+
|
1031
|
+
mtmp.mulTransposeLeft(u, mtmp);
|
1032
|
+
mtmp.mulTransposeRight(mtmp, v);
|
1033
|
+
|
1034
|
+
System.out.println(" \n u.transpose*m*v.transpose = \n"
|
1035
|
+
+ mtmp.toString());
|
1036
|
+
}
|
1037
|
+
|
1038
|
+
private static String toString(GMatrix m) {
|
1039
|
+
StringBuilder buffer = new StringBuilder(m.nRow * m.nCol * 8);
|
1040
|
+
int i, j;
|
1041
|
+
|
1042
|
+
for (i = 0; i < m.nRow; i++) {
|
1043
|
+
for (j = 0; j < m.nCol; j++) {
|
1044
|
+
if (MathUtils.abs(m.values[i][j]) < MathUtils.EPS) {
|
1045
|
+
buffer.append("0.0000 ");
|
1046
|
+
} else {
|
1047
|
+
buffer.append(m.values[i][j]).append(" ");
|
1048
|
+
}
|
1049
|
+
}
|
1050
|
+
buffer.append("\n");
|
1051
|
+
}
|
1052
|
+
return buffer.toString();
|
1053
|
+
}
|
1054
|
+
|
1055
|
+
private static void update_u(int index, GMatrix u, double[] cosl,
|
1056
|
+
double[] sinl) {
|
1057
|
+
int j;
|
1058
|
+
double utemp;
|
1059
|
+
|
1060
|
+
for (j = 0; j < u.nCol; j++) {
|
1061
|
+
utemp = u.values[index][j];
|
1062
|
+
u.values[index][j] = cosl[0] * utemp + sinl[0]
|
1063
|
+
* u.values[index + 1][j];
|
1064
|
+
u.values[index + 1][j] = -sinl[0] * utemp + cosl[0]
|
1065
|
+
* u.values[index + 1][j];
|
1066
|
+
}
|
1067
|
+
}
|
1068
|
+
|
1069
|
+
private static void update_u_split(int topr, int bottomr, GMatrix u,
|
1070
|
+
double[] cosl, double[] sinl, GMatrix t, GMatrix m) {
|
1071
|
+
int j;
|
1072
|
+
double utemp;
|
1073
|
+
|
1074
|
+
for (j = 0; j < u.nCol; j++) {
|
1075
|
+
utemp = u.values[topr][j];
|
1076
|
+
u.values[topr][j] = cosl[0] * utemp - sinl[0]
|
1077
|
+
* u.values[bottomr][j];
|
1078
|
+
u.values[bottomr][j] = sinl[0] * utemp + cosl[0]
|
1079
|
+
* u.values[bottomr][j];
|
1080
|
+
}
|
1081
|
+
|
1082
|
+
checkMatrix(m);
|
1083
|
+
checkMatrix(t);
|
1084
|
+
m.mul(t, m);
|
1085
|
+
checkMatrix(m);
|
1086
|
+
}
|
1087
|
+
|
1088
|
+
private static void update_v(int index, GMatrix v, double[] cosr,
|
1089
|
+
double[] sinr) {
|
1090
|
+
int j;
|
1091
|
+
double vtemp;
|
1092
|
+
|
1093
|
+
for (j = 0; j < v.nRow; j++) {
|
1094
|
+
vtemp = v.values[j][index];
|
1095
|
+
v.values[j][index] = cosr[0] * vtemp + sinr[0]
|
1096
|
+
* v.values[j][index + 1];
|
1097
|
+
v.values[j][index + 1] = -sinr[0] * vtemp + cosr[0]
|
1098
|
+
* v.values[j][index + 1];
|
1099
|
+
}
|
1100
|
+
}
|
1101
|
+
|
1102
|
+
private static void update_v_split(int topr, int bottomr, GMatrix v,
|
1103
|
+
double[] cosr, double[] sinr, GMatrix t, GMatrix m) {
|
1104
|
+
int j;
|
1105
|
+
double vtemp;
|
1106
|
+
|
1107
|
+
for (j = 0; j < v.nRow; j++) {
|
1108
|
+
vtemp = v.values[j][topr];
|
1109
|
+
v.values[j][topr] = cosr[0] * vtemp - sinr[0]
|
1110
|
+
* v.values[j][bottomr];
|
1111
|
+
v.values[j][bottomr] = sinr[0] * vtemp + cosr[0]
|
1112
|
+
* v.values[j][bottomr];
|
1113
|
+
}
|
1114
|
+
|
1115
|
+
checkMatrix(m);
|
1116
|
+
checkMatrix(t);
|
1117
|
+
m.mul(m, t);
|
1118
|
+
checkMatrix(m);
|
1119
|
+
}
|
1120
|
+
|
1121
|
+
int nRow;
|
1122
|
+
|
1123
|
+
int nCol;
|
1124
|
+
|
1125
|
+
// double dereference is slow
|
1126
|
+
double[][] values;
|
1127
|
+
|
1128
|
+
private static final double EPS = 1.0E-10;
|
1129
|
+
|
1130
|
+
/**
|
1131
|
+
* Constructs a new GMatrix and copies the initial values from the parameter
|
1132
|
+
* matrix.
|
1133
|
+
*
|
1134
|
+
* @param matrix the source of the initial values of the new GMatrix
|
1135
|
+
*/
|
1136
|
+
public GMatrix(GMatrix matrix) {
|
1137
|
+
nRow = matrix.nRow;
|
1138
|
+
nCol = matrix.nCol;
|
1139
|
+
values = new double[nRow][nCol];
|
1140
|
+
|
1141
|
+
int i, j;
|
1142
|
+
for (i = 0; i < nRow; i++) {
|
1143
|
+
for (j = 0; j < nCol; j++) {
|
1144
|
+
values[i][j] = matrix.values[i][j];
|
1145
|
+
}
|
1146
|
+
}
|
1147
|
+
}
|
1148
|
+
|
1149
|
+
/**
|
1150
|
+
* Constructs an nRow by NCol identity matrix. Note that because row and
|
1151
|
+
* column numbering begins with zero, nRow and nCol will be one larger than
|
1152
|
+
* the maximum possible matrix index values.
|
1153
|
+
*
|
1154
|
+
* @param nRow number of rows in this matrix.
|
1155
|
+
* @param nCol number of columns in this matrix.
|
1156
|
+
*/
|
1157
|
+
public GMatrix(int nRow, int nCol) {
|
1158
|
+
values = new double[nRow][nCol];
|
1159
|
+
this.nRow = nRow;
|
1160
|
+
this.nCol = nCol;
|
1161
|
+
|
1162
|
+
int i, j;
|
1163
|
+
for (i = 0; i < nRow; i++) {
|
1164
|
+
for (j = 0; j < nCol; j++) {
|
1165
|
+
values[i][j] = 0.0;
|
1166
|
+
}
|
1167
|
+
}
|
1168
|
+
|
1169
|
+
int l;
|
1170
|
+
if (nRow < nCol) {
|
1171
|
+
l = nRow;
|
1172
|
+
} else {
|
1173
|
+
l = nCol;
|
1174
|
+
}
|
1175
|
+
|
1176
|
+
for (i = 0; i < l; i++) {
|
1177
|
+
values[i][i] = 1.0;
|
1178
|
+
}
|
1179
|
+
}
|
1180
|
+
|
1181
|
+
/**
|
1182
|
+
* Constructs an nRow by nCol matrix initialized to the values in the matrix
|
1183
|
+
* array. The array values are copied in one row at a time in row major
|
1184
|
+
* fashion. The array should be at least nRow*nCol in length. Note that
|
1185
|
+
* because row and column numbering begins with zero, nRow and nCol will be
|
1186
|
+
* one larger than the maximum possible matrix index values.
|
1187
|
+
*
|
1188
|
+
* @param nRow number of rows in this matrix.
|
1189
|
+
* @param nCol number of columns in this matrix.
|
1190
|
+
* @param matrix a 1D array that specifies a matrix in row major fashion
|
1191
|
+
*/
|
1192
|
+
public GMatrix(int nRow, int nCol, double[] matrix) {
|
1193
|
+
values = new double[nRow][nCol];
|
1194
|
+
this.nRow = nRow;
|
1195
|
+
this.nCol = nCol;
|
1196
|
+
|
1197
|
+
int i, j;
|
1198
|
+
for (i = 0; i < nRow; i++) {
|
1199
|
+
for (j = 0; j < nCol; j++) {
|
1200
|
+
values[i][j] = matrix[i * nCol + j];
|
1201
|
+
}
|
1202
|
+
}
|
1203
|
+
}
|
1204
|
+
|
1205
|
+
/**
|
1206
|
+
* Sets the value of this matrix to sum of itself and matrix m1.
|
1207
|
+
*
|
1208
|
+
* @param m1 the other matrix
|
1209
|
+
*/
|
1210
|
+
public final void add(GMatrix m1) {
|
1211
|
+
int i, j;
|
1212
|
+
|
1213
|
+
if (nRow != m1.nRow) {
|
1214
|
+
throw new MatrixSizeException();
|
1215
|
+
}
|
1216
|
+
|
1217
|
+
if (nCol != m1.nCol) {
|
1218
|
+
throw new MatrixSizeException();
|
1219
|
+
}
|
1220
|
+
|
1221
|
+
for (i = 0; i < nRow; i++) {
|
1222
|
+
for (j = 0; j < nCol; j++) {
|
1223
|
+
values[i][j] = values[i][j] + m1.values[i][j];
|
1224
|
+
}
|
1225
|
+
}
|
1226
|
+
}
|
1227
|
+
|
1228
|
+
/**
|
1229
|
+
* Sets the value of this matrix to the matrix sum of matrices m1 and m2.
