swe4r 0.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,1824 @@
1
+ /* SWISSEPH
2
+ $Header: /home/dieter/sweph/RCS/swemmoon.c,v 1.74 2008/06/16 10:07:20 dieter Exp $
3
+ *
4
+ * Steve Moshier's analytical lunar ephemeris
5
+
6
+ **************************************************************/
7
+ /* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
8
+
9
+ License conditions
10
+ ------------------
11
+
12
+ This file is part of Swiss Ephemeris.
13
+
14
+ Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
15
+ or distributor accepts any responsibility for the consequences of using it,
16
+ or for whether it serves any particular purpose or works at all, unless he
17
+ or she says so in writing.
18
+
19
+ Swiss Ephemeris is made available by its authors under a dual licensing
20
+ system. The software developer, who uses any part of Swiss Ephemeris
21
+ in his or her software, must choose between one of the two license models,
22
+ which are
23
+ a) GNU public license version 2 or later
24
+ b) Swiss Ephemeris Professional License
25
+
26
+ The choice must be made before the software developer distributes software
27
+ containing parts of Swiss Ephemeris to others, and before any public
28
+ service using the developed software is activated.
29
+
30
+ If the developer choses the GNU GPL software license, he or she must fulfill
31
+ the conditions of that license, which includes the obligation to place his
32
+ or her whole software project under the GNU GPL or a compatible license.
33
+ See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
34
+
35
+ If the developer choses the Swiss Ephemeris Professional license,
36
+ he must follow the instructions as found in http://www.astro.com/swisseph/
37
+ and purchase the Swiss Ephemeris Professional Edition from Astrodienst
38
+ and sign the corresponding license contract.
39
+
40
+ The License grants you the right to use, copy, modify and redistribute
41
+ Swiss Ephemeris, but only under certain conditions described in the License.
42
+ Among other things, the License requires that the copyright notices and
43
+ this notice be preserved on all copies.
44
+
45
+ Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
46
+
47
+ The authors of Swiss Ephemeris have no control or influence over any of
48
+ the derived works, i.e. over software or services created by other
49
+ programmers which use Swiss Ephemeris functions.
50
+
51
+ The names of the authors or of the copyright holder (Astrodienst) must not
52
+ be used for promoting any software, product or service which uses or contains
53
+ the Swiss Ephemeris. This copyright notice is the ONLY place where the
54
+ names of the authors can legally appear, except in cases where they have
55
+ given special permission in writing.
56
+
57
+ The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
58
+ for promoting such software, products or services.
59
+ */
60
+
61
+
62
+ /*
63
+ * Expansions for the geocentric ecliptic longitude,
64
+ * latitude, and distance of the Moon referred to the mean equinox
65
+ * and ecliptic of date.
66
+ *
67
+ * This version of cmoon.c adjusts the ELP2000-85 analytical Lunar
68
+ * theory of Chapront-Touze and Chapront to fit the Jet Propulsion
69
+ * Laboratory's DE404 long ephemeris on the interval from 3000 B.C.
70
+ * to 3000 A.D.
71
+ *
72
+ * The fit is much better in the remote past and future if
73
+ * secular terms are included in the arguments of the oscillatory
74
+ * perturbations. Such adjustments cannot easily be incorporated
75
+ * into the 1991 lunar tables. In this program the traditional
76
+ * literal arguments are used instead, with mean elements adjusted
77
+ * for a best fit to the reference ephemeris.
78
+ *
79
+ * This program omits many oscillatory terms from the analytical
80
+ * theory which, if they were included, would yield a much higher
81
+ * accuracy for modern dates. Detailed statistics of the precision
82
+ * are given in the table below. Comparing at 64-day intervals
83
+ * over the period -3000 to +3000, the maximum discrepancies noted
84
+ * were 7" longitude, 5" latitude, and 5 x 10^-8 au radius.
85
+ * The expressions used for precession in this comparision were
86
+ * those of Simon et al (1994).
87
+ *
88
+ * The adjusted coefficients were found by an unweighted least squares
89
+ * fit to the numerical ephemeris in the mentioned test interval.
90
+ * The approximation error increases rapidly outside this interval.
91
+ * J. Chapront (1994) has described the basic fitting procedure.
92
+ *
93
+ * A major change from DE200 to DE404 is in the coefficient
94
+ * of tidal acceleration of the Moon, which causes the Moon's
95
+ * longitude to depart by about -0.9" per century squared
96
+ * from DE200. Uncertainty in this quantity continues to
97
+ * be the limiting factor in long term projections of the Moon's
98
+ * ephemeris.
99
+ *
100
+ * Since the Lunar theory is cast in the ecliptic of date, it makes
101
+ * some difference what formula you use for precession. The adjustment
102
+ * to DE404 was carried out relative to the mean equinox and ecliptic
103
+ * of date as defined in Williams (1994). An earlier version of this
104
+ * program used the precession given by Simon et al (1994). The difference
105
+ * between these two precession formulas amounts to about 12" in Lunar
106
+ * longitude at 3000 B.C.
107
+ *
108
+ * Maximum deviations between DE404 and this program
109
+ * in a set of 34274 samples spaced 64 days apart
110
+ *
111
+ * Interval Longitude Latitude Radius
112
+ * Julian Year arc sec arc sec 10^-8 au
113
+ * -3000 to -2500 5.66 4.66 4.93
114
+ * -2500 to -2000 5.49 3.98 4.56
115
+ * -2000 to -1500 6.98 4.17 4.81
116
+ * -1500 to -1000 5.74 3.53 4.87
117
+ * -1000 to -500 5.95 3.42 4.67
118
+ * -500 to 0 4.94 3.07 4.04
119
+ * 0 to 500 4.42 2.65 4.55
120
+ * 500 to 1000 5.68 3.30 3.99
121
+ * 1000 to 1500 4.32 3.21 3.83
122
+ * 1500 to 2000 2.70 2.69 3.71
123
+ * 2000 to 2500 3.35 2.32 3.85
124
+ * 2500 to 3000 4.62 2.39 4.11
125
+ *
126
+ *
127
+ *
128
+ * References:
129
+ *
130
+ * James G. Williams, "Contributions to the Earth's obliquity rate,
131
+ * precession, and nutation," Astron. J. 108, 711-724 (1994)
132
+ *
133
+ * DE403 and DE404 ephemerides by E. M. Standish, X. X. Newhall, and
134
+ * J. G. Williams are at the JPL computer site navigator.jpl.nasa.gov.
135
+ *
136
+ * J. L. Simon, P. Bretagnon, J. Chapront, M. Chapront-Touze', G. Francou,
137
+ * and J. Laskar, "Numerical Expressions for precession formulae and
138
+ * mean elements for the Moon and the planets," Astronomy and Astrophysics
139
+ * 282, 663-683 (1994)
140
+ *
141
+ * P. Bretagnon and Francou, G., "Planetary theories in rectangular
142
+ * and spherical variables. VSOP87 solutions," Astronomy and
143
+ * Astrophysics 202, 309-315 (1988)
144
+ *
145
+ * M. Chapront-Touze' and J. Chapront, "ELP2000-85: a semi-analytical
146
+ * lunar ephemeris adequate for historical times," Astronomy and
147
+ * Astrophysics 190, 342-352 (1988).
