swe4r 0.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,1727 @@
1
+
2
+ /*******************************************************
3
+ $Header: /home/dieter/sweph/RCS/swehouse.c,v 1.74 2008/06/16 10:07:20 dieter Exp $
4
+ module swehouse.c
5
+ house and (simple) aspect calculation
6
+
7
+ ************************************************************/
8
+ /* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
9
+
10
+ License conditions
11
+ ------------------
12
+
13
+ This file is part of Swiss Ephemeris.
14
+
15
+ Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
16
+ or distributor accepts any responsibility for the consequences of using it,
17
+ or for whether it serves any particular purpose or works at all, unless he
18
+ or she says so in writing.
19
+
20
+ Swiss Ephemeris is made available by its authors under a dual licensing
21
+ system. The software developer, who uses any part of Swiss Ephemeris
22
+ in his or her software, must choose between one of the two license models,
23
+ which are
24
+ a) GNU public license version 2 or later
25
+ b) Swiss Ephemeris Professional License
26
+
27
+ The choice must be made before the software developer distributes software
28
+ containing parts of Swiss Ephemeris to others, and before any public
29
+ service using the developed software is activated.
30
+
31
+ If the developer choses the GNU GPL software license, he or she must fulfill
32
+ the conditions of that license, which includes the obligation to place his
33
+ or her whole software project under the GNU GPL or a compatible license.
34
+ See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
35
+
36
+ If the developer choses the Swiss Ephemeris Professional license,
37
+ he must follow the instructions as found in http://www.astro.com/swisseph/
38
+ and purchase the Swiss Ephemeris Professional Edition from Astrodienst
39
+ and sign the corresponding license contract.
40
+
41
+ The License grants you the right to use, copy, modify and redistribute
42
+ Swiss Ephemeris, but only under certain conditions described in the License.
43
+ Among other things, the License requires that the copyright notices and
44
+ this notice be preserved on all copies.
45
+
46
+ Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
47
+
48
+ The authors of Swiss Ephemeris have no control or influence over any of
49
+ the derived works, i.e. over software or services created by other
50
+ programmers which use Swiss Ephemeris functions.
51
+
52
+ The names of the authors or of the copyright holder (Astrodienst) must not
53
+ be used for promoting any software, product or service which uses or contains
54
+ the Swiss Ephemeris. This copyright notice is the ONLY place where the
55
+ names of the authors can legally appear, except in cases where they have
56
+ given special permission in writing.
57
+
58
+ The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
59
+ for promoting such software, products or services.
60
+ */
61
+
62
+ #include "sweodef.h"
63
+ #include "swephexp.h"
64
+ #include "sweph.h"
65
+ #include "swephlib.h"
66
+ #include "swehouse.h"
67
+ #include <string.h>
68
+
69
+ #define MILLIARCSEC (1.0 / 3600000.0)
70
+
71
+ static double Asc1(double, double, double, double);
72
+ static double Asc2(double, double, double, double);
73
+ static int CalcH(
74
+ double th, double fi, double ekl, char hsy,
75
+ int iteration_count, struct houses *hsp );
76
+ static int sidereal_houses_ecl_t0(double tjde,
77
+ double armc,
78
+ double eps,
79
+ double *nutlo,
80
+ double lat,
81
+ int hsys,
82
+ double *cusp,
83
+ double *ascmc);
84
+ static int sidereal_houses_trad(double tjde,
85
+ double armc,
86
+ double eps,
87
+ double nutl,
88
+ double lat,
89
+ int hsys,
90
+ double *cusp,
91
+ double *ascmc);
92
+ static int sidereal_houses_ssypl(double tjde,
93
+ double armc,
94
+ double eps,
95
+ double *nutlo,
96
+ double lat,
97
+ int hsys,
98
+ double *cusp,
99
+ double *ascmc);
100
+
101
+ /* housasp.c
102
+ * cusps are returned in double cusp[13],
103
+ * or cusp[37] with house system 'G'.
104
+ * cusp[1...12] houses 1 - 12
105
+ * additional points are returned in ascmc[10].
106
+ * ascmc[0] = ascendant
107
+ * ascmc[1] = mc
108
+ * ascmc[2] = armc
109
+ * ascmc[3] = vertex
110
+ * ascmc[4] = equasc * "equatorial ascendant" *
111
+ * ascmc[5] = coasc1 * "co-ascendant" (W. Koch) *
112
+ * ascmc[6] = coasc2 * "co-ascendant" (M. Munkasey) *
113
+ * ascmc[7] = polasc * "polar ascendant" (M. Munkasey) *
114
+ */
115
+ int FAR PASCAL_CONV swe_houses(double tjd_ut,
116
+ double geolat,
117
+ double geolon,
118
+ int hsys,
119
+ double *cusp,
120
+ double *ascmc)
121
+ {
122
+ int i, retc = 0;
123
+ double armc, eps, nutlo[2];
124
+ double tjde = tjd_ut + swe_deltat(tjd_ut);
125
+ eps = swi_epsiln(tjde) * RADTODEG;
126
+ swi_nutation(tjde, nutlo);
127
+ for (i = 0; i < 2; i++)
128
+ nutlo[i] *= RADTODEG;
129
+ armc = swe_degnorm(swe_sidtime0(tjd_ut, eps + nutlo[1], nutlo[0]) * 15 + geolon);
130
+ #ifdef TRACE
131
+ swi_open_trace(NULL);
132
+ if (swi_trace_count <= TRACE_COUNT_MAX) {
133
+ if (swi_fp_trace_c != NULL) {
134
+ fputs("\n/*SWE_HOUSES*/\n", swi_fp_trace_c);
135
+ fprintf(swi_fp_trace_c, "#if 0\n");
136
+ fprintf(swi_fp_trace_c, " tjd = %.9f;", tjd_ut);
137
+ fprintf(swi_fp_trace_c, " geolon = %.9f;", geolon);
138
+ fprintf(swi_fp_trace_c, " geolat = %.9f;", geolat);
139
+ fprintf(swi_fp_trace_c, " hsys = %d;\n", hsys);
140
+ fprintf(swi_fp_trace_c, " retc = swe_houses(tjd, geolat, geolon, hsys, cusp, ascmc);\n");
141
+ fprintf(swi_fp_trace_c, " /* swe_houses calls swe_houses_armc as follows: */\n");
142
+ fprintf(swi_fp_trace_c, "#endif\n");
143
+ fflush(swi_fp_trace_c);
144
+ }
145
+ }
146
+ #endif
147
+ retc = swe_houses_armc(armc, geolat, eps + nutlo[1], hsys, cusp, ascmc);
148
+ return retc;
149
+ }
150
+
151
+ /* housasp.c
152
+ * cusps are returned in double cusp[13],
153
+ * or cusp[37] with house system 'G'.
154
+ * cusp[1...12] houses 1 - 12
155
+ * additional points are returned in ascmc[10].
156
+ * ascmc[0] = ascendant
157
+ * ascmc[1] = mc
158
+ * ascmc[2] = armc
159
+ * ascmc[3] = vertex
160
+ * ascmc[4] = equasc * "equatorial ascendant" *
161
+ * ascmc[5] = coasc1 * "co-ascendant" (W. Koch) *
162
+ * ascmc[6] = coasc2 * "co-ascendant" (M. Munkasey) *
163
+ * ascmc[7] = polasc * "polar ascendant" (M. Munkasey) *
164
+ */
165
+ int FAR PASCAL_CONV swe_houses_ex(double tjd_ut,
166
+ int32 iflag,
167
+ double geolat,
168
+ double geolon,
169
+ int hsys,
170
+ double *cusp,
171
+ double *ascmc)
172
+ {
173
+ int i, retc = 0;
174
+ double armc, eps_mean, nutlo[2];
175
+ double tjde = tjd_ut + swe_deltat(tjd_ut);
176
+ struct sid_data *sip = &swed.sidd;
177
+ int ito;
178
+ if (toupper(hsys) == 'G')
179
+ ito = 36;
180
+ else
181
+ ito = 12;
182
+ if ((iflag & SEFLG_SIDEREAL) && !swed.ayana_is_set)
183
+ swe_set_sid_mode(SE_SIDM_FAGAN_BRADLEY, 0, 0);
184
+ eps_mean = swi_epsiln(tjde) * RADTODEG;
185
+ swi_nutation(tjde, nutlo);
186
+ for (i = 0; i < 2; i++)
187
+ nutlo[i] *= RADTODEG;
188
+ #ifdef TRACE
189
+ swi_open_trace(NULL);
190
+ if (swi_trace_count <= TRACE_COUNT_MAX) {
191
+ if (swi_fp_trace_c != NULL) {
192
+ fputs("\n/*SWE_HOUSES_EX*/\n", swi_fp_trace_c);
193
+ fprintf(swi_fp_trace_c, "#if 0\n");
194
+ fprintf(swi_fp_trace_c, " tjd = %.9f;", tjd_ut);
195
+ fprintf(swi_fp_trace_c, " iflag = %d;\n", iflag);
196
+ fprintf(swi_fp_trace_c, " geolon = %.9f;", geolon);
197
+ fprintf(swi_fp_trace_c, " geolat = %.9f;", geolat);
198
+ fprintf(swi_fp_trace_c, " hsys = %d;\n", hsys);
199
+ fprintf(swi_fp_trace_c, " retc = swe_houses_ex(tjd, iflag, geolat, geolon, hsys, cusp, ascmc);\n");
200
+ fprintf(swi_fp_trace_c, " /* swe_houses calls swe_houses_armc as follows: */\n");
201
+ fprintf(swi_fp_trace_c, "#endif\n");
202
+ fflush(swi_fp_trace_c);
203
+ }
204
+ }
205
+ #endif
206
+ /*houses_to_sidereal(tjde, geolat, hsys, eps, cusp, ascmc, iflag);*/
207
+ armc = swe_degnorm(swe_sidtime0(tjd_ut, eps_mean + nutlo[1], nutlo[0]) * 15 + geolon);
208
+ if (iflag & SEFLG_SIDEREAL) {
209
+ if (sip->sid_mode & SE_SIDBIT_ECL_T0)
210
+ retc = sidereal_houses_ecl_t0(tjde, armc, eps_mean + nutlo[1], nutlo, geolat, hsys, cusp, ascmc);
211
+ else if (sip->sid_mode & SE_SIDBIT_SSY_PLANE)
212
+ retc = sidereal_houses_ssypl(tjde, armc, eps_mean + nutlo[1], nutlo, geolat, hsys, cusp, ascmc);
213
+ else
214
+ retc = sidereal_houses_trad(tjde, armc, eps_mean + nutlo[1], nutlo[0], geolat, hsys, cusp, ascmc);
215
+ } else {
216
+ retc = swe_houses_armc(armc, geolat, eps_mean + nutlo[1], hsys, cusp, ascmc);
217
+ }
218
+ if (iflag & SEFLG_RADIANS) {
219
+ for (i = 1; i <= ito; i++)
220
+ cusp[i] *= DEGTORAD;
221
+ for (i = 0; i < SE_NASCMC; i++)
222
+ ascmc[i] *= DEGTORAD;
223
+ }
224
+ return retc;
225
+ }
226
+
227
+ /*
228
+ * houses to sidereal
229
+ * ------------------
230
+ * there are two methods:
231
+ * a) the traditional one
232
+ * houses are computed tropically, then nutation and the ayanamsa
233
+ * are subtracted.
