swe4r 0.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/ext/swe4r/swecl.c ADDED
@@ -0,0 +1,4948 @@
1
+ /* SWISSEPH
2
+ $Header: /home/dieter/sweph/RCS/swecl.c,v 1.75 2008/08/26 07:23:27 dieter Exp $
3
+
4
+ Ephemeris computations
5
+ Author: Dieter Koch
6
+
7
+ ************************************************************/
8
+ /* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
9
+
10
+ License conditions
11
+ ------------------
12
+
13
+ This file is part of Swiss Ephemeris.
14
+
15
+ Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
16
+ or distributor accepts any responsibility for the consequences of using it,
17
+ or for whether it serves any particular purpose or works at all, unless he
18
+ or she says so in writing.
19
+
20
+ Swiss Ephemeris is made available by its authors under a dual licensing
21
+ system. The software developer, who uses any part of Swiss Ephemeris
22
+ in his or her software, must choose between one of the two license models,
23
+ which are
24
+ a) GNU public license version 2 or later
25
+ b) Swiss Ephemeris Professional License
26
+
27
+ The choice must be made before the software developer distributes software
28
+ containing parts of Swiss Ephemeris to others, and before any public
29
+ service using the developed software is activated.
30
+
31
+ If the developer choses the GNU GPL software license, he or she must fulfill
32
+ the conditions of that license, which includes the obligation to place his
33
+ or her whole software project under the GNU GPL or a compatible license.
34
+ See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
35
+
36
+ If the developer choses the Swiss Ephemeris Professional license,
37
+ he must follow the instructions as found in http://www.astro.com/swisseph/
38
+ and purchase the Swiss Ephemeris Professional Edition from Astrodienst
39
+ and sign the corresponding license contract.
40
+
41
+ The License grants you the right to use, copy, modify and redistribute
42
+ Swiss Ephemeris, but only under certain conditions described in the License.
43
+ Among other things, the License requires that the copyright notices and
44
+ this notice be preserved on all copies.
45
+
46
+ Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
47
+
48
+ The authors of Swiss Ephemeris have no control or influence over any of
49
+ the derived works, i.e. over software or services created by other
50
+ programmers which use Swiss Ephemeris functions.
51
+
52
+ The names of the authors or of the copyright holder (Astrodienst) must not
53
+ be used for promoting any software, product or service which uses or contains
54
+ the Swiss Ephemeris. This copyright notice is the ONLY place where the
55
+ names of the authors can legally appear, except in cases where they have
56
+ given special permission in writing.
57
+
58
+ The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
59
+ for promoting such software, products or services.
60
+ */
61
+
62
+ #include "swejpl.h"
63
+ #include "swephexp.h"
64
+ #include "sweph.h"
65
+ #include "swephlib.h"
66
+
67
+ #define SEFLG_EPHMASK (SEFLG_JPLEPH|SEFLG_SWIEPH|SEFLG_MOSEPH)
68
+ static int find_maximum(double y00, double y11, double y2, double dx,
69
+ double *dxret, double *yret);
70
+ static int find_zero(double y00, double y11, double y2, double dx,
71
+ double *dxret, double *dxret2);
72
+ static double calc_dip(double geoalt, double atpress, double attemp, double lapse_rate);
73
+ static double calc_astronomical_refr(double geoalt,double atpress, double attemp);
74
+ static double const_lapse_rate = SE_LAPSE_RATE; /* for refraction */
75
+
76
+ #if 0
77
+ #define DSUN (1391978489.9 / AUNIT) /* this value is consistent with
78
+ * 959.63 arcsec at AU distance (Astr. Alm.) */
79
+ #else
80
+ #define DSUN (1392000000.0 / AUNIT)
81
+ #endif
82
+ #define DMOON (3476300.0 / AUNIT)
83
+ #define DEARTH (6378140.0 * 2 / AUNIT)
84
+ #define RSUN (DSUN / 2)
85
+ #define RMOON (DMOON / 2)
86
+ #define REARTH (DEARTH / 2)
87
+ /*#define SEI_OCC_FAST (16 * 1024L)*/
88
+ static int32 eclipse_where( double tjd_ut, int32 ipl, char *starname, int32 ifl, double *geopos,
89
+ double *dcore, char *serr);
90
+ static int32 eclipse_how( double tjd_ut, int32 ipl, char *starname, int32 ifl,
91
+ double geolon, double geolat, double geohgt,
92
+ double *attr, char *serr);
93
+ static int32 eclipse_when_loc(double tjd_start, int32 ifl, double *geopos,
94
+ double *tret, double *attr, AS_BOOL backward, char *serr);
95
+ static int32 occult_when_loc(double tjd_start, int32 ipl, char *starname, int32 ifl,
96
+ double *geopos, double *tret, double *attr, AS_BOOL backward, char *serr);
97
+ static int32 lun_eclipse_how(double tjd_ut, int32 ifl, double *attr,
98
+ double *dcore, char *serr);
99
+ static int32 calc_mer_trans(
100
+ double tjd_ut, int32 ipl, int32 epheflag, int32 rsmi,
101
+ double *geopos,
102
+ char *starname,
103
+ double *tret,
104
+ char *serr);
105
+ static int32 calc_planet_star(double tjd_et, int32 ipl, char *starname, int32 iflag, double *x, char *serr);
106
+
107
+ struct saros_data {int series_no; double tstart;};
108
+
109
+ #define SAROS_CYCLE 6585.3213
110
+ #define NSAROS_SOLAR 181
111
+ struct saros_data saros_data_solar[NSAROS_SOLAR] = {
112
+ {0, 641886.5}, /* 23 May -2955 */
113
+ {1, 672214.5}, /* 04 Jun -2872 */
114
+ {2, 676200.5}, /* 04 May -2861 */
115
+ {3, 693357.5}, /* 24 Apr -2814 */
116
+ {4, 723685.5}, /* 06 May -2731 */
117
+ {5, 727671.5}, /* 04 Apr -2720 */
118
+ {6, 744829.5}, /* 27 Mar -2673 */
119
+ {7, 775157.5}, /* 08 Apr -2590 */
120
+ {8, 779143.5}, /* 07 Mar -2579 */
121
+ {9, 783131.5}, /* 06 Feb -2568 */
122
+ {10, 820044.5}, /* 28 Feb -2467 */
123
+ {11, 810859.5}, /* 06 Jan -2492 */
124
+ {12, 748993.5}, /* 20 Aug -2662 */
125
+ {13, 792492.5}, /* 23 Sep -2543 */
126
+ {14, 789892.5}, /* 11 Aug -2550 */
127
+ {15, 787294.5}, /* 01 Jul -2557 */
128
+ {16, 824207.5}, /* 23 Jul -2456 */
129
+ {17, 834779.5}, /* 03 Jul -2427 */
130
+ {18, 838766.5}, /* 02 Jun -2416 */
131
+ {19, 869094.5}, /* 15 Jun -2333 */
132
+ {20, 886251.5}, /* 05 Jun -2286 */
133
+ {21, 890238.5}, /* 05 May -2275 */
134
+ {22, 927151.5}, /* 28 May -2174 */
135
+ {23, 937722.5}, /* 07 May -2145 */
136
+ {24, 941709.5}, /* 06 Apr -2134 */
137
+ {25, 978623.5}, /* 30 Apr -2033 */
138
+ {26, 989194.5}, /* 08 Apr -2004 */
139
+ {27, 993181.5}, /* 09 Mar -1993 */
140
+ {28, 1023510.5}, /* 22 Mar -1910 */
141
+ {29, 1034081.5}, /* 01 Mar -1881 */
142
+ {30, 972214.5}, /* 12 Oct -2051 */
143
+ {31, 1061811.5}, /* 31 Jan -1805 */
144
+ {32, 1006529.5}, /* 24 Sep -1957 */
145
+ {33, 997345.5}, /* 02 Aug -1982 */
146
+ {34, 1021088.5}, /* 04 Aug -1917 */
147
+ {35, 1038245.5}, /* 25 Jul -1870 */
148
+ {36, 1042231.5}, /* 23 Jun -1859 */
149
+ {37, 1065974.5}, /* 25 Jun -1794 */
150
+ {38, 1089716.5}, /* 26 Jun -1729 */
151
+ {39, 1093703.5}, /* 26 May -1718 */
152
+ {40, 1117446.5}, /* 28 May -1653 */
153
+ {41, 1141188.5}, /* 28 May -1588 */
154
+ {42, 1145175.5}, /* 28 Apr -1577 */
155
+ {43, 1168918.5}, /* 29 Apr -1512 */
156
+ {44, 1192660.5}, /* 30 Apr -1447 */
157
+ {45, 1196647.5}, /* 30 Mar -1436 */
158
+ {46, 1220390.5}, /* 01 Apr -1371 */
159
+ {47, 1244132.5}, /* 02 Apr -1306 */
160
+ {48, 1234948.5}, /* 08 Feb -1331 */
161
+ {49, 1265277.5}, /* 22 Feb -1248 */
162
+ {50, 1282433.5}, /* 11 Feb -1201 */
163
+ {51, 1207395.5}, /* 02 Sep -1407 */
164
+ {52, 1217968.5}, /* 14 Aug -1378 */
165
+ {53, 1254881.5}, /* 06 Sep -1277 */
166
+ {54, 1252282.5}, /* 25 Jul -1284 */
167
+ {55, 1262855.5}, /* 06 Jul -1255 */
168
+ {56, 1293182.5}, /* 17 Jul -1172 */
169
+ {57, 1297169.5}, /* 17 Jun -1161 */
170
+ {58, 1314326.5}, /* 07 Jun -1114 */
171
+ {59, 1344654.5}, /* 19 Jun -1031 */
172
+ {60, 1348640.5}, /* 18 May -1020 */
173
+ {61, 1365798.5}, /* 10 May -0973 */
174
+ {62, 1396126.5}, /* 22 May -0890 */
175
+ {63, 1400112.5}, /* 20 Apr -0879 */
176
+ {64, 1417270.5}, /* 11 Apr -0832 */
177
+ {65, 1447598.5}, /* 24 Apr -0749 */
178
+ {66, 1444999.5}, /* 12 Mar -0756 */
179
+ {67, 1462157.5}, /* 04 Mar -0709 */
180
+ {68, 1492485.5}, /* 16 Mar -0626 */
181
+ {69, 1456959.5}, /* 09 Dec -0724 */
182
+ {70, 1421434.5}, /* 05 Sep -0821 */
183
+ {71, 1471518.5}, /* 19 Oct -0684 */
184
+ {72, 1455748.5}, /* 16 Aug -0727 */
185
+ {73, 1466320.5}, /* 27 Jul -0698 */
186
+ {74, 1496648.5}, /* 08 Aug -0615 */
187
+ {75, 1500634.5}, /* 07 Jul -0604 */
188
+ {76, 1511207.5}, /* 18 Jun -0575 */
189
+ {77, 1548120.5}, /* 11 Jul -0474 */
190
+ {78, 1552106.5}, /* 09 Jun -0463 */
191
+ {79, 1562679.5}, /* 21 May -0434 */
192
+ {80, 1599592.5}, /* 13 Jun -0333 */
193
+ {81, 1603578.5}, /* 12 May -0322 */
194
+ {82, 1614150.5}, /* 22 Apr -0293 */
195
+ {83, 1644479.5}, /* 05 May -0210 */
196
+ {84, 1655050.5}, /* 14 Apr -0181 */
197
+ {85, 1659037.5}, /* 14 Mar -0170 */
198
+ {86, 1695950.5}, /* 06 Apr -0069 */
199
+ {87, 1693351.5}, /* 23 Feb -0076 */
200
+ {88, 1631484.5}, /* 06 Oct -0246 */
201
+ {89, 1727666.5}, /* 04 Feb 0018 */
202
+ {90, 1672384.5}, /* 28 Sep -0134 */
203
+ {91, 1663200.5}, /* 06 Aug -0159 */
204
+ {92, 1693529.5}, /* 19 Aug -0076 */
205
+ {93, 1710685.5}, /* 09 Aug -0029 */
206
+ {94, 1714672.5}, /* 09 Jul -0018 */
207
+ {95, 1738415.5}, /* 11 Jul 0047 */
208
+ {96, 1755572.5}, /* 01 Jul 0094 */
209
+ {97, 1766144.5}, /* 11 Jun 0123 */
210
+ {98, 1789887.5}, /* 12 Jun 0188 */
211
+ {99, 1807044.5}, /* 03 Jun 0235 */
212
+ {100, 1817616.5}, /* 13 May 0264 */
213
+ {101, 1841359.5}, /* 15 May 0329 */
214
+ {102, 1858516.5}, /* 05 May 0376 */
215
+ {103, 1862502.5}, /* 04 Apr 0387 */
216
+ {104, 1892831.5}, /* 17 Apr 0470 */
217
+ {105, 1903402.5}, /* 27 Mar 0499 */
218
+ {106, 1887633.5}, /* 23 Jan 0456 */
219
+ {107, 1924547.5}, /* 15 Feb 0557 */
220
+ {108, 1921948.5}, /* 04 Jan 0550 */
221
+ {109, 1873251.5}, /* 07 Sep 0416 */
222
+ {110, 1890409.5}, /* 30 Aug 0463 */
223
+ {111, 1914151.5}, /* 30 Aug 0528 */
224
+ {112, 1918138.5}, /* 31 Jul 0539 */
225
+ {113, 1935296.5}, /* 22 Jul 0586 */
226
+ {114, 1959038.5}, /* 23 Jul 0651 */
227
+ {115, 1963024.5}, /* 21 Jun 0662 */
228
+ {116, 1986767.5}, /* 23 Jun 0727 */
229
+ {117, 2010510.5}, /* 24 Jun 0792 */
230
+ {118, 2014496.5}, /* 24 May 0803 */
231
+ {119, 2031654.5}, /* 15 May 0850 */
232
+ {120, 2061982.5}, /* 27 May 0933 */
233
+ {121, 2065968.5}, /* 25 Apr 0944 */
234
+ {122, 2083126.5}, /* 17 Apr 0991 */
235
+ {123, 2113454.5}, /* 29 Apr 1074 */
236
+ {124, 2104269.5}, /* 06 Mar 1049 */
237
+ {125, 2108256.5}, /* 04 Feb 1060 */
238
+ {126, 2151755.5}, /* 10 Mar 1179 */
239
+ {127, 2083302.5}, /* 10 Oct 0991 */
240
+ {128, 2080704.5}, /* 29 Aug 0984 */
241
+ {129, 2124203.5}, /* 03 Oct 1103 */
242
+ {130, 2121603.5}, /* 20 Aug 1096 */
243
+ {131, 2132176.5}, /* 01 Aug 1125 */
244
+ {132, 2162504.5}, /* 13 Aug 1208 */
245
+ {133, 2166490.5}, /* 13 Jul 1219 */
246
+ {134, 2177062.5}, /* 22 Jun 1248 */
247
+ {135, 2207390.5}, /* 05 Jul 1331 */
248
+ {136, 2217962.5}, /* 14 Jun 1360 */
249
+ {137, 2228534.5}, /* 25 May 1389 */
250
+ {138, 2258862.5}, /* 06 Jun 1472 */
251
+ {139, 2269434.5}, /* 17 May 1501 */
252
+ {140, 2273421.5}, /* 16 Apr 1512 */
253
+ {141, 2310334.5}, /* 19 May 1613 */
254
+ {142, 2314320.5}, /* 17 Apr 1624 */
255
+ {143, 2311722.5}, /* 07 Mar 1617 */
256
+ {144, 2355221.5}, /* 11 Apr 1736 */
257
+ {145, 2319695.5}, /* 04 Jan 1639 */
258
+ {146, 2284169.5}, /* 19 Sep 1541 */
259
+ {147, 2314498.5}, /* 12 Oct 1624 */
260
+ {148, 2325069.5}, /* 21 Sep 1653 */
261
+ {149, 2329056.5}, /* 21 Aug 1664 */
262
+ {150, 2352799.5}, /* 24 Aug 1729 */
263
+ {151, 2369956.5}, /* 14 Aug 1776 */
264
+ {152, 2380528.5}, /* 26 Jul 1805 */
265
+ {153, 2404271.5}, /* 28 Jul 1870 */
266
+ {154, 2421428.5}, /* 19 Jul 1917 */
267
+ {155, 2425414.5}, /* 17 Jun 1928 */
268
+ {156, 2455743.5}, /* 01 Jul 2011 */
269
+ {157, 2472900.5}, /* 21 Jun 2058 */
270
+ {158, 2476886.5}, /* 20 May 2069 */
271
+ {159, 2500629.5}, /* 23 May 2134 */
272
+ {160, 2517786.5}, /* 13 May 2181 */
273
+ {161, 2515187.5}, /* 01 Apr 2174 */
274
+ {162, 2545516.5}, /* 15 Apr 2257 */
275
+ {163, 2556087.5}, /* 25 Mar 2286 */
276
+ {164, 2487635.5}, /* 24 Oct 2098 */
277
+ {165, 2504793.5}, /* 16 Oct 2145 */
278
+ {166, 2535121.5}, /* 29 Oct 2228 */
279
+ {167, 2525936.5}, /* 06 Sep 2203 */
280
+ {168, 2543094.5}, /* 28 Aug 2250 */
281
+ {169, 2573422.5}, /* 10 Sep 2333 */
282
+ {170, 2577408.5}, /* 09 Aug 2344 */
283
+ {171, 2594566.5}, /* 01 Aug 2391 */
284
+ {172, 2624894.5}, /* 13 Aug 2474 */
285
+ {173, 2628880.5}, /* 12 Jul 2485 */
286
+ {174, 2646038.5}, /* 04 Jul 2532 */
287
+ {175, 2669780.5}, /* 05 Jul 2597 */
288
+ {176, 2673766.5}, /* 04 Jun 2608 */
289
+ {177, 2690924.5}, /* 27 May 2655 */
290
+ {178, 2721252.5}, /* 09 Jun 2738 */
291
+ {179, 2718653.5}, /* 28 Apr 2731 */
292
+ {180, 2729226.5}, /* 08 Apr 2760 */
293
+ };
294
+
295
+ #define NSAROS_LUNAR 180
296
+ struct saros_data saros_data_lunar[NSAROS_LUNAR] = {
297
+ {1, 782437.5}, /* 14 Mar -2570 */
298
+ {2, 799593.5}, /* 03 Mar -2523 */
299
+ {3, 783824.5}, /* 30 Dec -2567 */
300
+ {4, 754884.5}, /* 06 Oct -2646 */
301
+ {5, 824724.5}, /* 22 Dec -2455 */
302
+ {6, 762857.5}, /* 04 Aug -2624 */
303
+ {7, 773430.5}, /* 16 Jul -2595 */
304
+ {8, 810343.5}, /* 08 Aug -2494 */
305
+ {9, 807743.5}, /* 26 Jun -2501 */
306
+ {10, 824901.5}, /* 17 Jun -2454 */
307
+ {11, 855229.5}, /* 29 Jun -2371 */
308
+ {12, 859215.5}, /* 28 May -2360 */
309
+ {13, 876373.5}, /* 20 May -2313 */
310
+ {14, 906701.5}, /* 01 Jun -2230 */
311
+ {15, 910687.5}, /* 30 Apr -2219 */
312
+ {16, 927845.5}, /* 21 Apr -2172 */
313
+ {17, 958173.5}, /* 04 May -2089 */
314
+ {18, 962159.5}, /* 02 Apr -2078 */
315
+ {19, 979317.5}, /* 24 Mar -2031 */
316
+ {20, 1009645.5}, /* 05 Apr -1948 */
317
+ {21, 1007046.5}, /* 22 Feb -1955 */
318
+ {22, 1017618.5}, /* 02 Feb -1926 */
319
+ {23, 1054531.5}, /* 25 Feb -1825 */
320
+ {24, 979493.5}, /* 16 Sep -2031 */
321
+ {25, 976895.5}, /* 06 Aug -2038 */
322
+ {26, 1020394.5}, /* 09 Sep -1919 */
323
+ {27, 1017794.5}, /* 28 Jul -1926 */
324
+ {28, 1028367.5}, /* 09 Jul -1897 */
325
+ {29, 1058695.5}, /* 21 Jul -1814 */
326
+ {30, 1062681.5}, /* 19 Jun -1803 */
327
+ {31, 1073253.5}, /* 30 May -1774 */
328
+ {32, 1110167.5}, /* 23 Jun -1673 */
329
+ {33, 1114153.5}, /* 22 May -1662 */
330
+ {34, 1131311.5}, /* 13 May -1615 */
331
+ {35, 1161639.5}, /* 25 May -1532 */
332
+ {36, 1165625.5}, /* 24 Apr -1521 */
333
+ {37, 1176197.5}, /* 03 Apr -1492 */
334
+ {38, 1213111.5}, /* 27 Apr -1391 */
335
+ {39, 1217097.5}, /* 26 Mar -1380 */
336
+ {40, 1221084.5}, /* 24 Feb -1369 */
337
+ {41, 1257997.5}, /* 18 Mar -1268 */
338
+ {42, 1255398.5}, /* 04 Feb -1275 */
339
+ {43, 1186946.5}, /* 07 Sep -1463 */
340
+ {44, 1283128.5}, /* 06 Jan -1199 */
341
+ {45, 1227845.5}, /* 29 Aug -1351 */
342
+ {46, 1225247.5}, /* 19 Jul -1358 */
343
+ {47, 1255575.5}, /* 31 Jul -1275 */
344
+ {48, 1272732.5}, /* 21 Jul -1228 */
345
+ {49, 1276719.5}, /* 21 Jun -1217 */
346
+ {50, 1307047.5}, /* 03 Jul -1134 */
347
+ {51, 1317619.5}, /* 13 Jun -1105 */
348
+ {52, 1328191.5}, /* 23 May -1076 */
349
+ {53, 1358519.5}, /* 05 Jun -0993 */
350
+ {54, 1375676.5}, /* 26 May -0946 */
351
+ {55, 1379663.5}, /* 25 Apr -0935 */
352
+ {56, 1409991.5}, /* 07 May -0852 */
353
+ {57, 1420562.5}, /* 16 Apr -0823 */
354
+ {58, 1424549.5}, /* 16 Mar -0812 */
355
+ {59, 1461463.5}, /* 09 Apr -0711 */
356
+ {60, 1465449.5}, /* 08 Mar -0700 */
357
+ {61, 1436509.5}, /* 13 Dec -0780 */
358
+ {62, 1493179.5}, /* 08 Feb -0624 */
359
+ {63, 1457653.5}, /* 03 Nov -0722 */
360
+ {64, 1435298.5}, /* 20 Aug -0783 */
361
+ {65, 1452456.5}, /* 11 Aug -0736 */
362
+ {66, 1476198.5}, /* 12 Aug -0671 */
363
+ {67, 1480184.5}, /* 11 Jul -0660 */
364
+ {68, 1503928.5}, /* 14 Jul -0595 */
365
+ {69, 1527670.5}, /* 15 Jul -0530 */
366
+ {70, 1531656.5}, /* 13 Jun -0519 */
367
+ {71, 1548814.5}, /* 04 Jun -0472 */
368
+ {72, 1579142.5}, /* 17 Jun -0389 */
369
+ {73, 1583128.5}, /* 16 May -0378 */
370
+ {74, 1600286.5}, /* 07 May -0331 */
371
+ {75, 1624028.5}, /* 08 May -0266 */
372
+ {76, 1628015.5}, /* 07 Apr -0255 */
373
+ {77, 1651758.5}, /* 09 Apr -0190 */
374
+ {78, 1675500.5}, /* 10 Apr -0125 */
375
+ {79, 1672901.5}, /* 27 Feb -0132 */
376
+ {80, 1683474.5}, /* 07 Feb -0103 */
377
+ {81, 1713801.5}, /* 19 Feb -0020 */
378
+ {82, 1645349.5}, /* 21 Sep -0208 */
379
+ {83, 1649336.5}, /* 22 Aug -0197 */
380
+ {84, 1686249.5}, /* 13 Sep -0096 */
381
+ {85, 1683650.5}, /* 02 Aug -0103 */
382
+ {86, 1694222.5}, /* 13 Jul -0074 */
383
+ {87, 1731136.5}, /* 06 Aug 0027 */
384
+ {88, 1735122.5}, /* 05 Jul 0038 */
385
+ {89, 1745694.5}, /* 15 Jun 0067 */
386
+ {90, 1776022.5}, /* 27 Jun 0150 */
387
+ {91, 1786594.5}, /* 07 Jun 0179 */
388
+ {92, 1797166.5}, /* 17 May 0208 */
389
+ {93, 1827494.5}, /* 30 May 0291 */
390
+ {94, 1838066.5}, /* 09 May 0320 */
391
+ {95, 1848638.5}, /* 19 Apr 0349 */
392
+ {96, 1878966.5}, /* 01 May 0432 */
393
+ {97, 1882952.5}, /* 31 Mar 0443 */
394
+ {98, 1880354.5}, /* 18 Feb 0436 */
395
+ {99, 1923853.5}, /* 24 Mar 0555 */
396
+ {100, 1881741.5}, /* 06 Dec 0439 */
397
+ {101, 1852801.5}, /* 11 Sep 0360 */
398
+ {102, 1889715.5}, /* 05 Oct 0461 */
399
+ {103, 1893701.5}, /* 03 Sep 0472 */
400
+ {104, 1897688.5}, /* 04 Aug 0483 */
401
+ {105, 1928016.5}, /* 16 Aug 0566 */
402
+ {106, 1938588.5}, /* 27 Jul 0595 */
403
+ {107, 1942575.5}, /* 26 Jun 0606 */
404
+ {108, 1972903.5}, /* 08 Jul 0689 */
405
+ {109, 1990059.5}, /* 27 Jun 0736 */
406
+ {110, 1994046.5}, /* 28 May 0747 */
407
+ {111, 2024375.5}, /* 10 Jun 0830 */
408
+ {112, 2034946.5}, /* 20 May 0859 */
409
+ {113, 2045518.5}, /* 29 Apr 0888 */
410
+ {114, 2075847.5}, /* 13 May 0971 */
411
+ {115, 2086418.5}, /* 21 Apr 1000 */
412
+ {116, 2083820.5}, /* 11 Mar 0993 */
413
+ {117, 2120733.5}, /* 03 Apr 1094 */
414
+ {118, 2124719.5}, /* 02 Mar 1105 */
415
+ {119, 2062852.5}, /* 14 Oct 0935 */
416
+ {120, 2086596.5}, /* 16 Oct 1000 */
417
+ {121, 2103752.5}, /* 06 Oct 1047 */
418
+ {122, 2094568.5}, /* 14 Aug 1022 */
419
+ {123, 2118311.5}, /* 16 Aug 1087 */
420
+ {124, 2142054.5}, /* 17 Aug 1152 */
421
+ {125, 2146040.5}, /* 17 Jul 1163 */
422
+ {126, 2169783.5}, /* 18 Jul 1228 */
423
+ {127, 2186940.5}, /* 09 Jul 1275 */
424
+ {128, 2197512.5}, /* 18 Jun 1304 */
425
+ {129, 2214670.5}, /* 10 Jun 1351 */
426
+ {130, 2238412.5}, /* 10 Jun 1416 */
427
+ {131, 2242398.5}, /* 10 May 1427 */
428
+ {132, 2266142.5}, /* 12 May 1492 */
429
+ {133, 2289884.5}, /* 13 May 1557 */
430
+ {134, 2287285.5}, /* 01 Apr 1550 */
431
+ {135, 2311028.5}, /* 13 Apr 1615 */
432
+ {136, 2334770.5}, /* 13 Apr 1680 */
433
+ {137, 2292659.5}, /* 17 Dec 1564 */
434
+ {138, 2276890.5}, /* 15 Oct 1521 */
435
+ {139, 2326974.5}, /* 09 Dec 1658 */
436
+ {140, 2304619.5}, /* 25 Sep 1597 */
437
+ {141, 2308606.5}, /* 25 Aug 1608 */
438
+ {142, 2345520.5}, /* 19 Sep 1709 */
439
+ {143, 2349506.5}, /* 18 Aug 1720 */
440
+ {144, 2360078.5}, /* 29 Jul 1749 */
441
+ {145, 2390406.5}, /* 11 Aug 1832 */
442
+ {146, 2394392.5}, /* 11 Jul 1843 */
443
+ {147, 2411550.5}, /* 02 Jul 1890 */
444
+ {148, 2441878.5}, /* 15 Jul 1973 */
445
+ {149, 2445864.5}, /* 13 Jun 1984 */
446
+ {150, 2456437.5}, /* 25 May 2013 */
447
+ {151, 2486765.5}, /* 06 Jun 2096 */
448
+ {152, 2490751.5}, /* 07 May 2107 */
449
+ {153, 2501323.5}, /* 16 Apr 2136 */
450
+ {154, 2538236.5}, /* 10 May 2237 */
451
+ {155, 2529052.5}, /* 18 Mar 2212 */
452
+ {156, 2473771.5}, /* 08 Nov 2060 */
453
+ {157, 2563367.5}, /* 01 Mar 2306 */
454
+ {158, 2508085.5}, /* 21 Oct 2154 */
455
+ {159, 2505486.5}, /* 09 Sep 2147 */
456
+ {160, 2542400.5}, /* 03 Oct 2248 */
457
+ {161, 2546386.5}, /* 02 Sep 2259 */
458
+ {162, 2556958.5}, /* 12 Aug 2288 */
459
+ {163, 2587287.5}, /* 27 Aug 2371 */
460
+ {164, 2597858.5}, /* 05 Aug 2400 */
461
+ {165, 2601845.5}, /* 06 Jul 2411 */
462
+ {166, 2632173.5}, /* 18 Jul 2494 */
463
+ {167, 2649330.5}, /* 09 Jul 2541 */
464
+ {168, 2653317.5}, /* 08 Jun 2552 */
465
+ {169, 2683645.5}, /* 22 Jun 2635 */
466
+ {170, 2694217.5}, /* 01 Jun 2664 */
467
+ {171, 2698203.5}, /* 01 May 2675 */
468
+ {172, 2728532.5}, /* 15 May 2758 */
469
+ {173, 2739103.5}, /* 24 Apr 2787 */
470
+ {174, 2683822.5}, /* 16 Dec 2635 */
471
+ {175, 2740492.5}, /* 11 Feb 2791 */
472
+ {176, 2724722.5}, /* 09 Dec 2747 */
473
+ {177, 2708952.5}, /* 05 Oct 2704 */
474
+ {178, 2732695.5}, /* 07 Oct 2769 */
475
+ {179, 2749852.5}, /* 27 Sep 2816 */
476
+ {180, 2753839.5}, /* 28 Aug 2827 */
477
+ };
478
+
479
+ /* Computes geographic location and type of solar eclipse
480
+ * for a given tjd
481
+ * iflag: to indicate ephemeris to be used
482
+ * (SEFLG_JPLEPH, SEFLG_SWIEPH, SEFLG_MOSEPH)
483
+ *
484
+ * Algorithms for the central line is taken from Montenbruck, pp. 179ff.,
485
+ * with the exception, that we consider refraction for the maxima of
486
+ * partial and noncentral eclipses.
487
+ * Geographical positions are referred to sea level / the mean ellipsoid.
488
+ *
489
+ * Errors:
490
+ * - from uncertainty of JPL-ephemerides (0.01 arcsec):
491
+ * about 40 meters
492
+ * - from displacement of shadow points by atmospheric refraction:
493
+ * a few meters
494
+ * - from deviation of the geoid from the ellipsoid
495
+ * a few meters
496
+ * - from polar motion
497
+ * a few meters
498
+ * For geographical locations that are interesting for observation,
499
+ * the error is always < 100 m.
500
+ * However, if the sun is close to the horizon,
501
+ * all of these errors can grow up to a km or more.
502
+ *
503
+ * Function returns:
504
+ * -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
505
+ * 0 if there is no solar eclipse at tjd
506
+ * SE_ECL_TOTAL
507
+ * SE_ECL_ANNULAR
508
+ * SE_ECL_TOTAL | SE_ECL_CENTRAL
509
+ * SE_ECL_TOTAL | SE_ECL_NONCENTRAL
510
+ * SE_ECL_ANNULAR | SE_ECL_CENTRAL
511
+ * SE_ECL_ANNULAR | SE_ECL_NONCENTRAL
512
+ * SE_ECL_PARTIAL
513
+ *
514
+ * geopos[0]: geographic longitude of central line
515
+ * geopos[1]: geographic latitude of central line
516
+ *
517
+ * not implemented so far:
518
+ *
519
+ * geopos[2]: geographic longitude of northern limit of umbra
520
+ * geopos[3]: geographic latitude of northern limit of umbra
521
+ * geopos[4]: geographic longitude of southern limit of umbra
522
+ * geopos[5]: geographic latitude of southern limit of umbra
523
+ * geopos[6]: geographic longitude of northern limit of penumbra
524
+ * geopos[7]: geographic latitude of northern limit of penumbra
525
+ * geopos[8]: geographic longitude of southern limit of penumbra
526
+ * geopos[9]: geographic latitude of southern limit of penumbra
527
+ *
528
+ * Attention: "northern" and "southern" limits of umbra do not
529
+ * necessarily correspond to the northernmost or southernmost
530
+ * geographic position, where the total, annular, or partial
531
+ * phase is visible at a given time.