148
+ *
149
+ * M. Chapront-Touze' and J. Chapront, _Lunar Tables and
150
+ * Programs from 4000 B.C. to A.D. 8000_, Willmann-Bell (1991)
151
+ *
152
+ * J. Laskar, "Secular terms of classical planetary theories
153
+ * using the results of general theory," Astronomy and Astrophysics
154
+ * 157, 59070 (1986)
155
+ *
156
+ * S. L. Moshier, "Comparison of a 7000-year lunar ephemeris
157
+ * with analytical theory," Astronomy and Astrophysics 262,
158
+ * 613-616 (1992)
159
+ *
160
+ * J. Chapront, "Representation of planetary ephemerides by frequency
161
+ * analysis. Application to the five outer planets," Astronomy and
162
+ * Astrophysics Suppl. Ser. 109, 181-192 (1994)
163
+ *
164
+ *
165
+ * Entry swi_moshmoon2() returns the geometric position of the Moon
166
+ * relative to the Earth. Its calling procedure is as follows:
167
+ *
168
+ * double JD; input Julian Ephemeris Date
169
+ * double pol[3]; output ecliptic polar coordinatees in radians and au
170
+ * pol[0] longitude, pol[1] latitude, pol[2] radius
171
+ * swi_moshmoon2( JD, pol );
172
+ *
173
+ * - S. L. Moshier, August, 1991
174
+ * DE200 fit: July, 1992
175
+ * DE404 fit: October, 1995
176
+ *
177
+ * Dieter Koch: adaptation to SWISSEPH, April 1996
178
+ * 18-feb-2006 replaced LP by SWELP because of name collision
179
+ */
180
+
181
+ #include <string.h>
182
+ #include "swephexp.h"
183
+ #include "sweph.h"
184
+ #include "swephlib.h"
185
+
186
+ static void mean_elements(void);
187
+ static void mean_elements_pl(void);
188
+ static double mods3600(double x);
189
+ static void ecldat_equ2000(double tjd, double *xpm);
190
+ static void chewm(short *pt, int nlines, int nangles,
191
+ int typflg, double *ans );
192
+ static void sscc(int k, double arg, int n );
193
+ static void moon1(void);
194
+ static void moon2(void);
195
+ static void moon3(void);
196
+ static void moon4(void);
197
+
198
+
199
+ #ifdef MOSH_MOON_200
200
+ /* The following coefficients were calculated by a simultaneous least
201
+ * squares fit between the analytical theory and the continued DE200
202
+ * numerically integrated ephemeris from 9000 BC to 13000 AD.
203
+ * See references to the array z[] later on in the program.
204
+ * The 71 coefficients were estimated from 42,529 Lunar positions.
205
+ */
206
+ static double z[] = {
207
+ -1.225346551567e+001, /* F, t^2 */
208
+ -1.096676093208e-003, /* F, t^3 */
209
+ -2.165750777942e-006, /* F, t^4 */
210
+ -2.790392351314e-009, /* F, t^5 */
211
+ 4.189032191814e-011, /* F, t^6 */
212
+ 4.474984866301e-013, /* F, t^7 */
213
+ 3.239398410335e+001, /* l, t^2 */
214
+ 5.185305877294e-002, /* l, t^3 */
215
+ -2.536291235258e-004, /* l, t^4 */
216
+ -2.506365935364e-008, /* l, t^5 */
217
+ 3.452144225877e-011, /* l, t^6 */
218
+ -1.755312760154e-012, /* l, t^7 */
219
+ -5.870522364514e+000, /* D, t^2 */
220
+ 6.493037519768e-003, /* D, t^3 */
221
+ -3.702060118571e-005, /* D, t^4 */
222
+ 2.560078201452e-009, /* D, t^5 */
223
+ 2.555243317839e-011, /* D, t^6 */
224
+ -3.207663637426e-013, /* D, t^7 */
225
+ -4.776684245026e+000, /* L, t^2 */
226
+ 6.580112707824e-003, /* L, t^3 */
227
+ -6.073960534117e-005, /* L, t^4 */
228
+ -1.024222633731e-008, /* L, t^5 */
229
+ 2.235210987108e-010, /* L, t^6 */
230
+ 7.200592540556e-014, /* L, t^7 */
231
+ -8.552017636339e+001, /* t^2 cos(18V - 16E - l) */
232
+ -2.055794304596e+002, /* t^2 sin(18V - 16E - l) */
233
+ -1.097555241866e+000, /* t^3 cos(18V - 16E - l) */
234
+ 5.219423171002e-001, /* t^3 sin(18V - 16E - l) */
235
+ 2.088802640755e-003, /* t^4 cos(18V - 16E - l) */
236
+ 4.616541527921e-003, /* t^4 sin(18V - 16E - l) */
237
+ 4.794930645807e+000, /* t^2 cos(10V - 3E - l) */
238
+ -4.595134364283e+001, /* t^2 sin(10V - 3E - l) */
239
+ -6.659812174691e-002, /* t^3 cos(10V - 3E - l) */
240
+ -2.570048828246e-001, /* t^3 sin(10V - 3E - l) */
241
+ 6.229863046223e-004, /* t^4 cos(10V - 3E - l) */
242
+ 5.504368344700e-003, /* t^4 sin(10V - 3E - l) */
243
+ -3.084830597278e+000, /* t^2 cos(8V - 13E) */
244
+ -1.000471012253e+001, /* t^2 sin(8V - 13E) */
245
+ 6.590112074510e-002, /* t^3 cos(8V - 13E) */
246
+ -3.212573348278e-003, /* t^3 sin(8V - 13E) */
247
+ 5.409038312567e-004, /* t^4 cos(8V - 13E) */
248
+ 1.293377988163e-003, /* t^4 sin(8V - 13E) */
249
+ 2.311794636111e+001, /* t^2 cos(4E - 8M + 3J) */
250
+ -3.157036220040e+000, /* t^2 sin(4E - 8M + 3J) */
251
+ -3.019293162417e+000, /* t^2 cos(18V - 16E) */
252
+ -9.211526858975e+000, /* t^2 sin(18V - 16E) */
253
+ -4.993704215784e-002, /* t^3 cos(18V - 16E) */
254
+ 2.991187525454e-002, /* t^3 sin(18V - 16E) */
255
+ -3.827414182969e+000, /* t^2 cos(18V - 16E - 2l) */
256
+ -9.891527703219e+000, /* t^2 sin(18V - 16E - 2l) */
257
+ -5.322093802878e-002, /* t^3 cos(18V - 16E - 2l) */
258
+ 3.164702647371e-002, /* t^3 sin(18V - 16E - 2l) */
259
+ 7.713905234217e+000, /* t^2 cos(2J - 5S) */
260
+ -6.077986950734e+000, /* t^3 sin(2J - 5S) */
261
+ -1.278232501462e-001, /* t^2 cos(L - F) */
262
+ 4.760967236383e-001, /* t^2 sin(L - F) */
263
+ -6.759005756460e-001, /* t^3 sin(l') */
264
+ 1.655727996357e-003, /* t^4 sin(l') */
265
+ 1.646526117252e-001, /* t^3 sin(2D - l') */
266
+ -4.167078100233e-004, /* t^4 sin(2D - l') */
267
+ 2.067529538504e-001, /* t^3 sin(2D - l' - l) */
268
+ -5.219127398748e-004, /* t^4 sin(2D - l' - l) */
269
+ -1.526335222289e-001, /* t^3 sin(l' - l) */
270
+ -1.120545131358e-001, /* t^3 sin(l' + l) */
271
+ 4.619472391553e-002, /* t^3 sin(2D - 2l') */
272
+ 4.863621236157e-004, /* t^4 sin(2D - 2l') */
273
+ -4.280059182608e-002, /* t^3 sin(2l') */
274
+ -4.328378207833e-004, /* t^4 sin(2l') */
275
+ -8.371028286974e-003, /* t^3 sin(2D - l) */
276
+ 4.089447328174e-002, /* t^3 sin(2D - 2l' - l) */
277
+ -1.238363006354e-002, /* t^3 sin(2D + 2l' - l) */
278
+ };
279
+ #else
280
+ /* The following coefficients were calculated by a simultaneous least
281
+ * squares fit between the analytical theory and DE404 on the finite
282
+ * interval from -3000 to +3000.