|
1230
|
+
*
|
1231
|
+
* @param m1 the first matrix
|
1232
|
+
* @param m2 the second matrix
|
1233
|
+
*/
|
1234
|
+
public final void add(GMatrix m1, GMatrix m2) {
|
1235
|
+
int i, j;
|
1236
|
+
|
1237
|
+
if (m2.nRow != m1.nRow) {
|
1238
|
+
throw new MatrixSizeException();
|
1239
|
+
}
|
1240
|
+
|
1241
|
+
if (m2.nCol != m1.nCol) {
|
1242
|
+
throw new MatrixSizeException();
|
1243
|
+
}
|
1244
|
+
|
1245
|
+
if (nCol != m1.nCol || nRow != m1.nRow) {
|
1246
|
+
throw new MatrixSizeException();
|
1247
|
+
}
|
1248
|
+
|
1249
|
+
for (i = 0; i < nRow; i++) {
|
1250
|
+
for (j = 0; j < nCol; j++) {
|
1251
|
+
values[i][j] = m1.values[i][j] + m2.values[i][j];
|
1252
|
+
}
|
1253
|
+
}
|
1254
|
+
}
|
1255
|
+
|
1256
|
+
/**
|
1257
|
+
* Creates a new object of the same class as this object.
|
1258
|
+
*
|
1259
|
+
* @return a clone of this instance.
|
1260
|
+
* @exception OutOfMemoryError if there is not enough memory.
|
1261
|
+
* @see java.lang.Cloneable
|
1262
|
+
* @since vecmath 1.3
|
1263
|
+
*/
|
1264
|
+
// @Override
|
1265
|
+
// public Object clone() throws CloneNotSupportedException {
|
1266
|
+
// GMatrix m1 = null;
|
1267
|
+
// try {
|
1268
|
+
// m1 = (GMatrix) super.clone();
|
1269
|
+
// } catch (CloneNotSupportedException e) {
|
1270
|
+
// // this shouldn't happen, since we are Cloneable
|
1271
|
+
// throw new InternalError();
|
1272
|
+
// }
|
1273
|
+
//
|
1274
|
+
// // Also need to clone array of values
|
1275
|
+
// m1.values = new double[nRow][nCol];
|
1276
|
+
// for (int i = 0; i < nRow; i++) {
|
1277
|
+
// System.arraycopy(values[i], 0, m1.values[i], 0, nCol);
|
1278
|
+
// }
|
1279
|
+
//
|
1280
|
+
// return m1;
|
1281
|
+
// }
|
1282
|
+
|
1283
|
+
/**
|
1284
|
+
* LU Decomposition: this matrix must be a square matrix and the LU GMatrix
|
1285
|
+
* parameter must be the same size as this matrix. The matrix LU will be
|
1286
|
+
* overwritten as the combination of a lower diagonal and upper diagonal
|
1287
|
+
* matrix decompostion of this matrix; the diagonal elements of L (unity)
|
1288
|
+
* are not stored. The GVector parameter records the row permutation
|
1289
|
+
* effected by the partial pivoting, and is used as a parameter to the
|
1290
|
+
* GVector method LUDBackSolve to solve sets of linear equations. This
|
1291
|
+
* method returns +/- 1 depending on whether the number of row interchanges
|
1292
|
+
* was even or odd, respectively.
|
1293
|
+
*
|
1294
|
+
* @param LU The matrix into which the lower and upper decompositions will
|
1295
|
+
* be placed.
|
1296
|
+
* @param permutation The row permutation effected by the partial pivoting
|
1297
|
+
* @return +-1 depending on whether the number of row interchanges was even
|
1298
|
+
* or odd respectively
|
1299
|
+
*/
|
1300
|
+
public final int computeLUD(GMatrix LU, GVector permutation) {
|
1301
|
+
int size = LU.nRow * LU.nCol;
|
1302
|
+
double[] temp = new double[size];
|
1303
|
+
int[] even_row_exchange = new int[1];
|
1304
|
+
int[] row_perm = new int[LU.nRow];
|
1305
|
+
int i, j;
|
1306
|
+
|
1307
|
+
if (nRow != nCol) {
|
1308
|
+
throw new MatrixSizeException();
|
1309
|
+
}
|
1310
|
+
|
1311
|
+
if (nRow != LU.nRow) {
|
1312
|
+
throw new MatrixSizeException();
|
1313
|
+
}
|
1314
|
+
|
1315
|
+
if (nCol != LU.nCol) {
|
1316
|
+
throw new MatrixSizeException();
|
1317
|
+
}
|
1318
|
+
|
1319
|
+
if (LU.nRow != permutation.size()) {
|
1320
|
+
throw new MatrixSizeException();
|
1321
|
+
}
|
1322
|
+
|
1323
|
+
for (i = 0; i < nRow; i++) {
|
1324
|
+
for (j = 0; j < nCol; j++) {
|
1325
|
+
temp[i * nCol + j] = values[i][j];
|
1326
|
+
}
|
1327
|
+
}
|
1328
|
+
|
1329
|
+
// Calculate LU decomposition: Is the matrix singular?
|
1330
|
+
if (!decomposeLU(LU.nRow, temp, row_perm, even_row_exchange)) {
|
1331
|
+
// Matrix has no inverse
|
1332
|
+
throw new SingularMatrixException();
|
1333
|
+
}
|
1334
|
+
|
1335
|
+
for (i = 0; i < nRow; i++) {
|
1336
|
+
for (j = 0; j < nCol; j++) {
|
1337
|
+
LU.values[i][j] = temp[i * nCol + j];
|
1338
|
+
}
|
1339
|
+
}
|
1340
|
+
|
1341
|
+
for (i = 0; i < LU.nRow; i++) {
|
1342
|
+
permutation.values[i] = row_perm[i];
|
1343
|
+
}
|
1344
|
+
|
1345
|
+
return even_row_exchange[0];
|
1346
|
+
}
|
1347
|
+
|
1348
|
+
/**
|
1349
|
+
* Finds the singular value decomposition (SVD) of this matrix such that
|
1350
|
+
* this = U*W*transpose(V); and returns the rank of this matrix; the values
|
1351
|
+
* of U,W,V are all overwritten. Note that the matrix V is output as V, and
|
1352
|
+
* not transpose(V). If this matrix is mxn, then U is mxm, W is a diagonal
|
1353
|
+
* matrix that is mxn, and V is nxn. Using the notation W = diag(w), then
|
1354
|
+
* the inverse of this matrix is: inverse(this) = V*diag(1/w)*tranpose(U),
|
1355
|
+
* where diag(1/w) is the same matrix as W except that the reciprocal of
|
1356
|
+
* each of the diagonal components is used.
|
1357
|
+
*
|
1358
|
+
* @param U The computed U matrix in the equation this = U*W*transpose(V)
|
1359
|
+
* @param W The computed W matrix in the equation this = U*W*transpose(V)
|
1360
|
+
* @param V The computed V matrix in the equation this = U*W*transpose(V)
|
1361
|
+
* @return The rank of this matrix.
|
1362
|
+
*/
|
1363
|
+
public final int computeSVD(GMatrix U, GMatrix W, GMatrix V) {
|
1364
|
+
// check for consistancy in dimensions
|
1365
|
+
if (nCol != V.nCol || nCol != V.nRow) {
|
1366
|
+
throw new MatrixSizeException();
|
1367
|
+
}
|
1368
|
+
|
1369
|
+
if (nRow != U.nRow || nRow != U.nCol) {
|
1370
|
+
throw new MatrixSizeException();
|
1371
|
+
}
|
1372
|
+
|
1373
|
+
if (nRow != W.nRow || nCol != W.nCol) {
|
1374
|
+
throw new MatrixSizeException();
|
1375
|
+
}
|
1376
|
+
|
1377
|
+
// Fix ArrayIndexOutOfBounds for 2x2 matrices, which partially
|
1378
|
+
// addresses bug 4348562 for J3D 1.2.1.