532
+ * Imagine a situation in northern summer, when the sun illuminates
533
+ * the northern polar circle. The southernmost point of the core
534
+ * shadow may then touch the north pole, and therefore the
535
+ * northernmost point will be more in the south.
536
+ * Note also that with annular eclipses, the northern edge is
537
+ * usually geographically the southern one. With annular-total
538
+ * ones, the two lines cross, usually twice. The maximum is always
539
+ * total in such cases.
540
+ *
541
+ * attr[0] fraction of solar diameter covered by moon (magnitude)
542
+ * attr[1] ratio of lunar diameter to solar one
543
+ * attr[2] fraction of solar disc covered by moon (obscuration)
544
+ * attr[3] diameter of core shadow in km
545
+ * attr[4] azimuth of sun at tjd
546
+ * attr[5] true altitude of sun above horizon at tjd
547
+ * attr[6] apparent altitude of sun above horizon at tjd
548
+ * attr[7] angular distance of moon from sun in degrees
549
+ * declare as attr[20] at least !
550
+ */
551
+ int32 FAR PASCAL_CONV swe_sol_eclipse_where(
552
+ double tjd_ut,
553
+ int32 ifl,
554
+ double *geopos,
555
+ double *attr,
556
+ char *serr)
557
+ {
558
+ int32 retflag, retflag2;
559
+ double dcore[10];
560
+ ifl &= SEFLG_EPHMASK;
561
+ if ((retflag = eclipse_where(tjd_ut, SE_SUN, NULL, ifl, geopos, dcore, serr)) < 0)
562
+ return retflag;
563
+ if ((retflag2 = eclipse_how(tjd_ut, SE_SUN, NULL, ifl, geopos[0], geopos[1], 0, attr, serr)) == ERR)
564
+ return retflag2;
565
+ attr[3] = dcore[0];
566
+ return retflag;
567
+ }
568
+
569
+ int32 FAR PASCAL_CONV swe_lun_occult_where(
570
+ double tjd_ut,
571
+ int32 ipl,
572
+ char *starname,
573
+ int32 ifl,
574
+ double *geopos,
575
+ double *attr,
576
+ char *serr)
577
+ {
578
+ int32 retflag, retflag2;
579
+ double dcore[10];
580
+ ifl &= SEFLG_EPHMASK;
581
+ /* function calls for Pluto with asteroid number 134340
582
+ * are treated as calls for Pluto as main body SE_PLUTO */
583
+ if (ipl == SE_AST_OFFSET + 134340)
584
+ ipl = SE_PLUTO;
585
+ if ((retflag = eclipse_where(tjd_ut, ipl, starname, ifl, geopos, dcore, serr)) < 0)
586
+ return retflag;
587
+ if ((retflag2 = eclipse_how(tjd_ut, ipl, starname, ifl, geopos[0], geopos[1], 0, attr, serr)) == ERR)
588
+ return retflag2;
589
+ attr[3] = dcore[0];
590
+ return retflag;
591
+ }
592
+
593
+ /* Used by several swe_sol_eclipse_ functions.
594
+ * Like swe_sol_eclipse_where(), but instead of attr[0], it returns:
595
+ *
596
+ * dcore[0]: core shadow width in km
597
+ * dcore[2]: distance of shadow axis from geocenter r0
598
+ * dcore[3]: diameter of core shadow on fundamental plane d0
599
+ * dcore[4]: diameter of half-shadow on fundamental plane D0
600
+ */
601
+ static int32 eclipse_where( double tjd_ut, int32 ipl, char *starname, int32 ifl, double *geopos, double *dcore,
602
+ char *serr)
603
+ {
604
+ int i;
605
+ int32 retc = 0, niter = 0;
606
+ double e[6], et[6], erm[6], rm[6], rs[6], rmt[6], rst[6], xs[6], xst[6];
607
+ double xssv[16], x[6];
608
+ double lm[6], ls[6], lx[6];
609
+ double dsm, dsmt, d0, D0, s0, r0, d, s, dm;
610
+ double de = 6378140.0 / AUNIT;
611
+ double earthobl = 1 - EARTH_OBLATENESS;
612
+ double deltat, tjd, sidt;
613
+ double drad;
614
+ double sinf1, sinf2, cosf1, cosf2;
615
+ int32 iflag, iflag2;
616
+ /* double ecce = sqrt(2 * EARTH_OBLATENESS - EARTH_OBLATENESS * EARTH_OBLATENESS); */
617
+ AS_BOOL no_eclipse = FALSE;
618
+ struct epsilon *oe = &swed.oec;
619
+ for (i = 0; i < 10; i++)
620
+ dcore[i] = 0;
621
+ /* nutation need not be in lunar and solar positions,
622
+ * if mean sidereal time will be used */
623
+ iflag = SEFLG_SPEED | SEFLG_EQUATORIAL | ifl;
624
+ iflag2 = iflag | SEFLG_RADIANS;
625
+ iflag = iflag | SEFLG_XYZ;
626
+ deltat = swe_deltat(tjd_ut);
627
+ tjd = tjd_ut + deltat;
628
+ /* moon in cartesian coordinates */
629
+ if ((retc = swe_calc(tjd, SE_MOON, iflag, rm, serr)) == ERR)
630
+ return retc;
631
+ /* moon in polar coordinates */
632
+ if ((retc = swe_calc(tjd, SE_MOON, iflag2, lm, serr)) == ERR)
633
+ return retc;
634
+ /* sun in cartesian coordinates */
635
+ if ((retc = calc_planet_star(tjd, ipl, starname, iflag, rs, serr)) == ERR)
636
+ return retc;
637
+ /* sun in polar coordinates */
638
+ if ((retc = calc_planet_star(tjd, ipl, starname, iflag2, ls, serr)) == ERR)
639
+ return retc;
640
+ /* save sun position */
641
+ for (i = 0; i <= 2; i++)
642
+ rst[i] = rs[i];
643
+ /* save moon position */
644
+ for (i = 0; i <= 2; i++)
645
+ rmt[i] = rm[i];
646
+ if (iflag & SEFLG_NONUT)
647
+ sidt = swe_sidtime0(tjd_ut, oe->eps * RADTODEG, 0) * 15 * DEGTORAD;
648
+ else
649
+ sidt = swe_sidtime(tjd_ut) * 15 * DEGTORAD;
650
+ /*
651
+ * radius of planet disk in AU
652
+ */
653
+ if (starname != NULL && *starname != '\0')
654
+ drad = 0;
655
+ else if (ipl < NDIAM)
656
+ drad = pla_diam[ipl] / 2 / AUNIT;
657
+ else if (ipl > SE_AST_OFFSET)
658
+ drad = swed.ast_diam / 2 * 1000 / AUNIT; /* km -> m -> AU */
659
+ else
660
+ drad = 0;
661
+ iter_where:
662
+ for (i = 0; i <= 2; i++) {
663
+ rs[i] = rst[i];
664
+ rm[i] = rmt[i];
665
+ }
666
+ /* Account for oblateness of earth:
667
+ * Instead of flattening the earth, we apply the
668
+ * correction to the z coordinate of the moon and
669
+ * the sun. This makes the calculation easier.
670
+ */
671
+ for (i = 0; i <= 2; i++)
672
+ lx[i] = lm[i];
673
+ swi_polcart(lx, rm);
674
+ rm[2] /= earthobl;
675
+ /* distance of moon from geocenter */
676
+ dm = sqrt(square_sum(rm));
677
+ /* Account for oblateness of earth */
678
+ for (i = 0; i <= 2; i++)
679
+ lx[i] = ls[i];
680
+ swi_polcart(lx, rs);
681
+ rs[2] /= earthobl;
682
+ /* sun - moon vector */
683
+ for (i = 0; i <= 2; i++) {
684
+ e[i] = (rm[i] - rs[i]);
685
+ et[i] = (rmt[i] - rst[i]);
686
+ }
687
+ /* distance sun - moon */
688
+ dsm = sqrt(square_sum(e));
689
+ dsmt = sqrt(square_sum(et));
690
+ /* sun - moon unit vector */
691
+ for (i = 0; i <= 2; i++) {
692
+ e[i] /= dsm;
693
+ et[i] /= dsmt;
694
+ erm[i] = rm[i] / dm;
695
+ }
696
+ sinf1 = ((drad - RMOON) / dsm);
697
+ cosf1 = sqrt(1 - sinf1 * sinf1);
698
+ sinf2 = ((drad + RMOON) / dsm);
699
+ cosf2 = sqrt(1 - sinf2 * sinf2);
700
+ /* distance of moon from fundamental plane */
701
+ s0 = -dot_prod(rm, e);
702
+ /* distance of shadow axis from geocenter */
703
+ r0 = sqrt(dm * dm - s0 * s0);
704
+ /* diameter of core shadow on fundamental plane */
705
+ d0 = (s0 / dsm * (drad * 2 - DMOON) - DMOON) / cosf1;
706
+ /* diameter of half-shadow on fundamental plane */
707
+ D0 = (s0 / dsm * (drad * 2 + DMOON) + DMOON) / cosf2;
708
+ dcore[2] = r0;
709
+ dcore[3] = d0;
710
+ dcore[4] = D0;
711
+ dcore[5] = cosf1;
712
+ dcore[6] = cosf2;
713
+ for (i = 2; i < 5; i++)
714
+ dcore[i] *= AUNIT / 1000.0;
715
+ /**************************
716
+ * central (total or annular) phase
717
+ **************************/
718
+ retc = 0;
719
+ if (de * cosf1 >= r0) {
720
+ retc |= SE_ECL_CENTRAL;
721
+ } else if (r0 <= de * cosf1 + fabs(d0) / 2) {
722
+ retc |= SE_ECL_NONCENTRAL;
723
+ } else if (r0 <= de * cosf2 + D0 / 2) {
724
+ retc |= (SE_ECL_PARTIAL | SE_ECL_NONCENTRAL);
725
+ } else {
726
+ if (serr != NULL)
727
+ sprintf(serr, "no solar eclipse at tjd = %f", tjd);
728
+ for (i = 0; i < 10; i++)
729
+ geopos[i] = 0;
730
+ *dcore = 0;
731
+ retc = 0;
732
+ d = 0;
733
+ no_eclipse = TRUE;
734
+ /*return retc;*/
735
+ }
736
+ /* distance of shadow point from fundamental plane */
737
+ d = s0 * s0 + de * de - dm * dm;
738
+ if (d > 0)
739
+ d = sqrt(d);
740
+ else
741
+ d = 0;
742
+ /* distance of moon from shadow point on earth */
743
+ s = s0 - d;
744
+ /* next: geographic position of eclipse center.
745
+ * if shadow axis does not touch the earth,
746
+ * place on earth with maximum occultation is computed.
747
+ */
748
+ #if 0 /* the following stuff is meaningless for observations */
749
+ /*
750
+ * account for refraction at horizon
751
+ */
752
+ if (d == 0) {
753
+ double ds, a, b;
754
+ /* distance of sun from geocenter */
755
+ ds = sqrt(square_sum(rs));
756
+ a = PI - acos(swi_dot_prod_unit(e, erm));
757
+ /* refraction at horizon + sun radius = about 0.83 degrees */
758
+ b = 34.4556 / 60.0 * DEGTORAD + asin(drad / ds);
759
+ # if 0
760
+ /* at edge of umbra and penumbra
761
+ * light rays are not parallel to shadow axis.
762
+ * for a short time close to contact of umbra and
763
+ * penumbra, an angle < 0.27 degrees would have
764
+ * to be subtracted from b;
765
+ */
766
+ if (retc & SE_ECL_PARTIAL) {
767
+ d = d0;
768
+ sinf = sinf1;
769
+ } else {
770
+ d = D0;
771
+ sinf = sinf2;
772
+ }
773
+ c = (r0 - de) / d * 2 * sinf;
774
+ if (c > sinf1) {
775
+ b -= .....;
776
+ }
777
+ printf("%f %f %f", a * RADTODEG, b * RADTODEG, s);
778
+ printf(" %f\n", s);
779
+ # else
780
+ if (retc & SE_ECL_PARTIAL)
781
+ b -= asin(sinf2); /* maximum! */
782
+ else
783
+ b -= asin(sinf1);
784
+ # endif
785
+ s += tan(b) * cos(PI / 2 - a) * dm;
786
+ }
787
+ #endif
788
+ /* geographic position of eclipse center (maximum) */
789
+ for (i = 0; i <= 2; i++)
790
+ xs[i] = rm[i] + s * e[i];
791
+ /* we need geographic position with correct z, as well */
792
+ for (i = 0; i <= 2; i++)
793
+ xst[i] = xs[i];
794
+ xst[2] *= earthobl;
795
+ swi_cartpol(xst, xst);
796
+ if (niter <= 0) {
797
+ double cosfi = cos(xst[1]);
798
+ double sinfi = sin(xst[1]);
799
+ double eobl = EARTH_OBLATENESS;
800
+ double cc= 1 / sqrt(cosfi * cosfi + (1-eobl) * (1-eobl) * sinfi * sinfi);
801
+ double ss= (1-eobl) * (1-eobl) * cc;
802
+ earthobl = ss;
803
+ niter++;
804
+ goto iter_where;
805
+ }
806
+ swi_polcart(xst, xst);
807
+ /* to longitude and latitude */
808
+ swi_cartpol(xs, xs);
809
+ /* measure from sidereal time at greenwich */
810
+ xs[0] -= sidt;
811
+ xs[0] *= RADTODEG;
812
+ xs[1] *= RADTODEG;
813
+ xs[0] = swe_degnorm(xs[0]);
814
+ /* west is negative */
815
+ if (xs[0] > 180)
816
+ xs[0] -= 360;
817
+ xssv[0] = xs[0];
818
+ xssv[1] = xs[1];
819
+ geopos[0] = xs[0];
820
+ geopos[1] = xs[1];
821
+ /* diameter of core shadow:
822
+ * first, distance moon - place of eclipse on earth */
823
+ for (i = 0; i <= 2; i++)
824
+ x[i] = rmt[i] - xst[i];
825
+ s = sqrt(square_sum(x));
826
+ /* diameter of core shadow at place of maximum eclipse */
827
+ *dcore = (s / dsmt * ( drad * 2 - DMOON) - DMOON) * cosf1;
828
+ *dcore *= AUNIT / 1000.0;
829
+ /* diameter of penumbra at place of maximum eclipse */
830
+ dcore[1] = (s / dsmt * ( drad * 2 + DMOON) + DMOON) * cosf2;
831
+ dcore[1] *= AUNIT / 1000.0;
832
+ if (!(retc & SE_ECL_PARTIAL) && !no_eclipse) {
833
+ if (*dcore > 0) {
834
+ /*printf("annular\n");*/
835
+ retc |= SE_ECL_ANNULAR;
836
+ } else {
837
+ /*printf("total\n");*/
838
+ retc |= SE_ECL_TOTAL;
839
+ }
840
+ }
841
+ return retc;
842
+ }
843
+
844
+ static int32 calc_planet_star(double tjd_et, int32 ipl, char *starname, int32 iflag, double *x, char *serr)
845
+ {
846
+ int i;
847
+ int retc = OK;
848
+ if (starname == NULL || *starname == '\0') {
849
+ retc = swe_calc(tjd_et, ipl, iflag, x, serr);
850
+ } else {
851
+ if ((retc = swe_fixstar(starname, tjd_et, iflag, x, serr)) == OK) {
852
+ /* fixstars have the standard distance 1.
853
+ * in the occultation routines, this might lead to errors
854
+ * if interpreted as AU distance. To avoid this, we make it very high.
855
+ */
856
+ if (iflag & SEFLG_XYZ) {
857
+ for (i = 0; i < 3; i++)
858
+ x[i] *= 100000000;
859
+ } else {
860
+ x[2] *= 100000000;
861
+ }
862
+ }
863
+ }
864
+ return retc;
865
+ }
866
+
867
+ /* Computes attributes of a solar eclipse for given tjd, geo. longitude,
868
+ * geo. latitude, and geo. height.
869
+ *
870
+ * retflag SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL
871
+ * SE_ECL_NONCENTRAL
872
+ * if 0, no eclipse is visible at geogr. position.
873
+ *
874
+ * attr[0] fraction of solar diameter covered by moon
875
+ * attr[1] ratio of lunar diameter to solar one
876
+ * attr[2] fraction of solar disc covered by moon (obscuration)
877
+ * attr[3] diameter of core shadow in km
878
+ * attr[4] azimuth of sun at tjd
879
+ * attr[5] true altitude of sun above horizon at tjd
880
+ * attr[6] apparent altitude of sun above horizon at tjd
881
+ * attr[7] elongation of moon in degrees
882
+ * attr[8] magnitude (= attr[0] or attr[1] depending on eclipse type)
883
+ * attr[9] saros series number
884
+ * attr[10] saros series member number
885
+ * declare as attr[20] at least !
886
+ *
887
+ */
888
+ int32 FAR PASCAL_CONV swe_sol_eclipse_how(
889
+ double tjd_ut,
890
+ int32 ifl,
891
+ double *geopos,
892
+ double *attr,
893
+ char *serr)
894
+ {
895
+ int32 retflag, retflag2;
896
+ double dcore[10];
897
+ double geopos2[20];
898
+ ifl &= SEFLG_EPHMASK;
899
+ if ((retflag = eclipse_how(tjd_ut, SE_SUN, NULL, ifl, geopos[0], geopos[1], geopos[2], attr, serr)) == ERR)
900
+ return retflag;
901
+ if ((retflag2 = eclipse_where(tjd_ut, SE_SUN, NULL, ifl, geopos2, dcore, serr)) == ERR)
902
+ return retflag2;
903
+ if (retflag)
904
+ retflag |= (retflag2 & (SE_ECL_CENTRAL | SE_ECL_NONCENTRAL));
905
+ attr[3] = dcore[0];
906
+ return retflag;
907
+ }
908
+
909
+ static int32 eclipse_how( double tjd_ut, int32 ipl, char *starname, int32 ifl,
910
+ double geolon, double geolat, double geohgt,
911
+ double *attr, char *serr)
912
+ {
913
+ int i, j, k;
914
+ int32 retc = 0;
915
+ double te, d;
916
+ double xs[6], xm[6], ls[6], lm[6], x1[6], x2[6];
917
+ double rmoon, rsun, rsplusrm, rsminusrm;
918
+ double dctr;
919
+ double drad;
920
+ int32 iflag = SEFLG_EQUATORIAL | SEFLG_TOPOCTR | ifl;
921
+ int32 iflagcart = iflag | SEFLG_XYZ;
922
+ double mdd, eps, sidt, armc, xh[6], hmin_appr;
923
+ double lsun, lmoon, lctr, lsunleft, a, b, sc1, sc2;
924
+ for (i = 0; i < 10; i++)
925
+ attr[i] = 0;
926
+ te = tjd_ut + swe_deltat(tjd_ut);
927
+ swe_set_topo(geolon, geolat, geohgt);
928
+ if (calc_planet_star(te, ipl, starname, iflag, ls, serr) == ERR)
929
+ return ERR;
930
+ if (swe_calc(te, SE_MOON, iflag, lm, serr) == ERR)
931
+ return ERR;
932
+ if (calc_planet_star(te, ipl, starname, iflagcart, xs, serr) == ERR)
933
+ return ERR;
934
+ if (swe_calc(te, SE_MOON, iflagcart, xm, serr) == ERR)
935
+ return ERR;
936
+ /*
937
+ * radius of planet disk in AU
938
+ */
939
+ if (starname != NULL && *starname != '\0')
940
+ drad = 0;
941
+ else if (ipl < NDIAM)
942
+ drad = pla_diam[ipl] / 2 / AUNIT;
943
+ else if (ipl > SE_AST_OFFSET)
944
+ drad = swed.ast_diam / 2 * 1000 / AUNIT; /* km -> m -> AU */
945
+ else
946
+ drad = 0;
947
+ /*
948
+ * azimuth and altitude of sun or planet
949
+ */
950
+ eps = swi_epsiln(te);
951
+ if (iflag & SEFLG_NONUT)
952
+ sidt = swe_sidtime0(tjd_ut, eps * RADTODEG, 0) * 15;
953
+ else
954
+ sidt = swe_sidtime(tjd_ut) * 15;
955
+ armc = sidt + geolon;
956
+ mdd = swe_degnorm(ls[0] - armc);
957
+ xh[0] = swe_degnorm(mdd - 90);
958
+ xh[1] = ls[1];
959
+ xh[2] = ls[2];
960
+ swe_cotrans(xh, xh, 90 - geolat); /* azimuth from east, counterclock */
961
+ /* eclipse description */
962
+ rmoon = asin(RMOON / lm[2]) * RADTODEG;
963
+ rsun = asin(drad / ls[2]) * RADTODEG;
964
+ rsplusrm = rsun + rmoon;
965
+ rsminusrm = rsun - rmoon;
966
+ for (i = 0; i < 3; i++) {
967
+ x1[i] = xs[i] / ls[2];
968
+ x2[i] = xm[i] / lm[2];
969
+ }
970
+ dctr = acos(swi_dot_prod_unit(x1, x2)) * RADTODEG;
971
+ /*
972
+ * phase
973
+ */
974
+ if (dctr < rsminusrm)
975
+ retc = SE_ECL_ANNULAR;
976
+ else if (dctr < fabs(rsminusrm))
977
+ retc = SE_ECL_TOTAL;
978
+ else if (dctr < rsplusrm)
979
+ retc = SE_ECL_PARTIAL;
980
+ else {
981
+ retc = 0;
982
+ if (serr != NULL)
983
+ sprintf(serr, "no solar eclipse at tjd = %f", tjd_ut);
984
+ }
985
+ /*
986
+ * percentage of eclipse
987
+ */
988
+ #if 0
989
+ attr[0] = (rsplusrm - dctr) / rsun / 2 * 100;
990
+ #else
991
+ /*
992
+ * eclipse magnitude:
993
+ * fraction of solar diameter covered by moon
994
+ */
995
+ lsun = asin(rsun / 2 * DEGTORAD) * 2;
996
+ #if 0
997
+ lmoon = asin(rmoon / 2 * DEGTORAD) * 2;
998
+ lctr = asin(dctr / 2 * DEGTORAD) * 2;
999
+ #endif
1000
+ lsunleft = (-dctr + rsun + rmoon);
1001
+ if (lsun > 0) {
1002
+ attr[0] = lsunleft / rsun / 2;
1003
+ } else {
1004
+ attr[0] = 100;
1005
+ }
1006
+ /*
1007
+ * ratio of diameter of moon to that of sun
1008
+ */
1009
+ if (rsun > 0)
1010
+ attr[1] = rmoon / rsun;
1011
+ else
1012
+ attr[1] = 0;
1013
+ /*
1014
+ * obscuration:
1015
+ * fraction of solar disc obscured by moon
1016
+ */
1017
+ lsun = rsun;
1018
+ lmoon = rmoon;
1019
+ lctr = dctr;
1020
+ if (retc == 0 || lsun == 0)
1021
+ attr[2] = 100;
1022
+ else if (retc == SE_ECL_TOTAL || retc == SE_ECL_ANNULAR)
1023
+ attr[2] = lmoon * lmoon / lsun / lsun;
1024
+ else {
1025
+ a = 2 * lctr * lmoon;
1026
+ b = 2 * lctr * lsun;
1027
+ if (a < 1e-9) {
1028
+ attr[2] = lmoon * lmoon / lsun / lsun;
1029
+ } else {
1030
+ a = (lctr * lctr + lmoon * lmoon - lsun * lsun) / a;
1031
+ if (a > 1) a = 1;
1032
+ if (a < -1) a = -1;
1033
+ b = (lctr * lctr + lsun * lsun - lmoon * lmoon) / b;
1034
+ if (b > 1) b = 1;
1035
+ if (b < -1) b = -1;
1036
+ a = acos(a);
1037
+ b = acos(b);
1038
+ sc1 = a * lmoon * lmoon / 2;
1039
+ sc2 = b * lsun * lsun / 2;
1040
+ sc1 -= (cos(a) * sin(a)) * lmoon * lmoon / 2;
1041
+ sc2 -= (cos(b) * sin(b)) * lsun * lsun / 2;
1042
+ attr[2] = (sc1 + sc2) * 2 / PI / lsun / lsun;
1043
+ }
1044
+ }
1045
+ #endif
1046
+ attr[7] = dctr;
1047
+ /* approximate minimum height for visibility, considering
1048
+ * refraction and dip
1049
+ * 34.4556': refraction at horizon, from Bennets formulae
1050
+ * 1.75' / sqrt(geohgt): dip of horizon
1051
+ * 0.37' / sqrt(geohgt): refraction between horizon and observer */
1052
+ hmin_appr = -(34.4556 + (1.75 + 0.37) * sqrt(geohgt)) / 60;
1053
+ if (xh[1] + rsun + fabs(hmin_appr) >= 0 && retc)
1054
+ retc |= SE_ECL_VISIBLE; /* eclipse visible */
1055
+ attr[4] = swe_degnorm(90 - xh[0]); /* azimuth, from north, clockwise */
1056
+ attr[5] = xh[1]; /* height */
1057
+ if (ipl == SE_SUN && (starname == NULL || *starname == '\0')) {
1058
+ /* magnitude of solar eclipse */
1059
+ attr[8] = attr[0]; /* fraction of diameter occulted */
1060
+ if (retc & (SE_ECL_TOTAL | SE_ECL_ANNULAR))
1061
+ attr[8] = attr[1]; /* ration between diameters of sun and moon */
1062
+ /* saros series and member */
1063
+ for (i = 0; i < NSAROS_SOLAR; i++) {
1064
+ d = (tjd_ut - saros_data_solar[i].tstart) / SAROS_CYCLE;
1065
+ if (d < 0) continue;
1066
+ j = (int) d;
1067
+ if ((d - j) * SAROS_CYCLE < 2) {
1068
+ attr[9] = (double) saros_data_solar[i].series_no;
1069
+ attr[10] = (double) j + 1;
1070
+ break;
1071
+ }
1072
+ k = j + 1;
1073
+ if ((k - d) * SAROS_CYCLE < 2) {
1074
+ attr[9] = (double) saros_data_solar[i].series_no;
1075
+ attr[10] = (double) k + 1;
1076
+ break;
1077
+ }
1078
+ }
1079
+ if (i == NSAROS_SOLAR) {
1080
+ attr[9] = attr[10] = -99999999;
1081
+ }
1082
+ }
1083
+ return retc;
1084
+ }
1085
+
1086
+ /* When is the next solar eclipse anywhere on earth?
1087
+ *
1088
+ * input parameters:
1089
+ *
1090
+ * tjd_start start time for search (UT)
1091
+ * ifl ephemeris to be used (SEFLG_SWIEPH, etc.)
1092
+ * ifltype eclipse type to be searched (SE_ECL_TOTAL, etc.)
1093
+ * 0, if any type of eclipse is wanted
1094
+ *
1095
+ * return values:
1096
+ *
1097
+ * retflag SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL
1098
+ * or SE_ECL_ANNULAR_TOTAL
1099
+ * SE_ECL_CENTRAL
1100
+ * SE_ECL_NONCENTRAL
1101
+ *
1102
+ * tret[0] time of maximum eclipse
1103
+ * tret[1] time, when eclipse takes place at local apparent noon
1104
+ * tret[2] time of eclipse begin
1105
+ * tret[3] time of eclipse end
1106
+ * tret[4] time of totality begin
1107
+ * tret[5] time of totality end
1108
+ * tret[6] time of center line begin
1109
+ * tret[7] time of center line end
1110
+ * tret[8] time when annular-total eclipse becomes total
1111
+ * not implemented so far
1112
+ * tret[9] time when annular-total eclipse becomes annular again
1113
+ * not implemented so far
1114
+ * declare as tret[10] at least!
1115
+ *
1116
+ */
1117
+ int32 FAR PASCAL_CONV swe_sol_eclipse_when_glob(double tjd_start, int32 ifl, int32 ifltype,
1118
+ double *tret, int32 backward, char *serr)
1119
+ {
1120
+ int i, j, k, m, n, o, i1 = 0, i2 = 0;
1121
+ int32 retflag = 0, retflag2 = 0;
1122
+ double de = 6378.140, a;
1123
+ double t, tt, tjd, tjds, dt, dtint, dta, dtb;
1124
+ double T, T2, T3, T4, K, M, Mm;
1125
+ double E, Ff;
1126
+ double xs[6], xm[6], ls[6], lm[6];
1127
+ double rmoon, rsun, dcore[10];
1128
+ double dc[3], dctr;
1129
+ double twohr = 2.0 / 24.0;
1130
+ double tenmin = 10.0 / 24.0 / 60.0;
1131
+ double dt1, dt2;
1132
+ double geopos[20], attr[20];
1133
+ double dtstart, dtdiv;
1134
+ double xa[6], xb[6];
1135
+ int direction = 1;
1136
+ AS_BOOL dont_times = FALSE;
1137
+ int32 iflag, iflagcart;
1138
+ ifl &= SEFLG_EPHMASK;
1139
+ iflag = SEFLG_EQUATORIAL | ifl;
1140
+ iflagcart = iflag | SEFLG_XYZ;
1141
+ if (ifltype == (SE_ECL_PARTIAL | SE_ECL_CENTRAL)) {
1142
+ if (serr != NULL)
1143
+ strcpy(serr, "central partial eclipses do not exist");
1144
+ return ERR;
1145
+ }
1146
+ if (ifltype == 0)
1147
+ ifltype = SE_ECL_TOTAL | SE_ECL_ANNULAR | SE_ECL_PARTIAL
1148
+ | SE_ECL_ANNULAR_TOTAL | SE_ECL_NONCENTRAL | SE_ECL_CENTRAL;
1149
+ if (backward)
1150
+ direction = -1;
1151
+ K = (int) ((tjd_start - J2000) / 365.2425 * 12.3685);
1152
+ K -= direction;
1153
+ next_try:
1154
+ retflag = 0;
1155
+ dont_times = FALSE;
1156
+ for (i = 0; i <= 9; i++)
1157
+ tret[i] = 0;
1158
+ T = K / 1236.85;
1159
+ T2 = T * T; T3 = T2 * T; T4 = T3 * T;
1160
+ Ff = swe_degnorm(160.7108 + 390.67050274 * K
1161
+ - 0.0016341 * T2
1162
+ - 0.00000227 * T3
1163
+ + 0.000000011 * T4);
1164
+ if (Ff > 180)
1165
+ Ff -= 180;
1166
+ if (Ff > 21 && Ff < 159) { /* no eclipse possible */
1167
+ K += direction;
1168
+ goto next_try;
1169
+ }
1170
+ /* approximate time of geocentric maximum eclipse
1171
+ * formula from Meeus, German, p. 381 */
1172
+ tjd = 2451550.09765 + 29.530588853 * K
1173
+ + 0.0001337 * T2
1174
+ - 0.000000150 * T3
1175
+ + 0.00000000073 * T4;
1176
+ M = swe_degnorm(2.5534 + 29.10535669 * K
1177
+ - 0.0000218 * T2
1178
+ - 0.00000011 * T3);
1179
+ Mm = swe_degnorm(201.5643 + 385.81693528 * K
1180
+ + 0.1017438 * T2
1181
+ + 0.00001239 * T3
1182
+ + 0.000000058 * T4);
1183
+ E = 1 - 0.002516 * T - 0.0000074 * T2;
1184
+ M *= DEGTORAD;
1185
+ Mm *= DEGTORAD;
1186
+ tjd = tjd - 0.4075 * sin(Mm)
1187
+ + 0.1721 * E * sin(M);
1188
+ /*
1189
+ * time of maximum eclipse (if eclipse) =
1190
+ * minimum geocentric angle between sun and moon edges.
1191
+ * After this time has been determined, check
1192
+ * whether or not an eclipse is taking place with
1193
+ * the functions eclipse_where() and _how().