234
+ * b) the projection on the ecliptic of t0
235
+ * The house computation is then as follows:
236
+ *
237
+ * Be t the birth date and t0 the epoch at which ayanamsa = 0.
238
+ * 1. Compute the angle between the mean ecliptic at t0 and
239
+ * the true equator at t.
240
+ * The intersection point of these two circles we call the
241
+ * "auxiliary vernal point", and the angle between them the
242
+ * "auxiliary obliquity".
243
+ * 2. Compute the distance of the auxiliary vernal point from the
244
+ * vernal point at t. (this is a section on the equator)
245
+ * 3. subtract this value from the armc of t = aux. armc.
246
+ * 4. Compute the axes and houses for this aux. armc and aux. obliquity.
247
+ * 5. Compute the distance between the auxiliary vernal point and the
248
+ * vernal point at t0 (this is the ayanamsa at t, measured on the
249
+ * ecliptic of t0)
250
+ * 6. subtract this distance from all house cusps.
251
+ * 7. subtract ayanamsa_t0 from all house cusps.
252
+ */
253
+ static int sidereal_houses_ecl_t0(double tjde,
254
+ double armc,
255
+ double eps,
256
+ double *nutlo,
257
+ double lat,
258
+ int hsys,
259
+ double *cusp,
260
+ double *ascmc)
261
+ {
262
+ int i, j, retc = OK;
263
+ double x[6], xvpx[6], x2[6], epst0, xnorm[6];
264
+ double rxy, rxyz, c2, epsx, sgn, fac, dvpx, dvpxe;
265
+ double armcx;
266
+ struct sid_data *sip = &swed.sidd;
267
+ int ito;
268
+ if (toupper(hsys) == 'G')
269
+ ito = 36;
270
+ else
271
+ ito = 12;
272
+ /* epsilon at t0 */
273
+ epst0 = swi_epsiln(sip->t0);
274
+ /* cartesian coordinates of an imaginary moving body on the
275
+ * the mean ecliptic of t0; we take the vernal point: */
276
+ x[0] = x[4] = 1;
277
+ x[1] = x[2] = x[3] = x[5] = 0;
278
+ /* to equator */
279
+ swi_coortrf(x, x, -epst0);
280
+ swi_coortrf(x+3, x+3, -epst0);
281
+ /* to tjd_et */
282
+ swi_precess(x, sip->t0, J_TO_J2000);
283
+ swi_precess(x, tjde, J2000_TO_J);
284
+ swi_precess(x+3, sip->t0, J_TO_J2000);
285
+ swi_precess(x+3, tjde, J2000_TO_J);
286
+ /* to true equator of tjd_et */
287
+ swi_coortrf(x, x, (eps - nutlo[1]) * DEGTORAD);
288
+ swi_coortrf(x+3, x+3, (eps - nutlo[1]) * DEGTORAD);
289
+ swi_cartpol_sp(x, x);
290
+ x[0] += nutlo[0] * DEGTORAD;
291
+ swi_polcart_sp(x, x);
292
+ swi_coortrf(x, x, -eps * DEGTORAD);
293
+ swi_coortrf(x+3, x+3, -eps * DEGTORAD);
294
+ /* now, we have the moving point precessed to tjd_et.
295
+ * next, we compute the auxiliary epsilon: */
296
+ swi_cross_prod(x, x+3, xnorm);
297
+ rxy = xnorm[0] * xnorm[0] + xnorm[1] * xnorm[1];
298
+ c2 = (rxy + xnorm[2] * xnorm[2]);
299
+ rxyz = sqrt(c2);
300
+ rxy = sqrt(rxy);
301
+ epsx = asin(rxy / rxyz) * RADTODEG; /* 1a */
302
+ /* auxiliary vernal point */
303
+ if (fabs(x[5]) < 1e-15)
304
+ x[5] = 1e-15;
305
+ fac = x[2] / x[5];
306
+ sgn = x[5] / fabs(x[5]);
307
+ for (j = 0; j <= 2; j++)
308
+ xvpx[j] = (x[j] - fac * x[j+3]) * sgn; /* 1b */
309
+ /* distance of the auxiliary vernal point from
310
+ * the zero point at tjd_et (a section on the equator): */
311
+ swi_cartpol(xvpx, x2);
312
+ dvpx = x2[0] * RADTODEG; /* 2 */
313
+ /* auxiliary armc */
314
+ armcx = swe_degnorm(armc - dvpx); /* 3 */
315
+ /* compute axes and houses: */
316
+ retc = swe_houses_armc(armcx, lat, epsx, hsys, cusp, ascmc); /* 4 */
317
+ /* distance between auxiliary vernal point and
318
+ * vernal point of t0 (a section on the sidereal plane) */
319
+ dvpxe = acos(swi_dot_prod_unit(x, xvpx)) * RADTODEG; /* 5 */
320
+ if (tjde < sip->t0)
321
+ dvpxe = -dvpxe;
322
+ for (i = 1; i <= ito; i++) /* 6, 7 */
323
+ cusp[i] = swe_degnorm(cusp[i] - dvpxe - sip->ayan_t0);
324
+ for (i = 0; i <= SE_NASCMC; i++)
325
+ ascmc[i] = swe_degnorm(ascmc[i] - dvpxe - sip->ayan_t0);
326
+ return retc;
327
+ }
328
+
329
+ /*
330
+ * Be t the birth date and t0 the epoch at which ayanamsa = 0.
331
+ * 1. Compute the angle between the solar system rotation plane and
332
+ * the true equator at t.
333
+ * The intersection point of these two circles we call the
334
+ * "auxiliary vernal point", and the angle between them the
335
+ * "auxiliary obliquity".
336
+ * 2. Compute the distance of the auxiliary vernal point from the
337
+ * zero point at t. (this is a section on the equator)
338
+ * 3. subtract this value from the armc of t = aux. armc.
339
+ * 4. Compute the axes and houses for this aux. armc and aux. obliquity.
340
+ * 5. Compute the distance between the auxiliary vernal point at t
341
+ * and the zero point of the solar system plane J2000
342
+ * (a section measured on the solar system plane)
343
+ * 6. subtract this distance from all house cusps.
344
+ * 7. compute the ayanamsa of J2000 on the solar system plane,
345
+ * referred to t0
346
+ * 8. subtract ayanamsa_t0 from all house cusps.
347
+ * 9. subtract ayanamsa_2000 from all house cusps.
348
+ */
349
+ static int sidereal_houses_ssypl(double tjde,
350
+ double armc,
351
+ double eps,
352
+ double *nutlo,
353
+ double lat,
354
+ int hsys,
355
+ double *cusp,
356
+ double *ascmc)
357
+ {
358
+ int i, j, retc = OK;
359
+ double x[6], x0[6], xvpx[6], x2[6], epst0, xnorm[6];
360
+ double rxy, rxyz, c2, epsx, eps2000, sgn, fac, dvpx, dvpxe, x00;
361
+ double armcx;
362
+ struct sid_data *sip = &swed.sidd;
363
+ int ito;
364
+ if (toupper(hsys) == 'G')
365
+ ito = 36;
366
+ else
367
+ ito = 12;
368
+ /* epsilon at t0 */
369
+ epst0 = swi_epsiln(sip->t0);
370
+ eps2000 = swi_epsiln(J2000);
371
+ /* cartesian coordinates of the zero point on the
372
+ * the solar system rotation plane */
373
+ x[0] = x[4] = 1;
374
+ x[1] = x[2] = x[3] = x[5] = 0;
375
+ /* to ecliptic 2000 */
376
+ swi_coortrf(x, x, -SSY_PLANE_INCL);
377
+ swi_coortrf(x+3, x+3, -SSY_PLANE_INCL);
378
+ swi_cartpol_sp(x, x);
379
+ x[0] += SSY_PLANE_NODE_E2000;
380
+ swi_polcart_sp(x, x);
381
+ /* to equator 2000 */
382
+ swi_coortrf(x, x, -eps2000);
383
+ swi_coortrf(x+3, x+3, -eps2000);
384
+ /* to mean equator of t */
385
+ swi_precess(x, tjde, J2000_TO_J);
386
+ swi_precess(x+3, tjde, J2000_TO_J);
387
+ /* to true equator of t */
388
+ swi_coortrf(x, x, (eps - nutlo[1]) * DEGTORAD);
389
+ swi_coortrf(x+3, x+3, (eps - nutlo[1]) * DEGTORAD);
390
+ swi_cartpol_sp(x, x);
391
+ x[0] += nutlo[0] * DEGTORAD;
392
+ swi_polcart_sp(x, x);
393
+ swi_coortrf(x, x, -eps * DEGTORAD);
394
+ swi_coortrf(x+3, x+3, -eps * DEGTORAD);
395
+ /* now, we have the moving point precessed to tjd_et.
396
+ * next, we compute the auxiliary epsilon: */
397
+ swi_cross_prod(x, x+3, xnorm);
398
+ rxy = xnorm[0] * xnorm[0] + xnorm[1] * xnorm[1];
399
+ c2 = (rxy + xnorm[2] * xnorm[2]);
400
+ rxyz = sqrt(c2);
401
+ rxy = sqrt(rxy);
402
+ epsx = asin(rxy / rxyz) * RADTODEG; /* 1a */
403
+ /* auxiliary vernal point */
404
+ if (fabs(x[5]) < 1e-15)
405
+ x[5] = 1e-15;
406
+ fac = x[2] / x[5];
407
+ sgn = x[5] / fabs(x[5]);
408
+ for (j = 0; j <= 2; j++)
409
+ xvpx[j] = (x[j] - fac * x[j+3]) * sgn; /* 1b */
410
+ /* distance of the auxiliary vernal point from
411
+ * mean vernal point at tjd_et (a section on the equator): */
412
+ swi_cartpol(xvpx, x2);
413
+ dvpx = x2[0] * RADTODEG; /* 2 */
414
+ /* auxiliary armc */
415
+ armcx = swe_degnorm(armc - dvpx); /* 3 */
416
+ /* compute axes and houses: */
417
+ retc = swe_houses_armc(armcx, lat, epsx, hsys, cusp, ascmc); /* 4 */
418
+ /* distance between the auxiliary vernal point at t and
419
+ * the sidereal zero point of 2000 at t
420
+ * (a section on the sidereal plane).