|
1379
|
+
//
|
1380
|
+
// Does *not* fix the following problems reported in 4348562,
|
1381
|
+
// which will wait for J3D 1.3:
|
1382
|
+
//
|
1383
|
+
// 1) no output of W
|
1384
|
+
// 2) wrong transposition of U
|
1385
|
+
// 3) wrong results for 4x4 matrices
|
1386
|
+
// 4) slow performance
|
1387
|
+
if (nRow == 2 && nCol == 2) {
|
1388
|
+
if (values[1][0] == 0.0) {
|
1389
|
+
U.identity();
|
1390
|
+
V.identity();
|
1391
|
+
|
1392
|
+
if (values[0][1] == 0.0) {
|
1393
|
+
return 2;
|
1394
|
+
}
|
1395
|
+
|
1396
|
+
double[] sinl = new double[1];
|
1397
|
+
double[] sinr = new double[1];
|
1398
|
+
double[] cosl = new double[1];
|
1399
|
+
double[] cosr = new double[1];
|
1400
|
+
double[] single_values = new double[2];
|
1401
|
+
|
1402
|
+
single_values[0] = values[0][0];
|
1403
|
+
single_values[1] = values[1][1];
|
1404
|
+
|
1405
|
+
compute_2X2(values[0][0], values[0][1], values[1][1],
|
1406
|
+
single_values, sinl, cosl, sinr, cosr, 0);
|
1407
|
+
|
1408
|
+
update_u(0, U, cosl, sinl);
|
1409
|
+
update_v(0, V, cosr, sinr);
|
1410
|
+
|
1411
|
+
return 2;
|
1412
|
+
}
|
1413
|
+
// else call computeSVD() and check for 2x2 there
|
1414
|
+
}
|
1415
|
+
|
1416
|
+
return computeSVD(this, U, W, V);
|
1417
|
+
}
|
1418
|
+
|
1419
|
+
/**
|
1420
|
+
* Copies a sub-matrix derived from this matrix into the target matrix. The
|
1421
|
+
* upper left of the sub-matrix is located at (rowSource, colSource); the
|
1422
|
+
* lower right of the sub-matrix is located at
|
1423
|
+
* (lastRowSource,lastColSource). The sub-matrix is copied into the the
|
1424
|
+
* target matrix starting at (rowDest, colDest).
|
1425
|
+
*
|
1426
|
+
* @param rowSource the top-most row of the sub-matrix
|
1427
|
+
* @param colSource the left-most column of the sub-matrix
|
1428
|
+
* @param numRow the number of rows in the sub-matrix
|
1429
|
+
* @param numCol the number of columns in the sub-matrix
|
1430
|
+
* @param rowDest the top-most row of the position of the copied sub-matrix
|
1431
|
+
* within the target matrix
|
1432
|
+
* @param colDest the left-most column of the position of the copied
|
1433
|
+
* sub-matrix within the target matrix
|
1434
|
+
* @param target the matrix into which the sub-matrix will be copied
|
1435
|
+
*/
|
1436
|
+
public final void copySubMatrix(int rowSource, int colSource, int numRow,
|
1437
|
+
int numCol, int rowDest, int colDest, GMatrix target) {
|
1438
|
+
int i, j;
|
1439
|
+
|
1440
|
+
if (this != target) {
|
1441
|
+
for (i = 0; i < numRow; i++) {
|
1442
|
+
for (j = 0; j < numCol; j++) {
|
1443
|
+
target.values[rowDest + i][colDest + j] = values[rowSource
|
1444
|
+
+ i][colSource + j];
|
1445
|
+
}
|
1446
|
+
}
|
1447
|
+
} else {
|
1448
|
+
double[][] tmp = new double[numRow][numCol];
|
1449
|
+
for (i = 0; i < numRow; i++) {
|
1450
|
+
for (j = 0; j < numCol; j++) {
|
1451
|
+
tmp[i][j] = values[rowSource + i][colSource + j];
|
1452
|
+
}
|
1453
|
+
}
|
1454
|
+
for (i = 0; i < numRow; i++) {
|
1455
|
+
for (j = 0; j < numCol; j++) {
|
1456
|
+
target.values[rowDest + i][colDest + j] = tmp[i][j];
|
1457
|
+
}
|
1458
|
+
}
|
1459
|
+
}
|
1460
|
+
}
|
1461
|
+
|
1462
|
+
/**
|
1463
|
+
* Returns true if the L-infinite distance between this matrix and matrix m1
|
1464
|
+
* is less than or equal to the epsilon parameter, otherwise returns false.
|
1465
|
+
* The L-infinite distance is equal to MAX[i=0,1,2, . . .n ; j=0,1,2, . . .n
|
1466
|
+
* ; abs(this.m(i,j) - m1.m(i,j)]
|
1467
|
+
*
|
1468
|
+
* @param m1 The matrix to be compared to this matrix
|
1469
|
+
* @param epsilon the threshold value
|
1470
|
+
* @return
|
1471
|
+
*/
|
1472
|
+
public boolean epsilonEquals(GMatrix m1, double epsilon) {
|
1473
|
+
int i, j;
|
1474
|
+
double diff;
|
1475
|
+
if (nRow != m1.nRow || nCol != m1.nCol) {
|
1476
|
+
return false;
|
1477
|
+
}
|
1478
|
+
|
1479
|
+
for (i = 0; i < nRow; i++) {
|
1480
|
+
for (j = 0; j < nCol; j++) {
|
1481
|
+
diff = values[i][j] - m1.values[i][j];
|
1482
|
+
if ((diff < 0 ? -diff : diff) > epsilon) {
|
1483
|
+
return false;
|
1484
|
+
}
|
1485
|
+
}
|
1486
|
+
}
|
1487
|
+
return true;
|
1488
|
+
}
|
1489
|
+
|
1490
|
+
/**
|
1491
|
+
* @param m1
|
1492
|
+
* @param epsilon
|
1493
|
+
* @return
|
1494
|
+
* @deprecated Use epsilonEquals(GMatrix, double) instead
|
1495
|
+
*/
|
1496
|
+
@Deprecated
|
1497
|
+
public boolean epsilonEquals(GMatrix m1, float epsilon) {
|
1498
|
+
return epsilonEquals(m1, (double) epsilon);
|
1499
|
+
}
|
1500
|
+
|
1501
|
+
/**
|
1502
|
+
* Returns true if all of the data members of GMatrix m1 are equal to the
|
1503
|
+
* corresponding data members in this GMatrix.
|
1504
|
+
*
|
1505
|
+
* @param m1 The matrix with which the comparison is made.
|
1506
|
+
* @return true or false
|
1507
|
+
*/
|
1508
|
+
public boolean equals(GMatrix m1) {
|
1509
|
+
try {
|
1510
|
+
int i, j;
|
1511
|
+
|
1512
|
+
if (nRow != m1.nRow || nCol != m1.nCol) {
|
1513
|
+
return false;
|
1514
|
+
}
|
1515
|
+
|
1516
|
+
for (i = 0; i < nRow; i++) {
|
1517
|
+
for (j = 0; j < nCol; j++) {
|
1518
|
+
if (values[i][j] != m1.values[i][j]) {
|
1519
|
+
return false;
|
1520
|
+
}
|
1521
|
+
}
|
1522
|
+
}
|
1523
|
+
return true;
|
1524
|
+
} catch (NullPointerException e2) {
|
1525
|
+
return false;
|
1526
|
+
}
|
1527
|
+
}
|
1528
|
+
|
1529
|
+
/**
|
1530
|
+
* Returns true if the Object o1 is of type GMatrix and all of the data
|
1531
|
+
* members of o1 are equal to the corresponding data members in this
|
1532
|
+
* GMatrix.
|
1533
|
+
*
|
1534
|
+
* @param o1 The object with which the comparison is made.
|
1535
|
+
* @return true or false
|
1536
|
+
*/
|
1537
|
+
@Override
|
1538
|
+
public boolean equals(Object o1) {
|
1539
|
+
if (o1 instanceof GMatrix) {
|
1540
|
+
GMatrix m2 = (GMatrix) o1;
|
1541
|
+
int i, j;
|
1542
|
+
if (nRow != m2.nRow || nCol != m2.nCol) {
|
1543
|
+
return false;
|
1544
|
+
}
|
1545
|
+
|
1546
|
+
for (i = 0; i < nRow; i++) {
|
1547
|
+
for (j = 0; j < nCol; j++) {
|
1548
|
+
if (values[i][j] != m2.values[i][j]) {
|
1549
|
+
return false;
|
1550
|
+
}
|
1551
|
+
}
|
1552
|
+
|
1553
|
+
}
|
1554
|
+
return true;
|
1555
|
+
}
|
1556
|
+
return false;
|
1557
|
+
}
|
1558
|
+
|
1559
|
+
/**
|
1560
|
+
*
|
1561
|
+
* @return
|
1562
|
+
*/
|
1563
|
+
@Override
|
1564
|
+
public int hashCode() {
|
1565
|
+
int hash = 7;
|
1566
|
+
hash = 67 * hash + this.nRow;
|
1567
|
+
hash = 67 * hash + this.nCol;
|
1568
|
+
hash = 67 * hash + Arrays.deepHashCode(this.values);
|
1569
|
+
return hash;
|
1570
|
+
}
|
1571
|
+
/**
|
1572
|
+
* Places the values in the this GMatrix into the matrix m1; m1 should
|
1573
|
+
* be at least as large as this GMatrix.