283
+ * The coefficients were estimated from 34,247 Lunar positions.
284
+ */
285
+ static double FAR z[] = {
286
+ /* The following are scaled in arc seconds, time in Julian centuries.
287
+ They replace the corresponding terms in the mean elements. */
288
+ -1.312045233711e+01, /* F, t^2 */
289
+ -1.138215912580e-03, /* F, t^3 */
290
+ -9.646018347184e-06, /* F, t^4 */
291
+ 3.146734198839e+01, /* l, t^2 */
292
+ 4.768357585780e-02, /* l, t^3 */
293
+ -3.421689790404e-04, /* l, t^4 */
294
+ -6.847070905410e+00, /* D, t^2 */
295
+ -5.834100476561e-03, /* D, t^3 */
296
+ -2.905334122698e-04, /* D, t^4 */
297
+ -5.663161722088e+00, /* L, t^2 */
298
+ 5.722859298199e-03, /* L, t^3 */
299
+ -8.466472828815e-05, /* L, t^4 */
300
+ /* The following longitude terms are in arc seconds times 10^5. */
301
+ -8.429817796435e+01, /* t^2 cos(18V - 16E - l) */
302
+ -2.072552484689e+02, /* t^2 sin(18V - 16E - l) */
303
+ 7.876842214863e+00, /* t^2 cos(10V - 3E - l) */
304
+ 1.836463749022e+00, /* t^2 sin(10V - 3E - l) */
305
+ -1.557471855361e+01, /* t^2 cos(8V - 13E) */
306
+ -2.006969124724e+01, /* t^2 sin(8V - 13E) */
307
+ 2.152670284757e+01, /* t^2 cos(4E - 8M + 3J) */
308
+ -6.179946916139e+00, /* t^2 sin(4E - 8M + 3J) */
309
+ -9.070028191196e-01, /* t^2 cos(18V - 16E) */
310
+ -1.270848233038e+01, /* t^2 sin(18V - 16E) */
311
+ -2.145589319058e+00, /* t^2 cos(2J - 5S) */
312
+ 1.381936399935e+01, /* t^2 sin(2J - 5S) */
313
+ -1.999840061168e+00, /* t^3 sin(l') */
314
+ };
315
+ #endif /* ! MOSH_MOON_200 */
316
+
317
+ /* Perturbation tables
318
+ */
319
+ #define NLR 118
320
+ static short FAR LR[8*NLR] = {
321
+ /*
322
+ Longitude Radius
323
+ D l' l F 1" .0001" 1km .0001km */
324
+
325
+ 0, 0, 1, 0, 22639, 5858,-20905,-3550,
326
+ 2, 0,-1, 0, 4586, 4383, -3699,-1109,
327
+ 2, 0, 0, 0, 2369, 9139, -2955,-9676,
328
+ 0, 0, 2, 0, 769, 257, -569,-9251,
329
+ 0, 1, 0, 0, -666,-4171, 48, 8883,
330
+ 0, 0, 0, 2, -411,-5957, -3,-1483,
331
+ 2, 0,-2, 0, 211, 6556, 246, 1585,
332
+ 2,-1,-1, 0, 205, 4358, -152,-1377,
333
+ 2, 0, 1, 0, 191, 9562, -170,-7331,
334
+ 2,-1, 0, 0, 164, 7285, -204,-5860,
335
+ 0, 1,-1, 0, -147,-3213, -129,-6201,
336
+ 1, 0, 0, 0, -124,-9881, 108, 7427,
337
+ 0, 1, 1, 0, -109,-3803, 104, 7552,
338
+ 2, 0, 0,-2, 55, 1771, 10, 3211,
339
+ 0, 0, 1, 2, -45, -996, 0, 0,
340
+ 0, 0, 1,-2, 39, 5333, 79, 6606,
341
+ 4, 0,-1, 0, 38, 4298, -34,-7825,
342
+ 0, 0, 3, 0, 36, 1238, -23,-2104,
343
+ 4, 0,-2, 0, 30, 7726, -21,-6363,
344
+ 2, 1,-1, 0, -28,-3971, 24, 2085,
345
+ 2, 1, 0, 0, -24,-3582, 30, 8238,
346
+ 1, 0,-1, 0, -18,-5847, -8,-3791,
347
+ 1, 1, 0, 0, 17, 9545, -16,-6747,
348
+ 2,-1, 1, 0, 14, 5303, -12,-8314,
349
+ 2, 0, 2, 0, 14, 3797, -10,-4448,
350
+ 4, 0, 0, 0, 13, 8991, -11,-6500,
351
+ 2, 0,-3, 0, 13, 1941, 14, 4027,
352
+ 0, 1,-2, 0, -9,-6791, -7, -27,
353
+ 2, 0,-1, 2, -9,-3659, 0, 7740,
354
+ 2,-1,-2, 0, 8, 6055, 10, 562,
355
+ 1, 0, 1, 0, -8,-4531, 6, 3220,
356
+ 2,-2, 0, 0, 8, 502, -9,-8845,
357
+ 0, 1, 2, 0, -7,-6302, 5, 7509,
358
+ 0, 2, 0, 0, -7,-4475, 1, 657,
359
+ 2,-2,-1, 0, 7, 3712, -4,-9501,
360
+ 2, 0, 1,-2, -6,-3832, 4, 1311,
361
+ 2, 0, 0, 2, -5,-7416, 0, 0,
362
+ 4,-1,-1, 0, 4, 3740, -3,-9580,
363
+ 0, 0, 2, 2, -3,-9976, 0, 0,
364
+ 3, 0,-1, 0, -3,-2097, 3, 2582,
365
+ 2, 1, 1, 0, -2,-9145, 2, 6164,
366
+ 4,-1,-2, 0, 2, 7319, -1,-8970,
367
+ 0, 2,-1, 0, -2,-5679, -2,-1171,
368