421
+ */
422
+ dvpxe = acos(swi_dot_prod_unit(x, xvpx)) * RADTODEG; /* 5 */
423
+ /* (always positive for dates after 5400 bc) */
424
+ dvpxe -= SSY_PLANE_NODE * RADTODEG;
425
+ /* ayanamsa between t0 and J2000, measured on solar system plane: */
426
+ /* position of zero point of t0 */
427
+ x0[0] = 1;
428
+ x0[1] = x0[2] = 0;
429
+ /* zero point of t0 in J2000 system */
430
+ if (sip->t0 != J2000)
431
+ swi_precess(x0, sip->t0, J_TO_J2000);
432
+ /* zero point to ecliptic 2000 */
433
+ swi_coortrf(x0, x0, eps2000);
434
+ /* to solar system plane */
435
+ swi_cartpol(x0, x0);
436
+ x0[0] -= SSY_PLANE_NODE_E2000;
437
+ swi_polcart(x0, x0);
438
+ swi_coortrf(x0, x0, SSY_PLANE_INCL);
439
+ swi_cartpol(x0, x0);
440
+ x0[0] += SSY_PLANE_NODE;
441
+ x00 = x0[0] * RADTODEG; /* 7 */
442
+ for (i = 1; i <= ito; i++) /* 6, 8, 9 */
443
+ cusp[i] = swe_degnorm(cusp[i] - dvpxe - sip->ayan_t0 - x00);
444
+ for (i = 0; i <= SE_NASCMC; i++)
445
+ ascmc[i] = swe_degnorm(ascmc[i] - dvpxe - sip->ayan_t0 - x00);
446
+ return retc;
447
+ }
448
+
449
+ /* common simplified procedure */
450
+ static int sidereal_houses_trad(double tjde,
451
+ double armc,
452
+ double eps,
453
+ double nutl,
454
+ double lat,
455
+ int hsys,
456
+ double *cusp,
457
+ double *ascmc)
458
+ {
459
+ int i, retc = OK;
460
+ double ay;
461
+ int ito;
462
+ int ihs = toupper(hsys);
463
+ int ihs2 = ihs;
464
+ ay = swe_get_ayanamsa(tjde);
465
+ if (ihs == 'G')
466
+ ito = 36;
467
+ else
468
+ ito = 12;
469
+ if (ihs == 'W') /* whole sign houses: treat as 'E' and fix later */
470
+ ihs2 = 'E';
471
+ retc = swe_houses_armc(armc, lat, eps, ihs2, cusp, ascmc);
472
+ for (i = 1; i <= ito; i++) {
473
+ cusp[i] = swe_degnorm(cusp[i] - ay - nutl);
474
+ if (ihs == 'W') /* whole sign houses */
475
+ cusp[i] -= fmod(cusp[i], 30);
476
+ }
477
+ for (i = 0; i < SE_NASCMC; i++) {
478
+ if (i == 2) /* armc */
479
+ continue;
480
+ ascmc[i] = swe_degnorm(ascmc[i] - ay - nutl);
481
+ }
482
+ return retc;
483
+ }
484
+
485
+ /*
486
+ * this function is required for very special computations
487
+ * where no date is given for house calculation,
488
+ * e.g. for composite charts or progressive charts.
489
+ * cusps are returned in double cusp[13],
490
+ * or cusp[37] with house system 'G'.
491
+ * cusp[1...12] houses 1 - 12
492
+ * additional points are returned in ascmc[10].
493
+ * ascmc[0] = ascendant
494
+ * ascmc[1] = mc
495
+ * ascmc[2] = armc
496
+ * ascmc[3] = vertex
497
+ * ascmc[4] = equasc * "equatorial ascendant" *
498
+ * ascmc[5] = coasc1 * "co-ascendant" (W. Koch) *
499
+ * ascmc[6] = coasc2 * "co-ascendant" (M. Munkasey) *
500
+ * ascmc[7] = polasc * "polar ascendant" (M. Munkasey) *
501
+ */
502
+ int FAR PASCAL_CONV swe_houses_armc(
503
+ double armc,
504
+ double geolat,
505
+ double eps,
506
+ int hsys,
507
+ double *cusp,
508
+ double *ascmc)
509
+ {
510
+ struct houses h;
511
+ int i, retc = 0;
512
+ int ito;
513
+ if (toupper(hsys) == 'G')
514
+ ito = 36;
515
+ else
516
+ ito = 12;
517
+ armc = swe_degnorm(armc);
518
+ retc = CalcH(armc,
519
+ geolat,
520
+ eps,
521
+ (char)hsys, 2, &h);
522
+ cusp[0] = 0;
523
+ for (i = 1; i <= ito; i++) {
524
+ cusp[i] = h.cusp[i];
525
+ }
526
+ ascmc[0] = h.ac; /* Asc */
527
+ ascmc[1] = h.mc; /* Mid */
528
+ ascmc[2] = armc;
529
+ ascmc[3] = h.vertex;
530
+ ascmc[4] = h.equasc;
531
+ ascmc[5] = h.coasc1; /* "co-ascendant" (W. Koch) */
532
+ ascmc[6] = h.coasc2; /* "co-ascendant" (M. Munkasey) */
533
+ ascmc[7] = h.polasc; /* "polar ascendant" (M. Munkasey) */
534
+ for (i = SE_NASCMC; i < 10; i++)
535
+ ascmc[i] = 0;
536
+ #ifdef TRACE
537
+ swi_open_trace(NULL);
538
+ if (swi_trace_count <= TRACE_COUNT_MAX) {
539
+ if (swi_fp_trace_c != NULL) {
540
+ fputs("\n/*SWE_HOUSES_ARMC*/\n", swi_fp_trace_c);
541
+ fprintf(swi_fp_trace_c, " armc = %.9f;", armc);
542
+ fprintf(swi_fp_trace_c, " geolat = %.9f;", geolat);
543
+ fprintf(swi_fp_trace_c, " eps = %.9f;", eps);
544
+ fprintf(swi_fp_trace_c, " hsys = %d;\n", hsys);
545
+ fprintf(swi_fp_trace_c, " retc = swe_houses_armc(armc, geolat, eps, hsys, cusp, ascmc);\n");
546
+ fputs(" printf(\"swe_houses_armc: %f\\t%f\\t%f\\t%c\\t\\n\", ", swi_fp_trace_c);
547
+ fputs(" armc, geolat, eps, hsys);\n", swi_fp_trace_c);
548
+ fputs(" printf(\"retc = %d\\n\", retc);\n", swi_fp_trace_c);
549
+ fputs(" printf(\"cusp:\\n\");\n", swi_fp_trace_c);
550
+ fputs(" for (i = 0; i < 12; i++)\n", swi_fp_trace_c);
551
+ fputs(" printf(\" %d\\t%f\\n\", i, cusp[i]);\n", swi_fp_trace_c);
552
+ fputs(" printf(\"ascmc:\\n\");\n", swi_fp_trace_c);
553
+ fputs(" for (i = 0; i < 10; i++)\n", swi_fp_trace_c);
554
+ fputs(" printf(\" %d\\t%f\\n\", i, ascmc[i]);\n", swi_fp_trace_c);
555
+ fflush(swi_fp_trace_c);
556
+ }
557
+ if (swi_fp_trace_out != NULL) {
558
+ fprintf(swi_fp_trace_out, "swe_houses_armc: %f\t%f\t%f\t%c\t\n", armc, geolat, eps, hsys);
559
+ fprintf(swi_fp_trace_out, "retc = %d\n", retc);
560
+ fputs("cusp:\n", swi_fp_trace_out);
561
+ for (i = 0; i < 12; i++)
562
+ fprintf(swi_fp_trace_out, " %d\t%f\n", i, cusp[i]);
563
+ fputs("ascmc:\n", swi_fp_trace_out);
564
+ for (i = 0; i < 10; i++)
565
+ fprintf(swi_fp_trace_out, " %d\t%f\n", i, ascmc[i]);
566
+ fflush(swi_fp_trace_out);
567
+ }
568
+ }
569
+ #endif
570
+ #if 0
571
+ /* for test of swe_house_pos().
572
+ * 1st house will be 0, second 30, etc. */
573
+ for (i = 1; i <=12; i++) {
574
+ double x[6];
575
+ x[0] = cusp[i]; x[1] = 0; x[2] = 1;
576
+ cusp[i] = (swe_house_pos(armc, geolat, eps, hsys, x, NULL) - 1) * 30;
577
+ }
578
+ #endif
579
+ return retc;
580
+ }
581
+
582
+ static int CalcH(
583
+ double th, double fi, double ekl, char hsy,
584
+ int iteration_count, struct houses *hsp )
585
+ /* *********************************************************
586
+ * Arguments: th = sidereal time (angle 0..360 degrees
587
+ * hsy = letter code for house system;
588
+ * A equal
589
+ * E equal
590
+ * B Alcabitius
591
+ * C Campanus
592
+ * H horizon / azimut
593
+ * K Koch
594
+ * O Porphyry
595
+ * P Placidus
596
+ * R Regiomontanus
597
+ * V equal Vehlow
598
+ * W equal, whole sign
599
+ * X axial rotation system/ Meridian houses
600
+ * G 36 Gauquelin sectors
601
+ * U Krusinski-Pisa
602
+ * fi = geographic latitude
603
+ * ekl = obliquity of the ecliptic
604
+ * iteration_count = number of iterations in
605
+ * Placidus calculation; can be 1 or 2.
606
+ * *********************************************************
607
+ * Koch and Placidus don't work in the polar circle.
608
+ * We swap MC/IC so that MC is always before AC in the zodiac
609
+ * We than divide the quadrants into 3 equal parts.
610
+ * *********************************************************
611
+ * All angles are expressed in degrees.
612
+ * Special trigonometric functions sind, cosd etc. are
613
+ * implemented for arguments in degrees.