|
1574
|
+
*
|
1575
|
+
* @param m1 The matrix that will hold the new values
|
1576
|
+
*/
|
1577
|
+
public final void get(GMatrix m1) {
|
1578
|
+
int i, j, nc, nr;
|
1579
|
+
|
1580
|
+
if (nCol < m1.nCol) {
|
1581
|
+
nc = nCol;
|
1582
|
+
} else {
|
1583
|
+
nc = m1.nCol;
|
1584
|
+
}
|
1585
|
+
|
1586
|
+
if (nRow < m1.nRow) {
|
1587
|
+
nr = nRow;
|
1588
|
+
} else {
|
1589
|
+
nr = m1.nRow;
|
1590
|
+
}
|
1591
|
+
|
1592
|
+
for (i = 0; i < nr; i++) {
|
1593
|
+
for (j = 0; j < nc; j++) {
|
1594
|
+
m1.values[i][j] = values[i][j];
|
1595
|
+
}
|
1596
|
+
}
|
1597
|
+
for (i = nr; i < m1.nRow; i++) {
|
1598
|
+
for (j = 0; j < m1.nCol; j++) {
|
1599
|
+
m1.values[i][j] = 0.0;
|
1600
|
+
}
|
1601
|
+
}
|
1602
|
+
for (j = nc; j < m1.nCol; j++) {
|
1603
|
+
for (i = 0; i < nr; i++) {
|
1604
|
+
m1.values[i][j] = 0.0;
|
1605
|
+
}
|
1606
|
+
}
|
1607
|
+
}
|
1608
|
+
|
1609
|
+
/**
|
1610
|
+
* Places the values in the upper 3x3 of this GMatrix into the matrix m1.
|
1611
|
+
*
|
1612
|
+
* @param m1 The matrix that will hold the new values
|
1613
|
+
*/
|
1614
|
+
public final void get(Matrix3d m1) {
|
1615
|
+
if (nRow < 3 || nCol < 3) {
|
1616
|
+
m1.setZero();
|
1617
|
+
if (nCol > 0) {
|
1618
|
+
if (nRow > 0) {
|
1619
|
+
m1.m00 = values[0][0];
|
1620
|
+
if (nRow > 1) {
|
1621
|
+
m1.m10 = values[1][0];
|
1622
|
+
if (nRow > 2) {
|
1623
|
+
m1.m20 = values[2][0];
|
1624
|
+
}
|
1625
|
+
}
|
1626
|
+
}
|
1627
|
+
if (nCol > 1) {
|
1628
|
+
if (nRow > 0) {
|
1629
|
+
m1.m01 = values[0][1];
|
1630
|
+
if (nRow > 1) {
|
1631
|
+
m1.m11 = values[1][1];
|
1632
|
+
if (nRow > 2) {
|
1633
|
+
m1.m21 = values[2][1];
|
1634
|
+
}
|
1635
|
+
}
|
1636
|
+
}
|
1637
|
+
if (nCol > 2) {
|
1638
|
+
if (nRow > 0) {
|
1639
|
+
m1.m02 = values[0][2];
|
1640
|
+
if (nRow > 1) {
|
1641
|
+
m1.m12 = values[1][2];
|
1642
|
+
if (nRow > 2) {
|
1643
|
+
m1.m22 = values[2][2];
|
1644
|
+
}
|
1645
|
+
}
|
1646
|
+
}
|
1647
|
+
}
|
1648
|
+
}
|
1649
|
+
}
|
1650
|
+
} else {
|
1651
|
+
m1.m00 = values[0][0];
|
1652
|
+
m1.m01 = values[0][1];
|
1653
|
+
m1.m02 = values[0][2];
|
1654
|
+
|
1655
|
+
m1.m10 = values[1][0];
|
1656
|
+
m1.m11 = values[1][1];
|
1657
|
+
m1.m12 = values[1][2];
|
1658
|
+
|
1659
|
+
m1.m20 = values[2][0];
|
1660
|
+
m1.m21 = values[2][1];
|
1661
|
+
m1.m22 = values[2][2];
|
1662
|
+
}
|
1663
|
+
}
|
1664
|
+
|
1665
|
+
/**
|
1666
|
+
* Places the values in the upper 4x4 of this GMatrix into the matrix m1.
|
1667
|
+
*
|
1668
|
+
* @param m1 The matrix that will hold the new values
|
1669
|
+
*/
|
1670
|
+
public final void get(Matrix4f m1) {
|
1671
|
+
|
1672
|
+
if (nRow < 4 || nCol < 4) {
|
1673
|
+
m1.setZero();
|
1674
|
+
if (nCol > 0) {
|
1675
|
+
if (nRow > 0) {
|
1676
|
+
m1.m00 = (float) values[0][0];
|
1677
|
+
if (nRow > 1) {
|
1678
|
+
m1.m10 = (float) values[1][0];
|
1679
|
+
if (nRow > 2) {
|
1680
|
+
m1.m20 = (float) values[2][0];
|
1681
|
+
if (nRow > 3) {
|
1682
|
+
m1.m30 = (float) values[3][0];
|
1683
|
+
}
|
1684
|
+
}
|
1685
|
+
}
|
1686
|
+
}
|
1687
|
+
if (nCol > 1) {
|
1688
|
+
if (nRow > 0) {
|
1689
|
+
m1.m01 = (float) values[0][1];
|
1690
|
+
if (nRow > 1) {
|
1691
|
+
m1.m11 = (float) values[1][1];
|
1692
|
+
if (nRow > 2) {
|
1693
|
+
m1.m21 = (float) values[2][1];
|
1694
|
+
if (nRow > 3) {
|
1695
|
+
m1.m31 = (float) values[3][1];
|
1696
|
+
}
|
1697
|
+
}
|
1698
|
+
}
|
1699
|
+
}
|
1700
|
+
if (nCol > 2) {
|
1701
|
+
if (nRow > 0) {
|
1702
|
+
m1.m02 = (float) values[0][2];
|
1703
|
+
if (nRow > 1) {
|
1704
|
+
m1.m12 = (float) values[1][2];
|
1705
|
+
if (nRow > 2) {
|
1706
|
+
m1.m22 = (float) values[2][2];
|
1707
|
+
if (nRow > 3) {
|
1708
|
+
m1.m32 = (float) values[3][2];
|
1709
|
+
}
|
1710
|
+
}
|
1711
|
+
}
|
1712
|
+
}
|
1713
|
+
if (nCol > 3) {
|
1714
|
+
if (nRow > 0) {
|
1715
|
+
m1.m03 = (float) values[0][3];
|
1716
|
+
if (nRow > 1) {
|
1717
|
+
m1.m13 = (float) values[1][3];
|
1718
|
+
if (nRow > 2) {
|
1719
|
+
m1.m23 = (float) values[2][3];
|
1720
|
+
if (nRow > 3) {
|
1721
|
+
m1.m33 = (float) values[3][3];
|
1722
|
+
}
|
1723
|
+
}
|
1724
|
+
}
|
1725
|
+
}
|
1726
|
+
}
|
1727
|
+
}
|
1728
|
+
}
|
1729
|
+
}
|
1730
|
+
} else {
|
1731
|
+
m1.m00 = (float) values[0][0];
|
1732
|
+
m1.m01 = (float) values[0][1];
|
1733
|
+
m1.m02 = (float) values[0][2];
|
1734
|
+
m1.m03 = (float) values[0][3];
|
1735
|
+
|
1736
|
+
m1.m10 = (float) values[1][0];
|
1737
|
+
m1.m11 = (float) values[1][1];
|
1738
|
+
m1.m12 = (float) values[1][2];
|
1739
|
+
m1.m13 = (float) values[1][3];
|
1740
|
+
|
1741
|
+
m1.m20 = (float) values[2][0];
|
1742
|
+
m1.m21 = (float) values[2][1];
|
1743
|
+
m1.m22 = (float) values[2][2];
|
1744
|
+
m1.m23 = (float) values[2][3];
|
1745
|
+
|
1746
|
+
m1.m30 = (float) values[3][0];
|
1747
|
+
m1.m31 = (float) values[3][1];
|
1748
|
+
m1.m32 = (float) values[3][2];
|
1749
|
+
m1.m33 = (float) values[3][3];
|
1750
|
+
}
|
1751
|
+
}
|
1752
|
+
|
1753
|
+
/**
|
1754
|
+
* Places the values of the specified column into the array parameter.
|
1755
|
+
*
|
1756
|
+
* @param col the target column number
|
1757
|
+
* @param array the array into which the column values will be placed
|
1758
|
+
*/
|
1759
|
+
public final void getColumn(int col, double[] array) {
|
1760
|
+
for (int i = 0; i < nRow; i++) {
|
1761
|
+
array[i] = values[i][col];
|
1762
|
+
}
|
1763
|
+
|
1764
|
+
}
|
1765
|
+
|
1766
|
+
/**
|
1767
|
+
* Places the values of the specified column into the vector parameter.
|
1768
|
+
*
|
1769
|
+
* @param col the target column number
|
1770
|
+
* @param vector the vector into which the column values will be placed
|
1771
|
+
*/
|
1772
|
+
public final void getColumn(int col, GVector vector) {
|
1773
|
+
if (vector.size() < nRow) {
|
1774
|
+
vector.setSize(nRow);
|
1775
|
+
}
|
1776
|
+
|
1777
|
+
for (int i = 0; i < nRow; i++) {
|
1778
|
+
vector.values[i] = values[i][col];
|
1779
|
+
}
|
1780
|
+
}
|
1781
|
+
|
1782
|
+
/**
|
1783
|
+
* Retrieves the value at the specified row and column of this matrix.
|
1784
|
+
*
|
1785
|
+
* @param row the row number to be retrieved (zero indexed)
|
1786
|
+
* @param column the column number to be retrieved (zero indexed)
|
1787
|
+
* @return the value at the indexed element
|
1788
|
+
*/
|
1789
|
+
public final double getElement(int row, int column) {
|
1790
|
+
return (values[row][column]);
|
1791
|
+
}
|
1792
|
+
|
1793
|
+
/**
|
1794
|
+
* Returns the number of colmuns in this matrix.