+ 2, 2,-1, 0, -2,-5212, 2, 3536,
369
+ 2, 1,-2, 0, 2, 4889, 0, 1437,
370
+ 2,-1, 0,-2, 2, 1461, 0, 6571,
371
+ 4, 0, 1, 0, 1, 9777, -1,-4226,
372
+ 0, 0, 4, 0, 1, 9337, -1,-1169,
373
+ 4,-1, 0, 0, 1, 8708, -1,-5714,
374
+ 1, 0,-2, 0, -1,-7530, -1,-7385,
375
+ 2, 1, 0,-2, -1,-4372, 0,-1357,
376
+ 0, 0, 2,-2, -1,-3726, -4,-4212,
377
+ 1, 1, 1, 0, 1, 2618, 0,-9333,
378
+ 3, 0,-2, 0, -1,-2241, 0, 8624,
379
+ 4, 0,-3, 0, 1, 1868, 0,-5142,
380
+ 2,-1, 2, 0, 1, 1770, 0,-8488,
381
+ 0, 2, 1, 0, -1,-1617, 1, 1655,
382
+ 1, 1,-1, 0, 1, 777, 0, 8512,
383
+ 2, 0, 3, 0, 1, 595, 0,-6697,
384
+ 2, 0, 1, 2, 0,-9902, 0, 0,
385
+ 2, 0,-4, 0, 0, 9483, 0, 7785,
386
+ 2,-2, 1, 0, 0, 7517, 0,-6575,
387
+ 0, 1,-3, 0, 0,-6694, 0,-4224,
388
+ 4, 1,-1, 0, 0,-6352, 0, 5788,
389
+ 1, 0, 2, 0, 0,-5840, 0, 3785,
390
+ 1, 0, 0,-2, 0,-5833, 0,-7956,
391
+ 6, 0,-2, 0, 0, 5716, 0,-4225,
392
+ 2, 0,-2,-2, 0,-5606, 0, 4726,
393
+ 1,-1, 0, 0, 0,-5569, 0, 4976,
394
+ 0, 1, 3, 0, 0,-5459, 0, 3551,
395
+ 2, 0,-2, 2, 0,-5357, 0, 7740,
396
+ 2, 0,-1,-2, 0, 1790, 8, 7516,
397
+ 3, 0, 0, 0, 0, 4042, -1,-4189,
398
+ 2,-1,-3, 0, 0, 4784, 0, 4950,
399
+ 2,-1, 3, 0, 0, 932, 0, -585,
400
+ 2, 0, 2,-2, 0,-4538, 0, 2840,
401
+ 2,-1,-1, 2, 0,-4262, 0, 373,
402
+ 0, 0, 0, 4, 0, 4203, 0, 0,
403
+ 0, 1, 0, 2, 0, 4134, 0,-1580,
404
+ 6, 0,-1, 0, 0, 3945, 0,-2866,
405
+ 2,-1, 0, 2, 0,-3821, 0, 0,
406
+ 2,-1, 1,-2, 0,-3745, 0, 2094,
407
+ 4, 1,-2, 0, 0,-3576, 0, 2370,
408
+ 1, 1,-2, 0, 0, 3497, 0, 3323,
409
+ 2,-3, 0, 0, 0, 3398, 0,-4107,
410
+ 0, 0, 3, 2, 0,-3286, 0, 0,
411
+ 4,-2,-1, 0, 0,-3087, 0,-2790,
412
+ 0, 1,-1,-2, 0, 3015, 0, 0,
413
+ 4, 0,-1,-2, 0, 3009, 0,-3218,
414
+ 2,-2,-2, 0, 0, 2942, 0, 3430,
415
+ 6, 0,-3, 0, 0, 2925, 0,-1832,
416
+ 2, 1, 2, 0, 0,-2902, 0, 2125,
417
+ 4, 1, 0, 0, 0,-2891, 0, 2445,
418
+ 4,-1, 1, 0, 0, 2825, 0,-2029,
419
+ 3, 1,-1, 0, 0, 2737, 0,-2126,
420
+ 0, 1, 1, 2, 0, 2634, 0, 0,
421
+ 1, 0, 0, 2, 0, 2543, 0, 0,
422
+ 3, 0, 0,-2, 0,-2530, 0, 2010,
423
+ 2, 2,-2, 0, 0,-2499, 0,-1089,
424
+ 2,-3,-1, 0, 0, 2469, 0,-1481,
425
+ 3,-1,-1, 0, 0,-2314, 0, 2556,
426
+ 4, 0, 2, 0, 0, 2185, 0,-1392,
427
+ 4, 0,-1, 2, 0,-2013, 0, 0,
428
+ 0, 2,-2, 0, 0,-1931, 0, 0,
429
+ 2, 2, 0, 0, 0,-1858, 0, 0,
430
+ 2, 1,-3, 0, 0, 1762, 0, 0,
431
+ 4, 0,-2, 2, 0,-1698, 0, 0,
432
+ 4,-2,-2, 0, 0, 1578, 0,-1083,
433
+ 4,-2, 0, 0, 0, 1522, 0,-1281,
434
+ 3, 1, 0, 0, 0, 1499, 0,-1077,
435
+ 1,-1,-1, 0, 0,-1364, 0, 1141,
436
+ 1,-3, 0, 0, 0,-1281, 0, 0,
437
+ 6, 0, 0, 0, 0, 1261, 0, -859,
438
+ 2, 0, 2, 2, 0,-1239, 0, 0,
439
+ 1,-1, 1, 0, 0,-1207, 0, 1100,
440
+ 0, 0, 5, 0, 0, 1110, 0, -589,
441
+ 0, 3, 0, 0, 0,-1013, 0, 213,
442
+ 4,-1,-3, 0, 0, 998, 0, 0,
443
+ };
444
+
445
+
446
+ #ifdef MOSH_MOON_200
447
+ #define NMB 56
448
+ static short FAR MB[6*NMB] = {
449
+ /*
450
+ Latitude
451
+ D l' l F 1" .0001" */
452
+
453
+ 0, 0, 0, 1,18461, 2387,
454
+ 0, 0, 1, 1, 1010, 1671,
455
+ 0, 0, 1,-1, 999, 6936,
456
+ 2, 0, 0,-1, 623, 6524,
457
+ 2, 0,-1, 1, 199, 4837,
458
+ 2, 0,-1,-1, 166, 5741,
459
+ 2, 0, 0, 1, 117, 2607,
460
+ 0, 0, 2, 1, 61, 9120,
461
+ 2, 0, 1,-1, 33, 3572,
462
+ 0, 0, 2,-1, 31, 7597,
463
+ 2,-1, 0,-1, 29, 5766,
464
+ 2, 0,-2,-1, 15, 5663,
465
+ 2, 0, 1, 1, 15, 1216,
466
+ 2, 1, 0,-1, -12, -941,
467
+ 2,-1,-1, 1, 8, 8681,
468
+ 2,-1, 0, 1, 7, 9586,
469
+ 2,-1,-1,-1, 7, 4346,
470
+ 0, 1,-1,-1, -6,-7314,
471
+ 4, 0,-1,-1, 6, 5796,
472