614
+ ***********************************************************/
615
+ {
616
+ double tane, tanfi, cosfi, tant, sina, cosa, th2;
617
+ double a, c, f, fh1, fh2, xh1, xh2, rectasc, ad3, acmc, vemc;
618
+ int i, ih, ih2, retc = OK;
619
+ double sine, cose;
620
+ double x[3], krHorizonLon; /* BK 14.02.2006 */
621
+ cose = cosd(ekl);
622
+ sine = sind(ekl);
623
+ tane = tand(ekl);
624
+ /* north and south poles */
625
+ if (fabs(fabs(fi) - 90) < VERY_SMALL) {
626
+ if (fi < 0)
627
+ fi = -90 + VERY_SMALL;
628
+ else
629
+ fi = 90 - VERY_SMALL;
630
+ }
631
+ tanfi = tand(fi);
632
+ /* mc */
633
+ if (fabs(th - 90) > VERY_SMALL
634
+ && fabs(th - 270) > VERY_SMALL) {
635
+ tant = tand(th);
636
+ hsp->mc = atand(tant / cose);
637
+ if (th > 90 && th <= 270)
638
+ hsp->mc = swe_degnorm(hsp->mc + 180);
639
+ } else {
640
+ if (fabs(th - 90) <= VERY_SMALL)
641
+ hsp->mc = 90;
642
+ else
643
+ hsp->mc = 270;
644
+ } /* if */
645
+ hsp->mc = swe_degnorm(hsp->mc);
646
+ /* ascendant */
647
+ hsp->ac = Asc1 (th + 90, fi, sine, cose);
648
+ hsp->cusp[1] = hsp->ac;
649
+ hsp->cusp[10] = hsp->mc;
650
+ if (hsy > 95) hsy = (char) (hsy - 32);/* translate into capital letter */
651
+ switch (hsy) {
652
+ case 'A': /* equal houses */
653
+ case 'E':
654
+ /*
655
+ * within polar circle we swap AC/DC if AC is on wrong side
656
+ */
657
+ acmc = swe_difdeg2n(hsp->ac, hsp->mc);
658
+ if (acmc < 0) {
659
+ hsp->ac = swe_degnorm(hsp->ac + 180);
660
+ hsp->cusp[1] = hsp->ac;
661
+ }
662
+ for (i = 2; i <=12; i++)
663
+ hsp->cusp [i] = swe_degnorm(hsp->cusp [1] + (i-1) * 30);
664
+ break;
665
+ case 'C': /* Campanus houses and Horizon or Azimut system */
666
+ case 'H':
667
+ if (hsy == 'H') {
668
+ if (fi > 0)
669
+ fi = 90 - fi;
670
+ else
671
+ fi = -90 - fi;
672
+ /* equator */
673
+ if (fabs(fabs(fi) - 90) < VERY_SMALL) {
674
+ if (fi < 0)
675
+ fi = -90 + VERY_SMALL;
676
+ else
677
+ fi = 90 - VERY_SMALL;
678
+ }
679
+ th = swe_degnorm(th + 180);
680
+ }
681
+ fh1 = asind(sind (fi) / 2);
682
+ fh2 = asind(sqrt (3.0) / 2 * sind(fi));
683
+ cosfi = cosd(fi);
684
+ if (fabs(cosfi) == 0) { /* '==' should be save! */
685
+ if (fi > 0)
686
+ xh1 = xh2 = 90; /* cosfi = VERY_SMALL; */
687
+ else
688
+ xh1 = xh2 = 270; /* cosfi = -VERY_SMALL; */
689
+ } else {
690
+ xh1 = atand(sqrt (3.0) / cosfi);
691
+ xh2 = atand(1 / sqrt (3.0) / cosfi);
692
+ }
693
+ hsp->cusp [11] = Asc1 (th + 90 - xh1, fh1, sine, cose);
694
+ hsp->cusp [12] = Asc1 (th + 90 - xh2, fh2, sine, cose);
695
+ if (hsy == 'H')
696
+ hsp->cusp [1] = Asc1 (th + 90, fi, sine, cose);
697
+ hsp->cusp [2] = Asc1 (th + 90 + xh2, fh2, sine, cose);
698
+ hsp->cusp [3] = Asc1 (th + 90 + xh1, fh1, sine, cose);
699
+ /* within polar circle, when mc sinks below horizon and
700
+ * ascendant changes to western hemisphere, all cusps
701
+ * must be added 180 degrees.
702
+ * houses will be in clockwise direction */
703
+ if (fabs(fi) >= 90 - ekl) { /* within polar circle */
704
+ acmc = swe_difdeg2n(hsp->ac, hsp->mc);
705
+ if (acmc < 0) {
706
+ hsp->ac = swe_degnorm(hsp->ac + 180);
707
+ hsp->mc = swe_degnorm(hsp->mc + 180);
708
+ for (i = 1; i <= 12; i++)
709
+ hsp->cusp[i] = swe_degnorm(hsp->cusp[i] + 180);
710
+ }
711
+ }
712
+ if (hsy == 'H') {
713
+ for (i = 1; i <= 3; i++)
714
+ hsp->cusp[i] = swe_degnorm(hsp->cusp[i] + 180);
715
+ for (i = 11; i <= 12; i++)
716
+ hsp->cusp[i] = swe_degnorm(hsp->cusp[i] + 180);
717
+ /* restore fi and th */
718
+ if (fi > 0)
719
+ fi = 90 - fi;
720
+ else
721
+ fi = -90 - fi;
722
+ th = swe_degnorm(th + 180);
723
+ }
724
+ break;
725
+ case 'K': /* Koch houses */
726
+ if (fabs(fi) >= 90 - ekl) { /* within polar circle */
727
+ retc = ERR;
728
+ goto porphyry;
729
+ }
730
+ sina = sind(hsp->mc) * sine / cosd(fi);
731
+ if (sina > 1) sina = 1;
732
+ if (sina < -1) sina = -1;
733
+ cosa = sqrt(1 - sina * sina); /* always >> 0 */
734
+ c = atand(tanfi / cosa);
735
+ ad3 = asind(sind(c) * sina) / 3.0;
736
+ hsp->cusp [11] = Asc1 (th + 30 - 2 * ad3, fi, sine, cose);
737
+ hsp->cusp [12] = Asc1 (th + 60 - ad3, fi, sine, cose);
738
+ hsp->cusp [2] = Asc1 (th + 120 + ad3, fi, sine, cose);
739
+ hsp->cusp [3] = Asc1 (th + 150 + 2 * ad3, fi, sine, cose);
740
+ break;
741
+ case 'O': /* Porphyry houses */
742
+ porphyry:
743
+ /*
744
+ * within polar circle we swap AC/DC if AC is on wrong side
745
+ */
746
+ acmc = swe_difdeg2n(hsp->ac, hsp->mc);
747
+ if (acmc < 0) {
748
+ hsp->ac = swe_degnorm(hsp->ac + 180);
749
+ hsp->cusp[1] = hsp->ac;
750
+ acmc = swe_difdeg2n(hsp->ac, hsp->mc);
751
+ }
752
+ hsp->cusp [2] = swe_degnorm(hsp->ac + (180 - acmc) / 3);
753
+ hsp->cusp [3] = swe_degnorm(hsp->ac + (180 - acmc) / 3 * 2);
754
+ hsp->cusp [11] = swe_degnorm(hsp->mc + acmc / 3);
755
+ hsp->cusp [12] = swe_degnorm(hsp->mc + acmc / 3 * 2);
756
+ break;
757
+ case 'R': /* Regiomontanus houses */
758
+ fh1 = atand (tanfi * 0.5);
759
+ fh2 = atand (tanfi * cosd(30));
760
+ hsp->cusp [11] = Asc1 (30 + th, fh1, sine, cose);
761
+ hsp->cusp [12] = Asc1 (60 + th, fh2, sine, cose);
762
+ hsp->cusp [2] = Asc1 (120 + th, fh2, sine, cose);
763
+ hsp->cusp [3] = Asc1 (150 + th, fh1, sine, cose);
764
+ /* within polar circle, when mc sinks below horizon and
765
+ * ascendant changes to western hemisphere, all cusps
766
+ * must be added 180 degrees.
767
+ * houses will be in clockwise direction */
768
+ if (fabs(fi) >= 90 - ekl) { /* within polar circle */
769
+ acmc = swe_difdeg2n(hsp->ac, hsp->mc);
770
+ if (acmc < 0) {
771
+ hsp->ac = swe_degnorm(hsp->ac + 180);
772
+ hsp->mc = swe_degnorm(hsp->mc + 180);
773
+ for (i = 1; i <= 12; i++)
774
+ hsp->cusp[i] = swe_degnorm(hsp->cusp[i] + 180);
775
+ }
776
+ }
777
+ break;
778
+ case 'T': /* 'topocentric' houses */
779
+ fh1 = atand (tanfi / 3.0);
780
+ fh2 = atand (tanfi * 2.0 / 3.0);
781
+ hsp->cusp [11] = Asc1 (30 + th, fh1, sine, cose);
782
+ hsp->cusp [12] = Asc1 (60 + th, fh2, sine, cose);
783
+ hsp->cusp [2] = Asc1 (120 + th, fh2, sine, cose);
784
+ hsp->cusp [3] = Asc1 (150 + th, fh1, sine, cose);
785
+ /* within polar circle, when mc sinks below horizon and
786
+ * ascendant changes to western hemisphere, all cusps
787
+ * must be added 180 degrees.
788
+ * houses will be in clockwise direction */
789
+ if (fabs(fi) >= 90 - ekl) { /* within polar circle */
790
+ acmc = swe_difdeg2n(hsp->ac, hsp->mc);
791
+ if (acmc < 0) {
792
+ hsp->ac = swe_degnorm(hsp->ac + 180);
793
+ hsp->mc = swe_degnorm(hsp->mc + 180);
794
+ for (i = 1; i <= 12; i++)
795
+ hsp->cusp[i] = swe_degnorm(hsp->cusp[i] + 180);
796
+ }
797
+ }
798
+ break;
799
+ case 'V': /* equal houses after Vehlow */
800
+ /*
801
+ * within polar circle we swap AC/DC if AC is on wrong side
802
+ */
803
+ acmc = swe_difdeg2n(hsp->ac, hsp->mc);
804
+ if (acmc < 0) {
805
+ hsp->ac = swe_degnorm(hsp->ac + 180);
806
+ hsp->cusp[1] = hsp->ac;
807
+ }
808
+ hsp->cusp [1] = swe_degnorm(hsp->ac - 15);
809
+ for (i = 2; i <=12; i++)
810
+ hsp->cusp [i] = swe_degnorm(hsp->cusp [1] + (i-1) * 30);
811
+ break;
812
+ case 'W': /* equal, whole-sign houses */
813
+ /*
814
+ * within polar circle we swap AC/DC if AC is on wrong side
815
+ */
816
+ acmc = swe_difdeg2n(hsp->ac, hsp->mc);
817
+ if (acmc < 0) {
818
+ hsp->ac = swe_degnorm(hsp->ac + 180);
819
+ hsp->cusp[1] = hsp->ac;
820
+ }
821
+ hsp->cusp [1] = hsp->ac - fmod(hsp->ac, 30);
822
+ for (i = 2; i <=12; i++)
823
+ hsp->cusp [i] = swe_degnorm(hsp->cusp [1] + (i-1) * 30);
824
+ break;
825
+ case 'X': {
826
+ /*
827
+ * Meridian or axial rotation system:
828
+ * ecliptic points whose rectascensions
829
+ * are armc + n * 30
830
+ */
831
+ int j;
832
+ double a = th;
833
+ for (i = 1; i <= 12; i++) {
834
+ j = i + 10;
835
+ if (j > 12) j -= 12;
836
+ a = swe_degnorm(a + 30);
837
+ if (fabs(a - 90) > VERY_SMALL
838
+ && fabs(a - 270) > VERY_SMALL) {
839
+ tant = tand(a);
840
+ hsp->cusp[j] = atand(tant / cose);
841
+ if (a > 90 && a <= 270)
842
+ hsp->cusp[j] = swe_degnorm(hsp->cusp[j] + 180);
843
+ } else {
844
+ if (fabs(a - 90) <= VERY_SMALL)
845
+ hsp->cusp[j] = 90;
846
+ else
847
+ hsp->cusp[j] = 270;
848
+ } /* if */
849
+ hsp->cusp[j] = swe_degnorm(hsp->cusp[j]);
850
+ }
851
+ break; }
852
+ case 'M': {
853
+ /*
854
+ * Morinus
855
+ * points of the equator (armc + n * 30) are transformed
856
+ * into the ecliptic coordinate system
857
+ */
858
+ int j;
859
+ double a = th;
860
+ double x[3];
861
+ for (i = 1; i <= 12; i++) {
862
+ j = i + 10;
863
+ if (j > 12) j -= 12;
864
+ a = swe_degnorm(a + 30);
865
+ x[0] = a;
866
+ x[1] = 0;
867
+ swe_cotrans(x, x, ekl);
868
+ hsp->cusp[j] = x[0];
869
+ }
870
+ break; }
871
+ case 'B': { /* Alcabitius */
872
+ /* created by Alois 17-sep-2000, followed example in Matrix
873
+ electrical library. The code reproduces the example!