|
1795
|
+
*
|
1796
|
+
* @return number of columns in this matrix
|
1797
|
+
*/
|
1798
|
+
public final int getNumCol() {
|
1799
|
+
return (nCol);
|
1800
|
+
}
|
1801
|
+
|
1802
|
+
/**
|
1803
|
+
* Returns the number of rows in this matrix.
|
1804
|
+
*
|
1805
|
+
* @return number of rows in this matrix
|
1806
|
+
*/
|
1807
|
+
public final int getNumRow() {
|
1808
|
+
return (nRow);
|
1809
|
+
}
|
1810
|
+
|
1811
|
+
/**
|
1812
|
+
* Places the values of the specified row into the array parameter.
|
1813
|
+
*
|
1814
|
+
* @param row the target row number
|
1815
|
+
* @param array the array into which the row values will be placed
|
1816
|
+
*/
|
1817
|
+
public final void getRow(int row, double[] array) {
|
1818
|
+
System.arraycopy(values[row], 0, array, 0, nCol);
|
1819
|
+
}
|
1820
|
+
|
1821
|
+
/**
|
1822
|
+
* Places the values of the specified row into the vector parameter.
|
1823
|
+
*
|
1824
|
+
* @param row the target row number
|
1825
|
+
* @param vector the vector into which the row values will be placed
|
1826
|
+
*/
|
1827
|
+
public final void getRow(int row, GVector vector) {
|
1828
|
+
if (vector.size() < nCol) {
|
1829
|
+
vector.setSize(nCol);
|
1830
|
+
}
|
1831
|
+
System.arraycopy(values[row], 0, vector.values, 0, nCol);
|
1832
|
+
}
|
1833
|
+
|
1834
|
+
/**
|
1835
|
+
* Returns a hash code value based on the data values in this object. Two
|
1836
|
+
* different GMatrix objects with identical data values (i.e.,
|
1837
|
+
* GMatrix.equals returns true) will return the same hash number. Two
|
1838
|
+
* GMatrix objects with different data members may return the same hash
|
1839
|
+
* value, although this is not likely.
|
1840
|
+
*
|
1841
|
+
* @return the integer hash code value
|
1842
|
+
*/
|
1843
|
+
// @Override
|
1844
|
+
// public int hashCode() {
|
1845
|
+
// long bits = 1L;
|
1846
|
+
//
|
1847
|
+
// bits = 31L * bits + nRow;
|
1848
|
+
// bits = 31L * bits + nCol;
|
1849
|
+
//
|
1850
|
+
// for (int i = 0; i < nRow; i++) {
|
1851
|
+
// for (int j = 0; j < nCol; j++) {
|
1852
|
+
// bits = 31L * bits + VecMathUtil.doubleToLongBits(values[i][j]);
|
1853
|
+
// }
|
1854
|
+
// }
|
1855
|
+
//
|
1856
|
+
// return (int) (bits ^ (bits >> 32));
|
1857
|
+
// }
|
1858
|
+
|
1859
|
+
/**
|
1860
|
+
* Sets this GMatrix to the identity matrix.
|
1861
|
+
*/
|
1862
|
+
public final void identity() {
|
1863
|
+
int i, j;
|
1864
|
+
for (i = 0; i < nRow; i++) {
|
1865
|
+
for (j = 0; j < nCol; j++) {
|
1866
|
+
values[i][j] = 0.0;
|
1867
|
+
}
|
1868
|
+
}
|
1869
|
+
|
1870
|
+
int l;
|
1871
|
+
if (nRow < nCol) {
|
1872
|
+
l = nRow;
|
1873
|
+
} else {
|
1874
|
+
l = nCol;
|
1875
|
+
}
|
1876
|
+
|
1877
|
+
for (i = 0; i < l; i++) {
|
1878
|
+
values[i][i] = 1.0;
|
1879
|
+
}
|
1880
|
+
}
|
1881
|
+
|
1882
|
+
/**
|
1883
|
+
* Subtracts this matrix from the identity matrix and puts the values back
|
1884
|
+
* into this (this = I - this).
|
1885
|
+
*/
|
1886
|
+
public final void identityMinus() {
|
1887
|
+
int i, j;
|
1888
|
+
|
1889
|
+
for (i = 0; i < nRow; i++) {
|
1890
|
+
for (j = 0; j < nCol; j++) {
|
1891
|
+
values[i][j] = -values[i][j];
|
1892
|
+
}
|
1893
|
+
}
|
1894
|
+
|
1895
|
+
int l;
|
1896
|
+
if (nRow < nCol) {
|
1897
|
+
l = nRow;
|
1898
|
+
} else {
|
1899
|
+
l = nCol;
|
1900
|
+
}
|
1901
|
+
|
1902
|
+
for (i = 0; i < l; i++) {
|
1903
|
+
values[i][i] += 1.0;
|
1904
|
+
}
|
1905
|
+
}
|
1906
|
+
|
1907
|
+
/**
|
1908
|
+
* Inverts this matrix in place.
|
1909
|
+
*/
|
1910
|
+
public final void invert() {
|
1911
|
+
invertGeneral(this);
|
1912
|
+
}
|
1913
|
+
|
1914
|
+
/**
|
1915
|
+
* Inverts matrix m1 and places the new values into this matrix. Matrix m1
|
1916
|
+
* is not modified.
|
1917
|
+
*
|
1918
|
+
* @param m1 the matrix to be inverted
|
1919
|
+
*/
|
1920
|
+
public final void invert(GMatrix m1) {
|
1921
|
+
invertGeneral(m1);
|
1922
|
+
}
|
1923
|
+
|
1924
|
+
/**
|
1925
|
+
* General invert routine. Inverts m1 and places the result in "this". Note
|
1926
|
+
* that this routine handles both the "this" version and the non-"this"
|
1927
|
+
* version.
|
1928
|
+
*
|
1929
|
+
* Also note that since this routine is slow anyway, we won't worry about
|
1930
|
+
* allocating a little bit of garbage.
|
1931
|
+
*/
|
1932
|
+
final void invertGeneral(GMatrix m1) {
|
1933
|
+
int size = m1.nRow * m1.nCol;
|
1934
|
+
double temp[] = new double[size];
|
1935
|
+
double result[] = new double[size];
|
1936
|
+
int row_perm[] = new int[m1.nRow];
|
1937
|
+
int[] even_row_exchange = new int[1];
|
1938
|
+
int i, j;
|
1939
|
+
|
1940
|
+
// Use LU decomposition and backsubstitution code specifically
|
1941
|
+
// for floating-point nxn matrices.
|
1942
|
+
if (m1.nRow != m1.nCol) {
|
1943
|
+
// Matrix is either under or over determined
|
1944
|
+
throw new MatrixSizeException();
|
1945
|
+
}
|
1946
|
+
|
1947
|
+
// Copy source matrix to temp
|
1948
|
+
for (i = 0; i < nRow; i++) {
|
1949
|
+
for (j = 0; j < nCol; j++) {
|
1950
|
+
temp[i * nCol + j] = m1.values[i][j];
|
1951
|
+
}
|
1952
|
+
}
|
1953
|
+
|
1954
|
+
// Calculate LU decomposition: Is the matrix singular?
|
1955
|
+
if (!decomposeLU(m1.nRow, temp, row_perm, even_row_exchange)) {
|
1956
|
+
// Matrix has no inverse
|
1957
|
+
throw new SingularMatrixException();
|
1958
|
+
}
|
1959
|
+
|
1960
|
+
// Perform back substitution on the identity matrix
|
1961
|
+
for (i = 0; i < size; i++) {
|
1962
|
+
result[i] = 0.0;
|
1963
|
+
}
|
1964
|
+
|
1965
|
+
for (i = 0; i < nCol; i++) {
|
1966
|
+
result[i + i * nCol] = 1.0;
|
1967
|
+
}
|
1968
|
+
|
1969
|
+
backSubstituteLU(m1.nRow, temp, row_perm, result);
|
1970
|
+
|
1971
|
+
for (i = 0; i < nRow; i++) {
|
1972
|
+
for (j = 0; j < nCol; j++) {
|
1973
|
+
values[i][j] = result[i * nCol + j];
|
1974
|
+
}
|
1975
|
+
}
|
1976
|
+
}
|
1977
|
+
|
1978
|
+
/**
|
1979
|
+
* Sets the value of this matrix to the result of multiplying itself with
|
1980
|
+
* matrix m1 (this = this * m1).
|
1981
|
+
*
|
1982
|
+
* @param m1 the other matrix
|
1983
|
+
*/
|
1984
|
+
public final void mul(GMatrix m1) {
|
1985
|
+
int i, j, k;
|
1986
|
+
|
1987
|
+
if (nCol != m1.nRow || nCol != m1.nCol) {
|
1988
|
+
throw new MatrixSizeException();
|
1989
|
+
}
|
1990
|
+
|
1991
|
+
double[][] tmp = new double[nRow][nCol];
|
1992
|
+
|
1993
|
+
for (i = 0; i < nRow; i++) {
|
1994
|
+
for (j = 0; j < nCol; j++) {
|
1995
|
+
tmp[i][j] = 0.0;
|
1996
|
+
for (k = 0; k < nCol; k++) {
|
1997
|
+
tmp[i][j] += values[i][k] * m1.values[k][j];
|
1998
|
+
}
|
1999
|
+
}
|
2000
|
+
}
|
2001
|
+
|
2002
|
+
values = tmp;
|
2003
|
+
}
|
2004
|
+
|
2005
|
+
/**
|
2006
|
+
* Sets the value of this matrix to the result of multiplying the two
|
2007
|
+
* argument matrices together (this = m1 * m2).