+ 0, 1, 0, 1, -6,-4601,
473
+ 0, 0, 0, 3, -6,-2965,
474
+ 0, 1,-1, 1, -5,-6324,
475
+ 1, 0, 0, 1, -5,-3684,
476
+ 0, 1, 1, 1, -5,-3113,
477
+ 0, 1, 1,-1, -5, -759,
478
+ 0, 1, 0,-1, -4,-8396,
479
+ 1, 0, 0,-1, -4,-8057,
480
+ 0, 0, 3, 1, 3, 9841,
481
+ 4, 0, 0,-1, 3, 6745,
482
+ 4, 0,-1, 1, 2, 9985,
483
+ 0, 0, 1,-3, 2, 7986,
484
+ 4, 0,-2, 1, 2, 4139,
485
+ 2, 0, 0,-3, 2, 1863,
486
+ 2, 0, 2,-1, 2, 1462,
487
+ 2,-1, 1,-1, 1, 7660,
488
+ 2, 0,-2, 1, -1,-6244,
489
+ 0, 0, 3,-1, 1, 5813,
490
+ 2, 0, 2, 1, 1, 5198,
491
+ 2, 0,-3,-1, 1, 5156,
492
+ 2, 1,-1, 1, -1,-3178,
493
+ 2, 1, 0, 1, -1,-2643,
494
+ 4, 0, 0, 1, 1, 1919,
495
+ 2,-1, 1, 1, 1, 1346,
496
+ 2,-2, 0,-1, 1, 859,
497
+ 0, 0, 1, 3, -1, -194,
498
+ 2, 1, 1,-1, 0,-8227,
499
+ 1, 1, 0,-1, 0, 8042,
500
+ 1, 1, 0, 1, 0, 8026,
501
+ 0, 1,-2,-1, 0,-7932,
502
+ 2, 1,-1,-1, 0,-7910,
503
+ 1, 0, 1, 1, 0,-6674,
504
+ 2,-1,-2,-1, 0, 6502,
505
+ 0, 1, 2, 1, 0,-6388,
506
+ 4, 0,-2,-1, 0, 6337,
507
+ 4,-1,-1,-1, 0, 5958,
508
+ 1, 0, 1,-1, 0,-5889,
509
+ };
510
+ #else
511
+ #define NMB 77
512
+ static short FAR MB[6*NMB] = {
513
+ /*
514
+ Latitude
515
+ D l' l F 1" .0001" */
516
+
517
+ 0, 0, 0, 1,18461, 2387,
518
+ 0, 0, 1, 1, 1010, 1671,
519
+ 0, 0, 1,-1, 999, 6936,
520
+ 2, 0, 0,-1, 623, 6524,
521
+ 2, 0,-1, 1, 199, 4837,
522
+ 2, 0,-1,-1, 166, 5741,
523
+ 2, 0, 0, 1, 117, 2607,
524
+ 0, 0, 2, 1, 61, 9120,
525
+ 2, 0, 1,-1, 33, 3572,
526
+ 0, 0, 2,-1, 31, 7597,
527
+ 2,-1, 0,-1, 29, 5766,
528
+ 2, 0,-2,-1, 15, 5663,
529
+ 2, 0, 1, 1, 15, 1216,
530
+ 2, 1, 0,-1, -12, -941,
531
+ 2,-1,-1, 1, 8, 8681,
532
+ 2,-1, 0, 1, 7, 9586,
533
+ 2,-1,-1,-1, 7, 4346,
534
+ 0, 1,-1,-1, -6,-7314,
535
+ 4, 0,-1,-1, 6, 5796,
536
+ 0, 1, 0, 1, -6,-4601,
537
+ 0, 0, 0, 3, -6,-2965,
538
+ 0, 1,-1, 1, -5,-6324,
539
+ 1, 0, 0, 1, -5,-3684,
540
+ 0, 1, 1, 1, -5,-3113,
541
+ 0, 1, 1,-1, -5, -759,
542
+ 0, 1, 0,-1, -4,-8396,
543
+ 1, 0, 0,-1, -4,-8057,
544
+ 0, 0, 3, 1, 3, 9841,
545
+ 4, 0, 0,-1, 3, 6745,
546
+ 4, 0,-1, 1, 2, 9985,
547
+ 0, 0, 1,-3, 2, 7986,
548
+ 4, 0,-2, 1, 2, 4139,
549
+ 2, 0, 0,-3, 2, 1863,
550
+ 2, 0, 2,-1, 2, 1462,
551
+ 2,-1, 1,-1, 1, 7660,
552
+ 2, 0,-2, 1, -1,-6244,
553
+ 0, 0, 3,-1, 1, 5813,
554
+ 2, 0, 2, 1, 1, 5198,
555
+ 2, 0,-3,-1, 1, 5156,
556
+ 2, 1,-1, 1, -1,-3178,
557
+ 2, 1, 0, 1, -1,-2643,
558
+ 4, 0, 0, 1, 1, 1919,
559
+ 2,-1, 1, 1, 1, 1346,
560
+ 2,-2, 0,-1, 1, 859,
561
+ 0, 0, 1, 3, -1, -194,
562
+ 2, 1, 1,-1, 0,-8227,
563
+ 1, 1, 0,-1, 0, 8042,
564
+ 1, 1, 0, 1, 0, 8026,
565
+ 0, 1,-2,-1, 0,-7932,
566
+ 2, 1,-1,-1, 0,-7910,
567
+ 1, 0, 1, 1, 0,-6674,
568
+ 2,-1,-2,-1, 0, 6502,
569
+ 0, 1, 2, 1, 0,-6388,
570
+ 4, 0,-2,-1, 0, 6337,
571
+ 4,-1,-1,-1, 0, 5958,
572
+ 1, 0, 1,-1, 0,-5889,
573
+ 4, 0, 1,-1, 0, 4734,
574
+ 1, 0,-1,-1, 0,-4299,
575
+ 4,-1, 0,-1, 0, 4149,
576
+ 2,-2, 0, 1, 0, 3835,
577
+ 3, 0, 0,-1, 0,-3518,
578
+ 4,-1,-1, 1, 0, 3388,
579
+ 2, 0,-1,-3, 0, 3291,
580
+ 2,-2,-1, 1, 0, 3147,
581
+ 0, 1, 2,-1, 0,-3129,
582
+ 3, 0,-1,-1, 0,-3052,
583
+ 0, 1,-2, 1, 0,-3013,
584
+ 2, 0, 1,-3, 0,-2912,
585
+ 2,-2,-1,-1, 0, 2686,
586
+ 0, 0, 4, 1, 0, 2633,
587
+ 2, 0,-3, 1, 0, 2541,
588
+ 2, 0,-1, 3, 0,-2448,
589
+ 2, 1, 1, 1, 0,-2370,
590
+ 4,-1,-2, 1, 0, 2138,
591
+ 4, 0, 1, 1, 0, 2126,
592
+ 3, 0,-1, 1, 0,-2059,
593
+ 4, 1,-1,-1, 0,-1719,
594
+ };
595
+ #endif /* ! MOSH_MOON_200 */
596
+
597
+ #define NLRT 38
598
+ static short FAR LRT[8*NLRT] = {
599
+ /*
600