1194
+ */
1195
+ dtstart = 1;
1196
+ if (tjd < 2000000)
1197
+ dtstart = 5;
1198
+ dtdiv = 4;
1199
+ for (dt = dtstart;
1200
+ dt > 0.0001;
1201
+ dt /= dtdiv) {
1202
+ for (i = 0, t = tjd - dt; i <= 2; i++, t += dt) {
1203
+ if (swe_calc(t, SE_SUN, iflag, ls, serr) == ERR)
1204
+ return ERR;
1205
+ if (swe_calc(t, SE_MOON, iflag, lm, serr) == ERR)
1206
+ return ERR;
1207
+ if (swe_calc(t, SE_SUN, iflagcart, xs, serr) == ERR)
1208
+ return ERR;
1209
+ if (swe_calc(t, SE_MOON, iflagcart, xm, serr) == ERR)
1210
+ return ERR;
1211
+ for (m = 0; m < 3; m++) {
1212
+ xa[m] = xs[m] / ls[2];
1213
+ xb[m] = xm[m] / lm[2];
1214
+ }
1215
+ dc[i] = acos(swi_dot_prod_unit(xa, xb)) * RADTODEG;
1216
+ rmoon = asin(RMOON / lm[2]) * RADTODEG;
1217
+ rsun = asin(RSUN / ls[2]) * RADTODEG;
1218
+ dc[i] -= (rmoon + rsun);
1219
+ }
1220
+ find_maximum(dc[0], dc[1], dc[2], dt, &dtint, &dctr);
1221
+ tjd += dtint + dt;
1222
+ }
1223
+ tjds = tjd = tjd - swe_deltat(tjd);
1224
+ if ((retflag = eclipse_where(tjd, SE_SUN, NULL, ifl, geopos, dcore, serr)) == ERR)
1225
+ return retflag;
1226
+ retflag2 = retflag;
1227
+ /* in extreme cases _where() returns no eclipse, where there is
1228
+ * actually a very small one, therefore call _how() with the
1229
+ * coordinates returned by _where(): */
1230
+ if ((retflag2 = eclipse_how(tjd, SE_SUN, NULL, ifl, geopos[0], geopos[1], 0, attr, serr)) == ERR)
1231
+ return retflag2;
1232
+ if (retflag2 == 0) {
1233
+ K += direction;
1234
+ goto next_try;
1235
+ }
1236
+ tret[0] = tjd;
1237
+ if ((backward && tret[0] >= tjd_start - 0.0001)
1238
+ || (!backward && tret[0] <= tjd_start + 0.0001)) {
1239
+ K += direction;
1240
+ goto next_try;
1241
+ }
1242
+ /*
1243
+ * eclipse type, SE_ECL_TOTAL, _ANNULAR, etc.
1244
+ * SE_ECL_ANNULAR_TOTAL will be discovered later
1245
+ */
1246
+ if ((retflag = eclipse_where(tjd, SE_SUN, NULL, ifl, geopos, dcore, serr)) == ERR)
1247
+ return retflag;
1248
+ if (retflag == 0) { /* can happen with extremely small percentage */
1249
+ retflag = SE_ECL_PARTIAL | SE_ECL_NONCENTRAL;
1250
+ tret[4] = tret[5] = tjd; /* fix this ???? */
1251
+ dont_times = TRUE;
1252
+ }
1253
+ /*
1254
+ * check whether or not eclipse type found is wanted
1255
+ */
1256
+ /* non central eclipse is wanted: */
1257
+ if (!(ifltype & SE_ECL_NONCENTRAL) && (retflag & SE_ECL_NONCENTRAL)) {
1258
+ K += direction;
1259
+ goto next_try;
1260
+ }
1261
+ /* central eclipse is wanted: */
1262
+ if (!(ifltype & SE_ECL_CENTRAL) && (retflag & SE_ECL_CENTRAL)) {
1263
+ K += direction;
1264
+ goto next_try;
1265
+ }
1266
+ /* non annular eclipse is wanted: */
1267
+ if (!(ifltype & SE_ECL_ANNULAR) && (retflag & SE_ECL_ANNULAR)) {
1268
+ K += direction;
1269
+ goto next_try;
1270
+ }
1271
+ /* non partial eclipse is wanted: */
1272
+ if (!(ifltype & SE_ECL_PARTIAL) && (retflag & SE_ECL_PARTIAL)) {
1273
+ K += direction;
1274
+ goto next_try;
1275
+ }
1276
+ /* annular-total eclipse will be discovered later */
1277
+ if (!(ifltype & (SE_ECL_TOTAL | SE_ECL_ANNULAR_TOTAL)) && (retflag & SE_ECL_TOTAL)) {
1278
+ K += direction;
1279
+ goto next_try;
1280
+ }
1281
+ if (dont_times)
1282
+ goto end_search_global;
1283
+ /*
1284
+ * n = 0: times of eclipse begin and end
1285
+ * n = 1: times of totality begin and end
1286
+ * n = 2: times of center line begin and end
1287
+ */
1288
+ if (retflag & SE_ECL_PARTIAL)
1289
+ o = 0;
1290
+ else if (retflag & SE_ECL_NONCENTRAL)
1291
+ o = 1;
1292
+ else
1293
+ o = 2;
1294
+ dta = twohr;
1295
+ dtb = tenmin / 3.0;
1296
+ for (n = 0; n <= o; n++) {
1297
+ if (n == 0) {
1298
+ /*dc[1] = dcore[3] / 2 + de - dcore[1];*/
1299
+ i1 = 2; i2 = 3;
1300
+ } else if (n == 1) {
1301
+ if (retflag & SE_ECL_PARTIAL)
1302
+ continue;
1303
+ i1 = 4; i2 = 5;
1304
+ } else if (n == 2) {
1305
+ if (retflag & SE_ECL_NONCENTRAL)
1306
+ continue;
1307
+ i1 = 6; i2 = 7;
1308
+ }
1309
+ for (i = 0, t = tjd - dta; i <= 2; i += 1, t += dta) {
1310
+ if ((retflag2 = eclipse_where(t, SE_SUN, NULL, ifl, geopos, dcore, serr)) == ERR)
1311
+ return retflag2;
1312
+ if (n == 0)
1313
+ dc[i] = dcore[4] / 2 + de / dcore[5] - dcore[2];
1314
+ else if (n == 1)
1315
+ dc[i] = fabs(dcore[3]) / 2 + de / dcore[6] - dcore[2];
1316
+ else if (n == 2)
1317
+ dc[i] = de / dcore[6] - dcore[2];
1318
+ }
1319
+ find_zero(dc[0], dc[1], dc[2], dta, &dt1, &dt2);
1320
+ tret[i1] = tjd + dt1 + dta;
1321
+ tret[i2] = tjd + dt2 + dta;
1322
+ for (m = 0, dt = dtb; m < 3; m++, dt /= 3) {
1323
+ for (j = i1; j <= i2; j += (i2 - i1)) {
1324
+ for (i = 0, t = tret[j] - dt; i < 2; i++, t += dt) {
1325
+ if ((retflag2 = eclipse_where(t, SE_SUN, NULL, ifl, geopos, dcore, serr)) == ERR)
1326
+ return retflag2;
1327
+ if (n == 0)
1328
+ dc[i] = dcore[4] / 2 + de / dcore[5] - dcore[2];
1329
+ else if (n == 1)
1330
+ dc[i] = fabs(dcore[3]) / 2 + de / dcore[6] - dcore[2];
1331
+ else if (n == 2)
1332
+ dc[i] = de / dcore[6] - dcore[2];
1333
+ }
1334
+ dt1 = dc[1] / ((dc[1] - dc[0]) / dt);
1335
+ tret[j] -= dt1;
1336
+ }
1337
+ }
1338
+ }
1339
+ /*
1340
+ * annular-total eclipses
1341
+ */
1342
+ if (retflag & SE_ECL_TOTAL) {
1343
+ if ((retflag2 = eclipse_where(tret[0], SE_SUN, NULL, ifl, geopos, dcore, serr)) == ERR)
1344
+ return retflag2;
1345
+ dc[0] = *dcore;
1346
+ if ((retflag2 = eclipse_where(tret[4], SE_SUN, NULL, ifl, geopos, dcore, serr)) == ERR)
1347
+ return retflag2;
1348
+ dc[1] = *dcore;
1349
+ if ((retflag2 = eclipse_where(tret[5], SE_SUN, NULL, ifl, geopos, dcore, serr)) == ERR)
1350
+ return retflag2;
1351
+ dc[2] = *dcore;
1352
+ /* the maximum is always total, and there is either one or
1353
+ * to times before and after, when the core shadow becomes
1354
+ * zero and totality changes into annularity or vice versa.
1355
+ */
1356
+ if (dc[0] * dc[1] < 0 || dc[0] * dc[2] < 0) {
1357
+ retflag |= SE_ECL_ANNULAR_TOTAL;
1358
+ retflag &= ~SE_ECL_TOTAL;
1359
+ }
1360
+ }
1361
+ /* if eclipse is given but not wanted: */
1362
+ if (!(ifltype & SE_ECL_TOTAL) && (retflag & SE_ECL_TOTAL)) {
1363
+ K += direction;
1364
+ goto next_try;
1365
+ }
1366
+ /* if annular_total eclipse is given but not wanted: */
1367
+ if (!(ifltype & SE_ECL_ANNULAR_TOTAL) && (retflag & SE_ECL_ANNULAR_TOTAL)) {
1368
+ K += direction;
1369
+ goto next_try;
1370
+ }
1371
+ /*
1372
+ * time of maximum eclipse at local apparent noon
1373
+ */
1374
+ /* first, find out, if there is a solar transit
1375
+ * between begin and end of eclipse */
1376
+ k = 2;
1377
+ for (i = 0; i < 2; i++) {
1378
+ j = i + k;
1379
+ tt = tret[j] + swe_deltat(tret[j]);
1380
+ if (swe_calc(tt, SE_SUN, iflag, ls, serr) == ERR)
1381
+ return ERR;
1382
+ if (swe_calc(tt, SE_MOON, iflag, lm, serr) == ERR)
1383
+ return ERR;
1384
+ dc[i] = swe_degnorm(ls[0] - lm[0]);
1385
+ if (dc[i] > 180)
1386
+ dc[i] -= 360;
1387
+ }
1388
+ if (dc[0] * dc[1] >= 0) /* no transit */
1389
+ tret[1] = 0;
1390
+ else {
1391
+ tjd = tjds;
1392
+ dt = 0.1;
1393
+ dt1 = (tret[3] - tret[2]) / 2.0;
1394
+ if (dt1 < dt)
1395
+ dt = dt1 / 2.0;
1396
+ for (j = 0;
1397
+ dt > 0.01;
1398
+ j++, dt /= 3) {
1399
+ for (i = 0, t = tjd; i <= 1; i++, t -= dt) {
1400
+ tt = t + swe_deltat(t);
1401
+ if (swe_calc(tt, SE_SUN, iflag, ls, serr) == ERR)
1402
+ return ERR;
1403
+ if (swe_calc(tt, SE_MOON, iflag, lm, serr) == ERR)
1404
+ return ERR;
1405
+ dc[i] = swe_degnorm(ls[0] - lm[0]);
1406
+ if (dc[i] > 180)
1407
+ dc[i] -= 360;
1408
+ if (dc[i] > 180)
1409
+ dc[i] -= 360;
1410
+ }
1411
+ a = (dc[1] - dc[0]) / dt;
1412
+ if (a < 1e-10)
1413
+ break;
1414
+ dt1 = dc[0] / a;
1415
+ tjd += dt1;
1416
+ }
1417
+ tret[1] = tjd;
1418
+ }
1419
+ end_search_global:
1420
+ return retflag;
1421
+ /*
1422
+ * the time of maximum occultation is practically identical
1423
+ * with the time of maximum core shadow diameter.
1424
+ *
1425
+ * the time, when duration of totality is maximal,
1426
+ * is not an interesting computation either. Near the maximum
1427
+ * occulation, the time of totality can be the same by
1428
+ * a second for hundreds of kilometers (for 10 minutes
1429
+ * or more).
1430
+ *
1431
+ * for annular eclipses the maximum duration is close to the
1432
+ * beginning and the end of the center lines, where is also
1433
+ * the minimum of core shadow diameter.
1434
+ */
1435
+ }
1436
+
1437
+ /* When is the next lunar occultation anywhere on earth?
1438
+ * This function also finds solar eclipses, but is less efficient
1439
+ * than swe_sol_eclipse_when_glob().
1440
+ *
1441
+ * input parameters:
1442
+ *
1443
+ * tjd_start start time for search (UT)
1444
+ * ipl planet number of occulted body
1445
+ * starname name of occulted star. Must be NULL or "", if a planetary
1446
+ * occultation is to be calculated. For the use of this
1447
+ * field, also see swe_fixstar().
1448
+ * ifl ephemeris to be used (SEFLG_SWIEPH, etc.)
1449
+ * ephemeris flag.
1450
+ *
1451
+ * ifltype eclipse type to be searched (SE_ECL_TOTAL, etc.)
1452
+ * 0, if any type of eclipse is wanted
1453
+ * this functionality also works with occultations
1454
+ *
1455
+ * backward if 1, causes search backward in time
1456
+ *
1457
+ * If you want to have only one conjunction
1458
+ * of the moon with the body tested, add the following flag:
1459
+ * backward |= SE_ECL_ONE_TRY. If this flag is not set,
1460
+ * the function will search for an occultation until it
1461
+ * finds one. For bodies with ecliptical latitudes > 5,
1462
+ * the function may search successlessly until it reaches
1463
+ * the end of the ephemeris.
1464
+ * (Note: we do not add SE_ECL_ONE_TRY to ifl, because
1465
+ * ifl may contain SEFLG_TOPOCTR (=SE_ECL_ONE_TRY) from
1466
+ * the parameter iflag of swe_calc() etc. Although the
1467
+ * topocentric flag is irrelevant here, it might cause
1468
+ * confusion.)
1469
+ *
1470
+ * return values:
1471
+ *
1472
+ * retflag SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL
1473
+ * or SE_ECL_ANNULAR_TOTAL
1474
+ * SE_ECL_CENTRAL
1475
+ * SE_ECL_NONCENTRAL
1476
+ *
1477
+ * tret[0] time of maximum eclipse
1478
+ * tret[1] time, when eclipse takes place at local apparent noon
1479
+ * tret[2] time of eclipse begin
1480
+ * tret[3] time of eclipse end
1481
+ * tret[4] time of totality begin
1482
+ * tret[5] time of totality end
1483
+ * tret[6] time of center line begin
1484
+ * tret[7] time of center line end
1485
+ * tret[8] time when annular-total eclipse becomes total
1486
+ * not implemented so far
1487
+ * tret[9] time when annular-total eclipse becomes annular again
1488
+ * not implemented so far
1489
+ * declare as tret[10] at least!
1490
+ *
1491
+ */
1492
+ int32 FAR PASCAL_CONV swe_lun_occult_when_glob(
1493
+ double tjd_start, int32 ipl, char *starname, int32 ifl, int32 ifltype,
1494
+ double *tret, int32 backward, char *serr)
1495
+ {
1496
+ int i, j, k, m, n, o, i1, i2;
1497
+ int32 retflag = 0, retflag2 = 0;
1498
+ double de = 6378.140, a;
1499
+ double t, tt, tjd = 0, tjds, dt, dtint, dta, dtb;
1500
+ double drad;
1501
+ double xs[6], xm[6], ls[6], lm[6];
1502
+ double rmoon, rsun, dcore[10];
1503
+ double dc[20], dctr;
1504
+ double twohr = 2.0 / 24.0;
1505
+ double tenmin = 10.0 / 24.0 / 60.0;
1506
+ double dt1, dt2, dadd = 10, dadd2 = 6;
1507
+ int nstartpos = 10;
1508
+ double geopos[20];
1509
+ double dtstart, dtdiv;
1510
+ int direction = 1;
1511
+ char s[AS_MAXCH];
1512
+ int32 iflag, iflagcart;
1513
+ AS_BOOL dont_times = FALSE;
1514
+ int32 one_try = backward & SE_ECL_ONE_TRY;
1515
+ /*if (backward & SEI_OCC_FAST)
1516
+ dont_times = TRUE; */
1517
+ /* function calls for Pluto with asteroid number 134340
1518
+ * are treated as calls for Pluto as main body SE_PLUTO */
1519
+ if (ipl == SE_AST_OFFSET + 134340)
1520
+ ipl = SE_PLUTO;
1521
+ ifl &= SEFLG_EPHMASK;
1522
+ iflag = SEFLG_EQUATORIAL | ifl;
1523
+ iflagcart = iflag | SEFLG_XYZ;
1524
+ backward &= 1L;
1525
+ /*
1526
+ * initializations
1527
+ */
1528
+ if (ifltype == (SE_ECL_PARTIAL | SE_ECL_CENTRAL)) {
1529
+ if (serr != NULL)
1530
+ strcpy(serr, "central partial eclipses do not exist");
1531
+ return ERR;
1532
+ }
1533
+ if (ifltype == 0)
1534
+ ifltype = SE_ECL_TOTAL | SE_ECL_ANNULAR | SE_ECL_PARTIAL
1535
+ | SE_ECL_ANNULAR_TOTAL | SE_ECL_NONCENTRAL | SE_ECL_CENTRAL;
1536
+ retflag = 0;
1537
+ for (i = 0; i <= 9; i++)
1538
+ tret[i] = 0;
1539
+ if (backward)
1540
+ direction = -1;
1541
+ t = tjd_start - direction * 0.001;
1542
+ next_try:
1543
+ for (i = 0; i < nstartpos; i++, t += direction * dadd2) {
1544
+ if (calc_planet_star(t, ipl, starname, iflagcart, xs, serr) == ERR)
1545
+ return ERR;
1546
+ if (swe_calc(t, SE_MOON, iflagcart, xm, serr) == ERR)
1547
+ return ERR;
1548
+ dc[i] = acos(swi_dot_prod_unit(xs, xm)) * RADTODEG;
1549
+ if (i > 1 && dc[i] > dc[i-1] && dc[i-2] > dc[i-1]) {
1550
+ tjd = t - direction * dadd2;
1551
+ break;
1552
+ } else if (i == nstartpos-1) {
1553
+ /*for (j = 0; j < nstartpos; j++)
1554
+ printf("%f ", dc[j]);*/
1555
+ if (serr != NULL) {
1556
+ if (starname != NULL && *starname != '\0')
1557
+ strcpy(s, starname);
1558
+ else
1559
+ swe_get_planet_name(ipl , s);
1560
+ sprintf(serr, "error in swe_lun_occult_when_glob(): conjunction of moon with planet %s not found\n", s);
1561
+ }
1562
+ return ERR;
1563
+ }
1564
+ }
1565
+ /*
1566
+ * radius of planet disk in AU
1567
+ */
1568
+ if (starname != NULL && *starname != '\0')
1569
+ drad = 0;
1570
+ else if (ipl < NDIAM)
1571
+ drad = pla_diam[ipl] / 2 / AUNIT;
1572
+ else if (ipl > SE_AST_OFFSET)
1573
+ drad = swed.ast_diam / 2 * 1000 / AUNIT; /* km -> m -> AU */
1574
+ else
1575
+ drad = 0;
1576
+ /*
1577
+ * time of maximum eclipse (if eclipse) =
1578
+ * minimum geocentric angle between sun and moon edges.
1579
+ * After this time has been determined, check
1580
+ * whether or not an eclipse is taking place with
1581
+ * the functions eclipse_where() and _how().
1582
+ */
1583
+ dtstart = dadd2; /* originally 1 */
1584
+ dtdiv = 3;
1585
+ for (dt = dtstart;
1586
+ dt > 0.0001;
1587
+ dt /= dtdiv) {
1588
+ for (i = 0, t = tjd - dt; i <= 2; i++, t += dt) {
1589
+ if (calc_planet_star(t, ipl, starname, iflag, ls, serr) == ERR)
1590
+ return ERR;
1591
+ if (swe_calc(t, SE_MOON, iflag, lm, serr) == ERR)
1592
+ return ERR;
1593
+ if (calc_planet_star(t, ipl, starname, iflagcart, xs, serr) == ERR)
1594
+ return ERR;
1595
+ if (swe_calc(t, SE_MOON, iflagcart, xm, serr) == ERR)
1596
+ return ERR;
1597
+ dc[i] = acos(swi_dot_prod_unit(xs, xm)) * RADTODEG;
1598
+ rmoon = asin(RMOON / lm[2]) * RADTODEG;
1599
+ rsun = asin(drad / ls[2]) * RADTODEG;
1600
+ dc[i] -= (rmoon + rsun);
1601
+ }
1602
+ find_maximum(dc[0], dc[1], dc[2], dt, &dtint, &dctr);
1603
+ tjd += dtint + dt;
1604
+ }
1605
+ tjd -= swe_deltat(tjd);
1606
+ tjds = tjd;
1607
+ if ((retflag = eclipse_where(tjd, ipl, starname, ifl, geopos, dcore, serr)) == ERR)
1608
+ return retflag;
1609
+ retflag2 = retflag;
1610
+ /* in extreme cases _where() returns no eclipse, where there is
1611
+ * actually a very small one, therefore call _how() with the
1612
+ * coordinates returned by _where(): */
1613
+ /* if ((retflag2 = eclipse_how(tjd, ipl, starname, ifl, geopos[0], geopos[1], 0, attr, serr)) == ERR)
1614
+ return retflag2; */
1615
+ if (retflag2 == 0) {
1616
+ /* only one try! */
1617
+ if (one_try) {
1618
+ tret[0] = tjd;
1619
+ return 0;
1620
+ }
1621
+ t= tjd + direction * dadd;
1622
+ goto next_try;
1623
+ }
1624
+ tret[0] = tjd;
1625
+ if ((backward && tret[0] >= tjd_start - 0.0001)
1626
+ || (!backward && tret[0] <= tjd_start + 0.0001)) {
1627
+ t= tjd + direction * dadd;
1628
+ goto next_try;
1629
+ }
1630
+ /*
1631
+ * eclipse type, SE_ECL_TOTAL, _ANNULAR, etc.
1632
+ * SE_ECL_ANNULAR_TOTAL will be discovered later
1633
+ */
1634
+ if ((retflag = eclipse_where(tjd, ipl, starname, ifl, geopos, dcore, serr)) == ERR)
1635
+ return retflag;
1636
+ if (retflag == 0) { /* can happen with extremely small percentage */
1637
+ retflag = SE_ECL_PARTIAL | SE_ECL_NONCENTRAL;
1638
+ tret[4] = tret[5] = tjd; /* fix this ???? */
1639
+ dont_times = TRUE;
1640
+ }
1641
+ /*
1642
+ * check whether or not eclipse type found is wanted
1643
+ */
1644
+ /* non central eclipse is wanted: */
1645
+ if (!(ifltype & SE_ECL_NONCENTRAL) && (retflag & SE_ECL_NONCENTRAL)) {
1646
+ t= tjd + direction * dadd;
1647
+ goto next_try;
1648
+ }
1649
+ /* central eclipse is wanted: */
1650
+ if (!(ifltype & SE_ECL_CENTRAL) && (retflag & SE_ECL_CENTRAL)) {
1651
+ t= tjd + direction * dadd;
1652
+ goto next_try;
1653
+ }
1654
+ /* non annular eclipse is wanted: */
1655
+ if (!(ifltype & SE_ECL_ANNULAR) && (retflag & SE_ECL_ANNULAR)) {
1656
+ t= tjd + direction * dadd;
1657
+ goto next_try;
1658
+ }
1659
+ /* non partial eclipse is wanted: */
1660
+ if (!(ifltype & SE_ECL_PARTIAL) && (retflag & SE_ECL_PARTIAL)) {
1661
+ t= tjd + direction * dadd;
1662
+ goto next_try;
1663
+ }
1664
+ /* annular-total eclipse will be discovered later */
1665
+ if (!(ifltype & (SE_ECL_TOTAL | SE_ECL_ANNULAR_TOTAL)) && (retflag & SE_ECL_TOTAL)) {
1666
+ t= tjd + direction * dadd;
1667
+ goto next_try;
1668
+ }
1669
+ if (dont_times)
1670
+ goto end_search_global;
1671
+ /*
1672
+ * n = 0: times of eclipse begin and end
1673
+ * n = 1: times of totality begin and end
1674
+ * n = 2: times of center line begin and end
1675
+ */
1676
+ if (retflag & SE_ECL_PARTIAL)
1677
+ o = 0;
1678
+ else if (retflag & SE_ECL_NONCENTRAL)
1679
+ o = 1;
1680
+ else
1681
+ o = 2;
1682
+ dta = twohr;
1683
+ dtb = tenmin;
1684
+ for (n = 0; n <= o; n++) {
1685
+ if (n == 0) {
1686
+ /*dc[1] = dcore[3] / 2 + de - dcore[1];*/
1687
+ i1 = 2; i2 = 3;
1688
+ } else if (n == 1) {
1689
+ if (retflag & SE_ECL_PARTIAL)
1690
+ continue;
1691
+ i1 = 4; i2 = 5;
1692
+ } else if (n == 2) {
1693
+ if (retflag & SE_ECL_NONCENTRAL)
1694
+ continue;
1695
+ i1 = 6; i2 = 7;
1696
+ }
1697
+ for (i = 0, t = tjd - dta; i <= 2; i += 1, t += dta) {
1698
+ if ((retflag2 = eclipse_where(t, ipl, starname, ifl, geopos, dcore, serr)) == ERR)
1699
+ return retflag2;
1700
+ if (n == 0)
1701
+ dc[i] = dcore[4] / 2 + de / dcore[5] - dcore[2];
1702
+ else if (n == 1)
1703
+ dc[i] = fabs(dcore[3]) / 2 + de / dcore[6] - dcore[2];
1704
+ else if (n == 2)
1705
+ dc[i] = de / dcore[6] - dcore[2];
1706
+ }
1707
+ find_zero(dc[0], dc[1], dc[2], dta, &dt1, &dt2);
1708
+ tret[i1] = tjd + dt1 + dta;
1709
+ tret[i2] = tjd + dt2 + dta;
1710
+ for (m = 0, dt = dtb; m < 3; m++, dt /= 3) {
1711
+ for (j = i1; j <= i2; j += (i2 - i1)) {
1712
+ for (i = 0, t = tret[j] - dt; i < 2; i++, t += dt) {
1713
+ if ((retflag2 = eclipse_where(t, ipl, starname, ifl, geopos, dcore, serr)) == ERR)
1714
+ return retflag2;
1715
+ if (n == 0)
1716
+ dc[i] = dcore[4] / 2 + de / dcore[5] - dcore[2];
1717
+ else if (n == 1)
1718
+ dc[i] = fabs(dcore[3]) / 2 + de / dcore[6] - dcore[2];
1719
+ else if (n == 2)
1720
+ dc[i] = de / dcore[6] - dcore[2];
1721
+ }
1722
+ dt1 = dc[1] / ((dc[1] - dc[0]) / dt);
1723
+ tret[j] -= dt1;
1724
+ }
1725
+ }
1726
+ }
1727
+ /*
1728
+ * annular-total eclipses
1729
+ */
1730
+ if (retflag & SE_ECL_TOTAL) {
1731
+ if ((retflag2 = eclipse_where(tret[0], ipl, starname, ifl, geopos, dcore, serr)) == ERR)
1732
+ return retflag2;
1733
+ dc[0] = *dcore;
1734
+ if ((retflag2 = eclipse_where(tret[4], ipl, starname, ifl, geopos, dcore, serr)) == ERR)
1735
+ return retflag2;
1736
+ dc[1] = *dcore;
1737
+ if ((retflag2 = eclipse_where(tret[5], ipl, starname, ifl, geopos, dcore, serr)) == ERR)
1738
+ return retflag2;
1739
+ dc[2] = *dcore;
1740
+ /* the maximum is always total, and there is either one or
1741
+ * to times before and after, when the core shadow becomes
1742
+ * zero and totality changes into annularity or vice versa.
1743
+ */
1744
+ if (dc[0] * dc[1] < 0 || dc[0] * dc[2] < 0) {
1745
+ retflag |= SE_ECL_ANNULAR_TOTAL;
1746
+ retflag &= ~SE_ECL_TOTAL;
1747
+ }
1748
+ }
1749
+ /* if eclipse is given but not wanted: */
1750
+ if (!(ifltype & SE_ECL_TOTAL) && (retflag & SE_ECL_TOTAL)) {
1751
+ t= tjd + direction * dadd;
1752
+ goto next_try;
1753
+ }
1754
+ /* if annular_total eclipse is given but not wanted: */
1755
+ if (!(ifltype & SE_ECL_ANNULAR_TOTAL) && (retflag & SE_ECL_ANNULAR_TOTAL)) {
1756
+ t= tjd + direction * dadd;
1757
+ goto next_try;
1758
+ }
1759
+ /*
1760
+ * time of maximum eclipse at local apparent noon
1761
+ */
1762
+ /* first, find out, if there is a solar transit
1763
+ * between begin and end of eclipse */
1764
+ k = 2;
1765
+ for (i = 0; i < 2; i++) {
1766
+ j = i + k;
1767
+ tt = tret[j] + swe_deltat(tret[j]);
1768
+ if (calc_planet_star(tt, ipl, starname, iflag, ls, serr) == ERR)
1769
+ return ERR;
1770
+ if (swe_calc(tt, SE_MOON, iflag, lm, serr) == ERR)
1771
+ return ERR;
1772
+ dc[i] = swe_degnorm(ls[0] - lm[0]);
1773
+ if (dc[i] > 180)
1774
+ dc[i] -= 360;
1775
+ }
1776
+ if (dc[0] * dc[1] >= 0) /* no transit */
1777
+ tret[1] = 0;
1778
+ else {
1779
+ tjd = tjds;
1780
+ dt = 0.1;
1781
+ dt1 = (tret[3] - tret[2]) / 2.0;
1782
+ if (dt1 < dt)
1783
+ dt = dt1 / 2.0;
1784
+ for (j = 0;
1785
+ dt > 0.01;
1786
+ j++, dt /= 3) {
1787
+ for (i = 0, t = tjd; i <= 1; i++, t -= dt) {
1788
+ tt = t + swe_deltat(t);
1789
+ if (calc_planet_star(tt, ipl, starname, iflag, ls, serr) == ERR)
1790
+ return ERR;
1791
+ if (swe_calc(tt, SE_MOON, iflag, lm, serr) == ERR)
1792
+ return ERR;
1793
+ dc[i] = swe_degnorm(ls[0] - lm[0]);
1794
+ if (dc[i] > 180)
1795
+ dc[i] -= 360;
1796
+ if (dc[i] > 180)
1797
+ dc[i] -= 360;
1798
+ }
1799
+ a = (dc[1] - dc[0]) / dt;
1800
+ if (a < 1e-10)
1801
+ break;
1802
+ dt1 = dc[0] / a;
1803
+ tjd += dt1;
1804
+ }
1805
+ tret[1] = tjd;
1806
+ }
1807
+ end_search_global:
1808
+ return retflag;
1809
+ /*
1810
+ * the time of maximum occultation is practically identical
1811
+ * with the time of maximum core shadow diameter.
1812
+ *
1813
+ * the time, when duration of totality is maximal,
1814
+ * is not an interesting computation either. Near the maximum
1815
+ * occulation, the time of totality can be the same by
1816
+ * a second for hundreds of kilometers (for 10 minutes
1817
+ * or more).
1818
+ *
1819
+ * for annular eclipses the maximum duration is close to the
1820
+ * beginning and the end of the center lines, where is also
1821
+ * the minimum of core shadow diameter.
1822
+ */
1823
+ }
1824
+
1825
+ /* When is the next solar eclipse at a given geographical position?
1826
+ * Note the uncertainty of Delta T for the remote past and for
1827
+ * the future.
1828
+ *
1829
+ * retflag SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL
1830
+ * SE_ECL_VISIBLE,
1831
+ * SE_ECL_MAX_VISIBLE,
1832
+ * SE_ECL_1ST_VISIBLE, SE_ECL_2ND_VISIBLE
1833
+ * SE_ECL_3ST_VISIBLE, SE_ECL_4ND_VISIBLE
1834
+ *
1835
+ * tret[0] time of maximum eclipse
1836
+ * tret[1] time of first contact
1837
+ * tret[2] time of second contact
1838
+ * tret[3] time of third contact
1839
+ * tret[4] time of forth contact
1840
+ * tret[5] time of sun rise between first and forth contact
1841
+ (not implemented so far)
1842
+ * tret[6] time of sun set beween first and forth contact
1843
+ (not implemented so far)
1844
+ *
1845
+ * attr[0] fraction of solar diameter covered by moon (magnitude)
1846
+ * attr[1] ratio of lunar diameter to solar one
1847
+ * attr[2] fraction of solar disc covered by moon (obscuration)
1848
+ * attr[3] diameter of core shadow in km
1849
+ * attr[4] azimuth of sun at tjd
1850
+ * attr[5] true altitude of sun above horizon at tjd
1851
+ * attr[6] apparent altitude of sun above horizon at tjd
1852
+ * attr[7] elongation of moon in degrees
1853
+ * declare as attr[20] at least !