|
2008
|
+
*
|
2009
|
+
* @param m1 the first matrix
|
2010
|
+
* @param m2 the second matrix
|
2011
|
+
*/
|
2012
|
+
public final void mul(GMatrix m1, GMatrix m2) {
|
2013
|
+
int i, j, k;
|
2014
|
+
|
2015
|
+
if (m1.nCol != m2.nRow || nRow != m1.nRow || nCol != m2.nCol) {
|
2016
|
+
throw new MatrixSizeException();
|
2017
|
+
}
|
2018
|
+
|
2019
|
+
double[][] tmp = new double[nRow][nCol];
|
2020
|
+
|
2021
|
+
for (i = 0; i < m1.nRow; i++) {
|
2022
|
+
for (j = 0; j < m2.nCol; j++) {
|
2023
|
+
tmp[i][j] = 0.0;
|
2024
|
+
for (k = 0; k < m1.nCol; k++) {
|
2025
|
+
tmp[i][j] += m1.values[i][k] * m2.values[k][j];
|
2026
|
+
}
|
2027
|
+
}
|
2028
|
+
}
|
2029
|
+
|
2030
|
+
values = tmp;
|
2031
|
+
}
|
2032
|
+
|
2033
|
+
/**
|
2034
|
+
* Computes the outer product of the two vectors; multiplies the the first
|
2035
|
+
* vector by the transpose of the second vector and places the matrix result
|
2036
|
+
* into this matrix. This matrix must be be as big or bigger than
|
2037
|
+
* getSize(v1)xgetSize(v2).
|
2038
|
+
*
|
2039
|
+
* @param v1 the first vector, treated as a row vector
|
2040
|
+
* @param v2 the second vector, treated as a column vector
|
2041
|
+
*/
|
2042
|
+
public final void mul(GVector v1, GVector v2) {
|
2043
|
+
int i, j;
|
2044
|
+
|
2045
|
+
if (nRow < v1.size()) {
|
2046
|
+
throw new MatrixSizeException();
|
2047
|
+
}
|
2048
|
+
|
2049
|
+
if (nCol < v2.size()) {
|
2050
|
+
throw new MatrixSizeException();
|
2051
|
+
}
|
2052
|
+
|
2053
|
+
for (i = 0; i < v1.size(); i++) {
|
2054
|
+
for (j = 0; j < v2.size(); j++) {
|
2055
|
+
values[i][j] = v1.values[i] * v2.values[j];
|
2056
|
+
}
|
2057
|
+
}
|
2058
|
+
}
|
2059
|
+
|
2060
|
+
/**
|
2061
|
+
* Multiplies the transpose of matrix m1 times the transpose of matrix m2,
|
2062
|
+
* and places the result into this.
|
2063
|
+
*
|
2064
|
+
* @param m1 The matrix on the left hand side of the multiplication
|
2065
|
+
* @param m2 The matrix on the right hand side of the multiplication
|
2066
|
+
*/
|
2067
|
+
public final void mulTransposeBoth(GMatrix m1, GMatrix m2) {
|
2068
|
+
int i, j, k;
|
2069
|
+
|
2070
|
+
if (m1.nRow != m2.nCol || nRow != m1.nCol || nCol != m2.nRow) {
|
2071
|
+
throw new MatrixSizeException();
|
2072
|
+
}
|
2073
|
+
|
2074
|
+
if (m1 == this || m2 == this) {
|
2075
|
+
double[][] tmp = new double[nRow][nCol];
|
2076
|
+
for (i = 0; i < nRow; i++) {
|
2077
|
+
for (j = 0; j < nCol; j++) {
|
2078
|
+
tmp[i][j] = 0.0;
|
2079
|
+
for (k = 0; k < m1.nRow; k++) {
|
2080
|
+
tmp[i][j] += m1.values[k][i] * m2.values[j][k];
|
2081
|
+
}
|
2082
|
+
}
|
2083
|
+
}
|
2084
|
+
values = tmp;
|
2085
|
+
} else {
|
2086
|
+
for (i = 0; i < nRow; i++) {
|
2087
|
+
for (j = 0; j < nCol; j++) {
|
2088
|
+
values[i][j] = 0.0;
|
2089
|
+
for (k = 0; k < m1.nRow; k++) {
|
2090
|
+
values[i][j] += m1.values[k][i] * m2.values[j][k];
|
2091
|
+
}
|
2092
|
+
}
|
2093
|
+
}
|
2094
|
+
}
|
2095
|
+
}
|
2096
|
+
|
2097
|
+
/**
|
2098
|
+
* Multiplies the transpose of matrix m1 times matrix m2, and places the
|
2099
|
+
* result into this.
|
2100
|
+
*
|
2101
|
+
* @param m1 The matrix on the left hand side of the multiplication
|
2102
|
+
* @param m2 The matrix on the right hand side of the multiplication
|
2103
|
+
*/
|
2104
|
+
public final void mulTransposeLeft(GMatrix m1, GMatrix m2) {
|
2105
|
+
int i, j, k;
|
2106
|
+
|
2107
|
+
if (m1.nRow != m2.nRow || nCol != m2.nCol || nRow != m1.nCol) {
|
2108
|
+
throw new MatrixSizeException();
|
2109
|
+
}
|
2110
|
+
|
2111
|
+
if (m1 == this || m2 == this) {
|
2112
|
+
double[][] tmp = new double[nRow][nCol];
|
2113
|
+
for (i = 0; i < nRow; i++) {
|
2114
|
+
for (j = 0; j < nCol; j++) {
|
2115
|
+
tmp[i][j] = 0.0;
|
2116
|
+
for (k = 0; k < m1.nRow; k++) {
|
2117
|
+
tmp[i][j] += m1.values[k][i] * m2.values[k][j];
|
2118
|
+
}
|
2119
|
+
}
|
2120
|
+
}
|
2121
|
+
values = tmp;
|
2122
|
+
} else {
|
2123
|
+
for (i = 0; i < nRow; i++) {
|
2124
|
+
for (j = 0; j < nCol; j++) {
|
2125
|
+
values[i][j] = 0.0;
|
2126
|
+
for (k = 0; k < m1.nRow; k++) {
|
2127
|
+
values[i][j] += m1.values[k][i] * m2.values[k][j];
|
2128
|
+
}
|
2129
|
+
}
|
2130
|
+
}
|
2131
|
+
}
|
2132
|
+
}
|
2133
|
+
|
2134
|
+
/**
|
2135
|
+
* Multiplies matrix m1 times the transpose of matrix m2, and places the
|
2136
|
+
* result into this.
|
2137
|
+
*
|
2138
|
+
* @param m1 The matrix on the left hand side of the multiplication
|
2139
|
+
* @param m2 The matrix on the right hand side of the multiplication
|
2140
|
+
*/
|
2141
|
+
public final void mulTransposeRight(GMatrix m1, GMatrix m2) {
|
2142
|
+
int i, j, k;
|
2143
|
+
|
2144
|
+
if (m1.nCol != m2.nCol || nCol != m2.nRow || nRow != m1.nRow) {
|
2145
|
+
throw new MatrixSizeException();
|
2146
|
+
}
|
2147
|
+
|
2148
|
+
if (m1 == this || m2 == this) {
|
2149
|
+
double[][] tmp = new double[nRow][nCol];
|
2150
|
+
for (i = 0; i < nRow; i++) {
|
2151
|
+
for (j = 0; j < nCol; j++) {
|
2152
|
+
tmp[i][j] = 0.0;
|
2153
|
+
for (k = 0; k < m1.nCol; k++) {
|
2154
|
+
tmp[i][j] += m1.values[i][k] * m2.values[j][k];
|
2155
|
+
}
|
2156
|
+
}
|
2157
|
+
}
|
2158
|
+
values = tmp;
|
2159
|
+
} else {
|
2160
|
+
for (i = 0; i < nRow; i++) {
|
2161
|
+
for (j = 0; j < nCol; j++) {
|
2162
|
+
values[i][j] = 0.0;
|
2163
|
+
for (k = 0; k < m1.nCol; k++) {
|
2164
|
+
values[i][j] += m1.values[i][k] * m2.values[j][k];
|
2165
|
+
}
|
2166
|
+
}
|
2167
|
+
}
|
2168
|
+
}
|
2169
|
+
|
2170
|
+
}
|
2171
|
+
|
2172
|
+
/**
|
2173
|
+
* Negates the value of this matrix: this = -this.
|
2174
|
+
*/
|
2175
|
+
public final void negate() {
|
2176
|
+
int i, j;
|
2177
|
+
for (i = 0; i < nRow; i++) {
|
2178
|
+
for (j = 0; j < nCol; j++) {
|
2179
|
+
values[i][j] = -values[i][j];
|
2180
|
+
}
|
2181
|
+
}
|
2182
|
+
}
|
2183
|
+
|
2184
|
+
/**
|
2185
|
+
* Sets the value of this matrix equal to the negation of of the GMatrix
|
2186
|
+
* parameter.