+ Multiply by T
601
+ Longitude Radius
602
+ D l' l F .1" .00001" .1km .00001km */
603
+
604
+ 0, 1, 0, 0, 16, 7680, -1,-2302,
605
+ 2,-1,-1, 0, -5,-1642, 3, 8245,
606
+ 2,-1, 0, 0, -4,-1383, 5, 1395,
607
+ 0, 1,-1, 0, 3, 7115, 3, 2654,
608
+ 0, 1, 1, 0, 2, 7560, -2,-6396,
609
+ 2, 1,-1, 0, 0, 7118, 0,-6068,
610
+ 2, 1, 0, 0, 0, 6128, 0,-7754,
611
+ 1, 1, 0, 0, 0,-4516, 0, 4194,
612
+ 2,-2, 0, 0, 0,-4048, 0, 4970,
613
+ 0, 2, 0, 0, 0, 3747, 0, -540,
614
+ 2,-2,-1, 0, 0,-3707, 0, 2490,
615
+ 2,-1, 1, 0, 0,-3649, 0, 3222,
616
+ 0, 1,-2, 0, 0, 2438, 0, 1760,
617
+ 2,-1,-2, 0, 0,-2165, 0,-2530,
618
+ 0, 1, 2, 0, 0, 1923, 0,-1450,
619
+ 0, 2,-1, 0, 0, 1292, 0, 1070,
620
+ 2, 2,-1, 0, 0, 1271, 0,-6070,
621
+ 4,-1,-1, 0, 0,-1098, 0, 990,
622
+ 2, 0, 0, 0, 0, 1073, 0,-1360,
623
+ 2, 0,-1, 0, 0, 839, 0, -630,
624
+ 2, 1, 1, 0, 0, 734, 0, -660,
625
+ 4,-1,-2, 0, 0, -688, 0, 480,
626
+ 2, 1,-2, 0, 0, -630, 0, 0,
627
+ 0, 2, 1, 0, 0, 587, 0, -590,
628
+ 2,-1, 0,-2, 0, -540, 0, -170,
629
+ 4,-1, 0, 0, 0, -468, 0, 390,
630
+ 2,-2, 1, 0, 0, -378, 0, 330,
631
+ 2, 1, 0,-2, 0, 364, 0, 0,
632
+ 1, 1, 1, 0, 0, -317, 0, 240,
633
+ 2,-1, 2, 0, 0, -295, 0, 210,
634
+ 1, 1,-1, 0, 0, -270, 0, -210,
635
+ 2,-3, 0, 0, 0, -256, 0, 310,
636
+ 2,-3,-1, 0, 0, -187, 0, 110,
637
+ 0, 1,-3, 0, 0, 169, 0, 110,
638
+ 4, 1,-1, 0, 0, 158, 0, -150,
639
+ 4,-2,-1, 0, 0, -155, 0, 140,
640
+ 0, 0, 1, 0, 0, 155, 0, -250,
641
+ 2,-2,-2, 0, 0, -148, 0, -170,
642
+ };
643
+
644
+ #define NBT 16
645
+ static short FAR BT[5*NBT] = {
646
+ /*
647
+ Multiply by T
648
+ Latitude
649
+ D l' l F .00001" */
650
+
651
+ 2,-1, 0,-1, -7430,
652
+ 2, 1, 0,-1, 3043,
653
+ 2,-1,-1, 1, -2229,
654
+ 2,-1, 0, 1, -1999,
655
+ 2,-1,-1,-1, -1869,
656
+ 0, 1,-1,-1, 1696,
657
+ 0, 1, 0, 1, 1623,
658
+ 0, 1,-1, 1, 1418,
659
+ 0, 1, 1, 1, 1339,
660
+ 0, 1, 1,-1, 1278,
661
+ 0, 1, 0,-1, 1217,
662
+ 2,-2, 0,-1, -547,
663
+ 2,-1, 1,-1, -443,
664
+ 2, 1,-1, 1, 331,
665
+ 2, 1, 0, 1, 317,
666
+ 2, 0, 0,-1, 295,
667
+ };
668
+
669
+ #define NLRT2 25
670
+ static short FAR LRT2[6*NLRT2] = {
671
+ /*
672
+ Multiply by T^2
673
+ Longitude Radius
674
+ D l' l F .00001" .00001km */
675
+
676
+ 0, 1, 0, 0, 487, -36,
677
+ 2,-1,-1, 0, -150, 111,
678
+ 2,-1, 0, 0, -120, 149,
679
+ 0, 1,-1, 0, 108, 95,
680
+ 0, 1, 1, 0, 80, -77,
681
+ 2, 1,-1, 0, 21, -18,
682
+ 2, 1, 0, 0, 20, -23,
683
+ 1, 1, 0, 0, -13, 12,
684
+ 2,-2, 0, 0, -12, 14,
685
+ 2,-1, 1, 0, -11, 9,
686
+ 2,-2,-1, 0, -11, 7,
687
+ 0, 2, 0, 0, 11, 0,
688
+ 2,-1,-2, 0, -6, -7,
689
+ 0, 1,-2, 0, 7, 5,
690
+ 0, 1, 2, 0, 6, -4,
691
+ 2, 2,-1, 0, 5, -3,
692
+ 0, 2,-1, 0, 5, 3,
693
+ 4,-1,-1, 0, -3, 3,
694
+ 2, 0, 0, 0, 3, -4,
695
+ 4,-1,-2, 0, -2, 0,
696
+ 2, 1,-2, 0, -2, 0,
697
+ 2,-1, 0,-2, -2, 0,
698
+ 2, 1, 1, 0, 2, -2,
699
+ 2, 0,-1, 0, 2, 0,
700
+ 0, 2, 1, 0, 2, 0,
701
+ };
702
+
703
+ #define NBT2 12
704
+ static short FAR BT2[5*NBT2] = {
705
+ /*
706
+ Multiply by T^2
707
+ Latitiude
708
+ D l' l F .00001" */
709
+
710
+ 2,-1, 0,-1, -22,
711
+ 2, 1, 0,-1, 9,
712
+ 2,-1, 0, 1, -6,
713
+ 2,-1,-1, 1, -6,
714
+ 2,-1,-1,-1, -5,
715
+ 0, 1, 0, 1, 5,
716
+ 0, 1,-1,-1, 5,
717
+ 0, 1, 1, 1, 4,
718
+ 0, 1, 1,-1, 4,
719
+ 0, 1, 0,-1, 4,
720
+ 0, 1,-1, 1, 4,
721
+ 2,-2, 0,-1, -2,
722
+ };
723
+
724
+ /* The following times are set up by update() and refer
725
+ * to the same instant. The distinction between them
726
+ * is required by altaz().