1854
+ */
1855
+ int32 FAR PASCAL_CONV swe_sol_eclipse_when_loc(double tjd_start, int32 ifl,
1856
+ double *geopos, double *tret, double *attr, int32 backward, char *serr)
1857
+ {
1858
+ int32 retflag = 0, retflag2 = 0;
1859
+ double geopos2[20], dcore[10];
1860
+ ifl &= SEFLG_EPHMASK;
1861
+ if ((retflag = eclipse_when_loc(tjd_start, ifl, geopos, tret, attr, backward, serr)) <= 0)
1862
+ return retflag;
1863
+ /*
1864
+ * diameter of core shadow
1865
+ */
1866
+ if ((retflag2 = eclipse_where(tret[0], SE_SUN, NULL, ifl, geopos2, dcore, serr)) == ERR)
1867
+ return retflag2;
1868
+ retflag |= (retflag2 & SE_ECL_NONCENTRAL);
1869
+ attr[3] = dcore[0];
1870
+ return retflag;
1871
+ }
1872
+
1873
+ /* Same declaration as swe_sol_eclipse_when_loc().
1874
+ * In addition:
1875
+ * int32 ipl planet number of occulted body
1876
+ * char* starname name of occulted star. Must be NULL or "", if a planetary
1877
+ * occultation is to be calculated. For the use of this
1878
+ * field, also see swe_fixstar().
1879
+ * int32 ifl ephemeris flag. If you want to have only one conjunction
1880
+ * of the moon with the body tested, add the following flag:
1881
+ * backward |= SE_ECL_ONE_TRY. If this flag is not set,
1882
+ * the function will search for an occultation until it
1883
+ * finds one. For bodies with ecliptical latitudes > 5,
1884
+ * the function may search unsuccessfully until it reaches
1885
+ * the end of the ephemeris.
1886
+ */
1887
+ int32 FAR PASCAL_CONV swe_lun_occult_when_loc(double tjd_start, int32 ipl, char *starname, int32 ifl,
1888
+ double *geopos, double *tret, double *attr, int32 backward, char *serr)
1889
+ {
1890
+ int32 retflag = 0, retflag2 = 0;
1891
+ double geopos2[20], dcore[10];
1892
+ /* function calls for Pluto with asteroid number 134340
1893
+ * are treated as calls for Pluto as main body SE_PLUTO */
1894
+ if (ipl == SE_AST_OFFSET + 134340)
1895
+ ipl = SE_PLUTO;
1896
+ ifl &= SEFLG_EPHMASK;
1897
+ if ((retflag = occult_when_loc(tjd_start, ipl, starname, ifl, geopos, tret, attr, backward, serr)) <= 0)
1898
+ return retflag;
1899
+ /*
1900
+ * diameter of core shadow
1901
+ */
1902
+ if ((retflag2 = eclipse_where(tret[0], ipl, starname, ifl, geopos2, dcore, serr)) == ERR)
1903
+ return retflag2;
1904
+ retflag |= (retflag2 & SE_ECL_NONCENTRAL);
1905
+ attr[3] = dcore[0];
1906
+ return retflag;
1907
+ }
1908
+
1909
+ static int32 eclipse_when_loc(double tjd_start, int32 ifl, double *geopos, double *tret, double *attr, int32 backward, char *serr)
1910
+ {
1911
+ int i, j, k, m;
1912
+ int32 retflag = 0;
1913
+ double t, tjd, dt, dtint, K, T, T2, T3, T4, F, M, Mm;
1914
+ double E, Ff, A1, Om;
1915
+ double xs[6], xm[6], ls[6], lm[6], x1[6], x2[6], dm, ds;
1916
+ double rmoon, rsun, rsplusrm, rsminusrm;
1917
+ double dc[3], dctr, dctrmin;
1918
+ double twomin = 2.0 / 24.0 / 60.0;
1919
+ double tensec = 10.0 / 24.0 / 60.0 / 60.0;
1920
+ double twohr = 2.0 / 24.0;
1921
+ double tenmin = 10.0 / 24.0 / 60.0;
1922
+ double dt1, dt2, dtdiv, dtstart;
1923
+ int32 iflag = SEFLG_EQUATORIAL | SEFLG_TOPOCTR | ifl;
1924
+ int32 iflagcart = iflag | SEFLG_XYZ;
1925
+ swe_set_topo(geopos[0], geopos[1], geopos[2]);
1926
+ K = (int) ((tjd_start - J2000) / 365.2425 * 12.3685);
1927
+ if (backward)
1928
+ K++;
1929
+ else
1930
+ K--;
1931
+ next_try:
1932
+ T = K / 1236.85;
1933
+ T2 = T * T; T3 = T2 * T; T4 = T3 * T;
1934
+ Ff = F = swe_degnorm(160.7108 + 390.67050274 * K
1935
+ - 0.0016341 * T2
1936
+ - 0.00000227 * T3
1937
+ + 0.000000011 * T4);
1938
+ if (Ff > 180)
1939
+ Ff -= 180;
1940
+ if (Ff > 21 && Ff < 159) { /* no eclipse possible */
1941
+ if (backward)
1942
+ K--;
1943
+ else
1944
+ K++;
1945
+ goto next_try;
1946
+ }
1947
+ /* approximate time of geocentric maximum eclipse.
1948
+ * formula from Meeus, German, p. 381 */
1949
+ tjd = 2451550.09765 + 29.530588853 * K
1950
+ + 0.0001337 * T2
1951
+ - 0.000000150 * T3
1952
+ + 0.00000000073 * T4;
1953
+ M = swe_degnorm(2.5534 + 29.10535669 * K
1954
+ - 0.0000218 * T2
1955
+ - 0.00000011 * T3);
1956
+ Mm = swe_degnorm(201.5643 + 385.81693528 * K
1957
+ + 0.1017438 * T2
1958
+ + 0.00001239 * T3
1959
+ + 0.000000058 * T4);
1960
+ Om = swe_degnorm(124.7746 - 1.56375580 * K
1961
+ + 0.0020691 * T2
1962
+ + 0.00000215 * T3);
1963
+ E = 1 - 0.002516 * T - 0.0000074 * T2;
1964
+ A1 = swe_degnorm(299.77 + 0.107408 * K - 0.009173 * T2);
1965
+ M *= DEGTORAD;
1966
+ Mm *= DEGTORAD;
1967
+ F *= DEGTORAD;
1968
+ Om *= DEGTORAD;
1969
+ A1 *= DEGTORAD;
1970
+ tjd = tjd - 0.4075 * sin(Mm)
1971
+ + 0.1721 * E * sin(M);
1972
+ swe_set_topo(geopos[0], geopos[1], geopos[2]);
1973
+ dtdiv = 2;
1974
+ dtstart = 0.5;
1975
+ if (tjd < 1900000) /* because above formula is not good (delta t?) */
1976
+ dtstart = 2;
1977
+ for (dt = dtstart;
1978
+ dt > 0.00001;
1979
+ dt /= dtdiv) {
1980
+ if (dt < 0.1)
1981
+ dtdiv = 3;
1982
+ for (i = 0, t = tjd - dt; i <= 2; i++, t += dt) {
1983
+ /* this takes some time, but is necessary to avoid
1984
+ * missing an eclipse */
1985
+ if (swe_calc(t, SE_SUN, iflagcart, xs, serr) == ERR)
1986
+ return ERR;
1987
+ if (swe_calc(t, SE_SUN, iflag, ls, serr) == ERR)
1988
+ return ERR;
1989
+ if (swe_calc(t, SE_MOON, iflagcart, xm, serr) == ERR)
1990
+ return ERR;
1991
+ if (swe_calc(t, SE_MOON, iflag, lm, serr) == ERR)
1992
+ return ERR;
1993
+ dm = sqrt(square_sum(xm));
1994
+ ds = sqrt(square_sum(xs));
1995
+ for (k = 0; k < 3; k++) {
1996
+ x1[k] = xs[k] / ds /*ls[2]*/;
1997
+ x2[k] = xm[k] / dm /*lm[2]*/;
1998
+ }
1999
+ dc[i] = acos(swi_dot_prod_unit(x1, x2)) * RADTODEG;
2000
+ }
2001
+ find_maximum(dc[0], dc[1], dc[2], dt, &dtint, &dctr);
2002
+ tjd += dtint + dt;
2003
+ }
2004
+ if (swe_calc(tjd, SE_SUN, iflagcart, xs, serr) == ERR)
2005
+ return ERR;
2006
+ if (swe_calc(tjd, SE_SUN, iflag, ls, serr) == ERR)
2007
+ return ERR;
2008
+ if (swe_calc(tjd, SE_MOON, iflagcart, xm, serr) == ERR)
2009
+ return ERR;
2010
+ if (swe_calc(tjd, SE_MOON, iflag, lm, serr) == ERR)
2011
+ return ERR;
2012
+ dctr = acos(swi_dot_prod_unit(xs, xm)) * RADTODEG;
2013
+ rmoon = asin(RMOON / lm[2]) * RADTODEG;
2014
+ rsun = asin(RSUN / ls[2]) * RADTODEG;
2015
+ rsplusrm = rsun + rmoon;
2016
+ rsminusrm = rsun - rmoon;
2017
+ if (dctr > rsplusrm) {
2018
+ if (backward)
2019
+ K--;
2020
+ else
2021
+ K++;
2022
+ goto next_try;
2023
+ }
2024
+ tret[0] = tjd - swe_deltat(tjd);
2025
+ if ((backward && tret[0] >= tjd_start - 0.0001)
2026
+ || (!backward && tret[0] <= tjd_start + 0.0001)) {
2027
+ if (backward)
2028
+ K--;
2029
+ else
2030
+ K++;
2031
+ goto next_try;
2032
+ }
2033
+ if (dctr < rsminusrm)
2034
+ retflag = SE_ECL_ANNULAR;
2035
+ else if (dctr < fabs(rsminusrm))
2036
+ retflag = SE_ECL_TOTAL;
2037
+ else if (dctr <= rsplusrm)
2038
+ retflag = SE_ECL_PARTIAL;
2039
+ dctrmin = dctr;
2040
+ /* contacts 2 and 3 */
2041
+ if (dctr > fabs(rsminusrm)) /* partial, no 2nd and 3rd contact */
2042
+ tret[2] = tret[3] = 0;
2043
+ else {
2044
+ dc[1] = fabs(rsminusrm) - dctrmin;
2045
+ for (i = 0, t = tjd - twomin; i <= 2; i += 2, t = tjd + twomin) {
2046
+ if (swe_calc(t, SE_SUN, iflagcart, xs, serr) == ERR)
2047
+ return ERR;
2048
+ if (swe_calc(t, SE_MOON, iflagcart, xm, serr) == ERR)
2049
+ return ERR;
2050
+ dm = sqrt(square_sum(xm));
2051
+ ds = sqrt(square_sum(xs));
2052
+ rmoon = asin(RMOON / dm) * RADTODEG;
2053
+ rsun = asin(RSUN / ds) * RADTODEG;
2054
+ rsminusrm = rsun - rmoon;
2055
+ for (k = 0; k < 3; k++) {
2056
+ x1[k] = xs[k] / ds /*ls[2]*/;
2057
+ x2[k] = xm[k] / dm /*lm[2]*/;
2058
+ }
2059
+ dctr = acos(swi_dot_prod_unit(x1, x2)) * RADTODEG;
2060
+ dc[i] = fabs(rsminusrm) - dctr;
2061
+ }
2062
+ find_zero(dc[0], dc[1], dc[2], twomin, &dt1, &dt2);
2063
+ tret[2] = tjd + dt1 + twomin;
2064
+ tret[3] = tjd + dt2 + twomin;
2065
+ for (m = 0, dt = tensec; m < 2; m++, dt /= 10) {
2066
+ for (j = 2; j <= 3; j++) {
2067
+ if (swe_calc(tret[j], SE_SUN, iflagcart | SEFLG_SPEED, xs, serr) == ERR)
2068
+ return ERR;
2069
+ if (swe_calc(tret[j], SE_MOON, iflagcart | SEFLG_SPEED, xm, serr) == ERR)
2070
+ return ERR;
2071
+ for (i = 0; i < 2; i++) {
2072
+ if (i == 1) {
2073
+ for(k = 0; k < 3; k++) {
2074
+ xs[k] -= xs[k+3] * dt;
2075
+ xm[k] -= xm[k+3] * dt;
2076
+ }
2077
+ }
2078
+ dm = sqrt(square_sum(xm));
2079
+ ds = sqrt(square_sum(xs));
2080
+ rmoon = asin(RMOON / dm) * RADTODEG;
2081
+ rsun = asin(RSUN / ds) * RADTODEG;
2082
+ rsminusrm = rsun - rmoon;
2083
+ for (k = 0; k < 3; k++) {
2084
+ x1[k] = xs[k] / ds /*ls[2]*/;
2085
+ x2[k] = xm[k] / dm /*lm[2]*/;
2086
+ }
2087
+ dctr = acos(swi_dot_prod_unit(x1, x2)) * RADTODEG;
2088
+ dc[i] = fabs(rsminusrm) - dctr;
2089
+ }
2090
+ dt1 = -dc[0] / ((dc[0] - dc[1]) / dt);
2091
+ tret[j] += dt1;
2092
+ }
2093
+ }
2094
+ tret[2] -= swe_deltat(tret[2]);
2095
+ tret[3] -= swe_deltat(tret[3]);
2096
+ }
2097
+ /* contacts 1 and 4 */
2098
+ dc[1] = rsplusrm - dctrmin;
2099
+ for (i = 0, t = tjd - twohr; i <= 2; i += 2, t = tjd + twohr) {
2100
+ if (swe_calc(t, SE_SUN, iflagcart, xs, serr) == ERR)
2101
+ return ERR;
2102
+ if (swe_calc(t, SE_MOON, iflagcart, xm, serr) == ERR)
2103
+ return ERR;
2104
+ dm = sqrt(square_sum(xm));
2105
+ ds = sqrt(square_sum(xs));
2106
+ rmoon = asin(RMOON / dm) * RADTODEG;
2107
+ rsun = asin(RSUN / ds) * RADTODEG;
2108
+ rsplusrm = rsun + rmoon;
2109
+ for (k = 0; k < 3; k++) {
2110
+ x1[k] = xs[k] / ds /*ls[2]*/;
2111
+ x2[k] = xm[k] / dm /*lm[2]*/;
2112
+ }
2113
+ dctr = acos(swi_dot_prod_unit(x1, x2)) * RADTODEG;
2114
+ dc[i] = rsplusrm - dctr;
2115
+ }
2116
+ find_zero(dc[0], dc[1], dc[2], twohr, &dt1, &dt2);
2117
+ tret[1] = tjd + dt1 + twohr;
2118
+ tret[4] = tjd + dt2 + twohr;
2119
+ for (m = 0, dt = tenmin; m < 3; m++, dt /= 10) {
2120
+ for (j = 1; j <= 4; j += 3) {
2121
+ if (swe_calc(tret[j], SE_SUN, iflagcart | SEFLG_SPEED, xs, serr) == ERR)
2122
+ return ERR;
2123
+ if (swe_calc(tret[j], SE_MOON, iflagcart | SEFLG_SPEED, xm, serr) == ERR)
2124
+ return ERR;
2125
+ for (i = 0; i < 2; i++) {
2126
+ if (i == 1) {
2127
+ for(k = 0; k < 3; k++) {
2128
+ xs[k] -= xs[k+3] * dt;
2129
+ xm[k] -= xm[k+3] * dt;
2130
+ }
2131
+ }
2132
+ dm = sqrt(square_sum(xm));
2133
+ ds = sqrt(square_sum(xs));
2134
+ rmoon = asin(RMOON / dm) * RADTODEG;
2135
+ rsun = asin(RSUN / ds) * RADTODEG;
2136
+ rsplusrm = rsun + rmoon;
2137
+ for (k = 0; k < 3; k++) {
2138
+ x1[k] = xs[k] / ds /*ls[2]*/;
2139
+ x2[k] = xm[k] / dm /*lm[2]*/;
2140
+ }
2141
+ dctr = acos(swi_dot_prod_unit(x1, x2)) * RADTODEG;
2142
+ dc[i] = fabs(rsplusrm) - dctr;
2143
+ }
2144
+ dt1 = -dc[0] / ((dc[0] - dc[1]) / dt);
2145
+ tret[j] += dt1;
2146
+ }
2147
+ }
2148
+ tret[1] -= swe_deltat(tret[1]);
2149
+ tret[4] -= swe_deltat(tret[4]);
2150
+ /*
2151
+ * visibility of eclipse phases
2152
+ */
2153
+ for (i = 4; i >= 0; i--) { /* attr for i = 0 must be kept !!! */
2154
+ if (tret[i] == 0)
2155
+ continue;
2156
+ if (eclipse_how(tret[i], SE_SUN, NULL, ifl, geopos[0], geopos[1], geopos[2],
2157
+ attr, serr) == ERR)
2158
+ return ERR;
2159
+ /*if (retflag2 & SE_ECL_VISIBLE) { could be wrong for 1st/4th contact */
2160
+ if (attr[5] > 0) { /* this is save, sun above horizon */
2161
+ retflag |= SE_ECL_VISIBLE;
2162
+ switch(i) {
2163
+ case 0: retflag |= SE_ECL_MAX_VISIBLE; break;
2164
+ case 1: retflag |= SE_ECL_1ST_VISIBLE; break;
2165
+ case 2: retflag |= SE_ECL_2ND_VISIBLE; break;
2166
+ case 3: retflag |= SE_ECL_3RD_VISIBLE; break;
2167
+ case 4: retflag |= SE_ECL_4TH_VISIBLE; break;
2168
+ default: break;
2169
+ }
2170
+ }
2171
+ }
2172
+ #if 1
2173
+ if (!(retflag & SE_ECL_VISIBLE)) {
2174
+ if (backward)
2175
+ K--;
2176
+ else
2177
+ K++;
2178
+ goto next_try;
2179
+ }
2180
+ #endif
2181
+ return retflag;
2182
+ }
2183
+
2184
+ static int32 occult_when_loc(
2185
+ double tjd_start, int32 ipl, char *starname,
2186
+ int32 ifl, double *geopos, double *tret, double *attr,
2187
+ int32 backward, char *serr)
2188
+ {
2189
+ int i, j, k, m;
2190
+ int32 retflag = 0;
2191
+ double t, tjd, dt, dtint;
2192
+ double xs[6], xm[6], ls[6], lm[6], x1[6], x2[6], dm, ds;
2193
+ double rmoon, rsun, rsplusrm, rsminusrm;
2194
+ double dc[20], dctr, dctrmin;
2195
+ double twomin = 2.0 / 24.0 / 60.0;
2196
+ double tensec = 10.0 / 24.0 / 60.0 / 60.0;
2197
+ double twohr = 2.0 / 24.0;
2198
+ double tenmin = 10.0 / 24.0 / 60.0;
2199
+ double dt1, dt2, dtdiv, dtstart;
2200
+ double dadd2 = 6;
2201
+ int nstartpos = 10;
2202
+ double drad;
2203
+ int32 iflag = SEFLG_TOPOCTR | ifl;
2204
+ int32 iflaggeo = iflag & ~SEFLG_TOPOCTR;
2205
+ int32 iflagcart = iflag | SEFLG_XYZ;
2206
+ int32 iflagcartgeo = iflaggeo | SEFLG_XYZ;
2207
+ int direction = 1;
2208
+ int32 one_try = backward & SE_ECL_ONE_TRY;
2209
+ AS_BOOL stop_after_this = FALSE;
2210
+ backward &= 1L;
2211
+ retflag = 0;
2212
+ for (i = 0; i <= 9; i++)
2213
+ tret[i] = 0;
2214
+ if (backward)
2215
+ direction = -1;
2216
+ t = tjd_start - direction * 0.1;
2217
+ tjd = tjd_start;
2218
+ next_try:
2219
+ for (i = 0; i < nstartpos; i++, t += direction * dadd2) {
2220
+ if (calc_planet_star(t, ipl, starname, iflagcartgeo, xs, serr) == ERR)
2221
+ return ERR;
2222
+ if (swe_calc(t, SE_MOON, iflagcartgeo, xm, serr) == ERR)
2223
+ return ERR;
2224
+ dc[i] = acos(swi_dot_prod_unit(xs, xm)) * RADTODEG;
2225
+ if (i > 1 && dc[i] > dc[i-1] && dc[i-2] > dc[i-1]) {
2226
+ tjd = t - direction*dadd2;
2227
+ break;
2228
+ } else if (i == nstartpos-1) {
2229
+ for (j = 0; j < nstartpos; j++)
2230
+ printf("%f ", dc[j]);
2231
+ printf("swe_lun_occult_when_loc(): problem planet\n");
2232
+ return ERR;
2233
+ }
2234
+ }
2235
+ /*
2236
+ * radius of planet disk in AU
2237
+ */
2238
+ if (starname != NULL && *starname != '\0')
2239
+ drad = 0;
2240
+ else if (ipl < NDIAM)
2241
+ drad = pla_diam[ipl] / 2 / AUNIT;
2242
+ else if (ipl > SE_AST_OFFSET)
2243
+ drad = swed.ast_diam / 2 * 1000 / AUNIT; /* km -> m -> AU */
2244
+ else
2245
+ drad = 0;
2246
+ /* now find out, if there is an occultation at our geogr. location */
2247
+ dtdiv = 3;
2248
+ dtstart = dadd2; /* formerly 0.2 */
2249
+ for (dt = dtstart;
2250
+ dt > 0.00001;
2251
+ dt /= dtdiv) {
2252
+ if (dt < 0.01)
2253
+ dtdiv = 3;
2254
+ for (i = 0, t = tjd - dt; i <= 2; i++, t += dt) {
2255
+ /* this takes some time, but is necessary to avoid
2256
+ * missing an eclipse */
2257
+ if (calc_planet_star(t, ipl, starname, iflagcart, xs, serr) == ERR)
2258
+ return ERR;
2259
+ if (calc_planet_star(t, ipl, starname, iflag, ls, serr) == ERR)
2260
+ return ERR;
2261
+ if (swe_calc(t, SE_MOON, iflagcart, xm, serr) == ERR)
2262
+ return ERR;
2263
+ if (swe_calc(t, SE_MOON, iflag, lm, serr) == ERR)
2264
+ return ERR;
2265
+ if (dt < 1 && fabs(ls[1] - lm[1]) > 2) {
2266
+ if (one_try) {
2267
+ stop_after_this = TRUE;
2268
+ } else {
2269
+ t = tjd + direction * 2;
2270
+ goto next_try;
2271
+ }
2272
+ }
2273
+ dc[i] = acos(swi_dot_prod_unit(xs, xm)) * RADTODEG;
2274
+ rmoon = asin(RMOON / lm[2]) * RADTODEG;
2275
+ rsun = asin(drad / ls[2]) * RADTODEG;
2276
+ dc[i] -= (rmoon + rsun);
2277
+ }
2278
+ find_maximum(dc[0], dc[1], dc[2], dt, &dtint, &dctr);
2279
+ tjd += dtint + dt;
2280
+ }
2281
+ if (stop_after_this) { /* has one_try = TRUE */
2282
+ tret[0] = tjd;
2283
+ return 0;
2284
+ }
2285
+ if (calc_planet_star(tjd, ipl, starname, iflagcart, xs, serr) == ERR)
2286
+ return ERR;
2287
+ if (calc_planet_star(tjd, ipl, starname, iflag, ls, serr) == ERR)
2288
+ return ERR;
2289
+ if (swe_calc(tjd, SE_MOON, iflagcart, xm, serr) == ERR)
2290
+ return ERR;
2291
+ if (swe_calc(tjd, SE_MOON, iflag, lm, serr) == ERR)
2292
+ return ERR;
2293
+ dctr = acos(swi_dot_prod_unit(xs, xm)) * RADTODEG;
2294
+ rmoon = asin(RMOON / lm[2]) * RADTODEG;
2295
+ rsun = asin(drad / ls[2]) * RADTODEG;
2296
+ rsplusrm = rsun + rmoon;
2297
+ rsminusrm = rsun - rmoon;
2298
+ if (dctr > rsplusrm) {
2299
+ if (one_try) {
2300
+ tret[0] = tjd;
2301
+ return 0;
2302
+ }
2303
+ t = tjd + direction;
2304
+ goto next_try;
2305
+ }
2306
+ tret[0] = tjd - swe_deltat(tjd);
2307
+ if ((backward && tret[0] >= tjd_start - 0.0001)
2308
+ || (!backward && tret[0] <= tjd_start + 0.0001)) {
2309
+ t = tjd + direction;
2310
+ goto next_try;
2311
+ }
2312
+ if (dctr < rsminusrm)
2313
+ retflag = SE_ECL_ANNULAR;
2314
+ else if (dctr < fabs(rsminusrm))
2315
+ retflag = SE_ECL_TOTAL;
2316
+ else if (dctr <= rsplusrm)
2317
+ retflag = SE_ECL_PARTIAL;
2318
+ dctrmin = dctr;
2319
+ /* contacts 2 and 3 */
2320
+ if (dctr > fabs(rsminusrm)) /* partial, no 2nd and 3rd contact */
2321
+ tret[2] = tret[3] = 0;
2322
+ else {
2323
+ dc[1] = fabs(rsminusrm) - dctrmin;
2324
+ for (i = 0, t = tjd - twomin; i <= 2; i += 2, t = tjd + twomin) {
2325
+ if (calc_planet_star(t, ipl, starname, iflagcart, xs, serr) == ERR)
2326
+ return ERR;
2327
+ if (swe_calc(t, SE_MOON, iflagcart, xm, serr) == ERR)
2328
+ return ERR;
2329
+ dm = sqrt(square_sum(xm));
2330
+ ds = sqrt(square_sum(xs));
2331
+ rmoon = asin(RMOON / dm) * RADTODEG;
2332
+ rsun = asin(drad / ds) * RADTODEG;
2333
+ rsminusrm = rsun - rmoon;
2334
+ for (k = 0; k < 3; k++) {
2335
+ x1[k] = xs[k] / ds /*ls[2]*/;
2336
+ x2[k] = xm[k] / dm /*lm[2]*/;
2337
+ }
2338
+ dctr = acos(swi_dot_prod_unit(x1, x2)) * RADTODEG;
2339
+ dc[i] = fabs(rsminusrm) - dctr;
2340
+ }
2341
+ find_zero(dc[0], dc[1], dc[2], twomin, &dt1, &dt2);
2342
+ tret[2] = tjd + dt1 + twomin;
2343
+ tret[3] = tjd + dt2 + twomin;
2344
+ for (m = 0, dt = tensec; m < 2; m++, dt /= 10) {
2345
+ for (j = 2; j <= 3; j++) {
2346
+ if (calc_planet_star(tret[j], ipl, starname, iflagcart | SEFLG_SPEED, xs, serr) == ERR)
2347
+ return ERR;
2348
+ if (swe_calc(tret[j], SE_MOON, iflagcart | SEFLG_SPEED, xm, serr) == ERR)
2349
+ return ERR;
2350
+ for (i = 0; i < 2; i++) {
2351
+ if (i == 1) {
2352
+ for(k = 0; k < 3; k++) {
2353
+ xs[k] -= xs[k+3] * dt;
2354
+ xm[k] -= xm[k+3] * dt;
2355
+ }
2356
+ }
2357
+ dm = sqrt(square_sum(xm));
2358
+ ds = sqrt(square_sum(xs));
2359
+ rmoon = asin(RMOON / dm) * RADTODEG;
2360
+ rsun = asin(drad / ds) * RADTODEG;
2361
+ rsminusrm = rsun - rmoon;
2362
+ for (k = 0; k < 3; k++) {
2363
+ x1[k] = xs[k] / ds /*ls[2]*/;
2364
+ x2[k] = xm[k] / dm /*lm[2]*/;
2365
+ }
2366
+ dctr = acos(swi_dot_prod_unit(x1, x2)) * RADTODEG;
2367
+ dc[i] = fabs(rsminusrm) - dctr;
2368
+ }
2369
+ dt1 = -dc[0] / ((dc[0] - dc[1]) / dt);
2370
+ tret[j] += dt1;
2371
+ }
2372
+ }
2373
+ tret[2] -= swe_deltat(tret[2]);
2374
+ tret[3] -= swe_deltat(tret[3]);
2375
+ }
2376
+ /* contacts 1 and 4 */
2377
+ dc[1] = rsplusrm - dctrmin;
2378
+ for (i = 0, t = tjd - twohr; i <= 2; i += 2, t = tjd + twohr) {
2379
+ if (calc_planet_star(t, ipl, starname, iflagcart, xs, serr) == ERR)
2380
+ return ERR;
2381
+ if (swe_calc(t, SE_MOON, iflagcart, xm, serr) == ERR)
2382
+ return ERR;
2383
+ dm = sqrt(square_sum(xm));
2384
+ ds = sqrt(square_sum(xs));
2385
+ rmoon = asin(RMOON / dm) * RADTODEG;
2386
+ rsun = asin(drad / ds) * RADTODEG;
2387
+ rsplusrm = rsun + rmoon;
2388
+ for (k = 0; k < 3; k++) {
2389
+ x1[k] = xs[k] / ds /*ls[2]*/;
2390
+ x2[k] = xm[k] / dm /*lm[2]*/;
2391
+ }
2392
+ dctr = acos(swi_dot_prod_unit(x1, x2)) * RADTODEG;
2393
+ dc[i] = rsplusrm - dctr;
2394
+ }
2395
+ find_zero(dc[0], dc[1], dc[2], twohr, &dt1, &dt2);
2396
+ tret[1] = tjd + dt1 + twohr;
2397
+ tret[4] = tjd + dt2 + twohr;
2398
+ for (m = 0, dt = tenmin; m < 3; m++, dt /= 10) {
2399
+ for (j = 1; j <= 4; j += 3) {
2400
+ if (calc_planet_star(tret[j], ipl, starname, iflagcart | SEFLG_SPEED, xs, serr) == ERR)
2401
+ return ERR;
2402
+ if (swe_calc(tret[j], SE_MOON, iflagcart | SEFLG_SPEED, xm, serr) == ERR)
2403
+ return ERR;
2404
+ for (i = 0; i < 2; i++) {
2405
+ if (i == 1) {
2406
+ for(k = 0; k < 3; k++) {
2407
+ xs[k] -= xs[k+3] * dt;
2408
+ xm[k] -= xm[k+3] * dt;
2409
+ }
2410
+ }
2411
+ dm = sqrt(square_sum(xm));
2412
+ ds = sqrt(square_sum(xs));
2413
+ rmoon = asin(RMOON / dm) * RADTODEG;
2414
+ rsun = asin(drad / ds) * RADTODEG;
2415
+ rsplusrm = rsun + rmoon;
2416
+ for (k = 0; k < 3; k++) {
2417
+ x1[k] = xs[k] / ds /*ls[2]*/;
2418
+ x2[k] = xm[k] / dm /*lm[2]*/;
2419
+ }
2420
+ dctr = acos(swi_dot_prod_unit(x1, x2)) * RADTODEG;
2421
+ dc[i] = fabs(rsplusrm) - dctr;
2422
+ }
2423
+ dt1 = -dc[0] / ((dc[0] - dc[1]) / dt);
2424
+ tret[j] += dt1;
2425
+ }
2426
+ }
2427
+ tret[1] -= swe_deltat(tret[1]);
2428
+ tret[4] -= swe_deltat(tret[4]);
2429
+ /*
2430
+ * visibility of eclipse phases
2431
+ */
2432
+ for (i = 4; i >= 0; i--) { /* attr for i = 0 must be kept !!! */
2433
+ if (tret[i] == 0)
2434
+ continue;
2435
+ if (eclipse_how(tret[i], ipl, starname, ifl, geopos[0], geopos[1], geopos[2],
2436
+ attr, serr) == ERR)
2437
+ return ERR;
2438
+ /*if (retflag2 & SE_ECL_VISIBLE) { could be wrong for 1st/4th contact */
2439
+ if (attr[5] > 0) { /* this is save, sun above horizon */
2440
+ retflag |= SE_ECL_VISIBLE;
2441
+ switch(i) {
2442
+ case 0: retflag |= SE_ECL_MAX_VISIBLE; break;
2443
+ case 1: retflag |= SE_ECL_1ST_VISIBLE; break;
2444
+ case 2: retflag |= SE_ECL_2ND_VISIBLE; break;
2445
+ case 3: retflag |= SE_ECL_3RD_VISIBLE; break;
2446
+ case 4: retflag |= SE_ECL_4TH_VISIBLE; break;
2447
+ default: break;
2448
+ }
2449
+ }
2450
+ }
2451
+ #if 1
2452
+ if (!(retflag & SE_ECL_VISIBLE)) {
2453
+ t = tjd + direction;
2454
+ goto next_try;
2455
+ }
2456
+ #endif
2457
+ return retflag;
2458
+ }
2459
+
2460
+ /*
2461
+ * swe_azalt()
2462
+ * Computes azimut and height, from either ecliptic or
2463
+ * equatorial coordinates
2464
+ *
2465
+ * input:
2466
+ * tjd_ut
2467
+ * iflag either SE_ECL2HOR or SE_EQU2HOR
2468
+ * geopos[3] geograph. longitude, latitude, height above sea
2469
+ * atpress atmospheric pressure at geopos in millibars (hPa)
2470
+ * attemp atmospheric temperature in degrees C
2471
+ * xin[2] input coordinates polar, in degrees
2472
+ *
2473
+ * Horizontal coordinates are returned in
2474
+ * xaz[3] xaz[0] = azimuth
2475
+ * xaz[1] = true altitude
2476
+ * xaz[2] = apparent altitude
2477
+ *
2478
+ * If atpress is not given (= 0), the programm assumes 1013.25 mbar;
2479
+ * if a non-zero height above sea is given, atpress is estimated.