|
2187
|
+
*
|
2188
|
+
* @param m1 The source matrix
|
2189
|
+
*/
|
2190
|
+
public final void negate(GMatrix m1) {
|
2191
|
+
int i, j;
|
2192
|
+
if (nRow != m1.nRow || nCol != m1.nCol) {
|
2193
|
+
throw new MatrixSizeException();
|
2194
|
+
}
|
2195
|
+
|
2196
|
+
for (i = 0; i < nRow; i++) {
|
2197
|
+
for (j = 0; j < nCol; j++) {
|
2198
|
+
values[i][j] = -m1.values[i][j];
|
2199
|
+
}
|
2200
|
+
}
|
2201
|
+
}
|
2202
|
+
|
2203
|
+
/**
|
2204
|
+
* Sets the value of this matrix to the values found in the array parameter.
|
2205
|
+
* The values are copied in one row at a time, in row major fashion. The
|
2206
|
+
* array should be at least equal in length to the number of matrix rows
|
2207
|
+
* times the number of matrix columns in this matrix.
|
2208
|
+
*
|
2209
|
+
* @param matrix the row major source array
|
2210
|
+
*/
|
2211
|
+
public final void set(double[] matrix) {
|
2212
|
+
int i, j;
|
2213
|
+
|
2214
|
+
for (i = 0; i < nRow; i++) {
|
2215
|
+
for (j = 0; j < nCol; j++) {
|
2216
|
+
values[i][j] = matrix[nCol * i + j];
|
2217
|
+
}
|
2218
|
+
}
|
2219
|
+
}
|
2220
|
+
|
2221
|
+
/**
|
2222
|
+
* Sets the value of this matrix to the values found in matrix m1.
|
2223
|
+
*
|
2224
|
+
* @param m1 the source matrix
|
2225
|
+
*/
|
2226
|
+
public final void set(GMatrix m1) {
|
2227
|
+
int i, j;
|
2228
|
+
|
2229
|
+
if (nRow < m1.nRow || nCol < m1.nCol) {
|
2230
|
+
nRow = m1.nRow;
|
2231
|
+
nCol = m1.nCol;
|
2232
|
+
values = new double[nRow][nCol];
|
2233
|
+
}
|
2234
|
+
|
2235
|
+
for (i = 0; i < Math.min(nRow, m1.nRow); i++) {
|
2236
|
+
for (j = 0; j < Math.min(nCol, m1.nCol); j++) {
|
2237
|
+
values[i][j] = m1.values[i][j];
|
2238
|
+
}
|
2239
|
+
}
|
2240
|
+
|
2241
|
+
for (i = m1.nRow; i < nRow; i++) { // pad rest or matrix with zeros
|
2242
|
+
for (j = m1.nCol; j < nCol; j++) {
|
2243
|
+
values[i][j] = 0.0;
|
2244
|
+
}
|
2245
|
+
}
|
2246
|
+
}
|
2247
|
+
|
2248
|
+
/**
|
2249
|
+
* Sets the value of this matrix to that of the Matrix3d provided.
|
2250
|
+
*
|
2251
|
+
* @param m1 the matrix
|
2252
|
+
*/
|
2253
|
+
public final void set(Matrix3d m1) {
|
2254
|
+
if (nRow < 3 || nCol < 3) {
|
2255
|
+
values = new double[3][3];
|
2256
|
+
nRow = 3;
|
2257
|
+
nCol = 3;
|
2258
|
+
}
|
2259
|
+
|
2260
|
+
values[0][0] = m1.m00;
|
2261
|
+
values[0][1] = m1.m01;
|
2262
|
+
values[0][2] = m1.m02;
|
2263
|
+
|
2264
|
+
values[1][0] = m1.m10;
|
2265
|
+
values[1][1] = m1.m11;
|
2266
|
+
values[1][2] = m1.m12;
|
2267
|
+
|
2268
|
+
values[2][0] = m1.m20;
|
2269
|
+
values[2][1] = m1.m21;
|
2270
|
+
values[2][2] = m1.m22;
|
2271
|
+
|
2272
|
+
for (int i = 3; i < nRow; i++) { // pad rest or matrix with zeros
|
2273
|
+
for (int j = 3; j < nCol; j++) {
|
2274
|
+
values[i][j] = 0.0;
|
2275
|
+
}
|
2276
|
+
}
|
2277
|
+
|
2278
|
+
}
|
2279
|
+
|
2280
|
+
/**
|
2281
|
+
* Sets the value of this matrix to that of the Matrix4f provided.
|
2282
|
+
*
|
2283
|
+
* @param m1 the matrix
|
2284
|
+
*/
|
2285
|
+
public final void set(Matrix4f m1) {
|
2286
|
+
if (nRow < 4 || nCol < 4) {
|
2287
|
+
values = new double[4][4];
|
2288
|
+
nRow = 4;
|
2289
|
+
nCol = 4;
|
2290
|
+
}
|
2291
|
+
|
2292
|
+
values[0][0] = m1.m00;
|
2293
|
+
values[0][1] = m1.m01;
|
2294
|
+
values[0][2] = m1.m02;
|
2295
|
+
values[0][3] = m1.m03;
|
2296
|
+
|
2297
|
+
values[1][0] = m1.m10;
|
2298
|
+
values[1][1] = m1.m11;
|
2299
|
+
values[1][2] = m1.m12;
|
2300
|
+
values[1][3] = m1.m13;
|
2301
|
+
|
2302
|
+
values[2][0] = m1.m20;
|
2303
|
+
values[2][1] = m1.m21;
|
2304
|
+
values[2][2] = m1.m22;
|
2305
|
+
values[2][3] = m1.m23;
|
2306
|
+
|
2307
|
+
values[3][0] = m1.m30;
|
2308
|
+
values[3][1] = m1.m31;
|
2309
|
+
values[3][2] = m1.m32;
|
2310
|
+
values[3][3] = m1.m33;
|
2311
|
+
|
2312
|
+
for (int i = 4; i < nRow; i++) { // pad rest or matrix with zeros
|
2313
|
+
for (int j = 4; j < nCol; j++) {
|
2314
|
+
values[i][j] = 0.0;
|
2315
|
+
}
|
2316
|
+
}
|
2317
|
+
}
|
2318
|
+
|
2319
|
+
/**
|
2320
|
+
* Copy the values from the array into the specified column of this matrix.
|
2321
|
+
*
|
2322
|
+
* @param col the column of this matrix into which the array values will be
|
2323
|
+
* copied
|
2324
|
+
* @param array the source array
|
2325
|
+
*/
|
2326
|
+
public final void setColumn(int col, double[] array) {
|
2327
|
+
for (int i = 0; i < nRow; i++) {
|
2328
|
+
values[i][col] = array[i];
|
2329
|
+
}
|
2330
|
+
}
|
2331
|
+
|
2332
|
+
/**
|
2333
|
+
* Copy the values from the vector into the specified column of this matrix.
|
2334
|
+
*
|
2335
|
+
* @param col the column of this matrix into which the array values will be
|
2336
|
+
* copied
|
2337
|
+
* @param vector the source vector
|
2338
|
+
*/
|
2339
|
+
public final void setColumn(int col, GVector vector) {
|
2340
|
+
for (int i = 0; i < nRow; i++) {
|
2341
|
+
values[i][col] = vector.values[i];
|
2342
|
+
}
|
2343
|
+
|
2344
|
+
}
|
2345
|
+
|
2346
|
+
/**
|
2347
|
+
* Modifies the value at the specified row and column of this matrix.
|
2348
|
+
*
|
2349
|
+
* @param row the row number to be modified (zero indexed)
|
2350
|
+
* @param column the column number to be modified (zero indexed)
|
2351
|
+
* @param value the new matrix element value
|
2352
|
+
*/
|
2353
|
+
public final void setElement(int row, int column, double value) {
|
2354
|
+
values[row][column] = value;
|
2355
|
+
}
|
2356
|
+
|
2357
|
+
/**
|
2358
|
+
* Copy the values from the array into the specified row of this matrix.
|
2359
|
+
*
|
2360
|
+
* @param row the row of this matrix into which the array values will be
|
2361
|
+
* copied.
|
2362
|
+
* @param array the source array
|
2363
|
+
*/
|
2364
|
+
public final void setRow(int row, double[] array) {
|
2365
|
+
System.arraycopy(array, 0, values[row], 0, nCol);
|
2366
|
+
}
|
2367
|
+
|
2368
|
+
/**
|
2369
|
+
* Copy the values from the vector into the specified row of this matrix.
|
2370
|
+
*
|
2371
|
+
* @param row the row of this matrix into which the array values will be
|
2372
|
+
* copied
|
2373
|
+
* @param vector the source vector
|
2374
|
+
*/
|
2375
|
+
public final void setRow(int row, GVector vector) {
|
2376
|
+
System.arraycopy(vector.values, 0, values[row], 0, nCol);
|
2377
|
+
}
|
2378
|
+
|
2379
|
+
/**
|
2380
|
+
* Sets this matrix to a uniform scale matrix; all of the values are reset.