874
+ See http://www.astro.com/cgi/adict.cgi query: alcabitius
875
+ in the resuotl page, see program code example.
876
+ I think the Alcabitius code in Walter Pullen's Astrolog 5.40
877
+ is wrong, because he remains in RA and forgets the transform to
878
+ the ecliptic. */
879
+ double dek, r, sna, sda, sn3, sd3;
880
+ #if FALSE
881
+ if (fabs(fi) >= 90 - ekl) { /* within polar circle */
882
+ retc = ERR;
883
+ goto porphyry;
884
+ }
885
+ #endif
886
+ acmc = swe_difdeg2n(hsp->ac, hsp->mc);
887
+ if (acmc < 0) {
888
+ hsp->ac = swe_degnorm(hsp->ac + 180);
889
+ hsp->cusp[1] = hsp->ac;
890
+ acmc = swe_difdeg2n(hsp->ac, hsp->mc);
891
+ }
892
+ dek = asind(sind(hsp->ac) * sine); /* declination of Ascendant */
893
+ /* must treat the case fi == 90 or -90 */
894
+ r = -tanfi * tand(dek);
895
+ /* must treat the case of abs(r) > 1; probably does not happen
896
+ * because dek becomes smaller when fi is large, as ac is close to
897
+ * zero Aries/Libra in that case.
898
+ */
899
+ sda = acos(r) * RADTODEG; /* semidiurnal arc, measured on equator */
900
+ sna = 180 - sda; /* complement, seminocturnal arc */
901
+ sd3 = sda / 3;
902
+ sn3 = sna / 3;
903
+ rectasc = swe_degnorm(th + sd3); /* cusp 11 */
904
+ /* project rectasc onto eclipitic with pole height 0, i.e. along the
905
+ declination circle */
906
+ hsp->cusp [11] = Asc1 (rectasc, 0, sine, cose);
907
+ rectasc = swe_degnorm(th + 2 * sd3); /* cusp 12 */
908
+ hsp->cusp [12] = Asc1 (rectasc, 0, sine, cose);
909
+ rectasc = swe_degnorm(th + 180 - 2 * sn3); /* cusp 2 */
910
+ hsp->cusp [2] = Asc1 (rectasc, 0, sine, cose);
911
+ rectasc = swe_degnorm(th + 180 - sn3); /* cusp 3 */
912
+ hsp->cusp [3] = Asc1 (rectasc, 0, sine, cose);
913
+ }
914
+ break;
915
+ case 'G': /* 36 Gauquelin sectors */
916
+ for (i = 1; i <= 36; i++) {
917
+ hsp->cusp[i] = 0;
918
+ }
919
+ if (fabs(fi) >= 90 - ekl) { /* within polar circle */
920
+ retc = ERR;
921
+ goto porphyry;
922
+ }
923
+ /*************** forth/second quarter ***************/
924
+ /* note: Gauquelin sectors are counted in clockwise direction */
925
+ a = asind(tand(fi) * tane);
926
+ for (ih = 2; ih <= 9; ih++) {
927
+ ih2 = 10 - ih;
928
+ fh1 = atand(sind(a * ih2 / 9) / tane);
929
+ rectasc = swe_degnorm((90 / 9) * ih2 + th);
930
+ tant = tand(asind(sine * sind(Asc1 (rectasc, fh1, sine, cose))));
931
+ if (fabs(tant) < VERY_SMALL) {
932
+ hsp->cusp[ih] = rectasc;
933
+ } else {
934
+ /* pole height */
935
+ f = atand(sind(asind(tanfi * tant) * ih2 / 9) /tant);
936
+ hsp->cusp [ih] = Asc1 (rectasc, f, sine, cose);
937
+ for (i = 1; i <= iteration_count; i++) {
938
+ tant = tand(asind(sine * sind(hsp->cusp[ih])));
939
+ if (fabs(tant) < VERY_SMALL) {
940
+ hsp->cusp[ih] = rectasc;
941
+ break;
942
+ }
943
+ /* pole height */
944
+ f = atand(sind(asind(tanfi * tant) * ih2 / 9) / tant);
945
+ hsp->cusp[ih] = Asc1 (rectasc, f, sine, cose);
946
+ }
947
+ }
948
+ hsp->cusp[ih+18] = swe_degnorm(hsp->cusp[ih] + 180);
949
+ }
950
+ /*************** first/third quarter ***************/
951
+ for (ih = 29; ih <= 36; ih++) {
952
+ ih2 = ih - 28;
953
+ fh1 = atand(sind(a * ih2 / 9) / tane);
954
+ rectasc = swe_degnorm(180 - ih2 * 90 / 9 + th);
955
+ tant = tand(asind(sine * sind(Asc1 (rectasc, fh1, sine, cose))));
956
+ if (fabs(tant) < VERY_SMALL) {
957
+ hsp->cusp[ih] = rectasc;
958
+ } else {
959
+ f = atand(sind(asind(tanfi * tant) * ih2 / 9) / tant);
960
+ /* pole height */
961
+ hsp->cusp[ih] = Asc1 (rectasc, f, sine, cose);
962
+ for (i = 1; i <= iteration_count; i++) {
963
+ tant = tand(asind(sine * sind(hsp->cusp[ih])));
964
+ if (fabs(tant) < VERY_SMALL) {
965
+ hsp->cusp[ih] = rectasc;
966
+ break;
967
+ }
968
+ f = atand(sind(asind(tanfi * tant) * ih2 / 9) / tant);
969
+ /* pole height */
970
+ hsp->cusp[ih] = Asc1 (rectasc, f, sine, cose);
971
+ }
972
+ }
973
+ hsp->cusp[ih-18] = swe_degnorm(hsp->cusp[ih] + 180);
974
+ }
975
+ hsp->cusp[1] = hsp->ac;
976
+ hsp->cusp[10] = hsp->mc;
977
+ hsp->cusp[19] = swe_degnorm(hsp->ac + 180);
978
+ hsp->cusp[28] = swe_degnorm(hsp->mc + 180);
979
+ break;
980
+ case 'U': /* Krusinski-Pisa */
981
+ /*
982
+ * The following code was written by Bogdan Krusinski in 2006.
983
+ * bogdan@astrologia.pl
984
+ *
985
+ * Definition:
986
+ * "Krusinski - house system based on the great circle passing through
987
+ * ascendant and zenith. This circle is divided into 12 equal parts
988
+ * (1st cusp is ascendent, 10th cusp is zenith), then the resulting
989
+ * points are projected onto the ecliptic through meridian circles.
990
+ * The house cusps in space are half-circles perpendicular to the equator
991
+ * and running from the north to the south celestial pole through the
992
+ * resulting cusp points on the house circle. The points where they
993
+ * cross the ecliptic mark the ecliptic house cusps."
994
+ *
995
+ * Description of the algorithm:
996
+ * Transform into great circle running through Asc and zenit (where arc
997
+ * between Asc and zenith is always 90 deg), and then return with
998
+ * house cusps into ecliptic. Eg. solve trigonometrical triangle
999
+ * with three transformations and two rotations starting from ecliptic.
1000
+ * House cusps in space are meridian circles.
1001
+ *
1002
+ * Notes:
1003
+ * 1. In this definition we assume MC on ecliptic as point where
1004
+ * half-meridian (from north to south pole) cuts ecliptic,
1005
+ * so MC may be below horizon in arctic regions.
1006
+ * 2. Houses could be calculated in all latitudes except the poles
1007
+ * themselves (-90,90) and points on arctic circle in cases where
1008
+ * ecliptic is equal to horizon and then ascendant is undefined.
1009
+ * But ascendant when 'horizon=ecliptic' could be deduced as limes
1010
+ * from both sides of that point and houses with that provision can
1011
+ * be computed also there.
1012
+ *
1013
+ * Starting values for calculations:
1014
+ * - Asc ecliptic longitude
1015
+ * - right ascension of MC (RAMC)
1016
+ * - geographic latitude.
1017
+ */
1018
+ /*
1019
+ * within polar circle we swap AC/DC if AC is on wrong side
1020
+ */
1021
+ acmc = swe_difdeg2n(hsp->ac, hsp->mc);
1022
+ if (acmc < 0) {
1023
+ hsp->ac = swe_degnorm(hsp->ac + 180);
1024
+ }
1025
+ /* A0. Start point - ecliptic coords of ascendant */
1026
+ x[0] = hsp->ac; /* Asc longitude */
1027
+ x[1] = 0.0; /* Asc declination */
1028
+ x[2] = 1.0; /* Radius to test validity of subsequent transformations. */
1029
+ swe_cotrans(x, x, -ekl); /* A1. Transform into equatorial coords */
1030
+ x[0] = x[0] - (th-90); /* A2. Rotate */
1031
+ swe_cotrans(x, x, -(90-fi)); /* A3. Transform into horizontal coords */
1032
+ krHorizonLon = x[0]; /* ...save asc lon on horizon to get back later with house cusp */
1033
+ x[0] = x[0] - x[0]; /* A4. Rotate */
1034
+ swe_cotrans(x, x, -90); /* A5. Transform into this house system great circle (asc-zenith) */
1035
+ /* As it is house circle now, simple add 30 deg increments... */
1036
+ for(i = 0; i < 6; i++) {
1037
+ /* B0. Set 'n-th' house cusp.