2480
+ * geohgt height of observer above sea (optional)
2481
+ */
2482
+ void FAR PASCAL_CONV swe_azalt(
2483
+ double tjd_ut,
2484
+ int32 calc_flag,
2485
+ double *geopos,
2486
+ double atpress,
2487
+ double attemp,
2488
+ double *xin,
2489
+ double *xaz)
2490
+ {
2491
+ int i;
2492
+ double x[6], xra[3];
2493
+ double armc = swe_degnorm(swe_sidtime(tjd_ut) * 15 + geopos[0]);
2494
+ double mdd, eps_true, tjd_et;
2495
+ for (i = 0; i < 2; i++)
2496
+ xra[i] = xin[i];
2497
+ xra[2] = 1;
2498
+ if (calc_flag == SE_ECL2HOR) {
2499
+ tjd_et = tjd_ut + swe_deltat(tjd_ut);
2500
+ swe_calc(tjd_et, SE_ECL_NUT, 0, x, NULL);
2501
+ eps_true = x[0];
2502
+ swe_cotrans(xra, xra, -eps_true);
2503
+ }
2504
+ mdd = swe_degnorm(xra[0] - armc);
2505
+ x[0] = swe_degnorm(mdd - 90);
2506
+ x[1] = xra[1];
2507
+ x[2] = 1;
2508
+ /* azimuth from east, counterclock */
2509
+ swe_cotrans(x, x, 90 - geopos[1]);
2510
+ /* azimuth from south to west */
2511
+ x[0] = swe_degnorm(x[0] + 90);
2512
+ xaz[0] = 360 - x[0];
2513
+ xaz[1] = x[1]; /* true height */
2514
+ if (atpress == 0) {
2515
+ /* estimate atmospheric pressure */
2516
+ atpress = 1013.25 * pow(1 - 0.0065 * geopos[2] / 288, 5.255);
2517
+ }
2518
+ xaz[2] = swe_refrac_extended(x[1], geopos[2], atpress, attemp, const_lapse_rate, SE_TRUE_TO_APP, NULL);
2519
+ /* xaz[2] = swe_refrac_extended(xaz[2], geopos[2], atpress, attemp, const_lapse_rate, SE_APP_TO_TRUE, NULL);*/
2520
+ }
2521
+
2522
+ /*
2523
+ * swe_azalt_rev()
2524
+ * computes either ecliptical or equatorial coordinates from
2525
+ * azimuth and true altitude in degrees.
2526
+ * For conversion between true and apparent altitude, there is
2527
+ * the function swe_refrac().
2528
+ *
2529
+ * input:
2530
+ * tjd_ut
2531
+ * iflag either SE_HOR2ECL or SE_HOR2EQU
2532
+ * xin[2] azimut and true altitude, in degrees
2533
+ */
2534
+ void FAR PASCAL_CONV swe_azalt_rev(
2535
+ double tjd_ut,
2536
+ int32 calc_flag,
2537
+ double *geopos,
2538
+ double *xin,
2539
+ double *xout)
2540
+ {
2541
+ int i;
2542
+ double x[6], xaz[3];
2543
+ double geolon = geopos[0];
2544
+ double geolat = geopos[1];
2545
+ double armc = swe_degnorm(swe_sidtime(tjd_ut) * 15 + geolon);
2546
+ double eps_true, tjd_et, dang;
2547
+ for (i = 0; i < 2; i++)
2548
+ xaz[i] = xin[i];
2549
+ xaz[2] = 1;
2550
+ /* azimuth is from south, clockwise.
2551
+ * we need it from east, counterclock */
2552
+ xaz[0] = 360 - xaz[0];
2553
+ xaz[0] = swe_degnorm(xaz[0] - 90);
2554
+ /* equatorial positions */
2555
+ dang = geolat - 90;
2556
+ swe_cotrans(xaz, xaz, dang);
2557
+ xaz[0] = swe_degnorm(xaz[0] + armc + 90);
2558
+ xout[0] = xaz[0];
2559
+ xout[1] = xaz[1];
2560
+ /* ecliptic positions */
2561
+ if (calc_flag == SE_HOR2ECL) {
2562
+ tjd_et = tjd_ut + swe_deltat(tjd_ut);
2563
+ swe_calc(tjd_et, SE_ECL_NUT, 0, x, NULL);
2564
+ eps_true = x[0];
2565
+ swe_cotrans(xaz, x, eps_true);
2566
+ xout[0] = x[0];
2567
+ xout[1] = x[1];
2568
+ }
2569
+ }
2570
+
2571
+ /* swe_refrac()
2572
+ * Transforms apparent to true altitude and vice-versa.
2573
+ * These formulae do not handle the case when the
2574
+ * sun is visible below the geometrical horizon
2575
+ * (from a mountain top or an air plane)
2576
+ * input:
2577
+ * double inalt; * altitude of object in degrees *
2578
+ * double atpress; * millibars (hectopascal) *
2579
+ * double attemp; * degrees C *
2580
+ * int32 calc_flag; * either SE_CALC_APP_TO_TRUE or
2581
+ * * SE_CALC_TRUE_TO_APP
2582
+ */
2583
+ double FAR PASCAL_CONV swe_refrac(double inalt, double atpress, double attemp, int32 calc_flag)
2584
+ {
2585
+ double a, refr;
2586
+ double pt_factor = atpress / 1010.0 * 283.0 / (273.0 + attemp);
2587
+ double trualt, appalt;
2588
+ #if 0
2589
+ /*
2590
+ * -- S. L. Moshier */
2591
+ double y, yy0, D0, N, D, P, Q;
2592
+ int i;
2593
+ if (calc_flag == SE_TRUE_TO_APP) {
2594
+ trualt = inalt;
2595
+ if( (trualt < -2.0) || (trualt >= 90.0) )
2596
+ return(trualt);
2597
+ /* For high altitude angle, AA page B61
2598
+ * Accuracy "usually about 0.1' ".
2599
+ */
2600
+ if( trualt > 15.0 ) {
2601
+ D = 0.00452*atpress/((273.0+attemp)*tan( DEGTORAD*trualt ));
2602
+ return(trualt + D);
2603
+ }
2604
+ /* Formula for low altitude is from the Almanac for Computers.
2605
+ * It gives the correction for observed altitude, so has
2606
+ * to be inverted numerically to get the observed from the true.
2607
+ * Accuracy about 0.2' for -20C < T < +40C and 970mb < P < 1050mb.
2608
+ */
2609
+ /* Start iteration assuming correction = 0
2610
+ */
2611
+ y = trualt;
2612
+ D = 0.0;
2613
+ /* Invert Almanac for Computers formula numerically
2614
+ */
2615
+ P = (atpress - 80.0)/930.0;
2616
+ Q = 4.8e-3 * (attemp - 10.0);
2617
+ yy0 = y;
2618
+ D0 = D;
2619
+ for( i=0; i<4; i++ ) {
2620
+ N = y + (7.31/(y+4.4));
2621
+ N = 1.0/tan(DEGTORAD*N);
2622
+ D = N*P/(60.0 + Q * (N + 39.0));
2623
+ N = y - yy0;
2624
+ yy0 = D - D0 - N; /* denominator of derivative */
2625
+ if( (N != 0.0) && (yy0 != 0.0) )
2626
+ /* Newton iteration with numerically estimated derivative */
2627
+ N = y - N*(trualt + D - y)/yy0;
2628
+ else
2629
+ /* Can't do it on first pass */
2630
+ N = trualt + D;
2631
+ yy0 = y;
2632
+ D0 = D;
2633
+ y = N;
2634
+ }
2635
+ return( trualt + D );
2636
+ } else {
2637
+ #else
2638
+ /* another algorithm, from Meeus, German, p. 114ff.
2639
+ */
2640
+ if (calc_flag == SE_TRUE_TO_APP) {
2641
+ trualt = inalt;
2642
+ if (trualt > 15) {
2643
+ a = tan((90 - trualt) * DEGTORAD);
2644
+ refr = (58.276 * a - 0.0824 * a * a * a);
2645
+ refr *= pt_factor / 3600.0;
2646
+ } else if (trualt > -5) {
2647
+ /* the following tan is not defined for a value
2648
+ * of trualt near -5.00158 and 89.89158 */
2649
+ a = trualt + 10.3 / (trualt + 5.11);
2650
+ if (a + 1e-10 >= 90)
2651
+ refr = 0;
2652
+ else
2653
+ refr = 1.02 / tan(a * DEGTORAD);
2654
+ refr *= pt_factor / 60.0;
2655
+ } else
2656
+ refr = 0;
2657
+ appalt = trualt;
2658
+ if (appalt + refr > 0)
2659
+ appalt += refr;
2660
+ return appalt;
2661
+ } else {
2662
+ #endif
2663
+ /* apparent to true */
2664
+ appalt = inalt;
2665
+ /* the following tan is not defined for a value
2666
+ * of inalt near -4.3285 and 89.9225 */
2667
+ a = appalt + 7.31 / (appalt + 4.4);
2668
+ if (a + 1e-10 >= 90)
2669
+ refr = 0;
2670
+ else {
2671
+ refr = 1.00 / tan(a * DEGTORAD);
2672
+ refr -= 0.06 * sin(14.7 * refr + 13);
2673
+ }
2674
+ refr *= pt_factor / 60.0;
2675
+ trualt = appalt;
2676
+ if (appalt - refr > 0)
2677
+ trualt = appalt - refr;
2678
+ return trualt;
2679
+ }
2680
+ }
2681
+
2682
+ void FAR PASCAL_CONV swe_set_lapse_rate(double lapse_rate)
2683
+ {
2684
+ const_lapse_rate = lapse_rate;
2685
+ }
2686
+
2687
+ /* swe_refrac_extended()
2688
+ *
2689
+ * This function was created thanks to and with consultation with the
2690
+ * archaeoastronomer Victor Reijs.
2691
+ * It is more correct and more skilled than the old function swe_refrac():
2692
+ * - it allows correct calculation of refraction for altitudes above sea > 0,
2693
+ * where the ideal horizon and planets that are visible may have a
2694
+ * negative height. (for swe_refrac(), negative apparent heights do not
2695
+ * exist!)
2696
+ * - it allows to manipulate the refraction constant
2697
+ *
2698
+ * Transforms apparent to true altitude and vice-versa.
2699
+ * input:
2700
+ * double inalt; * altitude of object above geometric horizon in degrees*
2701
+ * * geometric horizon = plane perpendicular to gravity *
2702
+ * double geoalt; * altitude of observer above sea level in meters *
2703
+ * double atpress; * millibars (hectopascal) *
2704
+ * double lapse_rate; * (dT/dh) [deg K/m]
2705
+ * double attemp; * degrees C *
2706
+ * int32 calc_flag; * either SE_CALC_APP_TO_TRUE or
2707
+ * * SE_CALC_TRUE_TO_APP
2708
+ *
2709
+ * function returns:
2710
+ * case 1, conversion from true altitude to apparent altitude
2711
+ * - apparent altitude, if body appears above is observable above ideal horizon
2712
+ * - true altitude (the input value), otherwise
2713
+ * "ideal horizon" is the horizon as seen above an ideal sphere (as seen
2714
+ * from a plane over the ocean with a clear sky)
2715
+ * case 2, conversion from apparent altitude to true altitude
2716
+ * - the true altitude resulting from the input apparent altitude, if this value
2717
+ * is a plausible apparent altitude, i.e. if it is a position above the ideal
2718
+ * horizon
2719
+ * - the input altitude otherwise
2720
+ *
2721
+ * in addition the array dret[] is given the following values
2722
+ * - dret[0] true altitude, if possible; otherwise input value
2723
+ * - dret[1] apparent altitude, if possible; otherwise input value
2724
+ * - dret[2] refraction
2725
+ * - dret[3] dip of the horizon
2726
+ *
2727
+ * The body is above the horizon if the dret[0] != dret[1]
2728
+ */
2729
+ double FAR PASCAL_CONV swe_refrac_extended(double inalt, double geoalt, double atpress, double attemp, double lapse_rate, int32 calc_flag, double *dret)
2730
+ {
2731
+ double refr;
2732
+ double trualt;
2733
+ double dip = calc_dip(geoalt, atpress, attemp, lapse_rate);
2734
+ double D, D0, N, y, yy0;
2735
+ int i;
2736
+ /* make sure that inalt <=90 */
2737
+ if( (inalt>90) )
2738
+ inalt=180-inalt;
2739
+ if (calc_flag == SE_TRUE_TO_APP) {
2740
+ if (inalt < -10) {
2741
+ if (dret != NULL) {
2742
+ dret[0]=inalt;
2743
+ dret[1]=inalt;
2744
+ dret[2]=0;
2745
+ dret[3]=dip;
2746
+ }
2747
+ return inalt;
2748
+ }
2749
+ /* by iteration */
2750
+ y = inalt;
2751
+ D = 0.0;
2752
+ yy0 = 0;
2753
+ D0 = D;
2754
+ for(i=0; i<5; i++) {
2755
+ D = calc_astronomical_refr(y,atpress,attemp);
2756
+ N = y - yy0;
2757
+ yy0 = D - D0 - N; /* denominator of derivative */
2758
+ if (N != 0.0 && yy0 != 0.0) /* sic !!! code by Moshier */
2759
+ N = y - N*(inalt + D - y)/yy0; /* Newton iteration with numerically estimated derivative */
2760
+ else /* Can't do it on first pass */
2761
+ N = inalt + D;
2762
+ yy0 = y;
2763
+ D0 = D;
2764
+ y = N;
2765
+ }
2766
+ refr = D;
2767
+ if( (inalt + refr < dip) ) {
2768
+ if (dret != NULL) {
2769
+ dret[0]=inalt;
2770
+ dret[1]=inalt;
2771
+ dret[2]=0;
2772
+ dret[3]=dip;
2773
+ }
2774
+ return inalt;
2775
+ }
2776
+ if (dret != NULL) {
2777
+ dret[0]=inalt;
2778
+ dret[1]=inalt+refr;
2779
+ dret[2]=refr;
2780
+ dret[3]=dip;
2781
+ }
2782
+ return inalt+refr;
2783
+ } else {
2784
+ refr = calc_astronomical_refr(inalt,atpress,attemp);
2785
+ trualt=inalt-refr;
2786
+ if (dret != NULL) {
2787
+ if (inalt > dip) {
2788
+ dret[0]=trualt;
2789
+ dret[1]=inalt;
2790
+ dret[2]=refr;
2791
+ dret[3]=dip;
2792
+ } else {
2793
+ dret[0]=inalt;
2794
+ dret[1]=inalt;
2795
+ dret[2]=0;
2796
+ dret[3]=dip;
2797
+ }
2798
+ }
2799
+ if (trualt > dip)
2800
+ return trualt;
2801
+ else
2802
+ return inalt;
2803
+ }
2804
+ }
2805
+
2806
+ /* calculate the astronomical refraction
2807
+ * input parameters:
2808
+ * double inalt * apparent altitude of object
2809
+ * double atpress * atmospheric pressure millibars (hectopascal) *
2810
+ * double attemp * atmospheric temperature degrees C *
2811
+ * returns double r in degrees
2812
+ */
2813
+ static double calc_astronomical_refr(double inalt,double atpress, double attemp)
2814
+ {
2815
+ #if 0
2816
+ /* formula based on G.G. Bennett, The calculation of astronomical refraction in marine navigation,
2817
+ * Journal of Inst. Navigation, No. 35, page 255-259, 1982,
2818
+ * page 257 for refraction formula: formula H
2819
+ * and page 259 for atmospheric compensation
2820
+ */
2821
+ double refractaccent = 1/tan(DEGTORAD*(inalt + 7.31/(inalt+4.4)));
2822
+ double r = (refractaccent - 0.06 * sin(DEGTORAD*(14.7*refractaccent +13)));
2823
+ r = ((atpress - 80) / 930 / (1 + 0.00008 * (r + 39) * (attemp - 10)) * r)/60;
2824
+ return r;
2825
+ #else
2826
+ /* Formula by Sinclair, see article mentioned above, p. 256. Better for
2827
+ * apparent altitudes < 0; */
2828
+ double r;
2829
+ if (inalt > 17.904104638432) { /* for continuous function, instead of '>15' */
2830
+ r = 0.97 / tan(inalt * DEGTORAD);
2831
+ } else {
2832
+ r = (34.46 + 4.23 * inalt + 0.004 * inalt * inalt) / (1 + 0.505 * inalt + 0.0845 * inalt * inalt);
2833
+ }
2834
+ r = ((atpress - 80) / 930 / (1 + 0.00008 * (r + 39) * (attemp - 10)) * r) / 60.0;
2835
+ return r;
2836
+ #endif
2837
+ }
2838
+
2839
+ /* calculate dip of the horizon
2840
+ * input parameters:
2841
+ * double geoalt * altitude of observer above sea level in meters *
2842
+ * double atpress * atmospheric pressure millibars (hectopascal) *
2843
+ * double attemp * atmospheric temperature degrees C *
2844
+ * double lapse_rate * (dT/dh) [deg K/m]
2845
+ * returns dip in degrees
2846
+ */
2847
+ static double calc_dip(double geoalt, double atpress, double attemp, double lapse_rate)
2848
+ {
2849
+ /* below formula is based on A. Thom, Megalithic lunar observations, 1973 (page 32).
2850
+ * conversion to metric has been done by
2851
+ * V. Reijs, 2000, http://www.iol.ie/~geniet/eng/refract.htm
2852
+ */
2853
+ double krefr = (0.0342 + lapse_rate) / (0.154 * 0.0238);
2854
+ double d = 1-1.8480*krefr*atpress/(273.16+attemp)/(273.16+attemp);
2855
+ /* return -0.03203*sqrt(geoalt)*sqrt(d); */
2856
+ /* double a = acos(1/(1+geoalt/EARTH_RADIUS));*/
2857
+ return -180.0/PI * acos(1 / (1 + geoalt / EARTH_RADIUS)) * sqrt(d);
2858
+ }
2859
+
2860
+
2861
+ /* Computes attributes of a lunar eclipse for given tjd and geopos
2862
+ *
2863
+ * retflag SE_ECL_TOTAL or SE_ECL_PARTIAL
2864
+ * SE_ECL_PENUMBRAL
2865
+ * if 0, there is no eclipse
2866
+ *
2867
+ * attr[0] umbral magnitude at tjd
2868
+ * attr[1] penumbral magnitude
2869
+ #if 0 not implemented so far
2870
+ * attr[4] azimuth of moon at tjd
2871
+ * attr[5] true altitude of moon above horizon at tjd
2872
+ * attr[6] apparent altitude of moon above horizon at tjd
2873
+ #endif
2874
+ * attr[7] distance of moon from opposition in degrees
2875
+ * attr[8] umbral magnitude at tjd (= attr[0])
2876
+ * attr[9] saros series number
2877
+ * attr[10] saros series member number
2878
+ * declare as attr[20] at least !
2879
+ *
2880
+ */
2881
+ int32 FAR PASCAL_CONV swe_lun_eclipse_how(
2882
+ double tjd_ut,
2883
+ int32 ifl,
2884
+ double *geopos,
2885
+ double *attr,
2886
+ char *serr)
2887
+ {
2888
+ double dcore[10];
2889
+ /* attention: geopos[] is not used so far; may be NULL */
2890
+ if (geopos != NULL)
2891
+ geopos[0] = geopos[0]; /* to shut up mint */
2892
+ ifl = ifl & ~SEFLG_TOPOCTR;
2893
+ return lun_eclipse_how(tjd_ut, ifl, attr, dcore, serr);
2894
+ }
2895
+
2896
+ /*
2897
+ * attr[]: see swe_lun_eclipse_how()
2898
+ *
2899
+ * dcore[0]: distance of shadow axis from geocenter r0
2900
+ * dcore[1]: diameter of core shadow on fundamental plane d0
2901
+ * dcore[2]: diameter of half-shadow on fundamental plane D0
2902
+ */
2903
+ static int32 lun_eclipse_how(
2904
+ double tjd_ut,
2905
+ int32 ifl,
2906
+ double *attr,
2907
+ double *dcore,
2908
+ char *serr)
2909
+ {
2910
+ int i, j, k;
2911
+ int32 retc = 0;
2912
+ double e[6], rm[6], rs[6];
2913
+ double dsm, d0, D0, s0, r0, ds, dm;
2914
+ double dctr, x1[6], x2[6];
2915
+ double f1, f2;
2916
+ double deltat, tjd, d;
2917
+ double cosf1, cosf2;
2918
+ int32 iflag;
2919
+ for (i = 0; i < 10; i++)
2920
+ dcore[i] = 0;
2921
+ for (i = 0; i < 20; i++)
2922
+ attr[i] = 0;
2923
+ /* nutation need not be in lunar and solar positions,
2924
+ * if mean sidereal time will be used */
2925
+ iflag = SEFLG_SPEED | SEFLG_EQUATORIAL | ifl;
2926
+ iflag = iflag | SEFLG_XYZ;
2927
+ deltat = swe_deltat(tjd_ut);
2928
+ tjd = tjd_ut + deltat;
2929
+ /* moon in cartesian coordinates */
2930
+ if (swe_calc(tjd, SE_MOON, iflag, rm, serr) == ERR)
2931
+ return ERR;
2932
+ /* distance of moon from geocenter */
2933
+ dm = sqrt(square_sum(rm));
2934
+ /* sun in cartesian coordinates */
2935
+ if (swe_calc(tjd, SE_SUN, iflag, rs, serr) == ERR)
2936
+ return ERR;
2937
+ /* distance of sun from geocenter */
2938
+ ds = sqrt(square_sum(rs));
2939
+ for (i = 0; i < 3; i++) {
2940
+ x1[i] = rs[i] / ds;
2941
+ x2[i] = rm[i] / dm;
2942
+ }
2943
+ dctr = acos(swi_dot_prod_unit(x1, x2)) * RADTODEG;
2944
+ /* selenocentric sun */
2945
+ for (i = 0; i <= 2; i++)
2946
+ rs[i] -= rm[i];
2947
+ /* selenocentric earth */
2948
+ for (i = 0; i <= 2; i++)
2949
+ rm[i] = -rm[i];
2950
+ /* sun - earth vector */
2951
+ for (i = 0; i <= 2; i++)
2952
+ e[i] = (rm[i] - rs[i]);
2953
+ /* distance sun - earth */
2954
+ dsm = sqrt(square_sum(e));
2955
+ /* sun - earth unit vector */
2956
+ for (i = 0; i <= 2; i++)
2957
+ e[i] /= dsm;
2958
+ f1 = ((RSUN - REARTH) / dsm);
2959
+ cosf1 = sqrt(1 - f1 * f1);
2960
+ f2 = ((RSUN + REARTH) / dsm);
2961
+ cosf2 = sqrt(1 - f2 * f2);
2962
+ /* distance of earth from fundamental plane */
2963
+ s0 = -dot_prod(rm, e);
2964
+ /* distance of shadow axis from selenocenter */
2965
+ r0 = sqrt(dm * dm - s0 * s0);
2966
+ /* diameter of core shadow on fundamental plane */
2967
+ d0 = fabs(s0 / dsm * (DSUN - DEARTH) - DEARTH) * (1 + 1.0 / 50) / cosf1;
2968
+ /* one 50th is added for effect of atmosphere, AA98, L4 */
2969
+ /* diameter of half-shadow on fundamental plane */
2970
+ D0 = (s0 / dsm * (DSUN + DEARTH) + DEARTH) * (1 + 1.0 / 50) / cosf2;
2971
+ d0 /= cosf1;
2972
+ D0 /= cosf2;
2973
+ dcore[0] = r0;
2974
+ dcore[1] = d0;
2975
+ dcore[2] = D0;
2976
+ dcore[3] = cosf1;
2977
+ dcore[4] = cosf2;
2978
+ /**************************
2979
+ * phase and umbral magnitude
2980
+ **************************/
2981
+ retc = 0;
2982
+ if (d0 / 2 >= r0 + RMOON / cosf1) {
2983
+ retc = SE_ECL_TOTAL;
2984
+ attr[0] = (d0 / 2 - r0 + RMOON) / DMOON;
2985
+ } else if (d0 / 2 >= r0 - RMOON / cosf1) {
2986
+ retc = SE_ECL_PARTIAL;
2987
+ attr[0] = (d0 / 2 - r0 + RMOON) / DMOON;
2988
+ } else if (D0 / 2 >= r0 - RMOON / cosf2) {
2989
+ retc = SE_ECL_PENUMBRAL;
2990
+ attr[0] = 0;
2991
+ } else {
2992
+ if (serr != NULL)
2993
+ sprintf(serr, "no lunar eclipse at tjd = %f", tjd);
2994
+ }
2995
+ attr[8] = attr[0];
2996
+ /**************************
2997
+ * penumbral magnitude
2998
+ **************************/
2999
+ attr[1] = (D0 / 2 - r0 + RMOON) / DMOON;
3000
+ if (retc != 0)
3001
+ attr[7] = 180 - fabs(dctr);
3002
+ /* saros series and member */
3003
+ for (i = 0; i < NSAROS_LUNAR; i++) {
3004
+ d = (tjd_ut - saros_data_lunar[i].tstart) / SAROS_CYCLE;
3005
+ if (d < 0) continue;
3006
+ j = (int) d;
3007
+ if ((d - j) * SAROS_CYCLE < 2) {
3008
+ attr[9] = (double) saros_data_lunar[i].series_no;
3009
+ attr[10] = (double) j + 1;
3010
+ break;
3011
+ }
3012
+ k = j + 1;
3013
+ if ((k - d) * SAROS_CYCLE < 2) {
3014
+ attr[9] = (double) saros_data_lunar[i].series_no;
3015
+ attr[10] = (double) k + 1;
3016
+ break;
3017
+ }
3018
+ }
3019
+ if (i == NSAROS_LUNAR) {
3020
+ attr[9] = attr[10] = -99999999;
3021
+ }
3022
+ return retc;
3023
+ }
3024
+
3025
+ /* When is the next lunar eclipse?
3026
+ *
3027
+ * retflag SE_ECL_TOTAL or SE_ECL_PENUMBRAL or SE_ECL_PARTIAL
3028
+ *
3029
+ * tret[0] time of maximum eclipse
3030
+ * tret[1]
3031
+ * tret[2] time of partial phase begin (indices consistent with solar eclipses)
3032
+ * tret[3] time of partial phase end
3033
+ * tret[4] time of totality begin
3034
+ * tret[5] time of totality end
3035
+ * tret[6] time of penumbral phase begin
3036
+ * tret[7] time of penumbral phase end
3037
+ */
3038
+ int32 FAR PASCAL_CONV swe_lun_eclipse_when(double tjd_start, int32 ifl, int32 ifltype,
3039
+ double *tret, int32 backward, char *serr)
3040
+ {
3041
+ int i, j, m, n, o, i1 = 0, i2 = 0;
3042
+ int32 retflag = 0, retflag2 = 0;
3043
+ double t, tjd, dt, dtint, dta, dtb;
3044
+ double T, T2, T3, T4, K, F, M, Mm;
3045
+ double E, Ff, F1, A1, Om;
3046
+ double xs[6], xm[6], dm, ds;
3047
+ double rsun, rearth, dcore[10];
3048
+ double dc[3], dctr;
3049
+ double twohr = 2.0 / 24.0;
3050
+ double tenmin = 10.0 / 24.0 / 60.0;
3051
+ double dt1, dt2;
3052
+ double kk;
3053
+ double attr[20];
3054
+ double dtstart, dtdiv;
3055
+ double xa[6], xb[6];
3056
+ int direction = 1;
3057
+ int32 iflag;
3058
+ int32 iflagcart;
3059
+ ifl &= SEFLG_EPHMASK;
3060
+ iflag = SEFLG_EQUATORIAL | ifl;
3061
+ iflagcart = iflag | SEFLG_XYZ;
3062
+ if (ifltype == 0)
3063
+ ifltype = SE_ECL_TOTAL | SE_ECL_PENUMBRAL | SE_ECL_PARTIAL;
3064
+ if (backward)
3065
+ direction = -1;
3066
+ K = (int) ((tjd_start - J2000) / 365.2425 * 12.3685);
3067
+ K -= direction;
3068
+ next_try:
3069
+ retflag = 0;
3070
+ for (i = 0; i <= 9; i++)
3071
+ tret[i] = 0;
3072
+ kk = K + 0.5;
3073
+ T = kk / 1236.85;
3074
+ T2 = T * T; T3 = T2 * T; T4 = T3 * T;
3075
+ Ff = F = swe_degnorm(160.7108 + 390.67050274 * kk
3076
+ - 0.0016341 * T2
3077
+ - 0.00000227 * T3
3078
+ + 0.000000011 * T4);
3079
+ if (Ff > 180)
3080
+ Ff -= 180;
3081
+ if (Ff > 21 && Ff < 159) { /* no eclipse possible */
3082
+ K += direction;
3083
+ goto next_try;
3084
+ }
3085
+ /* approximate time of geocentric maximum eclipse
3086
+ * formula from Meeus, German, p. 381 */
3087
+ tjd = 2451550.09765 + 29.530588853 * kk
3088
+ + 0.0001337 * T2
3089
+ - 0.000000150 * T3
3090
+ + 0.00000000073 * T4;
3091
+ M = swe_degnorm(2.5534 + 29.10535669 * kk
3092
+ - 0.0000218 * T2
3093
+ - 0.00000011 * T3);
3094
+ Mm = swe_degnorm(201.5643 + 385.81693528 * kk
3095
+ + 0.1017438 * T2
3096
+ + 0.00001239 * T3
3097
+ + 0.000000058 * T4);
3098
+ Om = swe_degnorm(124.7746 - 1.56375580 * kk
3099
+ + 0.0020691 * T2
3100
+ + 0.00000215 * T3);
3101
+ E = 1 - 0.002516 * T - 0.0000074 * T2;
3102
+ A1 = swe_degnorm(299.77 + 0.107408 * kk - 0.009173 * T2);
3103
+ M *= DEGTORAD;
3104
+ Mm *= DEGTORAD;
3105
+ F *= DEGTORAD;
3106
+ Om *= DEGTORAD;
3107
+ F1 = F - 0.02665 * sin(Om) * DEGTORAD;
3108
+ A1 *= DEGTORAD;
3109
+ tjd = tjd - 0.4075 * sin(Mm)
3110
+ + 0.1721 * E * sin(M)
3111
+ + 0.0161 * sin(2 * Mm)
3112
+ - 0.0097 * sin(2 * F1)
3113
+ + 0.0073 * E * sin(Mm - M)
3114
+ - 0.0050 * E * sin(Mm + M)
3115
+ - 0.0023 * sin(Mm - 2 * F1)
3116
+ + 0.0021 * E * sin(2 * M)
3117
+ + 0.0012 * sin(Mm + 2 * F1)
3118
+ + 0.0006 * E * sin(2 * Mm + M)
3119
+ - 0.0004 * sin(3 * Mm)
3120
+ - 0.0003 * E * sin(M + 2 * F1)
3121
+ + 0.0003 * sin(A1)
3122
+ - 0.0002 * E * sin(M - 2 * F1)
3123
+ - 0.0002 * E * sin(2 * Mm - M)
3124
+ - 0.0002 * sin(Om);
3125
+ /*
3126
+ * precise computation:
3127
+ * time of maximum eclipse (if eclipse) =
3128
+ * minimum selenocentric angle between sun and earth edges.