727
+ */
728
+ static double FAR ss[5][8];
729
+ static double FAR cc[5][8];
730
+
731
+ static double l; /* Moon's ecliptic longitude */
732
+ static double B; /* Ecliptic latitude */
733
+
734
+ static double moonpol[3];
735
+
736
+ /* Orbit calculation begins.
737
+ */
738
+ static double SWELP;
739
+ static double M;
740
+ static double MP;
741
+ static double D;
742
+ static double NF;
743
+ static double T;
744
+ static double T2;
745
+
746
+ static double T3;
747
+ static double T4;
748
+ static double f;
749
+ static double g;
750
+ static double Ve;
751
+ static double Ea;
752
+ static double Ma;
753
+ static double Ju;
754
+ static double Sa;
755
+ static double cg;
756
+ static double sg;
757
+ static double l1;
758
+ static double l2;
759
+ static double l3;
760
+ static double l4;
761
+
762
+ /* Calculate geometric coordinates of Moon
763
+ * without light time or nutation correction.
764
+ */
765
+ int swi_moshmoon2(double J, double *pol)
766
+ {
767
+ int i;
768
+ T = (J-J2000)/36525.0;
769
+ T2 = T*T;
770
+ mean_elements();
771
+ mean_elements_pl();
772
+ moon1();
773
+ moon2();
774
+ moon3();
775
+ moon4();
776
+ for( i=0; i<3; i++ )
777
+ pol[i] = moonpol[i];
778
+ return(0);
779
+ }
780
+
781
+ /* Moshier's moom
782
+ * tjd julian day
783
+ * xpm array of 6 doubles for moon's position and speed vectors
784
+ * serr pointer to error string
785
+ */
786
+ int swi_moshmoon(double tjd, AS_BOOL do_save, double *xpmret, char *serr)
787
+ {
788
+ int i;
789
+ double a, b, x1[6], x2[6], t;
790
+ double xx[6], *xpm;
791
+ struct plan_data *pdp = &swed.pldat[SEI_MOON];
792
+ char s[AS_MAXCH];
793
+ if (do_save)
794
+ xpm = pdp->x;
795
+ else
796
+ xpm = xx;
797
+ /* allow 0.2 day tolerance so that true node interval fits in */
798
+ if (tjd < MOSHLUEPH_START - 0.2 || tjd > MOSHLUEPH_END + 0.2) {
799
+ if (serr != NULL) {
800
+ sprintf(s, "jd %f outside Moshier's Moon range %.2f .. %.2f ",
801
+ tjd, MOSHLUEPH_START, MOSHLUEPH_END);
802
+ if (strlen(serr) + strlen(s) < AS_MAXCH)
803
+ strcat(serr, s);
804
+ }
805
+ return(ERR);
806
+ }
807
+ /* if moon has already been computed */
808
+ if (tjd == pdp->teval && pdp->iephe == SEFLG_MOSEPH) {
809
+ if (xpmret != NULL)
810
+ for (i = 0; i <= 5; i++)
811
+ xpmret[i] = pdp->x[i];
812
+ return(OK);
813
+ }
814
+ /* else compute moon */
815
+ swi_moshmoon2(tjd, xpm);
816
+ if (do_save) {
817
+ pdp->teval = tjd;
818
+ pdp->xflgs = -1;
819
+ pdp->iephe = SEFLG_MOSEPH;
820
+ }
821
+ /* Moshier moon is referred to ecliptic of date. But we need
822
+ * equatorial positions for several reasons.
823
+ * e.g. computation of earth from emb and moon
824
+ * of heliocentric moon
825
+ * Besides, this helps to keep the program structure simpler
826
+ */
827
+ ecldat_equ2000(tjd, xpm);
828
+ /* speed */
829
+ /* from 2 other positions. */
830
+ /* one would be good enough for computation of osculating node,
831
+ * but not for osculating apogee */
832
+ t = tjd + MOON_SPEED_INTV;
833
+ swi_moshmoon2(t, x1);
834
+ ecldat_equ2000(t, x1);
835
+ t = tjd - MOON_SPEED_INTV;
836
+ swi_moshmoon2(t, x2);
837
+ ecldat_equ2000(t, x2);
838
+ for (i = 0; i <= 2; i++) {
839
+ #if 0
840
+ xpm[i+3] = (x1[i] - x2[i]) / MOON_SPEED_INTV / 2;
841
+ #else
842
+ b = (x1[i] - x2[i]) / 2;
843
+ a = (x1[i] + x2[i]) / 2 - xpm[i];
844
+ xpm[i+3] = (2 * a + b) / MOON_SPEED_INTV;
845
+ #endif
846
+ }
847
+ if (xpmret != NULL)
848
+ for (i = 0; i <= 5; i++)
849
+ xpmret[i] = xpm[i];
850
+ return(OK);
851
+ }
852
+
853
+ #ifdef MOSH_MOON_200
854
+ static void moon1()
855
+ {
856
+ double a;
857
+
858
+ sscc( 0, STR*D, 6 );
859
+ sscc( 1, STR*M, 4 );
860
+ sscc( 2, STR*MP, 4 );
861
+ sscc( 3, STR*NF, 4 );
862
+
863
+ moonpol[0] = 0.0;
864
+ moonpol[1] = 0.0;
865
+ moonpol[2] = 0.0;
866
+
867
+ /* terms in T^2, scale 1.0 = 10^-5" */
868
+ chewm( LRT2, NLRT2, 4, 2, moonpol );
869
+ chewm( BT2, NBT2, 4, 4, moonpol );
870
+
871
+ f = 18 * Ve - 16 * Ea;
872
+
873
+ g = STR*(f - MP ); /* 18V - 16E - l */
874
+ cg = cos(g);
875
+ sg = sin(g);
876
+ l = 6.367278 * cg + 12.747036 * sg; /* t^0 */
877
+ l1 = 23123.70 * cg - 10570.02 * sg; /* t^1 */
878
+ l2 = z[24] * cg + z[25] * sg; /* t^2 */
879
+ l3 = z[26] * cg + z[27] * sg; /* t^3 */
880
+ l4 = z[28] * cg + z[29] * sg; /* t^4 */
881
+ moonpol[2] += 5.01 * cg + 2.72 * sg;
882
+
883
+ g = STR * (10.*Ve - 3.*Ea - MP);
884
+ cg = cos(g);
885
+ sg = sin(g);
886
+ l += -0.253102 * cg + 0.503359 * sg;
887
+ l1 += 1258.46 * cg + 707.29 * sg;
888