|
2381
|
+
*
|
2382
|
+
* @param scale The new scale value
|
2383
|
+
*/
|
2384
|
+
public final void setScale(double scale) {
|
2385
|
+
int i, j, l;
|
2386
|
+
|
2387
|
+
if (nRow < nCol) {
|
2388
|
+
l = nRow;
|
2389
|
+
} else {
|
2390
|
+
l = nCol;
|
2391
|
+
}
|
2392
|
+
|
2393
|
+
for (i = 0; i < nRow; i++) {
|
2394
|
+
for (j = 0; j < nCol; j++) {
|
2395
|
+
values[i][j] = 0.0;
|
2396
|
+
}
|
2397
|
+
}
|
2398
|
+
|
2399
|
+
for (i = 0; i < l; i++) {
|
2400
|
+
values[i][i] = scale;
|
2401
|
+
}
|
2402
|
+
}
|
2403
|
+
|
2404
|
+
/**
|
2405
|
+
* Changes the size of this matrix dynamically. If the size is increased no
|
2406
|
+
* data values will be lost. If the size is decreased, only those data
|
2407
|
+
* values whose matrix positions were eliminated will be lost.
|
2408
|
+
*
|
2409
|
+
* @param nRow number of desired rows in this matrix
|
2410
|
+
* @param nCol number of desired columns in this matrix
|
2411
|
+
*/
|
2412
|
+
public final void setSize(int nRow, int nCol) {
|
2413
|
+
double[][] tmp = new double[nRow][nCol];
|
2414
|
+
int i, j, maxRow, maxCol;
|
2415
|
+
|
2416
|
+
if (this.nRow < nRow) {
|
2417
|
+
maxRow = this.nRow;
|
2418
|
+
} else {
|
2419
|
+
maxRow = nRow;
|
2420
|
+
}
|
2421
|
+
|
2422
|
+
if (this.nCol < nCol) {
|
2423
|
+
maxCol = this.nCol;
|
2424
|
+
} else {
|
2425
|
+
maxCol = nCol;
|
2426
|
+
}
|
2427
|
+
|
2428
|
+
for (i = 0; i < maxRow; i++) {
|
2429
|
+
for (j = 0; j < maxCol; j++) {
|
2430
|
+
tmp[i][j] = values[i][j];
|
2431
|
+
}
|
2432
|
+
}
|
2433
|
+
|
2434
|
+
this.nRow = nRow;
|
2435
|
+
this.nCol = nCol;
|
2436
|
+
|
2437
|
+
values = tmp;
|
2438
|
+
}
|
2439
|
+
|
2440
|
+
/**
|
2441
|
+
* Sets all the values in this matrix to zero.
|
2442
|
+
*/
|
2443
|
+
public final void setZero() {
|
2444
|
+
int i, j;
|
2445
|
+
for (i = 0; i < nRow; i++) {
|
2446
|
+
for (j = 0; j < nCol; j++) {
|
2447
|
+
values[i][j] = 0.0;
|
2448
|
+
}
|
2449
|
+
}
|
2450
|
+
}
|
2451
|
+
|
2452
|
+
/**
|
2453
|
+
* Sets the value of this matrix to the matrix difference of itself and
|
2454
|
+
* matrix m1 (this = this - m1).
|
2455
|
+
*
|
2456
|
+
* @param m1 the other matrix
|
2457
|
+
*/
|
2458
|
+
public final void sub(GMatrix m1) {
|
2459
|
+
int i, j;
|
2460
|
+
if (nRow != m1.nRow) {
|
2461
|
+
throw new MatrixSizeException();
|
2462
|
+
}
|
2463
|
+
|
2464
|
+
if (nCol != m1.nCol) {
|
2465
|
+
throw new MatrixSizeException();
|
2466
|
+
}
|
2467
|
+
|
2468
|
+
for (i = 0; i < nRow; i++) {
|
2469
|
+
for (j = 0; j < nCol; j++) {
|
2470
|
+
values[i][j] = values[i][j] - m1.values[i][j];
|
2471
|
+
}
|
2472
|
+
}
|
2473
|
+
}
|
2474
|
+
|
2475
|
+
/**
|
2476
|
+
* Sets the value of this matrix to the matrix difference of matrices m1 and
|
2477
|
+
* m2 (this = m1 - m2).
|
2478
|
+
*
|
2479
|
+
* @param m1 the first matrix
|
2480
|
+
* @param m2 the second matrix
|
2481
|
+
*/
|
2482
|
+
public final void sub(GMatrix m1, GMatrix m2) {
|
2483
|
+
int i, j;
|
2484
|
+
if (m2.nRow != m1.nRow) {
|
2485
|
+
throw new MatrixSizeException();
|
2486
|
+
}
|
2487
|
+
|
2488
|
+
if (m2.nCol != m1.nCol) {
|
2489
|
+
throw new MatrixSizeException();
|
2490
|
+
}
|
2491
|
+
|
2492
|
+
if (nRow != m1.nRow || nCol != m1.nCol) {
|
2493
|
+
throw new MatrixSizeException();
|
2494
|
+
}
|
2495
|
+
|
2496
|
+
for (i = 0; i < nRow; i++) {
|
2497
|
+
for (j = 0; j < nCol; j++) {
|
2498
|
+
values[i][j] = m1.values[i][j] - m2.values[i][j];
|
2499
|
+
}
|
2500
|
+
}
|
2501
|
+
}
|
2502
|
+
|
2503
|
+
/**
|
2504
|
+
* Returns a string that contains the values of this GMatrix.
|
2505
|
+
*
|
2506
|
+
* @return the String representation
|
2507
|
+
*/
|
2508
|
+
@Override
|
2509
|
+
public String toString() {
|
2510
|
+
StringBuilder buffer = new StringBuilder(nRow * nCol * 8);
|
2511
|
+
|
2512
|
+
int i, j;
|
2513
|
+
|
2514
|
+
for (i = 0; i < nRow; i++) {
|
2515
|
+
for (j = 0; j < nCol; j++) {
|
2516
|
+
buffer.append(values[i][j]).append(" ");
|
2517
|
+
}
|
2518
|
+
buffer.append("\n");
|
2519
|
+
}
|
2520
|
+
|
2521
|
+
return buffer.toString();
|
2522
|
+
}
|
2523
|
+
|
2524
|
+
/**
|
2525
|
+
* Returns the trace of this matrix.
|
2526
|
+
*
|
2527
|
+
* @return the trace of this matrix
|
2528
|
+
*/
|
2529
|
+
public final double trace() {
|
2530
|
+
int i, l;
|
2531
|
+
double t;
|
2532
|
+
|
2533
|
+
if (nRow < nCol) {
|
2534
|
+
l = nRow;
|
2535
|
+
} else {
|
2536
|
+
l = nCol;
|
2537
|
+
}
|
2538
|
+
|
2539
|
+
t = 0.0;
|
2540
|
+
for (i = 0; i < l; i++) {
|
2541
|
+
t += values[i][i];
|
2542
|
+
}
|
2543
|
+
return t;
|
2544
|
+
}
|
2545
|
+
|
2546
|
+
/**
|
2547
|
+
* Transposes this matrix in place.
|
2548
|
+
*/
|
2549
|
+
public final void transpose() {
|
2550
|
+
int i, j;
|
2551
|
+
|
2552
|
+
if (nRow != nCol) {
|
2553
|
+
double[][] tmp;
|
2554
|
+
i = nRow;
|
2555
|
+
nRow = nCol;
|
2556
|
+
nCol = i;
|
2557
|
+
tmp = new double[nRow][nCol];
|
2558
|
+
for (i = 0; i < nRow; i++) {
|
2559
|
+
for (j = 0; j < nCol; j++) {
|
2560
|
+
tmp[i][j] = values[j][i];
|
2561
|
+
}
|
2562
|
+
}
|
2563
|
+
values = tmp;
|
2564
|
+
} else {
|
2565
|
+
double swap;
|
2566
|
+
for (i = 0; i < nRow; i++) {
|
2567
|
+
for (j = 0; j < i; j++) {
|
2568
|
+
swap = values[i][j];
|
2569
|
+
values[i][j] = values[j][i];
|
2570
|
+
values[j][i] = swap;
|
2571
|
+
}
|
2572
|
+
}
|
2573
|
+
}
|
2574
|
+
}
|
2575
|
+
|
2576
|
+
/**
|
2577
|
+
* Places the matrix values of the transpose of matrix m1 into this matrix.
|
2578
|
+
*
|
2579
|
+
* @param m1 the matrix to be transposed (but not modified)
|
2580
|
+
*/
|
2581
|
+
public final void transpose(GMatrix m1) {
|
2582
|
+
int i, j;
|
2583
|
+
|
2584
|
+
if (nRow != m1.nCol || nCol != m1.nRow) {
|
2585
|
+
throw new MatrixSizeException();
|
2586
|
+
}
|
2587
|
+
|
2588
|
+
if (m1 != this) {
|
2589
|
+
for (i = 0; i < nRow; i++) {
|
2590
|
+
for (j = 0; j < nCol; j++) {
|
2591
|
+
values[i][j] = m1.values[j][i];
|
2592
|
+
}
|
2593
|
+
}
|
2594
|
+
} else {
|
2595
|
+
transpose();
|
2596
|
+
}
|
2597
|
+
}
|
2598
|
+
|
2599
|
+
}
|