3129
+ * After this time has been determined, check
3130
+ * whether or not an eclipse is taking place with
3131
+ * the function lun_eclipse_how().
3132
+ */
3133
+ dtstart = 0.1;
3134
+ if (tjd < 2000000)
3135
+ dtstart = 5;
3136
+ dtdiv = 4;
3137
+ for (j = 0, dt = dtstart;
3138
+ dt > 0.001;
3139
+ j++, dt /= dtdiv) {
3140
+ for (i = 0, t = tjd - dt; i <= 2; i++, t += dt) {
3141
+ if (swe_calc(t, SE_SUN, iflagcart, xs, serr) == ERR)
3142
+ return ERR;
3143
+ if (swe_calc(t, SE_MOON, iflagcart, xm, serr) == ERR)
3144
+ return ERR;
3145
+ for (m = 0; m < 3; m++) {
3146
+ xs[m] -= xm[m]; /* selenocentric sun */
3147
+ xm[m] = -xm[m]; /* selenocentric earth */
3148
+ }
3149
+ ds = sqrt(square_sum(xs));
3150
+ dm = sqrt(square_sum(xm));
3151
+ for (m = 0; m < 3; m++) {
3152
+ xa[m] = xs[m] / ds;
3153
+ xb[m] = xm[m] / dm;
3154
+ }
3155
+ dc[i] = acos(swi_dot_prod_unit(xa, xb)) * RADTODEG;
3156
+ rearth = asin(REARTH / dm) * RADTODEG;
3157
+ rsun = asin(RSUN / ds) * RADTODEG;
3158
+ dc[i] -= (rearth + rsun);
3159
+ }
3160
+ find_maximum(dc[0], dc[1], dc[2], dt, &dtint, &dctr);
3161
+ tjd += dtint + dt;
3162
+ }
3163
+ tjd = tjd - swe_deltat(tjd);
3164
+ if ((retflag = swe_lun_eclipse_how(tjd, ifl, NULL, attr, serr)) == ERR)
3165
+ return retflag;
3166
+ if (retflag == 0) {
3167
+ K += direction;
3168
+ goto next_try;
3169
+ }
3170
+ tret[0] = tjd;
3171
+ if ((backward && tret[0] >= tjd_start - 0.0001)
3172
+ || (!backward && tret[0] <= tjd_start + 0.0001)) {
3173
+ K += direction;
3174
+ goto next_try;
3175
+ }
3176
+ /*
3177
+ * check whether or not eclipse type found is wanted
3178
+ */
3179
+ /* non penumbral eclipse is wanted: */
3180
+ if (!(ifltype & SE_ECL_PENUMBRAL) && (retflag & SE_ECL_PENUMBRAL)) {
3181
+ K += direction;
3182
+ goto next_try;
3183
+ }
3184
+ /* non partial eclipse is wanted: */
3185
+ if (!(ifltype & SE_ECL_PARTIAL) && (retflag & SE_ECL_PARTIAL)) {
3186
+ K += direction;
3187
+ goto next_try;
3188
+ }
3189
+ /* annular-total eclipse will be discovered later */
3190
+ if (!(ifltype & (SE_ECL_TOTAL)) && (retflag & SE_ECL_TOTAL)) {
3191
+ K += direction;
3192
+ goto next_try;
3193
+ }
3194
+ /*
3195
+ * n = 0: times of eclipse begin and end
3196
+ * n = 1: times of totality begin and end
3197
+ * n = 2: times of center line begin and end
3198
+ */
3199
+ if (retflag & SE_ECL_PENUMBRAL)
3200
+ o = 0;
3201
+ else if (retflag & SE_ECL_PARTIAL)
3202
+ o = 1;
3203
+ else
3204
+ o = 2;
3205
+ dta = twohr;
3206
+ dtb = tenmin;
3207
+ for (n = 0; n <= o; n++) {
3208
+ if (n == 0) {
3209
+ i1 = 6; i2 = 7;
3210
+ } else if (n == 1) {
3211
+ i1 = 2; i2 = 3;
3212
+ } else if (n == 2) {
3213
+ i1 = 4; i2 = 5;
3214
+ }
3215
+ #if 1
3216
+ for (i = 0, t = tjd - dta; i <= 2; i += 1, t += dta) {
3217
+ if ((retflag2 = lun_eclipse_how(t, ifl, attr, dcore, serr)) == ERR)
3218
+ return retflag2;
3219
+ if (n == 0)
3220
+ dc[i] = dcore[2] / 2 + RMOON / dcore[4] - dcore[0];
3221
+ else if (n == 1)
3222
+ dc[i] = dcore[1] / 2 + RMOON / dcore[3] - dcore[0];
3223
+ else if (n == 2)
3224
+ dc[i] = dcore[1] / 2 - RMOON / dcore[3] - dcore[0];
3225
+ }
3226
+ find_zero(dc[0], dc[1], dc[2], dta, &dt1, &dt2);
3227
+ dtb = (dt1 + dta) / 2;
3228
+ tret[i1] = tjd + dt1 + dta;
3229
+ tret[i2] = tjd + dt2 + dta;
3230
+ #else
3231
+ tret[i1] = tjd - dtb;
3232
+ tret[i2] = tjd + dtb;
3233
+ #endif
3234
+ for (m = 0, dt = dtb / 2; m < 3; m++, dt /= 2) {
3235
+ for (j = i1; j <= i2; j += (i2 - i1)) {
3236
+ for (i = 0, t = tret[j] - dt; i < 2; i++, t += dt) {
3237
+ if ((retflag2 = lun_eclipse_how(t, ifl, attr, dcore, serr)) == ERR)
3238
+ return retflag2;
3239
+ if (n == 0)
3240
+ dc[i] = dcore[2] / 2 + RMOON / dcore[4] - dcore[0];
3241
+ else if (n == 1)
3242
+ dc[i] = dcore[1] / 2 + RMOON / dcore[3] - dcore[0];
3243
+ else if (n == 2)
3244
+ dc[i] = dcore[1] / 2 - RMOON / dcore[3] - dcore[0];
3245
+ }
3246
+ dt1 = dc[1] / ((dc[1] - dc[0]) / dt);
3247
+ tret[j] -= dt1;
3248
+ }
3249
+ }
3250
+ }
3251
+ return retflag;
3252
+ }
3253
+
3254
+ /*
3255
+ * function calculates planetary phenomena
3256
+ *
3257
+ * attr[0] = phase angle (earth-planet-sun)
3258
+ * attr[1] = phase (illumined fraction of disc)
3259
+ * attr[2] = elongation of planet
3260
+ * attr[3] = apparent diameter of disc
3261
+ * attr[4] = apparent magnitude
3262
+ * attr[5] = geocentric horizontal parallax (Moon)
3263
+ * declare as attr[20] at least !
3264
+ *
3265
+ * Note: the lunar magnitude is quite a complicated thing,
3266
+ * but our algorithm is very simple.
3267
+ * The phase of the moon, its distance from the earth and
3268
+ * the sun is considered, but no other factors.
3269
+ *
3270
+ */
3271
+ #define EULER 2.718281828459
3272
+ #define NMAG_ELEM (SE_VESTA + 1)
3273
+ static double mag_elem[NMAG_ELEM][4] = {
3274
+ /* DTV-Atlas Astronomie, p. 32 */
3275
+ {-26.86, 0, 0, 0},
3276
+ {-12.55, 0, 0, 0},
3277
+ /* IAU 1986 */
3278
+ {-0.42, 3.80, -2.73, 2.00},
3279
+ {-4.40, 0.09, 2.39, -0.65},
3280
+ {- 1.52, 1.60, 0, 0}, /* Mars */
3281
+ {- 9.40, 0.5, 0, 0}, /* Jupiter */
3282
+ {- 8.88, -2.60, 1.25, 0.044}, /* Saturn */
3283
+ {- 7.19, 0.0, 0, 0}, /* Uranus */
3284
+ {- 6.87, 0.0, 0, 0}, /* Neptune */
3285
+ {- 1.00, 0.0, 0, 0}, /* Pluto */
3286
+ {99, 0, 0, 0}, /* nodes and apogees */
3287
+ {99, 0, 0, 0},
3288
+ {99, 0, 0, 0},
3289
+ {99, 0, 0, 0},
3290
+ {99, 0, 0, 0}, /* Earth */
3291
+ /* from Bowell data base */
3292
+ {6.5, 0.15, 0, 0}, /* Chiron */
3293
+ {7.0, 0.15, 0, 0}, /* Pholus */
3294
+ {3.34, 0.12, 0, 0}, /* Ceres */
3295
+ {4.13, 0.11, 0, 0}, /* Pallas */
3296
+ {5.33, 0.32, 0, 0}, /* Juno */
3297
+ {3.20, 0.32, 0, 0}, /* Vesta */
3298
+ };
3299
+ int32 FAR PASCAL_CONV swe_pheno(double tjd, int32 ipl, int32 iflag, double *attr, char *serr)
3300
+ {
3301
+ int i;
3302
+ double xx[6], xx2[6], xxs[6], lbr[6], lbr2[6], dt = 0, dd;
3303
+ double fac;
3304
+ double T, in, om, sinB, u1, u2, du;
3305
+ double ph1, ph2, me[2];
3306
+ int32 iflagp, epheflag;
3307
+ /* function calls for Pluto with asteroid number 134340
3308
+ * are treated as calls for Pluto as main body SE_PLUTO */
3309
+ if (ipl == SE_AST_OFFSET + 134340)
3310
+ ipl = SE_PLUTO;
3311
+ for (i = 0; i < 20; i++)
3312
+ attr[i] = 0;
3313
+ /* Ceres - Vesta must be SE_CERES etc., not 10001 etc. */
3314
+ if (ipl > SE_AST_OFFSET && ipl <= SE_AST_OFFSET + 4)
3315
+ ipl = ipl - SE_AST_OFFSET - 1 + SE_CERES;
3316
+ iflag = iflag & (SEFLG_EPHMASK |
3317
+ SEFLG_TRUEPOS |
3318
+ SEFLG_J2000 |
3319
+ SEFLG_NONUT |
3320
+ SEFLG_NOGDEFL |
3321
+ SEFLG_NOABERR |
3322
+ SEFLG_TOPOCTR);
3323
+ iflagp = iflag & (SEFLG_EPHMASK |
3324
+ SEFLG_TRUEPOS |
3325
+ SEFLG_J2000 |
3326
+ SEFLG_NONUT |
3327
+ SEFLG_NOABERR);
3328
+ iflagp |= SEFLG_HELCTR;
3329
+ epheflag = iflag & SEFLG_EPHMASK;
3330
+ /*
3331
+ * geocentric planet
3332
+ */
3333
+ if (swe_calc(tjd, (int) ipl, iflag | SEFLG_XYZ, xx, serr) == ERR)
3334
+ /* int cast can be removed when swe_calc() gets int32 ipl definition */
3335
+ return ERR;
3336
+ if (swe_calc(tjd, (int) ipl, iflag, lbr, serr) == ERR)
3337
+ /* int cast can be removed when swe_calc() gets int32 ipl definition */
3338
+ return ERR;
3339
+ /* if moon, we need sun as well, for magnitude */
3340
+ if (ipl == SE_MOON)
3341
+ if (swe_calc(tjd, SE_SUN, iflag | SEFLG_XYZ, xxs, serr) == ERR)
3342
+ return ERR;
3343
+ if (ipl != SE_SUN && ipl != SE_EARTH &&
3344
+ ipl != SE_MEAN_NODE && ipl != SE_TRUE_NODE &&
3345
+ ipl != SE_MEAN_APOG && ipl != SE_OSCU_APOG) {
3346
+ /*
3347
+ * light time planet - earth
3348
+ */
3349
+ dt = lbr[2] * AUNIT / CLIGHT / 86400.0;
3350
+ if (iflag & SEFLG_TRUEPOS)
3351
+ dt = 0;
3352
+ /*
3353
+ * heliocentric planet at tjd - dt
3354
+ */
3355
+ if (swe_calc(tjd - dt, (int) ipl, iflagp | SEFLG_XYZ, xx2, serr) == ERR)
3356
+ /* int cast can be removed when swe_calc() gets int32 ipl definition */
3357
+ return ERR;
3358
+ if (swe_calc(tjd - dt, (int) ipl, iflagp, lbr2, serr) == ERR)
3359
+ /* int cast can be removed when swe_calc() gets int32 ipl definition */
3360
+ return ERR;
3361
+ /*
3362
+ * phase angle
3363
+ */
3364
+ attr[0] = acos(swi_dot_prod_unit(xx, xx2)) * RADTODEG;
3365
+ /*
3366
+ * phase
3367
+ */
3368
+ attr[1] = (1 + cos(attr[0] * DEGTORAD)) / 2;
3369
+ }
3370
+ /*
3371
+ * apparent diameter of disk
3372
+ */
3373
+ if (ipl < NDIAM)
3374
+ dd = pla_diam[ipl];
3375
+ else if (ipl > SE_AST_OFFSET)
3376
+ dd = swed.ast_diam * 1000; /* km -> m */
3377
+ else
3378
+ dd = 0;
3379
+ if (lbr[2] < dd / 2 / AUNIT)
3380
+ attr[3] = 180; /* assume position on surface of earth */
3381
+ else
3382
+ attr[3] = asin(dd / 2 / AUNIT / lbr[2]) * 2 * RADTODEG;
3383
+ /*
3384
+ * apparent magnitude
3385
+ */
3386
+ if (ipl > SE_AST_OFFSET || (ipl < NMAG_ELEM && mag_elem[ipl][0] < 99)) {
3387
+ if (ipl == SE_SUN) {
3388
+ /* ratio apparent diameter : average diameter */
3389
+ fac = attr[3] / (asin(pla_diam[SE_SUN] / 2.0 / AUNIT) * 2 * RADTODEG);
3390
+ fac *= fac;
3391
+ attr[4] = mag_elem[ipl][0] - 2.5 * log10(fac);
3392
+ } else if (ipl == SE_MOON) {
3393
+ /* formula according to Allen, C.W., 1976, Astrophysical Quantities */
3394
+ /*attr[4] = -21.62 + 5 * log10(384410497.8 / EARTH_RADIUS) / log10(10) + 0.026 * fabs(attr[0]) + 0.000000004 * pow(attr[0], 4);*/
3395
+ attr[4] = -21.62 + 5 * log10(lbr[2] * AUNIT / EARTH_RADIUS) / log10(10) + 0.026 * fabs(attr[0]) + 0.000000004 * pow(attr[0], 4);
3396
+ #if 0
3397
+ /* ratio apparent diameter : average diameter */
3398
+ fac = attr[3] / (asin(pla_diam[SE_MOON] / 2.0 / 384400000.0) * 2 * RADTODEG);
3399
+ /* distance sun - moon */
3400
+ for (i = 0; i < 3; i++)
3401
+ xxs[i] -= xx[i];
3402
+ dsm = sqrt(square_sum(xxs));
3403
+ /* account for phase and distance of moon: */
3404
+ fac *= fac * attr[1];
3405
+ /* account for distance of sun from moon: */
3406
+ fac *= dsm * dsm;
3407
+ attr[4] = mag_elem[ipl][0] - 2.5 * log10(fac);
3408
+ #endif
3409
+ /*printf("1 = %f, 2 = %f\n", mag, mag2);*/
3410
+ } else if (ipl == SE_SATURN) {
3411
+ /* rings are considered according to Meeus, German, p. 329ff. */
3412
+ T = (tjd - dt - J2000) / 36525.0;
3413
+ in = (28.075216 - 0.012998 * T + 0.000004 * T * T) * DEGTORAD;
3414
+ om = (169.508470 + 1.394681 * T + 0.000412 * T * T) * DEGTORAD;
3415
+ sinB = fabs(sin(in) * cos(lbr[1] * DEGTORAD)
3416
+ * sin(lbr[0] * DEGTORAD - om)
3417
+ - cos(in) * sin(lbr[1] * DEGTORAD));
3418
+ u1 = atan2(sin(in) * tan(lbr2[1] * DEGTORAD)
3419
+ + cos(in) * sin(lbr2[0] * DEGTORAD - om),
3420
+ cos(lbr2[0] * DEGTORAD - om)) * RADTODEG;
3421
+ u2 = atan2(sin(in) * tan(lbr[1] * DEGTORAD)
3422
+ + cos(in) * sin(lbr[0] * DEGTORAD - om),
3423
+ cos(lbr[0] * DEGTORAD - om)) * RADTODEG;
3424
+ du = swe_degnorm(u1 - u2);
3425
+ if (du > 10)
3426
+ du = 360 - du;
3427
+ attr[4] = 5 * log10(lbr2[2] * lbr[2])
3428
+ + mag_elem[ipl][1] * sinB
3429
+ + mag_elem[ipl][2] * sinB * sinB
3430
+ + mag_elem[ipl][3] * du
3431
+ + mag_elem[ipl][0];
3432
+ } else if (ipl < SE_CHIRON) {
3433
+ attr[4] = 5 * log10(lbr2[2] * lbr[2])
3434
+ + mag_elem[ipl][1] * attr[0] /100.0
3435
+ + mag_elem[ipl][2] * attr[0] * attr[0] / 10000.0
3436
+ + mag_elem[ipl][3] * attr[0] * attr[0] * attr[0] / 1000000.0
3437
+ + mag_elem[ipl][0];
3438
+ } else if (ipl < NMAG_ELEM || ipl > SE_AST_OFFSET) { /* asteroids */
3439
+ ph1 = pow(EULER, -3.33 * pow(tan(attr[0] * DEGTORAD / 2), 0.63));
3440
+ ph2 = pow(EULER, -1.87 * pow(tan(attr[0] * DEGTORAD / 2), 1.22));
3441
+ if (ipl < NMAG_ELEM) { /* main asteroids */
3442
+ me[0] = mag_elem[ipl][0];
3443
+ me[1] = mag_elem[ipl][1];
3444
+ } else if (ipl == SE_AST_OFFSET + 1566) {
3445
+ /* Icarus has elements from JPL database */
3446
+ me[0] = 16.9;
3447
+ me[1] = 0.15;
3448
+ } else { /* other asteroids */
3449
+ me[0] = swed.ast_H;
3450
+ me[1] = swed.ast_G;
3451
+ }
3452
+ attr[4] = 5 * log10(lbr2[2] * lbr[2])
3453
+ + me[0]
3454
+ - 2.5 * log10((1 - me[1]) * ph1 + me[1] * ph2);
3455
+ } else { /* ficticious bodies */
3456
+ attr[4] = 0;
3457
+ }
3458
+ }
3459
+ if (ipl != SE_SUN && ipl != SE_EARTH) {
3460
+ /*
3461
+ * elongation of planet
3462
+ */
3463
+ if (swe_calc(tjd, SE_SUN, iflag | SEFLG_XYZ, xx2, serr) == ERR)
3464
+ return ERR;
3465
+ if (swe_calc(tjd, SE_SUN, iflag, lbr2, serr) == ERR)
3466
+ return ERR;
3467
+ attr[2] = acos(swi_dot_prod_unit(xx, xx2)) * RADTODEG;
3468
+ }
3469
+ /* horizontal parallax */
3470
+ if (ipl == SE_MOON) {
3471
+ double sinhp, xm[6];
3472
+ /* geocentric horizontal parallax */
3473
+ /* Expl.Suppl. to the AA 1984, p.400 */
3474
+ if (swe_calc(tjd, (int) ipl, epheflag|SEFLG_TRUEPOS|SEFLG_EQUATORIAL|SEFLG_RADIANS, xm, serr) == ERR)
3475
+ /* int cast can be removed when swe_calc() gets int32 ipl definition */
3476
+ return ERR;
3477
+ sinhp = EARTH_RADIUS / xm[2] / AUNIT;
3478
+ attr[5] = asin(sinhp) / DEGTORAD;
3479
+ /* topocentric horizontal parallax */
3480
+ if (iflag & SEFLG_TOPOCTR) {
3481
+ if (swe_calc(tjd, (int) ipl, epheflag|SEFLG_XYZ|SEFLG_TOPOCTR, xm, serr) == ERR)
3482
+ return ERR;
3483
+ if (swe_calc(tjd, (int) ipl, epheflag|SEFLG_XYZ, xx, serr) == ERR)
3484
+ return ERR;
3485
+ attr[5] = acos(swi_dot_prod_unit(xm, xx)) / DEGTORAD;
3486
+ #if 0
3487
+ {
3488
+ /* Expl. Suppl. to the Astronomical Almanac 1984, p. 400;
3489
+ * Does not take into account
3490
+ * - the topocentric distance of the moon
3491
+ * - the distance of the observer from the geocenter
3492
+ */
3493
+ double tsid, h, e, f = EARTH_OBLATENESS;
3494
+ double cosz, sinz, phi;
3495
+ /* local apparent sidereal time */
3496
+ tsid = swe_sidtime(tjd - swe_deltat(tjd)) * 15 + swed.topd.geolon;
3497
+ /* local hour angle of the moon */
3498
+ h = swe_degnorm(tsid - xm[0] / DEGTORAD);
3499
+ /* geocentric latitude of the observer */
3500
+ e = sqrt(f * (2 - f));
3501
+ phi = atan((1 - e * e) * tan(swed.topd.geolat * DEGTORAD));
3502
+ /* sine of geocentric zenith angle of moon */
3503
+ cosz = sin(xm[1]) * sin(phi) + cos(xm[1]) * cos(phi) * cos(h * DEGTORAD);
3504
+ sinz = sqrt(1 - cosz * cosz);
3505
+ attr[5] = asin(sinz * sinhp / (1 - sinz * sinhp)) / DEGTORAD;
3506
+ }
3507
+ #endif
3508
+ }
3509
+ }
3510
+ return OK;
3511
+ }
3512
+
3513
+ int32 FAR PASCAL_CONV swe_pheno_ut(double tjd_ut, int32 ipl, int32 iflag, double *attr, char *serr)
3514
+ {
3515
+ return swe_pheno(tjd_ut + swe_deltat(tjd_ut), ipl, iflag, attr, serr);
3516
+ }
3517
+
3518
+ static int find_maximum(double y00, double y11, double y2, double dx,
3519
+ double *dxret, double *yret)
3520
+ {
3521
+ double a, b, c, x, y;
3522
+ c = y11;
3523
+ b = (y2 - y00) / 2.0;
3524
+ a = (y2 + y00) / 2.0 - c;
3525
+ x = -b / 2 / a;
3526
+ y = (4 * a * c - b * b) / 4 / a;
3527
+ *dxret = (x - 1) * dx;
3528
+ if (yret != NULL)
3529
+ *yret = y;
3530
+ return OK;
3531
+ }
3532
+
3533
+ static int find_zero(double y00, double y11, double y2, double dx,
3534
+ double *dxret, double *dxret2)
3535
+ {
3536
+ double a, b, c, x1, x2;
3537
+ c = y11;
3538
+ b = (y2 - y00) / 2.0;
3539
+ a = (y2 + y00) / 2.0 - c;
3540
+ if (b * b - 4 * a * c < 0)
3541
+ return ERR;
3542
+ x1 = (-b + sqrt(b * b - 4 * a * c)) / 2 / a;
3543
+ x2 = (-b - sqrt(b * b - 4 * a * c)) / 2 / a;
3544
+ *dxret = (x1 - 1) * dx;
3545
+ *dxret2 = (x2 - 1) * dx;
3546
+ return OK;
3547
+ }
3548
+
3549
+ double rdi_twilight(int32 rsmi)
3550
+ {
3551
+ double rdi = 0;
3552
+ if (rsmi & SE_BIT_CIVIL_TWILIGHT)
3553
+ rdi = 6;
3554
+ if (rsmi & SE_BIT_NAUTIC_TWILIGHT)
3555
+ rdi = 12;
3556
+ if (rsmi & SE_BIT_ASTRO_TWILIGHT)
3557
+ rdi = 18;
3558
+ return rdi;
3559
+ }
3560
+
3561
+ /* rise, set, and meridian transits of sun, moon, planets, and stars
3562
+ *
3563
+ * tjd_ut universal time from when on search ought to start
3564
+ * ipl planet number, neglected, if starname is given
3565
+ * starname pointer to string. if a planet, not a star, is
3566
+ * wanted, starname must be NULL or ""
3567
+ * epheflag used for ephemeris only
3568
+ * rsmi SE_CALC_RISE, SE_CALC_SET, SE_CALC_MTRANSIT, SE_CALC_ITRANSIT
3569
+ * | SE_BIT_DISC_CENTER for rises of disc center of body
3570
+ * | SE_BIT_DISC_BOTTOM for rises of disc bottom of body
3571
+ * | SE_BIT_NO_REFRACTION to neglect refraction
3572
+ * | SE_BIT_FIXED_DISC_SIZE neglect the effect of distance on disc size
3573
+ * geopos array of doubles for geogr. long., lat. and height above sea
3574
+ * atpress atmospheric pressure
3575
+ * attemp atmospheric temperature
3576
+ *
3577
+ * return variables:
3578
+ * tret time of rise, set, meridian transits
3579
+ * serr[256] error string
3580
+ * function return value -2 means that the body does not rise or set */
3581
+ #define SEFLG_EPHMASK (SEFLG_JPLEPH|SEFLG_SWIEPH|SEFLG_MOSEPH)
3582
+ int32 FAR PASCAL_CONV swe_rise_trans(
3583
+ double tjd_ut, int32 ipl, char *starname,
3584
+ int32 epheflag, int32 rsmi,
3585
+ double *geopos,
3586
+ double atpress, double attemp,
3587
+ double *tret,
3588
+ char *serr)
3589
+ {
3590
+ int i, j, k, ii, calc_culm, nculm = -1;
3591
+ double tjd_et = tjd_ut + swe_deltat(tjd_ut);
3592
+ double xc[6], xh[20][6], ah[6], aha;
3593
+ double tculm[4], tcu, tc[20], h[20], t2[6], dc[6], dtint, dx, rdi, dd = 0;
3594
+ int32 iflag = epheflag;
3595
+ int jmax = 14;
3596
+ double t, te, tt, dt, twohrs = 1.0 / 12.0;
3597
+ double curdist;
3598
+ AS_BOOL do_calc_twilight = 0;
3599
+ AS_BOOL do_fixstar = (starname != NULL && *starname != '\0');
3600
+ /* function calls for Pluto with asteroid number 134340
3601
+ * are treated as calls for Pluto as main body SE_PLUTO */
3602
+ if (ipl == SE_AST_OFFSET + 134340)
3603
+ ipl = SE_PLUTO;
3604
+ xh[0][0] = 0; /* to shut up mint */
3605
+ iflag &= SEFLG_EPHMASK;
3606
+ *tret = 0;
3607
+ iflag |= (SEFLG_EQUATORIAL | SEFLG_TOPOCTR);
3608
+ swe_set_topo(geopos[0], geopos[1], geopos[2]);
3609
+ if (rsmi & (SE_CALC_MTRANSIT | SE_CALC_ITRANSIT))
3610
+ return calc_mer_trans(tjd_ut, ipl, epheflag, rsmi,
3611
+ geopos, starname, tret, serr);
3612
+ if (!(rsmi & (SE_CALC_RISE | SE_CALC_SET)))
3613
+ rsmi |= SE_CALC_RISE;
3614
+ if (ipl == SE_SUN && (rsmi & (SE_BIT_CIVIL_TWILIGHT|SE_BIT_NAUTIC_TWILIGHT|SE_BIT_ASTRO_TWILIGHT))) {
3615
+ rsmi |= (SE_BIT_NO_REFRACTION | SE_BIT_DISC_CENTER);
3616
+ do_calc_twilight = 1;
3617
+ }
3618
+ /* find culmination points within 28 hours from t0 - twohrs.
3619
+ * culminations are required in case there are maxima or minima
3620
+ * in height slightly above or below the horizon.
3621
+ * we do not use meridian transits, because in polar regions
3622
+ * the culmination points may considerably deviate from
3623
+ * transits. also, there are cases where the moon rises in the
3624
+ * western half of the sky for a short time.
3625
+ */
3626
+ if (do_fixstar) {
3627
+ if (swe_fixstar(starname, tjd_et, iflag, xc, serr) == ERR)
3628
+ return ERR;
3629
+ }
3630
+ for (ii = 0, t = tjd_ut - twohrs; ii <= jmax; ii++, t += twohrs) {
3631
+ tc[ii] = t;
3632
+ if (!do_fixstar) {
3633
+ te = t + swe_deltat(t);
3634
+ if (swe_calc(te, ipl, iflag, xc, serr) == ERR)
3635
+ return ERR;
3636
+ }
3637
+ /* diameter of object in km */
3638
+ if (ii == 0) {
3639
+ if (do_fixstar)
3640
+ dd = 0;
3641
+ else if (rsmi & SE_BIT_DISC_CENTER)
3642
+ dd = 0;
3643
+ else if (ipl < NDIAM)
3644
+ dd = pla_diam[ipl];
3645
+ else if (ipl > SE_AST_OFFSET)
3646
+ dd = swed.ast_diam * 1000; /* km -> m */
3647
+ else
3648
+ dd = 0;
3649
+ }
3650
+ curdist = xc[2];
3651
+ if ( rsmi & SE_BIT_FIXED_DISC_SIZE )
3652
+ {
3653
+ if ( ipl == SE_SUN )
3654
+ {
3655
+ curdist = 1.0;
3656
+ }
3657
+ else if ( ipl == SE_MOON )
3658
+ {
3659
+ curdist = 0.00257;
3660
+ }
3661
+ }
3662
+ /* apparent radius of disc */
3663
+ rdi = asin( dd / 2 / AUNIT / curdist ) * RADTODEG;
3664
+ /* twilight calculation: */
3665
+ if (do_calc_twilight)
3666
+ rdi = rdi_twilight(rsmi);
3667
+ /* true height of center of body */
3668
+ swe_azalt(t, SE_EQU2HOR, geopos, atpress, attemp, xc, xh[ii]);
3669
+ if ( rsmi & SE_BIT_DISC_BOTTOM )
3670
+ {
3671
+ /* true height of bottom point of body */
3672
+ xh[ii][1] -= rdi;
3673
+ }
3674
+ else
3675
+ {
3676
+ /* true height of uppermost point of body */
3677
+ xh[ii][1] += rdi;
3678
+ }
3679
+ /* apparent height of uppermost point of body */
3680
+ if (rsmi & SE_BIT_NO_REFRACTION) {
3681
+ h[ii] = xh[ii][1];
3682
+ } else {
3683
+ swe_azalt_rev(t, SE_HOR2EQU, geopos, xh[ii], xc);
3684
+ swe_azalt(t, SE_EQU2HOR, geopos, atpress, attemp, xc, xh[ii]);
3685
+ h[ii] = xh[ii][2];
3686
+ }
3687
+ calc_culm = 0;
3688
+ if (ii > 1) {
3689
+ dc[0] = xh[ii-2][1];
3690
+ dc[1] = xh[ii-1][1];
3691
+ dc[2] = xh[ii][1];
3692
+ if (dc[1] > dc[0] && dc[1] > dc[2])
3693
+ calc_culm = 1;
3694
+ if (dc[1] < dc[0] && dc[1] < dc[2])
3695
+ calc_culm = 2;
3696
+ }
3697
+ if (calc_culm) {
3698
+ dt = twohrs;
3699
+ tcu = t - dt;
3700
+ find_maximum(dc[0], dc[1], dc[2], dt, &dtint, &dx);
3701
+ tcu += dtint + dt;
3702
+ dt /= 3;
3703
+ for (; dt > 0.0001; dt /= 3) {
3704
+ for (i = 0, tt = tcu - dt; i < 3; tt += dt, i++) {
3705
+ te = tt + swe_deltat(tt);
3706
+ if (!do_fixstar)
3707
+ if (swe_calc(te, ipl, iflag, xc, serr) == ERR)
3708
+ return ERR;
3709
+ swe_azalt(tt, SE_EQU2HOR, geopos, atpress, attemp, xc, ah);
3710
+ dc[i] = ah[1];
3711
+ }
3712
+ find_maximum(dc[0], dc[1], dc[2], dt, &dtint, &dx);
3713
+ tcu += dtint + dt;
3714
+ }
3715
+ nculm++;
3716
+ tculm[nculm] = tcu;
3717
+ }
3718
+ }
3719
+ /* note: there can be a rise or set on the poles, even if
3720
+ * there is no culmination. So, we must not leave here
3721
+ * in any case. */
3722
+ /* insert culminations into array of heights */
3723
+ for (i = 0; i <= nculm; i++) {
3724
+ for (j = 1; j <= jmax; j++) {
3725
+ if (tculm[i] < tc[j]) {
3726
+ for (k = jmax; k >= j; k--) {
3727
+ tc[k+1] = tc[k];
3728
+ h[k+1] = h[k];
3729
+ }
3730
+ tc[j] = tculm[i];
3731
+ if (!do_fixstar) {
3732
+ te = tc[j] + swe_deltat(tc[j]);
3733
+ if (swe_calc(te, ipl, iflag, xc, serr) == ERR)
3734
+ return ERR;
3735
+ }
3736
+ curdist = xc[2];
3737
+ if ( rsmi & SE_BIT_FIXED_DISC_SIZE )
3738
+ {
3739
+ if ( ipl == SE_SUN )
3740
+ {
3741
+ curdist = 1.0;
3742
+ }
3743
+ else if ( ipl == SE_MOON )
3744
+ {
3745
+ curdist = 0.00257;
3746
+ }
3747
+ }
3748
+ /* apparent radius of disc */
3749
+ rdi = asin( dd / 2 / AUNIT / curdist ) * RADTODEG;
3750
+ /* twilight calculation: */
3751
+ if (do_calc_twilight)
3752
+ rdi = rdi_twilight(rsmi);
3753
+ /* true height of center of body */
3754
+ swe_azalt(tc[j], SE_EQU2HOR, geopos, atpress, attemp, xc, ah);
3755
+ if ( rsmi & SE_BIT_DISC_BOTTOM )
3756
+ {
3757
+ /* true height of bottom point of body */
3758
+ ah[1] -= rdi;
3759
+ }
3760
+ else
3761
+ {
3762
+ /* true height of uppermost point of body */
3763
+ ah[1] += rdi;
3764
+ }
3765
+ /* apparent height of uppermost point of body */
3766
+ if (rsmi & SE_BIT_NO_REFRACTION) {
3767
+ h[j] = ah[1];
3768
+ } else {
3769
+ swe_azalt_rev(tc[j], SE_HOR2EQU, geopos, ah, xc);
3770
+ swe_azalt(tc[j], SE_EQU2HOR, geopos, atpress, attemp, xc, ah);
3771
+ h[j] = ah[2];
3772
+ }
3773
+ jmax++;
3774
+ break;
3775
+ }
3776
+ }
3777
+ }
3778
+ *tret = 0;
3779
+ /* find points with zero height.