1038
+ * Note that IC/MC are also calculated here to check
1039
+ * if really this is the asc-zenith great circle. */
1040
+ x[0] = 30.0*i;
1041
+ x[1] = 0.0;
1042
+ swe_cotrans(x, x, 90); /* B1. Transform back into horizontal coords */
1043
+ x[0] = x[0] + krHorizonLon; /* B2. Rotate back. */
1044
+ swe_cotrans(x, x, 90-fi); /* B3. Transform back into equatorial coords */
1045
+ x[0] = swe_degnorm(x[0] + (th-90)); /* B4. Rotate back -> RA of house cusp as result. */
1046
+ /* B5. Where's this house cusp on ecliptic? */
1047
+ /* ... so last but not least - get ecliptic longitude of house cusp: */
1048
+ hsp->cusp[i+1] = atand(tand(x[0])/cosd(ekl));
1049
+ if (x[0] > 90 && x[0] <= 270)
1050
+ hsp->cusp[i+1] = swe_degnorm(hsp->cusp[i+1] + 180);
1051
+ hsp->cusp[i+1] = swe_degnorm(hsp->cusp[i+1]);
1052
+ hsp->cusp[i+7] = swe_degnorm(hsp->cusp[i+1]+180);
1053
+ }
1054
+ break;
1055
+ default: /* Placidus houses */
1056
+ #ifndef _WINDOWS
1057
+ if (hsy != 'P')
1058
+ fprintf (stderr, "swe_houses: make Placidus, unknown key %c\n", hsy);
1059
+ #endif
1060
+ if (fabs(fi) >= 90 - ekl) { /* within polar circle */
1061
+ retc = ERR;
1062
+ goto porphyry;
1063
+ }
1064
+ a = asind(tand(fi) * tane);
1065
+ fh1 = atand(sind(a / 3) / tane);
1066
+ fh2 = atand(sind(a * 2 / 3) / tane);
1067
+ /* ************ house 11 ******************** */
1068
+ rectasc = swe_degnorm(30 + th);
1069
+ tant = tand(asind(sine * sind(Asc1 (rectasc, fh1, sine, cose))));
1070
+ if (fabs(tant) < VERY_SMALL) {
1071
+ hsp->cusp [11] = rectasc;
1072
+ } else {
1073
+ /* pole height */
1074
+ f = atand(sind(asind(tanfi * tant) / 3) /tant);
1075
+ hsp->cusp [11] = Asc1 (rectasc, f, sine, cose);
1076
+ for (i = 1; i <= iteration_count; i++) {
1077
+ tant = tand(asind(sine * sind(hsp->cusp [11])));
1078
+ if (fabs(tant) < VERY_SMALL) {
1079
+ hsp->cusp [11] = rectasc;
1080
+ break;
1081
+ }
1082
+ /* pole height */
1083
+ f = atand(sind(asind(tanfi * tant) / 3) / tant);
1084
+ hsp->cusp [11] = Asc1 (rectasc, f, sine, cose);
1085
+ }
1086
+ }
1087
+ /* ************ house 12 ******************** */
1088
+ rectasc = swe_degnorm(60 + th);
1089
+ tant = tand(asind(sine*sind(Asc1 (rectasc, fh2, sine, cose))));
1090
+ if (fabs(tant) < VERY_SMALL) {
1091
+ hsp->cusp [12] = rectasc;
1092
+ } else {
1093
+ f = atand(sind(asind(tanfi * tant) / 1.5) / tant);
1094
+ /* pole height */
1095
+ hsp->cusp [12] = Asc1 (rectasc, f, sine, cose);
1096
+ for (i = 1; i <= iteration_count; i++) {
1097
+ tant = tand(asind(sine * sind(hsp->cusp [12])));
1098
+ if (fabs(tant) < VERY_SMALL) {
1099
+ hsp->cusp [12] = rectasc;
1100
+ break;
1101
+ }
1102
+ f = atand(sind(asind(tanfi * tant) / 1.5) / tant);
1103
+ /* pole height */
1104
+ hsp->cusp [12] = Asc1 (rectasc, f, sine, cose);
1105
+ }
1106
+ }
1107
+ /* ************ house 2 ******************** */
1108
+ rectasc = swe_degnorm(120 + th);
1109
+ tant = tand(asind(sine * sind(Asc1 (rectasc, fh2, sine, cose))));
1110
+ if (fabs(tant) < VERY_SMALL) {
1111
+ hsp->cusp [2] = rectasc;
1112
+ } else {
1113
+ f = atand(sind(asind(tanfi * tant) / 1.5) / tant);
1114
+ /* pole height */
1115
+ hsp->cusp [2] = Asc1 (rectasc, f, sine, cose);
1116
+ for (i = 1; i <= iteration_count; i++) {
1117
+ tant = tand(asind(sine * sind(hsp->cusp [2])));
1118
+ if (fabs(tant) < VERY_SMALL) {
1119
+ hsp->cusp [2] = rectasc;
1120
+ break;
1121
+ }
1122
+ f = atand(sind(asind(tanfi * tant) / 1.5) / tant);
1123
+ /* pole height */
1124
+ hsp->cusp [2] = Asc1 (rectasc, f, sine, cose);
1125
+ }
1126
+ }
1127
+ /* ************ house 3 ******************** */
1128
+ rectasc = swe_degnorm(150 + th);
1129
+ tant = tand(asind(sine * sind(Asc1 (rectasc, fh1, sine, cose))));
1130
+ if (fabs(tant) < VERY_SMALL) {
1131
+ hsp->cusp [3] = rectasc;
1132
+ } else {
1133
+ f = atand(sind(asind(tanfi * tant) / 3) / tant);
1134
+ /* pole height */
1135
+ hsp->cusp [3] = Asc1(rectasc, f, sine, cose);
1136
+ for (i = 1; i <= iteration_count; i++) {
1137
+ tant = tand(asind(sine * sind(hsp->cusp [3])));
1138
+ if (fabs(tant) < VERY_SMALL) {
1139
+ hsp->cusp [3] = rectasc;
1140
+ break;
1141
+ }
1142
+ f = atand(sind(asind(tanfi * tant) / 3) / tant);
1143
+ /* pole height */
1144
+ hsp->cusp [3] = Asc1 (rectasc, f, sine, cose);
1145
+ }
1146
+ }
1147
+ break;
1148
+ } /* end switch */
1149
+ if (hsy != 'G') {
1150
+ hsp->cusp [4] = swe_degnorm(hsp->cusp [10] + 180);
1151
+ hsp->cusp [5] = swe_degnorm(hsp->cusp [11] + 180);
1152
+ hsp->cusp [6] = swe_degnorm(hsp->cusp [12] + 180);
1153
+ hsp->cusp [7] = swe_degnorm(hsp->cusp [1] + 180);
1154
+ hsp->cusp [8] = swe_degnorm(hsp->cusp [2] + 180);
1155
+ hsp->cusp [9] = swe_degnorm(hsp->cusp [3] + 180);
1156
+ }
1157
+ /* vertex */
1158
+ if (fi >= 0)
1159
+ f = 90 - fi;
1160
+ else
1161
+ f = -90 - fi;
1162
+ hsp->vertex = Asc1 (th - 90, f, sine, cose);
1163
+ /* with tropical latitudes, the vertex behaves strange,
1164
+ * in a similar way as the ascendant within the polar
1165
+ * circle. we keep it always on the western hemisphere.*/
1166
+ if (fabs(fi) <= ekl) {
1167
+ vemc = swe_difdeg2n(hsp->vertex, hsp->mc);
1168
+ if (vemc > 0)
1169
+ hsp->vertex = swe_degnorm(hsp->vertex + 180);
1170
+ }
1171
+ /*
1172
+ * some strange points:
1173
+ */
1174
+ /* equasc (equatorial ascendant) */
1175
+ th2 = swe_degnorm(th + 90);
1176
+ if (fabs(th2 - 90) > VERY_SMALL
1177
+ && fabs(th2 - 270) > VERY_SMALL) {
1178
+ tant = tand(th2);
1179
+ hsp->equasc = atand(tant / cose);
1180
+ if (th2 > 90 && th2 <= 270)
1181
+ hsp->equasc = swe_degnorm(hsp->equasc + 180);
1182
+ } else {
1183
+ if (fabs(th2 - 90) <= VERY_SMALL)
1184
+ hsp->equasc = 90;
1185
+ else
1186
+ hsp->equasc = 270;
1187
+ } /* if */
1188
+ hsp->equasc = swe_degnorm(hsp->equasc);
1189
+ /* "co-ascendant" W. Koch */
1190
+ hsp->coasc1 = swe_degnorm(Asc1 (th - 90, fi, sine, cose) + 180);
1191
+ /* "co-ascendant" M. Munkasey */
1192
+ if (fi >= 0)
1193
+ hsp->coasc2 = Asc1 (th + 90, 90 - fi, sine, cose);
1194
+ else /* southern hemisphere */
1195
+ hsp->coasc2 = Asc1 (th + 90, -90 - fi, sine, cose);
1196
+ /* "polar ascendant" M. Munkasey */
1197
+ hsp->polasc = Asc1 (th - 90, fi, sine, cose);
1198
+ return retc;
1199
+ } /* procedure houses */
1200
+
1201
+ /******************************/
1202
+ static double Asc1 (double x1, double f, double sine, double cose)
1203
+ {
1204
+ int n;
1205
+ double ass;
1206
+ x1 = swe_degnorm(x1);
1207
+ n = (int) ((x1 / 90) + 1);
1208
+ if (n == 1)
1209
+ ass = ( Asc2 (x1, f, sine, cose));
1210
+ else if (n == 2)
1211
+ ass = (180 - Asc2 (180 - x1, - f, sine, cose));
1212
+ else if (n == 3)
1213
+ ass = (180 + Asc2 (x1 - 180, - f, sine, cose));
1214
+ else
1215
+ ass = (360 - Asc2 (360- x1, f, sine, cose));
1216
+ ass = swe_degnorm(ass);
1217
+ if (fabs(ass - 90) < VERY_SMALL) /* rounding, e.g.: if */
1218
+ ass = 90; /* fi = 0 & st = 0, ac = 89.999... */
1219
+ if (fabs(ass - 180) < VERY_SMALL)
1220
+ ass = 180;
1221
+ if (fabs(ass - 270) < VERY_SMALL) /* rounding, e.g.: if */
1222
+ ass = 270; /* fi = 0 & st = 0, ac = 89.999... */
1223
+ if (fabs(ass - 360) < VERY_SMALL)
1224
+ ass = 0;
1225
+ return ass;
1226
+ } /* Asc1 */
1227
+
1228
+ static double Asc2 (double x, double f, double sine, double cose)
1229
+ {
1230
+ double ass, sinx;
1231
+ ass = - tand(f) * sine + cose * cosd(x);
1232
+ if (fabs(ass) < VERY_SMALL)
1233
+ ass = 0;
1234
+ sinx = sind(x);
1235
+ if (fabs(sinx) < VERY_SMALL)
1236
+ sinx = 0;
1237
+ if (sinx == 0) {
1238
+ if (ass < 0)
1239
+ ass = -VERY_SMALL;
1240
+ else
1241
+ ass = VERY_SMALL;
1242
+ } else if (ass == 0) {
1243
+ if (sinx < 0)
1244
+ ass = -90;
1245
+ else
1246
+ ass = 90;
1247
+ } else {
1248
+ ass = atand(sinx / ass);
1249
+ }
1250
+ if (ass < 0)
1251
+ ass = 180 + ass;
1252
+ return (ass);
1253
+ } /* Asc2 */
1254
+
1255
+
1256
+ /* Computes the house position of a planet or another point,
1257
+ * in degrees: 0 - 30 = 1st house, 30 - 60 = 2nd house, etc.
1258
+ * armc sidereal time in degrees
1259
+ * geolat geographic latitude
1260
+ * eps true ecliptic obliquity
1261
+ * hsys house system character
1262
+ * xpin array of 6 doubles:
1263
+ * only the first two of them are used: ecl. long., lat.
1264
+ * serr error message area
1265
+ *
1266
+ * House position is returned by function.
1267
+ *
1268
+ * IMPORTANT: This function should NOT be used for sidereal astrology.
1269
+ * If you cannot avoid doing so, please note:
1270
+ * - The input longitudes (xpin) MUST always be tropical, even if you
1271
+ * are a siderealist.
1272
+ * - Sidereal and tropical house positions are identical for most house
1273
+ * systems, if a traditional definition of the sidereal zodiac is used
1274
+ * (sid = trop - ayanamsa).
1275
+ * - The function does NOT provide correct positions for Whole Sign houses.
1276
+ * - The function does NOT provide correct positions, if you use a
1277
+ * non-traditional sidereal method (where the sidereal plane is not
1278
+ * identical to the ecliptic of date) with a house system whose definition
1279
+ * is dependent on the ecliptic, such as:
1280
+ * equal, Porphyry, Alcabitius, Koch, Krusinski (all others should work).
1281
+ * The Swiss Ephemeris currently does not handle these cases.
1282
+ */
1283
+ double FAR PASCAL_CONV swe_house_pos(
1284
+ double armc, double geolat, double eps, int hsys, double *xpin, char *serr)
1285
+ {
1286
+ double xp[6], xeq[6], ra, de, mdd, mdn, sad, san;
1287
+ double hpos, sinad, ad, a, admc, adp, samc, demc, asc, mc, acmc, tant;
1288
+ double fh, ra0, tanfi, fac, dfac;
1289
+ double x[3], xasc[3], raep, raaz, oblaz, xtemp; /* BK 21.02.2006 */
1290
+ double sine = sind(eps);
1291
+ double cose = cosd(eps);
1292
+ AS_BOOL is_above_hor = FALSE;
1293
+ AS_BOOL is_invalid = FALSE;
1294
+ AS_BOOL is_circumpolar = FALSE;
1295
+ if (serr != NULL)
1296
+ *serr = '\0';
1297
+ hsys = toupper(hsys);
1298
+ xeq[0] = xpin[0];
1299
+ xeq[1] = xpin[1];
1300
+ xeq[2] = 1;
1301
+ swe_cotrans(xpin, xeq, -eps);
1302
+ ra = xeq[0];
1303
+ de = xeq[1];
1304
+ mdd = swe_degnorm(ra - armc);
1305
+ mdn = swe_degnorm(mdd + 180);
1306
+ if (mdd >= 180)
1307
+ mdd -= 360;
1308
+ if (mdn >= 180)
1309
+ mdn -= 360;
1310
+ /* xp[0] will contain the house position, a value between 0 and 360 */
1311
+ switch(hsys) {
1312
+ case 'A':
1313
+ case 'E':
1314
+ case 'V':
1315
+ case 'W':
1316
+ asc = Asc1 (swe_degnorm(armc + 90), geolat, sine, cose);
1317
+ demc = atand(sind(armc) * tand(eps));
1318
+ if (geolat >= 0 && 90 - geolat + demc < 0)
1319
+ asc = swe_degnorm(asc + 180);
1320
+ if (geolat < 0 && -90 - geolat + demc > 0)
1321
+ asc = swe_degnorm(asc + 180);
1322
+ xp[0] = swe_degnorm(xpin[0] - asc);
1323
+ if (hsys == 'V')
1324
+ xp[0] = swe_degnorm(xp[0] + 15);
1325
+ if (hsys == 'W')
1326
+ xp[0] = swe_degnorm(xp[0] + fmod(asc, 30));
1327
+ /* to make sure that a call with a house cusp position returns
1328
+ * a value within the house, 0.001" is added */
1329
+ xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
1330
+ hpos = xp[0] / 30.0 + 1;
1331
+ break;
1332
+ case 'O': /* Porphyry */
1333
+ case 'B': /* Alcabitius */
1334
+ asc = Asc1 (swe_degnorm(armc + 90), geolat, sine, cose);
1335
+ demc = atand(sind(armc) * tand(eps));
1336
+ /* mc */
1337
+ if (fabs(armc - 90) > VERY_SMALL
1338
+ && fabs(armc - 270) > VERY_SMALL) {
1339
+ tant = tand(armc);
1340
+ mc = swe_degnorm(atand(tant / cose));
1341
+ if (armc > 90 && armc <= 270)
1342
+ mc = swe_degnorm(mc + 180);
1343
+ } else {
1344
+ if (fabs(armc - 90) <= VERY_SMALL)
1345
+ mc = 90;
1346
+ else
1347
+ mc = 270;
1348
+ }
1349
+ /* while MC is always south,
1350
+ * Asc must always be in eastern hemisphere */
1351
+ if (geolat >= 0 && 90 - geolat + demc < 0) {
1352
+ asc = swe_degnorm(asc + 180);
1353
+ }
1354
+ if (geolat < 0 && -90 - geolat + demc > 0) {
1355
+ asc = swe_degnorm(asc + 180);
1356
+ }
1357
+ if (hsys == 'O') {
1358
+ xp[0] = swe_degnorm(xpin[0] - asc);
1359
+ /* to make sure that a call with a house cusp position returns
1360
+ * a value within the house, 0.001" is added */
1361
+ xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
1362
+ if (xp[0] < 180)
1363
+ hpos = 1;
1364
+ else {
1365
+ hpos = 7;
1366
+ xp[0] -= 180;
1367
+ }
1368
+ acmc = swe_difdeg2n(asc, mc);
1369
+ if (xp[0] < 180 - acmc)
1370
+ hpos += xp[0] * 3 / (180 - acmc);
1371
+ else
1372
+ hpos += 3 + (xp[0] - 180 + acmc) * 3 / acmc;
1373
+ } else { /* Alcabitius */
1374
+ double dek, r, sna, sda;
1375
+ dek = asind(sind(asc) * sine); /* declination of Ascendant */
1376
+ /* must treat the case fi == 90 or -90 */
1377
+ tanfi = tand(geolat);
1378
+ r = -tanfi * tand(dek);
1379
+ /* must treat the case of abs(r) > 1; probably does not happen
1380
+ * because dek becomes smaller when fi is large, as ac is close to
1381
+ * zero Aries/Libra in that case.
1382
+ */
1383
+ sda = acos(r) * RADTODEG; /* semidiurnal arc, measured on equator */
1384
+ sna = 180 - sda; /* complement, seminocturnal arc */
1385
+ if (mdd > 0) {
1386
+ if (mdd < sda)
1387
+ hpos = mdd * 90 / sda;
1388
+ else
1389
+ hpos = 90 + (mdd - sda) * 90 / sna;
1390
+ } else {
1391
+ if (mdd > -sna)
1392
+ hpos = 360 + mdd * 90 / sna;
1393
+ else
1394
+ hpos = 270 + (mdd + sna) * 90 / sda;
1395
+ }
1396
+ hpos = swe_degnorm(hpos - 90) / 30.0 + 1.0;
1397
+ if (hpos >= 13.0) hpos -= 12;
1398
+ }
1399
+ break;
1400
+ case 'X': /* Merdidian or axial rotation system */
1401
+ hpos = swe_degnorm(mdd - 90) / 30.0 + 1.0;
1402
+ break;
1403
+ case 'M': { /* Morinus */
1404
+ double a = xpin[0];
1405
+ if (fabs(a - 90) > VERY_SMALL
1406
+ && fabs(a - 270) > VERY_SMALL) {
1407
+ tant = tand(a);
1408
+ hpos = atand(tant / cose);
1409
+ if (a > 90 && a <= 270)
1410
+ hpos = swe_degnorm(hpos + 180);
1411
+ } else {
1412
+ if (fabs(a - 90) <= VERY_SMALL)
1413
+ hpos = 90;
1414
+ else
1415
+ hpos = 270;
1416
+ } /* if */
1417
+ hpos = swe_degnorm(hpos - armc - 90);
1418
+ hpos = hpos / 30.0 + 1;
1419
+ }
1420
+ break;
1421
+ #if 0
1422
+ /* old version of Koch method */
1423
+ case 'K':
1424
+ demc = atand(sind(armc) * tand(eps));
1425
+ /* if body is within circumpolar region, error */
1426
+ if (90 - fabs(geolat) <= fabs(de)) {
1427
+ if (serr != NULL)
1428
+ strcpy(serr, "no Koch house position, because planet is circumpolar.");
1429
+ xp[0] = 0;
1430
+ hpos = 0; /* Error */
1431
+ } else if (90 - fabs(geolat) <= fabs(demc)) {
1432
+ if (serr != NULL)
1433
+ strcpy(serr, "no Koch house position, because mc is circumpolar.");
1434
+ xp[0] = 0;
1435
+ hpos = 0; /* Error */
1436
+ } else {
1437
+ admc = asind(tand(eps) * tand(geolat) * sind(armc));
1438
+ adp = asind(tand(geolat) * tand(de));
1439
+ samc = 90 + admc;
1440
+ if (mdd >= 0) { /* east */
1441
+ xp[0] = swe_degnorm(((mdd - adp + admc) / samc - 1) * 90);
1442
+ } else {
1443
+ xp[0] = swe_degnorm(((mdd + 180 + adp + admc) / samc + 1) * 90);
1444
+ }
1445
+ /* to make sure that a call with a house cusp position returns
1446
+ * a value within the house, 0.001" is added */
1447
+ xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
1448
+ hpos = xp[0] / 30.0 + 1;
1449
+ }
1450
+ break;
1451
+ #endif
1452
+ /* version of Koch method: do calculations within circumpolar circle,
1453
+ * if possible; make sure house positions 4 - 9 only appear on western
1454
+ * hemisphere */
1455
+ case 'K':
1456
+ demc = atand(sind(armc) * tand(eps));
1457
+ is_invalid = FALSE;
1458
+ is_circumpolar = FALSE;
1459
+ /* object is within a circumpolar circle */
1460
+ if (90 - geolat < de || -90 - geolat > de) {
1461
+ adp = 90;
1462
+ is_circumpolar = TRUE;
1463
+ }
1464
+ /* object is within a circumpolar circle, southern hemisphere */
1465
+ else if (geolat - 90 > de || geolat + 90 < de) {
1466
+ adp = -90;
1467
+ is_circumpolar = TRUE;
1468
+ }
1469
+ /* object does rise and set */
1470
+ else {
1471
+ adp = asind(tand(geolat) * tand(de));
1472
+ }
1473
+ #if 0
1474
+ if (fabs(adp) == 90)
1475
+ is_invalid = TRUE; /* omit this to use the above values */
1476
+ #endif
1477
+ admc = tand(eps) * tand(geolat) * sind(armc);
1478
+ /* midheaven is circumpolar */
1479
+ if (fabs(admc) > 1) {
1480
+ #if 0
1481
+ is_invalid = TRUE; /* omit this line to use the below values */
1482
+ #endif
1483
+ if (admc > 1)
1484
+ admc = 1;
1485
+ else
1486
+ admc = -1;
1487
+ is_circumpolar = TRUE;
1488
+ }
1489
+ admc = asind(admc);
1490
+ samc = 90 + admc;
1491
+ if (samc == 0)
1492
+ is_invalid = TRUE;
1493
+ if (fabs(samc) > 0) {
1494
+ if (mdd >= 0) { /* east */
1495
+ dfac = (mdd - adp + admc) / samc;
1496
+ xp[0] = swe_degnorm((dfac - 1) * 90);
1497
+ xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
1498
+ /* eastern object has longer SA than midheaven */
1499
+ if (dfac > 2 || dfac < 0)
1500
+ is_invalid = TRUE; /* if this is omitted, funny things happen */
1501
+ } else {
1502
+ dfac = (mdd + 180 + adp + admc) / samc;
1503
+ xp[0] = swe_degnorm((dfac + 1) * 90);
1504
+ xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
1505
+ /* western object has longer SA than midheaven */
1506
+ if (dfac > 2 || dfac < 0)
1507
+ is_invalid = TRUE; /* if this is omitted, funny things happen */
1508
+ }
1509
+ }
1510
+ if (is_invalid) {
1511
+ xp[0] = 0;
1512
+ hpos = 0;
1513
+ if (serr != NULL)
1514
+ strcpy(serr, "Koch house position failed in circumpolar area");
1515
+ break;
1516
+ }
1517
+ if (is_circumpolar) {
1518
+ if (serr != NULL)
1519
+ strcpy(serr, "Koch house position, doubtful result in circumpolar area");
1520
+ }
1521
+ /* to make sure that a call with a house cusp position returns
1522
+ * a value within the house, 0.001" is added */
1523
+ hpos = xp[0] / 30.0 + 1;
1524
+ break;
1525
+ case 'C':
1526
+ xeq[0] = swe_degnorm(mdd - 90);
1527
+ swe_cotrans(xeq, xp, -geolat);
1528
+ /* to make sure that a call with a house cusp position returns
1529
+ * a value within the house, 0.001" is added */
1530
+ xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
1531
+ hpos = xp[0] / 30.0 + 1;
1532
+ break;
1533
+ case 'U': /* Krusinski-Pisa */
1534
+ /* Purpose: find point where planet's house circle (meridian)
1535
+ * cuts house plane, giving exact planet's house position.