3780
+ * binary search */
3781
+ for (ii = 1; ii <= jmax; ii++) {
3782
+ if (h[ii-1] * h[ii] >= 0)
3783
+ continue;
3784
+ if (h[ii-1] < h[ii] && !(rsmi & SE_CALC_RISE))
3785
+ continue;
3786
+ if (h[ii-1] > h[ii] && !(rsmi & SE_CALC_SET))
3787
+ continue;
3788
+ dc[0] = h[ii-1];
3789
+ dc[1] = h[ii];
3790
+ t2[0] = tc[ii-1];
3791
+ t2[1] = tc[ii];
3792
+ for (i = 0; i < 20; i++) {
3793
+ t = (t2[0] + t2[1]) / 2;
3794
+ if (!do_fixstar) {
3795
+ te = t + swe_deltat(t);
3796
+ if (swe_calc(te, ipl, iflag, xc, serr) == ERR)
3797
+ return ERR;
3798
+ }
3799
+ curdist = xc[2];
3800
+ if ( rsmi & SE_BIT_FIXED_DISC_SIZE )
3801
+ {
3802
+ if ( ipl == SE_SUN )
3803
+ {
3804
+ curdist = 1.0;
3805
+ }
3806
+ else if ( ipl == SE_MOON )
3807
+ {
3808
+ curdist = 0.00257;
3809
+ }
3810
+ }
3811
+ /* apparent radius of disc */
3812
+ rdi = asin( dd / 2 / AUNIT / curdist ) * RADTODEG;
3813
+ /* twilight calculation: */
3814
+ if (do_calc_twilight)
3815
+ rdi = rdi_twilight(rsmi);
3816
+ /* true height of center of body */
3817
+ swe_azalt(t, SE_EQU2HOR, geopos, atpress, attemp, xc, ah);
3818
+ if ( rsmi & SE_BIT_DISC_BOTTOM )
3819
+ {
3820
+ /* true height of bottom point of body */
3821
+ ah[1] -= rdi;
3822
+ }
3823
+ else
3824
+ {
3825
+ /* true height of uppermost point of body */
3826
+ ah[1] += rdi;
3827
+ }
3828
+ /* apparent height of uppermost point of body */
3829
+ if (rsmi & SE_BIT_NO_REFRACTION) {
3830
+ aha = ah[1];
3831
+ } else {
3832
+ swe_azalt_rev(t, SE_HOR2EQU, geopos, ah, xc);
3833
+ swe_azalt(t, SE_EQU2HOR, geopos, atpress, attemp, xc, ah);
3834
+ aha = ah[2];
3835
+ }
3836
+ if (aha * dc[0] <= 0) {
3837
+ dc[1] = aha;
3838
+ t2[1] = t;
3839
+ } else {
3840
+ dc[0] = aha;
3841
+ t2[0] = t;
3842
+ }
3843
+ }
3844
+ if (t > tjd_ut) {
3845
+ *tret = t;
3846
+ return OK;
3847
+ }
3848
+ }
3849
+ if (serr)
3850
+ sprintf(serr, "rise or set not found for planet %d", ipl);
3851
+ return -2; /* no t of rise or set found */
3852
+ }
3853
+
3854
+ static int32 calc_mer_trans(
3855
+ double tjd_ut, int32 ipl, int32 epheflag, int32 rsmi,
3856
+ double *geopos,
3857
+ char *starname,
3858
+ double *tret,
3859
+ char *serr)
3860
+ {
3861
+ int i;
3862
+ double tjd_et = tjd_ut + swe_deltat(tjd_ut);
3863
+ double armc, armc0, arxc, x0[6], x[6], t, te;
3864
+ double mdd;
3865
+ int32 iflag = epheflag;
3866
+ AS_BOOL do_fixstar = (starname != NULL && *starname != '\0');
3867
+ iflag &= SEFLG_EPHMASK;
3868
+ *tret = 0;
3869
+ iflag |= (SEFLG_EQUATORIAL | SEFLG_TOPOCTR);
3870
+ armc0 = swe_sidtime(tjd_ut) + geopos[0] / 15;
3871
+ if (armc0 >= 24)
3872
+ armc0 -= 24;
3873
+ if (armc0 < 0)
3874
+ armc0 += 24;
3875
+ armc0 *= 15;
3876
+ if (do_fixstar) {
3877
+ if (swe_fixstar(starname, tjd_et, iflag, x0, serr) == ERR)
3878
+ return ERR;
3879
+ } else {
3880
+ if (swe_calc(tjd_et, ipl, iflag, x0, serr) == ERR)
3881
+ return ERR;
3882
+ }
3883
+ /*
3884
+ * meridian transits
3885
+ */
3886
+ x[0] = x0[0];
3887
+ x[1] = x0[1];
3888
+ t = tjd_ut;
3889
+ arxc = armc0;
3890
+ if (rsmi & SE_CALC_ITRANSIT)
3891
+ arxc = swe_degnorm(arxc + 180);
3892
+ for (i = 0; i < 4; i++) {
3893
+ mdd = swe_degnorm(x[0] - arxc);
3894
+ if (i > 0 && mdd > 180)
3895
+ mdd -= 360;
3896
+ t += mdd / 361;
3897
+ armc = swe_sidtime(t) + geopos[0] / 15;
3898
+ if (armc >= 24)
3899
+ armc -= 24;
3900
+ if (armc < 0)
3901
+ armc += 24;
3902
+ armc *= 15;
3903
+ arxc = armc;
3904
+ if (rsmi & SE_CALC_ITRANSIT)
3905
+ arxc = swe_degnorm(arxc + 180);
3906
+ if (!do_fixstar) {
3907
+ te = t + swe_deltat(t);
3908
+ if (swe_calc(te, ipl, iflag, x, serr) == ERR)
3909
+ return ERR;
3910
+ }
3911
+ }
3912
+ *tret = t;
3913
+ return OK;
3914
+ }
3915
+
3916
+ /*
3917
+ Nodes and apsides of planets and moon
3918
+
3919
+ Planetary nodes can be defined in three different ways:
3920
+ a) They can be understood as a direction or as an axis
3921
+ defined by the intersection line of two orbital planes.
3922
+ E.g., the nodes of Mars are defined by the intersection
3923
+ line of Mars' orbital plane with the ecliptic (= the
3924
+ Earths orbit heliocentrically or the solar orbit
3925
+ geocentrically). However, as Michael Erlewine points
3926
+ out in his elaborate web page on this topic
3927
+ (http://thenewage.com/resources/articles/interface.html),
3928
+ planetary nodes can be defined for any couple of
3929
+ planets. E.g. there is also an intersection line for the
3930
+ two orbital planes of Mars and Saturn.
3931
+ Because such lines are, in principle, infinite, the
3932
+ heliocentric and the geocentric positions of the
3933
+ planetary nodes will be the same. There are astrologers
3934
+ that use such heliocentric planetary nodes in geocentric
3935
+ charts.
3936
+ The ascending and the descending node will, in this
3937
+ case, be in precise opposition.
3938
+
3939
+ b) The planetary nodes can also be understood in a
3940
+ different way, not as an axis, but as the two points on a
3941
+ planetary orbit that are located precisely on the
3942
+ intersection line of the two planes.
3943
+ This second definition makes no difference for the moon or
3944
+ for heliocentric positions of planets, but it does so for
3945
+ geocentric positions. There are two possibilities for
3946
+ geocentric planetary nodes based on this definition.
3947
+ 1) The common solution is that the points on the
3948
+ planets orbit are transformed to the geocenter. The
3949
+ two points will not be in opposition anymore, or
3950
+ they will only roughly be so with the outer planets. The
3951
+ advantage of these nodes is that when a planet is in
3952
+ conjunction with its node, then its ecliptic latitude
3953
+ will be zero. This is not true when a planet is in
3954
+ geocentric conjunction with its heliocentric node.
3955
+ (And neither is it always true for the inner planets,
3956
+ i.e. Mercury and Venus.)
3957
+ 2) The second possibility that nobody seems to have
3958
+ thought of so far: One may compute the points of
3959
+ the earth's orbit that lie exactly on another planet's
3960
+ orbital plane and transform it to the geocenter. The two
3961
+ points will always be in an approximate square.
3962
+
3963
+ c) Third, the planetary nodes could be defined as the
3964
+ intersection points of the plane defined by their
3965
+ momentary geocentric position and motion with the
3966
+ plane of the ecliptic. Such points would move very fast
3967
+ around the planetary stations. Here again, as in b)1),
3968
+ the planet would cross the ecliptic and its ecliptic
3969
+ latitude would be 0 exactly when it were in
3970
+ conjunction with one of its nodes.
3971
+
3972
+ The Swiss Ephemeris supports the solutions a) and b) 1).
3973
+
3974
+ Possible definitions for apsides
3975
+
3976
+ a) The planetary apsides can be defined as the perihelion and
3977
+ aphelion points on a planetary orbit. For a
3978
+ geocentric chart, these points could be transformed
3979
+ from the heliocenter to the geocenter.
3980
+ b) However, one might consider these points as
3981
+ astrologically relevant axes rather than as points on a
3982
+ planetary orbit. Again, this would allow heliocentric
3983
+ positions in a geocentric chart.
3984
+
3985
+ Note: For the "Dark Moon" or "Lilith", which I usually
3986
+ define as the lunar apogee, some astrologers give a
3987
+ different definition. They understand it as the second focal
3988
+ point of the moon's orbital ellipse. This definition does not
3989
+ make a difference for geocentric positions, because the
3990
+ apogee and the second focus are in exactly the same geocentric
3991
+ direction. However, it makes a difference with topocentric
3992
+ positions, because the two points do not have same distance.
3993
+ Analogous "black planets" have been proposed: they would be the
3994
+ second focal points of the planets' orbital ellipses. The
3995
+ heliocentric positions of these "black planets" are identical
3996
+ with the heliocentric positions of the aphelia, but geocentric
3997
+ positions are not identical, because the focal points are
3998
+ much closer to the sun than the aphelia.
3999
+
4000
+ The Swiss Ephemeris allows to compute the "black planets" as well.
4001
+
4002
+ Mean positions
4003
+
4004
+ Mean nodes and apsides can be computed for the Moon, the
4005
+ Earth and the planets Mercury - Neptune. They are taken
4006
+ from the planetary theory VSOP87. Mean points can not be
4007
+ calculated for Pluto and the asteroids, because there is no
4008
+ planetary theory for them.
4009
+
4010
+ Osculating nodes and apsides
4011
+
4012
+ Nodes and apsides can also be derived from the osculating
4013
+ orbital elements of a body, the paramaters that define an
4014
+ ideal unperturbed elliptic (two-body) orbit.
4015
+ For astrology, note that this is a simplification and
4016
+ idealization.
4017
+ Problem with Neptune: Neptune's orbit around the sun does not
4018
+ have much in common with an ellipse. There are often two
4019
+ perihelia and two aphelia within one revolution. As a result,
4020
+ there is a wild oscillation of the osculating perihelion (and
4021
+ aphelion).
4022
+ In actuality, Neptune's orbit is not heliocentric orbit at all.
4023
+ The twofold perihelia and aphelia are an effect of the motion of
4024
+ the sun about the solar system barycenter. This motion is
4025
+ much faster than the motion of Neptune, and Neptune
4026
+ cannot react on such fast displacements of the Sun. As a
4027
+ result, Neptune seems to move around the barycenter (or a
4028
+ mean sun) rather than around the true sun. In fact,
4029
+ Neptune's orbit around the barycenter is therefore closer to
4030
+ an ellipse than the his orbit around the sun. The same
4031
+ statement is also true for Saturn, Uranus and Pluto, but not
4032
+ for Jupiter and the inner planets.
4033
+
4034
+ This fundamental problem about osculating ellipses of
4035
+ planetary orbits does of course not only affect the apsides
4036
+ but also the nodes.
4037
+
4038
+ Two solutions can be thought of for this problem:
4039
+ 1) The one would be to interpolate between actual
4040
+ passages of the planets through their nodes and
4041
+ apsides. However, this works only well with Mercury.
4042
+ With all other planets, the supporting points are too far
4043
+ apart as to make an accurate interpolation possible.
4044
+ This solution is not implemented, here.
4045
+ 2) The other solution is to compute the apsides of the
4046
+ orbit around the barycenter rather than around the sun.
4047
+ This procedure makes sense for planets beyond Jupiter,
4048
+ it comes closer to the mean apsides and nodes for
4049
+ planets that have such points defined. For all other
4050
+ transsaturnian planets and asteroids, this solution yields
4051
+ a kind of "mean" nodes and apsides. On the other hand,
4052
+ the barycentric ellipse does not make any sense for
4053
+ inner planets and Jupiter.
4054
+
4055
+ The Swiss Ephemeris supports solution 2) for planets and
4056
+ asteroids beyond Jupiter.
4057
+
4058
+ Anyway, neither the heliocentric nor the barycentric ellipse
4059
+ is a perfect representation of the nature of a planetary orbit,
4060
+ and it will not yield the degree of precision that today's
4061
+ astrology is used to.
4062
+ The best choice of method will probably be:
4063
+ - For Mercury - Neptune: mean nodes and apsides
4064
+ - For asteroids that belong to the inner asteroid belt:
4065
+ osculating nodes/apsides from a heliocentric ellipse
4066
+ - For Pluto and outer asteroids: osculating nodes/apsides
4067
+ from a barycentric ellipse
4068
+
4069
+ The Moon is a special case: A "lunar true node" makes
4070
+ more sense, because it can be defined without the idea of an
4071
+ ellipse, e.g. as the intersection axis of the momentary lunar
4072
+ orbital plane with the ecliptic. Or it can be said that the
4073
+ momentary motion of the moon points to one of the two
4074
+ ecliptic points that are called the "true nodes". So, these
4075
+ points make sense. With planetary nodes, the situation is
4076
+ somewhat different, at least if we make a difference
4077
+ between heliocentric and geocentric positions. If so, the
4078
+ planetary nodes are points on a heliocentric orbital ellipse,
4079
+ which are transformed to the geocenter. An ellipse is
4080
+ required here, because a solar distance is required. In
4081
+ contrast to the planetary nodes, the lunar node does not
4082
+ require a distance, therefore manages without the idea of an
4083
+ ellipse and does not share its weaknesses.
4084
+ On the other hand, the lunar apsides DO require the idea of
4085
+ an ellipse. And because the lunar ellipse is actually
4086
+ extremely distorted, even more than any other celestial
4087
+ ellipse, the "true Lilith" (apogee), for which printed
4088
+ ephemerides are available, does not make any sense at all.
4089
+ (See the chapter on the lunar node and apogee.)
4090
+
4091
+ Special case: the Earth
4092
+
4093
+ The Earth is another special case. Instead of the motion of
4094
+ the Earth herself, the heliocentric motion of the Earth-
4095
+ Moon-Barycenter (EMB) is used to determine the
4096
+ osculating perihelion.
4097
+ There is no node of the earth orbit itself. However, there is
4098
+ an axis around which the earth's orbital plane slowly rotates
4099
+ due to planetary precession. The position points of this axis
4100
+ are not calculated by the Swiss Ephemeris.
4101
+
4102
+ Special case: the Sun
4103
+
4104
+ In addition to the Earth (EMB) apsides, the function
4105
+ computes so-to-say "apsides" of the sun, i.e. points on the
4106
+ orbit of the Sun where it is closest to and where it is farthest
4107
+ from the Earth. These points form an opposition and are
4108
+ used by some astrologers, e.g. by the Dutch astrologer
4109
+ George Bode or the Swiss astrologer Liduina Schmed. The
4110
+ perigee, located at about 13 Capricorn, is called the
4111
+ "Black Sun", the other one, in Cancer, the "Diamond".
4112
+ So, for a complete set of apsides, one ought to calculate
4113
+ them for the Sun and the Earth and all other planets.
4114
+
4115
+ The modes of the Swiss Ephemeris function
4116
+ swe_nod_aps()
4117
+
4118
+ The function swe_nod_aps() can be run in the following
4119
+ modes:
4120
+ 1) Mean positions are given for nodes and apsides of Sun,
4121
+ Moon, Earth, and the up to Neptune. Osculating
4122
+ positions are given with Pluto and all asteroids. This is
4123
+ the default mode.
4124
+ 2) Osculating positions are returned for nodes and apsides
4125
+ of all planets.
4126
+ 3) Same as 2), but for planets and asteroids beyond
4127
+ Jupiter, a barycentric ellipse is used.
4128
+ 4) Same as 1), but for Pluto and asteroids beyond Jupiter,
4129
+ a barycentric ellipse is used.
4130
+
4131
+ In all of these modes, the second focal point of the ellipse
4132
+ can be computed instead of the aphelion.
4133
+ Like the planetary function swe_calc(), swe_nod_aps() is
4134
+ able to return geocentric, topocentric, heliocentric, or
4135
+ barycentric position.
4136
+ *
4137
+ * tjd_ut julian day, ephemeris time
4138
+ * ipl planet number
4139
+ * iflag as usual, SEFLG_HELCTR, etc.
4140
+ * xnasc an array of 6 doubles: ascending node
4141
+ * xndsc an array of 6 doubles: ascending node
4142
+ * xperi an array of 6 doubles: perihelion
4143
+ * xaphe an array of 6 doubles: aphelion
4144
+ * method see below
4145
+ * serr error message
4146
+ *
4147
+ * method can have the following values:
4148
+ * - 0 or SE_NODBIT_MEAN. MEAN positions are given for
4149
+ * nodes and apsides of Sun, Moon, Earth, and the
4150
+ * planets up to Neptune. Osculating positions are
4151
+ * given with Pluto and all asteroids.
4152
+ * - SE_NODBIT_OSCU. Osculating positions are given
4153
+ * for all nodes and apsides.
4154
+ * - SE_NODBIT_OSCU_BAR. Osculating nodes and apsides
4155
+ * are computed from barycentric ellipses, for planets
4156
+ * beyond Jupiter, but from heliocentric ones for
4157
+ * ones for Jupiter and inner planets.
4158
+ * - SE_NODBIT_MEAN and SE_NODBIT_OSCU_BAR can be combined.
4159
+ * The program behaves the same way as with simple
4160
+ * SE_NODBIT_MEAN, but uses barycentric ellipses for
4161
+ * planets beyond Neptune and asteroids beyond Jupiter.
4162
+ * - SE_NODBIT_FOCAL can be combined with any of the other
4163
+ * bits. The second focal points of the ellipses will
4164
+ * be returned instead of the aphelia.
4165
+ */
4166
+ /* mean elements for Mercury - Neptune from VSOP87 (mean equinox of date) */
4167
+ static double el_node[8][4] =
4168
+ {{ 48.330893, 1.1861890, 0.00017587, 0.000000211,}, /* Mercury */
4169
+ { 76.679920, 0.9011190, 0.00040665, -0.000000080,}, /* Venus */
4170
+ { 0 , 0 , 0 , 0 ,}, /* Earth */
4171
+ { 49.558093, 0.7720923, 0.00001605, 0.000002325,}, /* Mars */
4172
+ {100.464441, 1.0209550, 0.00040117, 0.000000569,}, /* Jupiter */
4173
+ {113.665524, 0.8770970, -0.00012067, -0.000002380,}, /* Saturn */
4174
+ { 74.005947, 0.5211258, 0.00133982, 0.000018516,}, /* Uranus */
4175
+ {131.784057, 1.1022057, 0.00026006, -0.000000636,}, /* Neptune */
4176
+ };
4177
+ static double el_peri[8][4] =
4178
+ {{ 77.456119, 1.5564775, 0.00029589, 0.000000056,}, /* Mercury */
4179
+ {131.563707, 1.4022188, -0.00107337, -0.000005315,}, /* Venus */
4180
+ {102.937348, 1.7195269, 0.00045962, 0.000000499,}, /* Earth */
4181
+ {336.060234, 1.8410331, 0.00013515, 0.000000318,}, /* Mars */
4182
+ { 14.331309, 1.6126668, 0.00103127, -0.000004569,}, /* Jupiter */
4183
+ { 93.056787, 1.9637694, 0.00083757, 0.000004899,}, /* Saturn */
4184
+ {173.005159, 1.4863784, 0.00021450, 0.000000433,}, /* Uranus */
4185
+ { 48.123691, 1.4262677, 0.00037918, -0.000000003,}, /* Neptune */
4186
+ };
4187
+ static double el_incl[8][4] =
4188
+ {{ 7.004986, 0.0018215, -0.00001809, 0.000000053,}, /* Mercury */
4189
+ { 3.394662, 0.0010037, -0.00000088, -0.000000007,}, /* Venus */
4190
+ { 0, 0, 0, 0 ,}, /* Earth */
4191
+ { 1.849726, -0.0006010, 0.00001276, -0.000000006,}, /* Mars */
4192
+ { 1.303270, -0.0054966, 0.00000465, -0.000000004,}, /* Jupiter */
4193
+ { 2.488878, -0.0037363, -0.00001516, 0.000000089,}, /* Saturn */
4194
+ { 0.773196, 0.0007744, 0.00003749, -0.000000092,}, /* Uranus */
4195
+ { 1.769952, -0.0093082, -0.00000708, 0.000000028,}, /* Neptune */
4196
+ };
4197
+ static double el_ecce[8][4] =
4198
+ {{ 0.20563175, 0.000020406, -0.0000000284, -0.00000000017,}, /* Mercury */
4199
+ { 0.00677188, -0.000047766, 0.0000000975, 0.00000000044,}, /* Venus */
4200
+ { 0.01670862, -0.000042037, -0.0000001236, 0.00000000004,}, /* Earth */
4201
+ { 0.09340062, 0.000090483, -0.0000000806, -0.00000000035,}, /* Mars */
4202
+ { 0.04849485, 0.000163244, -0.0000004719, -0.00000000197,}, /* Jupiter */
4203
+ { 0.05550862, -0.000346818, -0.0000006456, 0.00000000338,}, /* Saturn */
4204
+ { 0.04629590, -0.000027337, 0.0000000790, 0.00000000025,}, /* Uranus */
4205
+ { 0.00898809, 0.000006408, -0.0000000008, -0.00000000005,}, /* Neptune */
4206
+ };
4207
+ static double el_sema[8][4] =
4208
+ {{ 0.387098310, 0.0, 0.0, 0.0,}, /* Mercury */
4209
+ { 0.723329820, 0.0, 0.0, 0.0,}, /* Venus */
4210
+ { 1.000001018, 0.0, 0.0, 0.0,}, /* Earth */
4211
+ { 1.523679342, 0.0, 0.0, 0.0,}, /* Mars */
4212
+ { 5.202603191, 0.0000001913, 0.0, 0.0,}, /* Jupiter */
4213
+ { 9.554909596, 0.0000021389, 0.0, 0.0,}, /* Saturn */
4214
+ { 19.218446062, -0.0000000372, 0.00000000098, 0.0,}, /* Uranus */
4215
+ { 30.110386869, -0.0000001663, 0.00000000069, 0.0,}, /* Neptune */
4216
+ };
4217
+ /* Ratios of mass of Sun to masses of the planets */
4218
+ static double plmass[9] = {
4219
+ 6023600, /* Mercury */
4220
+ 408523.5, /* Venus */
4221
+ 328900.5, /* Earth and Moon */
4222
+ 3098710, /* Mars */
4223
+ 1047.350, /* Jupiter */
4224
+ 3498.0, /* Saturn */
4225
+ 22960, /* Uranus */
4226
+ 19314, /* Neptune */
4227
+ 130000000, /* Pluto */
4228
+ };
4229
+ static int ipl_to_elem[15] = {2, 0, 0, 1, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 2,};
4230
+ int32 FAR PASCAL_CONV swe_nod_aps(double tjd_et, int32 ipl, int32 iflag,
4231
+ int32 method,
4232
+ double *xnasc, double *xndsc,
4233
+ double *xperi, double *xaphe,
4234
+ char *serr)
4235
+ {
4236
+ int ij, i, j;
4237
+ int32 iplx;
4238
+ int32 ipli;
4239
+ int istart, iend;
4240
+ int32 iflJ2000;
4241
+ double plm;
4242
+ double t = (tjd_et - J2000) / 36525, dt;
4243
+ double x[6], xx[24], *xp, xobs[6], x2000[6];
4244
+ double xpos[3][6], xnorm[6];
4245
+ double xposm[6];
4246
+ double xn[3][6], xs[3][6];
4247
+ double xq[3][6], xa[3][6];
4248
+ double xobs2[6], x2[6];
4249
+ double *xna, *xnd, *xpe, *xap;
4250
+ double incl, sema, ecce, parg, ea, vincl, vsema, vecce, pargx, eax;
4251
+ struct plan_data *pedp = &swed.pldat[SEI_EARTH];
4252
+ struct plan_data *psbdp = &swed.pldat[SEI_SUNBARY];
4253
+ struct plan_data pldat;
4254
+ double *xsun = psbdp->x;
4255
+ double *xear = pedp->x;
4256
+ double *ep;
4257
+ double Gmsm, dzmin;
4258
+ double rxy, rxyz, fac, sgn;
4259
+ double sinnode, cosnode, sinincl, cosincl, sinu, cosu, sinE, cosE, cosE2;
4260
+ double uu, ny, ny2, c2, v2, pp, ro, ro2, rn, rn2;
4261
+ struct epsilon *oe;
4262
+ AS_BOOL is_true_nodaps = FALSE;
4263
+ AS_BOOL do_aberr = !(iflag & (SEFLG_TRUEPOS | SEFLG_NOABERR));
4264
+ AS_BOOL do_defl = !(iflag & SEFLG_TRUEPOS) && !(iflag & SEFLG_NOGDEFL);
4265
+ AS_BOOL do_focal_point = method & SE_NODBIT_FOPOINT;
4266
+ AS_BOOL ellipse_is_bary = FALSE;
4267
+ int32 iflg0;
4268
+ /* function calls for Pluto with asteroid number 134340
4269
+ * are treated as calls for Pluto as main body SE_PLUTO */
4270
+ if (ipl == SE_AST_OFFSET + 134340)
4271
+ ipl = SE_PLUTO;
4272
+ xna = xx;
4273
+ xnd = xx+6;
4274
+ xpe = xx+12;
4275
+ xap = xx+18;
4276
+ xpos[0][0] = 0; /* to shut up mint */
4277
+ /* to get control over the save area: */
4278
+ swi_force_app_pos_etc();
4279
+ method %= SE_NODBIT_FOPOINT;
4280
+ ipli = ipl;
4281
+ if (ipl == SE_SUN)
4282
+ ipli = SE_EARTH;
4283
+ if (ipl == SE_MOON) {
4284
+ do_defl = FALSE;
4285
+ if (!(iflag & SEFLG_HELCTR))
4286
+ do_aberr = FALSE;
4287
+ }
4288
+ iflg0 = (iflag & (SEFLG_EPHMASK|SEFLG_NONUT)) | SEFLG_SPEED | SEFLG_TRUEPOS;
4289
+ if (ipli != SE_MOON)
4290
+ iflg0 |= SEFLG_HELCTR;
4291
+ if (ipl == SE_MEAN_NODE || ipl == SE_TRUE_NODE ||
4292
+ ipl == SE_MEAN_APOG || ipl == SE_OSCU_APOG ||
4293
+ ipl < 0 ||
4294
+ (ipl >= SE_NPLANETS && ipl <= SE_AST_OFFSET)) {
4295
+ /*(ipl >= SE_FICT_OFFSET && ipl - SE_FICT_OFFSET < SE_NFICT_ELEM)) */
4296
+ if (serr != NULL)
4297
+ sprintf(serr, "nodes/apsides for planet %5.0f are not implemented", (double) ipl);
4298
+ if (xnasc != NULL)
4299
+ for (i = 0; i <= 5; i++)
4300
+ xnasc[i] = 0;
4301
+ if (xndsc != NULL)
4302
+ for (i = 0; i <= 5; i++)
4303
+ xndsc[i] = 0;
4304
+ if (xaphe != NULL)
4305
+ for (i = 0; i <= 5; i++)
4306
+ xaphe[i] = 0;
4307
+ if (xperi != NULL)
4308
+ for (i = 0; i <= 5; i++)
4309
+ xperi[i] = 0;
4310
+ return ERR;
4311
+ }
4312
+ for (i = 0; i < 24; i++)
4313
+ xx[i] = 0;
4314
+ /***************************************
4315
+ * mean nodes and apsides
4316
+ ***************************************/
4317
+ /* mean points only for Sun - Neptune */
4318
+ if ((method == 0 || (method & SE_NODBIT_MEAN)) &&
4319
+ ((ipl >= SE_SUN && ipl <= SE_NEPTUNE) || ipl == SE_EARTH)) {
4320
+ if (ipl == SE_MOON) {
4321
+ swi_mean_lunar_elements(tjd_et, &xna[0], &xna[3], &xpe[0], &xpe[3]);
4322
+ incl = MOON_MEAN_INCL;
4323
+ vincl = 0;
4324
+ ecce = MOON_MEAN_ECC;