1536
+ * Input data: ramc, geolat, asc.
1537
+ */
1538
+ asc = Asc1 (swe_degnorm(armc + 90), geolat, sine, cose);
1539
+ demc = atand(sind(armc) * tand(eps));
1540
+ /* while MC is always south,
1541
+ * Asc must always be in eastern hemisphere */
1542
+ if (geolat >= 0 && 90 - geolat + demc < 0) {
1543
+ asc = swe_degnorm(asc + 180);
1544
+ }
1545
+ if (geolat < 0 && -90 - geolat + demc > 0) {
1546
+ asc = swe_degnorm(asc + 180);
1547
+ }
1548
+ /*
1549
+ * Descr: find the house plane 'asc-zenith' - where it intersects
1550
+ * with equator and at what angle, and then simple find arc
1551
+ * from asc on that plane to planet's meridian intersection
1552
+ * with this plane.
1553
+ */
1554
+ /* I. find plane of 'asc-zenith' great circle relative to equator:
1555
+ * solve spherical triangle 'EP-asc-intersection of house circle with equator' */
1556
+ /* Ia. Find intersection of house plane with equator: */
1557
+ x[0] = asc; x[1] = 0.0; x[2] = 1.0; /* 1. Start with ascendent on ecliptic */
1558
+ swe_cotrans(x, x, -eps); /* 2. Transform asc into equatorial coords */
1559
+ raep = swe_degnorm(armc + 90); /* 3. RA of east point */
1560
+ x[0] = swe_degnorm(raep - x[0]); /* 4. Rotation - found arc raas-raep */
1561
+ swe_cotrans(x, x, -(90-geolat)); /* 5. Transform into horizontal coords - arc EP-asc on horizon */
1562
+ xtemp = atand(tand(x[0])/cosd((90-geolat))); /* 6. Rotation from horizon on circle perpendicular to equator */
1563
+ if (x[0] > 90 && x[0] <= 270)
1564
+ xtemp = swe_degnorm(xtemp + 180);
1565
+ x[0] = swe_degnorm(xtemp);
1566
+ raaz = swe_degnorm(raep - x[0]); /* result: RA of intersection 'asc-zenith' great circle with equator */
1567
+ /* Ib. Find obliquity to equator of 'asc-zenith' house plane: */
1568
+ x[0] = raaz; x[1] = 0.0;
1569
+ x[0] = swe_degnorm(raep - x[0]); /* 1. Rotate start point relative to EP */
1570
+ swe_cotrans(x, x, -(90-geolat)); /* 2. Transform into horizontal coords */
1571
+ x[1] = x[1] + 90; /* 3. Add 90 deg do decl - so get the point on house plane most distant from equ. */
1572
+ swe_cotrans(x, x, 90-geolat); /* 4. Rotate back to equator */
1573
+ oblaz = x[1]; /* 5. Obliquity of house plane to equator */
1574
+ /* II. Next find asc and planet position on house plane,
1575
+ * so to find relative distance of planet from
1576
+ * coords beginning. */
1577
+ /* IIa. Asc on house plane relative to intersection
1578
+ * of equator with 'asc-zenith' plane. */
1579
+ xasc[0] = asc; xasc[1] = 0.0; xasc[2] = 1.0;
1580
+ swe_cotrans(xasc, xasc, -eps);
1581
+ xasc[0] = swe_degnorm(xasc[0] - raaz);
1582
+ xtemp = atand(tand(xasc[0])/cosd(oblaz));
1583
+ if (xasc[0] > 90 && xasc[0] <= 270)
1584
+ xtemp = swe_degnorm(xtemp + 180);
1585
+ xasc[0] = swe_degnorm(xtemp);
1586
+ /* IIb. Planet on house plane relative to intersection
1587
+ * of equator with 'asc-zenith' plane */
1588
+ xp[0] = swe_degnorm(xeq[0] - raaz); /* Rotate on equator */
1589
+ xtemp = atand(tand(xp[0])/cosd(oblaz)); /* Find arc on house plane from equator */
1590
+ if (xp[0] > 90 && xp[0] <= 270)
1591
+ xtemp = swe_degnorm(xtemp + 180);
1592
+ xp[0] = swe_degnorm(xtemp);
1593
+ xp[0] = swe_degnorm(xp[0]-xasc[0]); /* find arc between asc and planet, and get planet house position */
1594
+ /* IIc. Distance from planet to house plane on declination circle: */
1595
+ x[0] = xeq[0];
1596
+ x[1] = xeq[1];
1597
+ swe_cotrans(x, x, oblaz);
1598
+ xp[1] = xeq[1] - x[1]; /* How many degrees is the point on declination circle from house circle */
1599
+ /* to make sure that a call with a house cusp position returns
1600
+ * a value within the house, 0.001" is added */
1601
+ xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
1602
+ hpos = xp[0] / 30.0 + 1;
1603
+ break;
1604
+ case 'H':
1605
+ xeq[0] = swe_degnorm(mdd - 90);
1606
+ swe_cotrans(xeq, xp, 90 - geolat);
1607
+ /* to make sure that a call with a house cusp position returns
1608
+ * a value within the house, 0.001" is added */
1609
+ xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
1610
+ hpos = xp[0] / 30.0 + 1;
1611
+ break;
1612
+ case 'R':
1613
+ if (fabs(mdd) < VERY_SMALL)
1614
+ xp[0] = 270;
1615
+ else if (180 - fabs(mdd) < VERY_SMALL)
1616
+ xp[0] = 90;
1617
+ else {
1618
+ if (90 - fabs(geolat) < VERY_SMALL) {
1619
+ if (geolat > 0)
1620
+ geolat = 90 - VERY_SMALL;
1621
+ else
1622
+ geolat = -90 + VERY_SMALL;
1623
+ }
1624
+ if (90 - fabs(de) < VERY_SMALL) {
1625
+ if (de > 0)
1626
+ de = 90 - VERY_SMALL;
1627
+ else
1628
+ de = -90 + VERY_SMALL;
1629
+ }
1630
+ a = tand(geolat) * tand(de) + cosd(mdd);
1631
+ xp[0] = swe_degnorm(atand(-a / sind(mdd)));
1632
+ if (mdd < 0)
1633
+ xp[0] += 180;
1634
+ xp[0] = swe_degnorm(xp[0]);
1635
+ /* to make sure that a call with a house cusp position returns
1636
+ * a value within the house, 0.001" is added */
1637
+ xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
1638
+ }
1639
+ hpos = xp[0] / 30.0 + 1;
1640
+ break;
1641
+ case 'T':
1642
+ mdd = swe_degnorm(mdd);
1643
+ if (de > 90 - VERY_SMALL)
1644
+ de = 90 - VERY_SMALL;
1645
+ if (de < -90 + VERY_SMALL)
1646
+ de = -90 + VERY_SMALL;
1647
+ sinad = tand(de) * tand(geolat);
1648
+ ad = asind(sinad);
1649
+ a = sinad + cosd(mdd);
1650
+ if (a >= 0)
1651
+ is_above_hor = TRUE;
1652
+ /* mirror everything below the horizon to the opposite point
1653
+ * above the horizon */
1654
+ if (!is_above_hor) {
1655
+ ra = swe_degnorm(ra + 180);
1656
+ de = -de;
1657
+ mdd = swe_degnorm(mdd + 180);
1658
+ }
1659
+ /* mirror everything on western hemisphere to eastern hemisphere */
1660
+ if (mdd > 180) {
1661
+ ra = swe_degnorm(armc - mdd);
1662
+ }
1663
+ /* binary search for "topocentric" position line of body */
1664
+ tanfi = tand(geolat);
1665
+ fh = geolat;
1666
+ ra0 = swe_degnorm(armc + 90);
1667
+ xp[1] = 1;
1668
+ xeq[1] = de;
1669
+ fac = 2;
1670
+ while (fabs(xp[1]) > 0.000001) {
1671
+ if (xp[1] > 0) {
1672
+ fh = atand(tand(fh) - tanfi / fac);
1673
+ ra0 -= 90 / fac;
1674
+ } else {
1675
+ fh = atand(tand(fh) + tanfi / fac);
1676
+ ra0 += 90 / fac;
1677
+ }
1678
+ xeq[0] = swe_degnorm(ra - ra0);
1679
+ swe_cotrans(xeq, xp, 90 - fh);
1680
+ fac *= 2;
1681
+ }
1682
+ hpos = swe_degnorm(ra0 - armc);
1683
+ /* mirror back to west */
1684
+ if (mdd > 180)
1685
+ hpos = swe_degnorm(-hpos);
1686
+ /* mirror back to below horizon */
1687
+ if (!is_above_hor)
1688
+ hpos = swe_degnorm(hpos + 180);
1689
+ hpos = swe_degnorm(hpos - 90) / 30 + 1;
1690
+ break;
1691
+ case 'P':
1692
+ case 'G':
1693
+ default:
1694
+ /* circumpolar region */
1695
+ if (90 - fabs(de) <= fabs(geolat)) {
1696
+ if (de * geolat < 0)
1697
+ xp[0] = swe_degnorm(90 + mdn / 2);
1698
+ else
1699
+ xp[0] = swe_degnorm(270 + mdd / 2);
1700
+ if (serr != NULL)
1701
+ strcpy(serr, "Otto Ludwig procedure within circumpolar regions.");
1702
+ } else {
1703
+ sinad = tand(de) * tand(geolat);
1704
+ ad = asind(sinad);
1705
+ a = sinad + cosd(mdd);
1706
+ if (a >= 0)
1707
+ is_above_hor = TRUE;
1708
+ sad = 90 + ad;
1709
+ san = 90 - ad;
1710
+ if (is_above_hor)
1711
+ xp[0] = (mdd / sad + 3) * 90;
1712
+ else
1713
+ xp[0] = (mdn / san + 1) * 90;
1714
+ /* to make sure that a call with a house cusp position returns
1715
+ * a value within the house, 0.001" is added */
1716
+ xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
1717
+ }
1718
+ if (hsys == 'G') {
1719
+ xp[0] = 360 - xp[0]; /* Gauquelin sectors are in clockwise direction */
1720
+ hpos = xp[0] / 10.0 + 1;
1721
+ } else {
1722
+ hpos = xp[0] / 30.0 + 1;
1723
+ }
1724
+ break;
1725
+ }
1726
+ return hpos;
1727
+ }