4325
+ vecce = 0;
4326
+ sema = MOON_MEAN_DIST / AUNIT;
4327
+ vsema = 0;
4328
+ } else {
4329
+ iplx = ipl_to_elem[ipl];
4330
+ ep = el_incl[iplx];
4331
+ incl = ep[0] + ep[1] * t + ep[2] * t * t + ep[3] * t * t * t;
4332
+ vincl = ep[1] / 36525;
4333
+ ep = el_sema[iplx];
4334
+ sema = ep[0] + ep[1] * t + ep[2] * t * t + ep[3] * t * t * t;
4335
+ vsema = ep[1] / 36525;
4336
+ ep = el_ecce[iplx];
4337
+ ecce = ep[0] + ep[1] * t + ep[2] * t * t + ep[3] * t * t * t;
4338
+ vecce = ep[1] / 36525;
4339
+ ep = el_node[iplx];
4340
+ /* ascending node */
4341
+ xna[0] = ep[0] + ep[1] * t + ep[2] * t * t + ep[3] * t * t * t;
4342
+ xna[3] = ep[1] / 36525;
4343
+ /* perihelion */
4344
+ ep = el_peri[iplx];
4345
+ xpe[0] = ep[0] + ep[1] * t + ep[2] * t * t + ep[3] * t * t * t;
4346
+ xpe[3] = ep[1] / 36525;
4347
+ }
4348
+ /* descending node */
4349
+ xnd[0] = swe_degnorm(xna[0] + 180);
4350
+ xnd[3] = xna[3];
4351
+ /* angular distance of perihelion from node */
4352
+ parg = xpe[0] = swe_degnorm(xpe[0] - xna[0]);
4353
+ pargx = xpe[3] = swe_degnorm(xpe[0] + xpe[3] - xna[3]);
4354
+ /* transform from orbital plane to mean ecliptic of date */
4355
+ swe_cotrans(xpe, xpe, -incl);
4356
+ /* xpe+3 is aux. position, not speed!!! */
4357
+ swe_cotrans(xpe+3, xpe+3, -incl-vincl);
4358
+ /* add node again */
4359
+ xpe[0] = swe_degnorm(xpe[0] + xna[0]);
4360
+ /* xpe+3 is aux. position, not speed!!! */
4361
+ xpe[3] = swe_degnorm(xpe[3] + xna[0] + xna[3]);
4362
+ /* speed */
4363
+ xpe[3] = swe_degnorm(xpe[3] - xpe[0]);
4364
+ /* heliocentric distance of perihelion and aphelion */
4365
+ xpe[2] = sema * (1 - ecce);
4366
+ xpe[5] = (sema + vsema) * (1 - ecce - vecce) - xpe[2];
4367
+ /* aphelion */
4368
+ xap[0] = swe_degnorm(xpe[0] + 180);
4369
+ xap[1] = -xpe[1];
4370
+ xap[3] = xpe[3];
4371
+ xap[4] = -xpe[4];
4372
+ if (do_focal_point) {
4373
+ xap[2] = sema * ecce * 2;
4374
+ xap[5] = (sema + vsema) * (ecce + vecce) * 2 - xap[2];
4375
+ } else {
4376
+ xap[2] = sema * (1 + ecce);
4377
+ xap[5] = (sema + vsema) * (1 + ecce + vecce) - xap[2];
4378
+ }
4379
+ /* heliocentric distance of nodes */
4380
+ ea = atan(tan(-parg * DEGTORAD / 2) * sqrt((1-ecce)/(1+ecce))) * 2;
4381
+ eax = atan(tan(-pargx * DEGTORAD / 2) * sqrt((1-ecce-vecce)/(1+ecce+vecce))) * 2;
4382
+ xna[2] = sema * (cos(ea) - ecce) / cos(parg * DEGTORAD);
4383
+ xna[5] = (sema+vsema) * (cos(eax) - ecce - vecce) / cos(pargx * DEGTORAD);
4384
+ xna[5] -= xna[2];
4385
+ ea = atan(tan((180 - parg) * DEGTORAD / 2) * sqrt((1-ecce)/(1+ecce))) * 2;
4386
+ eax = atan(tan((180 - pargx) * DEGTORAD / 2) * sqrt((1-ecce-vecce)/(1+ecce+vecce))) * 2;
4387
+ xnd[2] = sema * (cos(ea) - ecce) / cos((180 - parg) * DEGTORAD);
4388
+ xnd[5] = (sema+vsema) * (cos(eax) - ecce - vecce) / cos((180 - pargx) * DEGTORAD);
4389
+ xnd[5] -= xnd[2];
4390
+ /* no light-time correction because speed is extremely small */
4391
+ for (i = 0, xp = xx; i < 4; i++, xp += 6) {
4392
+ /* to cartesian coordinates */
4393
+ xp[0] *= DEGTORAD;
4394
+ xp[1] *= DEGTORAD;
4395
+ xp[3] *= DEGTORAD;
4396
+ xp[4] *= DEGTORAD;
4397
+ swi_polcart_sp(xp, xp);
4398
+ }
4399
+ /***************************************
4400
+ * "true" or osculating nodes and apsides
4401
+ ***************************************/
4402
+ } else {
4403
+ /* first, we need a heliocentric distance of the planet */
4404
+ if (swe_calc(tjd_et, ipli, iflg0, x, serr) == ERR)
4405
+ return ERR;
4406
+ iflJ2000 = (iflag & SEFLG_EPHMASK)|SEFLG_J2000|SEFLG_EQUATORIAL|SEFLG_XYZ|SEFLG_TRUEPOS|SEFLG_NONUT|SEFLG_SPEED;
4407
+ ellipse_is_bary = FALSE;
4408
+ if (ipli != SE_MOON) {
4409
+ if ((method & SE_NODBIT_OSCU_BAR) && x[2] > 6) {
4410
+ iflJ2000 |= SEFLG_BARYCTR; /* only planets beyond Jupiter */
4411
+ ellipse_is_bary = TRUE;
4412
+ } else {
4413
+ iflJ2000 |= SEFLG_HELCTR;
4414
+ }
4415
+ }
4416
+ /* we need three positions and three speeds
4417
+ * for three nodes/apsides. from the three node positions,
4418
+ * the speed of the node will be computed. */
4419
+ if (ipli == SE_MOON) {
4420
+ dt = NODE_CALC_INTV;
4421
+ dzmin = 1e-15;
4422
+ Gmsm = GEOGCONST * (1 + 1 / EARTH_MOON_MRAT) /AUNIT/AUNIT/AUNIT*86400.0*86400.0;
4423
+ } else {
4424
+ if ((ipli >= SE_MERCURY && ipli <= SE_PLUTO) || ipli == SE_EARTH)
4425
+ plm = 1 / plmass[ipl_to_elem[ipl]];
4426
+ else
4427
+ plm = 0;
4428
+ dt = NODE_CALC_INTV * 10 * x[2];
4429
+ dzmin = 1e-15 * dt / NODE_CALC_INTV;
4430
+ Gmsm = HELGRAVCONST * (1 + plm) /AUNIT/AUNIT/AUNIT*86400.0*86400.0;
4431
+ }
4432
+ if (iflag & SEFLG_SPEED) {
4433
+ istart = 0;
4434
+ iend = 2;
4435
+ } else {
4436
+ istart = iend = 0;
4437
+ dt = 0;
4438
+ }
4439
+ for (i = istart, t = tjd_et - dt; i <= iend; i++, t += dt) {
4440
+ if (istart == iend)
4441
+ t = tjd_et;
4442
+ if (swe_calc(t, ipli, iflJ2000, xpos[i], serr) == ERR)
4443
+ return ERR;
4444
+ /* the EMB is used instead of the earth */
4445
+ if (ipli == SE_EARTH) {
4446
+ if (swe_calc(t, SE_MOON, iflJ2000 & ~(SEFLG_BARYCTR|SEFLG_HELCTR), xposm, serr) == ERR)
4447
+ return ERR;
4448
+ for (j = 0; j <= 2; j++)
4449
+ xpos[i][j] += xposm[j] / (EARTH_MOON_MRAT + 1.0);
4450
+ }
4451
+ swi_plan_for_osc_elem(iflg0, t, xpos[i]);
4452
+ }
4453
+ for (i = istart; i <= iend; i++) {
4454
+ if (fabs(xpos[i][5]) < dzmin)
4455
+ xpos[i][5] = dzmin;
4456
+ fac = xpos[i][2] / xpos[i][5];
4457
+ sgn = xpos[i][5] / fabs(xpos[i][5]);
4458
+ for (j = 0; j <= 2; j++) {
4459
+ xn[i][j] = (xpos[i][j] - fac * xpos[i][j+3]) * sgn;
4460
+ xs[i][j] = -xn[i][j];
4461
+ }
4462
+ }
4463
+ for (i = istart; i <= iend; i++) {
4464
+ /* node */
4465
+ rxy = sqrt(xn[i][0] * xn[i][0] + xn[i][1] * xn[i][1]);
4466
+ cosnode = xn[i][0] / rxy;
4467
+ sinnode = xn[i][1] / rxy;
4468
+ /* inclination */
4469
+ swi_cross_prod(xpos[i], xpos[i]+3, xnorm);
4470
+ rxy = xnorm[0] * xnorm[0] + xnorm[1] * xnorm[1];
4471
+ c2 = (rxy + xnorm[2] * xnorm[2]);
4472
+ rxyz = sqrt(c2);
4473
+ rxy = sqrt(rxy);
4474
+ sinincl = rxy / rxyz;
4475
+ cosincl = sqrt(1 - sinincl * sinincl);
4476
+ if (xnorm[2] < 0) cosincl = -cosincl; /* retrograde asteroid, e.g. 20461 Dioretsa */
4477
+ /* argument of latitude */
4478
+ cosu = xpos[i][0] * cosnode + xpos[i][1] * sinnode;
4479
+ sinu = xpos[i][2] / sinincl;
4480
+ uu = atan2(sinu, cosu);
4481
+ /* semi-axis */
4482
+ rxyz = sqrt(square_sum(xpos[i]));
4483
+ v2 = square_sum((xpos[i]+3));
4484
+ sema = 1 / (2 / rxyz - v2 / Gmsm);
4485
+ /* eccentricity */
4486
+ pp = c2 / Gmsm;
4487
+ ecce = sqrt(1 - pp / sema);
4488
+ /* eccentric anomaly */
4489
+ cosE = 1 / ecce * (1 - rxyz / sema);
4490
+ sinE = 1 / ecce / sqrt(sema * Gmsm) * dot_prod(xpos[i], (xpos[i]+3));
4491
+ /* true anomaly */
4492
+ ny = 2 * atan(sqrt((1+ecce)/(1-ecce)) * sinE / (1 + cosE));
4493
+ /* distance of perihelion from ascending node */
4494
+ xq[i][0] = swi_mod2PI(uu - ny);
4495
+ xq[i][1] = 0; /* latitude */
4496
+ xq[i][2] = sema * (1 - ecce); /* distance of perihelion */
4497
+ /* transformation to ecliptic coordinates */
4498
+ swi_polcart(xq[i], xq[i]);
4499
+ swi_coortrf2(xq[i], xq[i], -sinincl, cosincl);
4500
+ swi_cartpol(xq[i], xq[i]);
4501
+ /* adding node, we get perihelion in ecl. coord. */
4502
+ xq[i][0] += atan2(sinnode, cosnode);
4503
+ xa[i][0] = swi_mod2PI(xq[i][0] + PI);
4504
+ xa[i][1] = -xq[i][1];
4505
+ if (do_focal_point) {
4506
+ xa[i][2] = sema * ecce * 2; /* distance of aphelion */
4507
+ } else {
4508
+ xa[i][2] = sema * (1 + ecce); /* distance of aphelion */
4509
+ }
4510
+ swi_polcart(xq[i], xq[i]);
4511
+ swi_polcart(xa[i], xa[i]);
4512
+ /* new distance of node from orbital ellipse:
4513
+ * true anomaly of node: */
4514
+ ny = swi_mod2PI(ny - uu);
4515
+ ny2 = swi_mod2PI(ny + PI);
4516
+ /* eccentric anomaly */
4517
+ cosE = cos(2 * atan(tan(ny / 2) / sqrt((1+ecce) / (1-ecce))));
4518
+ cosE2 = cos(2 * atan(tan(ny2 / 2) / sqrt((1+ecce) / (1-ecce))));
4519
+ /* new distance */
4520
+ rn = sema * (1 - ecce * cosE);
4521
+ rn2 = sema * (1 - ecce * cosE2);
4522
+ /* old node distance */
4523
+ ro = sqrt(square_sum(xn[i]));
4524
+ ro2 = sqrt(square_sum(xs[i]));
4525
+ /* correct length of position vector */
4526
+ for (j = 0; j <= 2; j++) {
4527
+ xn[i][j] *= rn / ro;
4528
+ xs[i][j] *= rn2 / ro2;
4529
+ }
4530
+ }
4531
+ for (i = 0; i <= 2; i++) {
4532
+ if (iflag & SEFLG_SPEED) {
4533
+ xpe[i] = xq[1][i];
4534
+ xpe[i+3] = (xq[2][i] - xq[0][i]) / dt / 2;
4535
+ xap[i] = xa[1][i];
4536
+ xap[i+3] = (xa[2][i] - xa[0][i]) / dt / 2;
4537
+ xna[i] = xn[1][i];
4538
+ xna[i+3] = (xn[2][i] - xn[0][i]) / dt / 2;
4539
+ xnd[i] = xs[1][i];
4540
+ xnd[i+3] = (xs[2][i] - xs[0][i]) / dt / 2;
4541
+ } else {
4542
+ xpe[i] = xq[0][i];
4543
+ xpe[i+3] = 0;
4544
+ xap[i] = xa[0][i];
4545
+ xap[i+3] = 0;
4546
+ xna[i] = xn[0][i];
4547
+ xna[i+3] = 0;
4548
+ xnd[i] = xs[0][i];
4549
+ xnd[i+3] = 0;
4550
+ }
4551
+ }
4552
+ is_true_nodaps = TRUE;
4553
+ }
4554
+ /* to set the variables required in the save area,
4555
+ * i.e. ecliptic, nutation, barycentric sun, earth
4556
+ * we compute the planet */
4557
+ if (ipli == SE_MOON && (iflag & (SEFLG_HELCTR | SEFLG_BARYCTR))) {
4558
+ swi_force_app_pos_etc();
4559
+ if (swe_calc(tjd_et, SE_SUN, iflg0, x, serr) == ERR)
4560
+ return ERR;
4561
+ } else {
4562
+ if (swe_calc(tjd_et, ipli, iflg0 | (iflag & SEFLG_TOPOCTR), x, serr) == ERR)
4563
+ return ERR;
4564
+ }
4565
+ /***********************
4566
+ * position of observer
4567
+ ***********************/
4568
+ if (iflag & SEFLG_TOPOCTR) {
4569
+ /* geocentric position of observer */
4570
+ if (swi_get_observer(tjd_et, iflag, FALSE, xobs, serr) != OK)
4571
+ return ERR;
4572
+ /*for (i = 0; i <= 5; i++)
4573
+ xobs[i] = swed.topd.xobs[i];*/
4574
+ } else {
4575
+ for (i = 0; i <= 5; i++)
4576
+ xobs[i] = 0;
4577
+ }
4578
+ if (iflag & (SEFLG_HELCTR | SEFLG_BARYCTR)) {
4579
+ if ((iflag & SEFLG_HELCTR) && !(iflag & SEFLG_MOSEPH))
4580
+ for (i = 0; i <= 5; i++)
4581
+ xobs[i] = xsun[i];
4582
+ } else if (ipl == SE_SUN && !(iflag & SEFLG_MOSEPH)) {
4583
+ for (i = 0; i <= 5; i++)
4584
+ xobs[i] = xsun[i];
4585
+ } else {
4586
+ /* barycentric position of observer */
4587
+ for (i = 0; i <= 5; i++)
4588
+ xobs[i] += xear[i];
4589
+ }
4590
+ /* ecliptic obliqity */
4591
+ if (iflag & SEFLG_J2000)
4592
+ oe = &swed.oec2000;
4593
+ else
4594
+ oe = &swed.oec;
4595
+ /*************************************************
4596
+ * conversions shared by mean and osculating points
4597
+ *************************************************/
4598
+ for (ij = 0, xp = xx; ij < 4; ij++, xp += 6) {
4599
+ /* no nodes for earth */
4600
+ if (ipli == SE_EARTH && ij <= 1) {
4601
+ for (i = 0; i <= 5; i++)
4602
+ xp[i] = 0;
4603
+ continue;
4604
+ }
4605
+ /*********************
4606
+ * to equator
4607
+ *********************/
4608
+ if (is_true_nodaps && !(iflag & SEFLG_NONUT)) {
4609
+ swi_coortrf2(xp, xp, -swed.nut.snut, swed.nut.cnut);
4610
+ if (iflag & SEFLG_SPEED)
4611
+ swi_coortrf2(xp+3, xp+3, -swed.nut.snut, swed.nut.cnut);
4612
+ }
4613
+ swi_coortrf2(xp, xp, -oe->seps, oe->ceps);
4614
+ swi_coortrf2(xp+3, xp+3, -oe->seps, oe->ceps);
4615
+ if (is_true_nodaps) {
4616
+ /****************************
4617
+ * to mean ecliptic of date
4618
+ ****************************/
4619
+ if (!(iflag & SEFLG_NONUT))
4620
+ swi_nutate(xp, iflag, TRUE);
4621
+ }
4622
+ /*********************
4623
+ * to J2000
4624
+ *********************/
4625
+ swi_precess(xp, tjd_et, J_TO_J2000);
4626
+ if (iflag & SEFLG_SPEED)
4627
+ swi_precess_speed(xp, tjd_et, J_TO_J2000);
4628
+ /*********************
4629
+ * to barycenter
4630
+ *********************/
4631
+ if (ipli == SE_MOON) {
4632
+ for (i = 0; i <= 5; i++)
4633
+ xp[i] += xear[i];
4634
+ } else {
4635
+ if (!(iflag & SEFLG_MOSEPH) && !ellipse_is_bary)
4636
+ for (j = 0; j <= 5; j++)
4637
+ xp[j] += xsun[j];
4638
+ }
4639
+ /*********************
4640
+ * to correct center
4641
+ *********************/
4642
+ for (j = 0; j <= 5; j++)
4643
+ xp[j] -= xobs[j];
4644
+ /* geocentric perigee/apogee of sun */
4645
+ if (ipl == SE_SUN && !(iflag & (SEFLG_HELCTR | SEFLG_BARYCTR)))
4646
+ for (j = 0; j <= 5; j++)
4647
+ xp[j] = -xp[j];
4648
+ /*********************
4649
+ * light deflection
4650
+ *********************/
4651
+ dt = sqrt(square_sum(xp)) * AUNIT / CLIGHT / 86400.0;
4652
+ if (do_defl)
4653
+ swi_deflect_light(xp, dt, iflag);
4654
+ /*********************
4655
+ * aberration
4656
+ *********************/
4657
+ if (do_aberr) {
4658
+ swi_aberr_light(xp, xobs, iflag);
4659
+ /*
4660
+ * Apparent speed is also influenced by
4661
+ * the difference of speed of the earth between t and t-dt.
4662
+ * Neglecting this would result in an error of several 0.1"
4663
+ */
4664
+ if (iflag & SEFLG_SPEED) {
4665
+ /* get barycentric sun and earth for t-dt into save area */
4666
+ if (swe_calc(tjd_et - dt, ipli, iflg0 | (iflag & SEFLG_TOPOCTR), x2, serr) == ERR)
4667
+ return ERR;
4668
+ if (iflag & SEFLG_TOPOCTR) {
4669
+ /* geocentric position of observer */
4670
+ /* if (swi_get_observer(tjd_et - dt, iflag, FALSE, xobs, serr) != OK)
4671
+ return ERR;*/
4672
+ for (i = 0; i <= 5; i++)
4673
+ xobs2[i] = swed.topd.xobs[i];
4674
+ } else {
4675
+ for (i = 0; i <= 5; i++)
4676
+ xobs2[i] = 0;
4677
+ }
4678
+ if (iflag & (SEFLG_HELCTR | SEFLG_BARYCTR)) {
4679
+ if ((iflag & SEFLG_HELCTR) && !(iflag & SEFLG_MOSEPH))
4680
+ for (i = 0; i <= 5; i++)
4681
+ xobs2[i] = xsun[i];
4682
+ } else if (ipl == SE_SUN && !(iflag & SEFLG_MOSEPH)) {
4683
+ for (i = 0; i <= 5; i++)
4684
+ xobs2[i] = xsun[i];
4685
+ } else {
4686
+ /* barycentric position of observer */
4687
+ for (i = 0; i <= 5; i++)
4688
+ xobs2[i] += xear[i];
4689
+ }
4690
+ for (i = 3; i <= 5; i++)
4691
+ xp[i] += xobs[i] - xobs2[i];
4692
+ /* The above call of swe_calc() has destroyed the
4693
+ * parts of the save area
4694
+ * (i.e. bary sun, earth nutation matrix!).
4695
+ * to restore it:
4696
+ */
4697
+ if (swe_calc(tjd_et, SE_SUN, iflg0 | (iflag & SEFLG_TOPOCTR), x2, serr) == ERR)
4698
+ return ERR;
4699
+ }
4700
+ }
4701
+ /*********************
4702
+ * precession
4703
+ *********************/
4704
+ /* save J2000 coordinates; required for sidereal positions */
4705
+ for (j = 0; j <= 5; j++)
4706
+ x2000[j] = xp[j];
4707
+ if (!(iflag & SEFLG_J2000)) {
4708
+ swi_precess(xp, tjd_et, J2000_TO_J);
4709
+ if (iflag & SEFLG_SPEED)
4710
+ swi_precess_speed(xp, tjd_et, J2000_TO_J);
4711
+ }
4712
+ /*********************
4713
+ * nutation
4714
+ *********************/
4715
+ if (!(iflag & SEFLG_NONUT))
4716
+ swi_nutate(xp, iflag, FALSE);
4717
+ /* now we have equatorial cartesian coordinates; keep them */
4718
+ for (j = 0; j <= 5; j++)
4719
+ pldat.xreturn[18+j] = xp[j];
4720
+ /************************************************
4721
+ * transformation to ecliptic. *
4722
+ * with sidereal calc. this will be overwritten *
4723
+ * afterwards. *
4724
+ ************************************************/
4725
+ swi_coortrf2(xp, xp, oe->seps, oe->ceps);
4726
+ if (iflag & SEFLG_SPEED)
4727
+ swi_coortrf2(xp+3, xp+3, oe->seps, oe->ceps);
4728
+ if (!(iflag & SEFLG_NONUT)) {
4729
+ swi_coortrf2(xp, xp, swed.nut.snut, swed.nut.cnut);
4730
+ if (iflag & SEFLG_SPEED)
4731
+ swi_coortrf2(xp+3, xp+3, swed.nut.snut, swed.nut.cnut);
4732
+ }
4733
+ /* now we have ecliptic cartesian coordinates */
4734
+ for (j = 0; j <= 5; j++)
4735
+ pldat.xreturn[6+j] = xp[j];
4736
+ /************************************
4737
+ * sidereal positions *
4738
+ ************************************/
4739
+ if (iflag & SEFLG_SIDEREAL) {
4740
+ /* project onto ecliptic t0 */
4741
+ if (swed.sidd.sid_mode & SE_SIDBIT_ECL_T0) {
4742
+ if (swi_trop_ra2sid_lon(x2000, pldat.xreturn+6, pldat.xreturn+18, iflag, serr) != OK)
4743
+ return ERR;
4744
+ /* project onto solar system equator */
4745
+ } else if (swed.sidd.sid_mode & SE_SIDBIT_SSY_PLANE) {
4746
+ if (swi_trop_ra2sid_lon_sosy(x2000, pldat.xreturn+6, pldat.xreturn+18, iflag, serr) != OK)
4747
+ return ERR;
4748
+ } else {
4749
+ /* traditional algorithm */
4750
+ swi_cartpol_sp(pldat.xreturn+6, pldat.xreturn);
4751
+ pldat.xreturn[0] -= swe_get_ayanamsa(tjd_et) * DEGTORAD;
4752
+ swi_polcart_sp(pldat.xreturn, pldat.xreturn+6);
4753
+ }
4754
+ }
4755
+ if ((iflag & SEFLG_XYZ) && (iflag & SEFLG_EQUATORIAL)) {
4756
+ for (j = 0; j <= 5; j++)
4757
+ xp[j] = pldat.xreturn[18+j];
4758
+ continue;
4759
+ }
4760
+ if (iflag & SEFLG_XYZ) {
4761
+ for (j = 0; j <= 5; j++)
4762
+ xp[j] = pldat.xreturn[6+j];
4763
+ continue;
4764
+ }
4765
+ /************************************************
4766
+ * transformation to polar coordinates *
4767
+ ************************************************/
4768
+ swi_cartpol_sp(pldat.xreturn+18, pldat.xreturn+12);
4769
+ swi_cartpol_sp(pldat.xreturn+6, pldat.xreturn);
4770
+ /**********************
4771
+ * radians to degrees *
4772
+ **********************/
4773
+ for (j = 0; j < 2; j++) {
4774
+ pldat.xreturn[j] *= RADTODEG; /* ecliptic */
4775
+ pldat.xreturn[j+3] *= RADTODEG;
4776
+ pldat.xreturn[j+12] *= RADTODEG; /* equator */
4777
+ pldat.xreturn[j+15] *= RADTODEG;
4778
+ }
4779
+ if (iflag & SEFLG_EQUATORIAL) {
4780
+ for (j = 0; j <= 5; j++)
4781
+ xp[j] = pldat.xreturn[12+j];
4782
+ continue;
4783
+ } else {
4784
+ for (j = 0; j <= 5; j++)
4785
+ xp[j] = pldat.xreturn[j];
4786
+ continue;
4787
+ }
4788
+ }
4789
+ for (i = 0; i <= 5; i++) {
4790
+ if (i > 2 && !(iflag & SEFLG_SPEED))
4791
+ xna[i] = xnd[i] = xpe[i] = xap[i] = 0;
4792
+ if (xnasc != NULL)
4793
+ xnasc[i] = xna[i];
4794
+ if (xndsc != NULL)
4795
+ xndsc[i] = xnd[i];
4796
+ if (xperi != NULL)
4797
+ xperi[i] = xpe[i];
4798
+ if (xaphe != NULL)
4799
+ xaphe[i] = xap[i];
4800
+ }
4801
+ return OK;
4802
+ }
4803
+
4804
+ int32 FAR PASCAL_CONV swe_nod_aps_ut(double tjd_ut, int32 ipl, int32 iflag,
4805
+ int32 method,
4806
+ double *xnasc, double *xndsc,
4807
+ double *xperi, double *xaphe,
4808
+ char *serr) {
4809
+ return swe_nod_aps(tjd_ut + swe_deltat(tjd_ut),
4810
+ ipl, iflag, method, xnasc, xndsc, xperi, xaphe,
4811
+ serr);
4812
+ }
4813
+
4814
+ /* function finds the gauquelin sector position of a planet or fixed star
4815
+ *
4816
+ * if starname != NULL then a star is computed.
4817
+ * iflag: use the flags SE_SWIEPH, SE_JPLEPH, SE_MOSEPH, SEFLG_TOPOCTR.
4818
+ *
4819
+ * imeth defines method:
4820
+ * imeth = 0 use Placidus house position
4821
+ * imeth = 1 use Placidus house posiition (with planetary lat = 0)
4822
+ * imeth = 2 use rise and set of body's disc center
4823
+ * imeth = 3 use rise and set of body's disc center with refraction
4824
+ * rise and set are defined as appearance and disappearance of disc center
4825
+ *
4826
+ * geopos is an array of 3 doubles for geo. longitude, geo. latitude, elevation.
4827
+ * atpress and attemp are only needed for imeth = 3. If imeth = 3,
4828
+ * If imeth=3 and atpress not given (= 0), the programm assumes 1013.25 mbar;
4829
+ * if a non-zero height above sea is given in geopos, atpress is estimated.
4830
+ * dgsect is return area (pointer to a double)
4831
+ * serr is pointer to error string, may be NULL
4832
+ */
4833
+ int32 FAR PASCAL_CONV swe_gauquelin_sector(double t_ut, int32 ipl, char *starname, int32 iflag, int32 imeth, double *geopos, double atpress, double attemp, double *dgsect, char *serr)
4834
+ {
4835
+ AS_BOOL rise_found = TRUE;
4836
+ AS_BOOL set_found = TRUE;
4837
+ int32 retval;
4838
+ double tret[3];
4839
+ double t_et, t;
4840
+ double x0[6];
4841
+ double eps, nutlo[2], armc;
4842
+ int32 epheflag = iflag & SEFLG_EPHMASK;
4843
+ AS_BOOL do_fixstar = (starname != NULL && *starname != '\0');
4844
+ int32 risemeth = 0;
4845
+ AS_BOOL above_horizon = FALSE;
4846
+ if (imeth < 0 || imeth > 5) {
4847
+ if (serr)
4848
+ sprintf(serr, "invalid method: %d", imeth);
4849
+ return ERR;
4850
+ }
4851
+ /* function calls for Pluto with asteroid number 134340
4852
+ * are treated as calls for Pluto as main body SE_PLUTO */
4853
+ if (ipl == SE_AST_OFFSET + 134340)
4854
+ ipl = SE_PLUTO;
4855
+ /*
4856
+ * geometrically from ecl. longitude and latitude
4857
+ */
4858
+ if (imeth == 0 || imeth == 1) {
4859
+ t_et = t_ut + swe_deltat(t_ut);
4860
+ eps = swi_epsiln(t_et) * RADTODEG;
4861
+ swi_nutation(t_et, nutlo);
4862
+ nutlo[0] *= RADTODEG;
4863
+ nutlo[1] *= RADTODEG;
4864
+ armc = swe_degnorm(swe_sidtime0(t_ut, eps + nutlo[1], nutlo[0]) * 15 + geopos[0]);
4865
+ if (do_fixstar) {
4866
+ if (swe_fixstar(starname, t_et, iflag, x0, serr) == ERR)
4867
+ return ERR;
4868
+ } else {
4869
+ if (swe_calc(t_et, ipl, iflag, x0, serr) == ERR)
4870
+ return ERR;
4871
+ }
4872
+ if (imeth == 1)
4873
+ x0[1] = 0;
4874
+ *dgsect = swe_house_pos(armc, geopos[1], eps + nutlo[1], 'G', x0, NULL);
4875
+ return OK;
4876
+ }
4877
+ /*
4878
+ * from rise and set times
4879
+ */
4880
+ if (imeth == 2 || imeth == 4)
4881
+ risemeth |= SE_BIT_NO_REFRACTION;
4882
+ if (imeth == 2 || imeth == 3)
4883
+ risemeth |= SE_BIT_DISC_CENTER;
4884
+ /* find the next rising time of the planet or star */
4885
+ retval = swe_rise_trans(t_ut, ipl, starname, epheflag, SE_CALC_RISE|risemeth, geopos, atpress, attemp, &(tret[0]), serr);
4886
+ if (retval == ERR) {
4887
+ return ERR;
4888
+ } else if (retval == -2) {
4889
+ /* actually, we could return ERR here. However, we
4890
+ * keep this variable, in case we implement an algorithm
4891
+ * for Gauquelin sector positions of circumpolar bodies.
4892
+ * As with the Ludwig Otto procedure with Placidus, one
4893
+ * could replace missing rises or sets by meridian transits,
4894
+ * although there are cases where even this is not possible.
4895
+ * Sometimes a body both appears and disappears on the western
4896
+ * part of the horizon. Using true culminations rather than meridan
4897
+ * transits would not help in any case either, because there are
4898
+ * cases where a body does not have a culmination within days,
4899
+ * e.g. the sun near the poles.
4900
+ */
4901
+ rise_found = FALSE;
4902
+ }
4903
+ /* find the next setting time of the planet or star */
4904
+ retval = swe_rise_trans(t_ut, ipl, starname, epheflag, SE_CALC_SET|risemeth, geopos, atpress, attemp, &(tret[1]), serr);
4905
+ if (retval == ERR) {
4906
+ return ERR;
4907
+ } else if (retval == -2) {
4908
+ set_found = FALSE;
4909
+ }
4910
+ if (tret[0] < tret[1] && rise_found == TRUE) {
4911
+ above_horizon = FALSE;
4912
+ /* find last set */
4913
+ t = t_ut - 1.2;
4914
+ if (set_found) t = tret[1] - 1.2;
4915
+ set_found = TRUE;
4916
+ retval = swe_rise_trans(t, ipl, starname, epheflag, SE_CALC_SET|risemeth, geopos, atpress, attemp, &(tret[1]), serr);
4917
+ if (retval == ERR) {
4918
+ return ERR;
4919
+ } else if (retval == -2) {
4920
+ set_found = FALSE;
4921
+ }
4922
+ } else if (tret[0] >= tret[1] && set_found == TRUE) {
4923
+ above_horizon = TRUE;
4924
+ /* find last rise */
4925
+ t = t_ut - 1.2;
4926
+ if (rise_found) t = tret[0] - 1.2;
4927
+ rise_found = TRUE;
4928
+ retval = swe_rise_trans(t, ipl, starname, epheflag, SE_CALC_RISE|risemeth, geopos, atpress, attemp, &(tret[0]), serr);
4929
+ if (retval == ERR) {
4930
+ return ERR;
4931
+ } else if (retval == -2) {
4932
+ rise_found = FALSE;
4933
+ }
4934
+ }
4935
+ if (rise_found && set_found) {
4936
+ if (above_horizon) {
4937
+ *dgsect = (t_ut - tret[0]) / (tret[1] - tret[0]) * 18 + 1;
4938
+ } else {
4939
+ *dgsect = (t_ut - tret[1]) / (tret[0] - tret[1]) * 18 + 19;
4940
+ }
4941
+ return OK;
4942
+ } else {
4943
+ *dgsect = 0;
4944
+ if (serr)
4945
+ sprintf(serr, "rise or set not found for planet %d", ipl);
4946
+ return ERR;
4947
+ }
4948
+ }