+ l2 += z[30] * cg + z[31] * sg;
889
+ l3 += z[32] * cg + z[33] * sg;
890
+ l4 += z[34] * cg + z[35] * sg;
891
+
892
+ g = STR*(8.*Ve - 13.*Ea);
893
+ cg = cos(g);
894
+ sg = sin(g);
895
+ l += -0.187231 * cg - 0.127481 * sg;
896
+ l1 += -319.87 * cg - 18.34 * sg;
897
+ l2 += z[36] * cg + z[37] * sg;
898
+ l3 += z[38] * cg + z[39] * sg;
899
+ l4 += z[40] * cg + z[41] * sg;
900
+
901
+ a = 4.0*Ea - 8.0*Ma + 3.0*Ju;
902
+ g = STR * a;
903
+ cg = cos(g);
904
+ sg = sin(g);
905
+ l += -0.866287 * cg + 0.248192 * sg;
906
+ l1 += 41.87 * cg + 1053.97 * sg;
907
+ l2 += z[42] * cg + z[43] * sg;
908
+
909
+ g = STR*(a - MP);
910
+ cg = cos(g);
911
+ sg = sin(g);
912
+ l += -0.165009 * cg + 0.044176 * sg;
913
+ l1 += 4.67 * cg + 201.55 * sg;
914
+
915
+
916
+ g = STR*f; /* 18V - 16E */
917
+ cg = cos(g);
918
+ sg = sin(g);
919
+ l += 0.330401 * cg + 0.661362 * sg;
920
+ l1 += 1202.67 * cg - 555.59 * sg;
921
+ l2 += z[44] * cg + z[45] * sg;
922
+ l3 += z[46] * cg + z[47] * sg;
923
+
924
+ g = STR*(f - 2.0*MP ); /* 18V - 16E - 2l */
925
+ cg = cos(g);
926
+ sg = sin(g);
927
+ l += 0.352185 * cg + 0.705041 * sg;
928
+ l1 += 1283.59 * cg - 586.43 * sg;
929
+ l2 += z[48] * cg + z[49] * sg;
930
+ l3 += z[50] * cg + z[51] * sg;
931
+
932
+ g = STR * (2.0*Ju - 5.0*Sa);
933
+ cg = cos(g);
934
+ sg = sin(g);
935
+ l += -0.034700 * cg + 0.160041 * sg;
936
+ l2 += z[52] * cg + z[53] * sg;
937
+
938
+ g = STR * (SWELP - NF);
939
+ cg = cos(g);
940
+ sg = sin(g);
941
+ l += 0.000116 * cg + 7.063040 * sg;
942
+ l1 += 298.8 * sg;
943
+ l2 += z[54] * cg + z[55] * sg;
944
+
945
+
946
+ /* T^3 terms */
947
+ sg = sin( STR * M );
948
+ l3 += z[56] * sg;
949
+ l4 += z[57] * sg;
950
+
951
+ g = STR * (2.0*D - M);
952
+ sg = sin(g);
953
+ cg = cos(g);
954
+ l3 += z[58] * sg;
955
+ l4 += z[59] * sg;
956
+ moonpol[2] += -0.2655 * cg * T;
957
+
958
+ g = g - STR * MP;
959
+ sg = sin(g);
960
+ l3 += z[60] * sg;
961
+ l4 += z[61] * sg;
962
+
963
+ g = STR * (M - MP);
964
+ l3 += z[62] * sin( g );
965
+ moonpol[2] += -0.1568 * cos( g ) * T;
966
+
967
+ g = STR * (M + MP);
968
+ l3 += z[63] * sin( g );
969
+ moonpol[2] += 0.1309 * cos( g ) * T;
970
+
971
+ g = STR * 2.0 * (D - M);
972
+ sg = sin(g);
973
+ l3 += z[64] * sg;
974
+ l4 += z[65] * sg;
975
+
976
+ g = STR * 2.0 * M;
977
+ sg = sin(g);
978
+ l3 += z[66] * sg;
979
+ l4 += z[67] * sg;
980
+
981
+ g = STR * (2.0*D - MP);
982
+ sg = sin(g);
983
+ l3 += z[68] * sg;
984
+
985
+ g = STR * (2.0*(D - M) - MP);
986
+ sg = sin(g);
987
+ l3 += z[69] * sg;
988
+
989
+ g = STR * (2.0*(D + M) - MP);
990
+ sg = sin(g);
991
+ cg = cos(g);
992
+ l3 += z[70] * sg;
993
+ moonpol[2] += 0.5568 * cg * T;
994
+
995
+ l2 += moonpol[0];
996
+
997
+ g = STR*(2.0*D - M - MP);
998
+ moonpol[2] += -0.1910 * cos( g ) * T;
999
+
1000
+
1001
+ moonpol[1] *= T;
1002
+ moonpol[2] *= T;
1003
+
1004
+ /* terms in T */
1005
+ moonpol[0] = 0.0;
1006
+ chewm( BT, NBT, 4, 4, moonpol );
1007
+ chewm( LRT, NLRT, 4, 1, moonpol );
1008
+ g = STR*(f - MP - NF - 2355767.6); /* 18V - 16E - l - F */
1009
+ moonpol[1] += -1127. * sin(g);
1010
+ g = STR*(f - MP + NF - 235353.6); /* 18V - 16E - l + F */
1011
+ moonpol[1] += -1123. * sin(g);
1012
+ g = STR*(Ea + D + 51987.6);
1013
+ moonpol[1] += 1303. * sin(g);
1014
+ g = STR*SWELP;
1015
+ moonpol[1] += 342. * sin(g);
1016
+
1017
+
1018
+ g = STR*(2.*Ve - 3.*Ea);
1019
+ cg = cos(g);
1020
+ sg = sin(g);
1021
+ l += -0.343550 * cg - 0.000276 * sg;
1022
+ l1 += 105.90 * cg + 336.53 * sg;
1023
+
1024
+ g = STR*(f - 2.*D); /* 18V - 16E - 2D */
1025
+ cg = cos(g);
1026
+ sg = sin(g);
1027
+ l += 0.074668 * cg + 0.149501 * sg;
1028
+ l1 += 271.77 * cg - 124.20 * sg;
1029
+
1030
+ g = STR*(f - 2.*D - MP);
1031
+ cg = cos(g);
1032
+ sg = sin(g);
1033
+ l += 0.073444 * cg + 0.147094 * sg;
1034
+ l1 += 265.24 * cg - 121.16 * sg;
1035
+
1036
+ g = STR*(f + 2.*D - MP);
1037
+ cg = cos(g);
1038
+ sg = sin(g);
1039
+ l += 0.072844 * cg + 0.145829 * sg;
1040
+ l1 += 265.18 * cg - 121.29 * sg;
1041
+
1042
+ g = STR*(f + 2.*(D - MP));
1043
+ cg = cos(g);
1044
+ sg = sin(g);
1045
+ l += 0.070201 * cg + 0.140542 * sg;
1046
+ l1 += 255.36 * cg - 116.79 * sg;
1047
+
1048
+ g = STR*(Ea + D - NF);
1049
+ cg = cos(g);
1050
+ sg = sin(g);
1051
+ l += 0.288209 * cg - 0.025901 * sg;
1052
+ l1 += -63.51 * cg - 240.14 * sg;
1053
+
1054
+ g = STR*(2.*Ea - 3.*Ju + 2.*D - MP);
1055
+ cg = cos(g);
1056
+ sg = sin(g);
1057
+ l += 0.077865 * cg + 0.438460 * sg;
1058
+ l1 += 210.57 * cg + 124.84 * sg;
1059
+
1060
+ g = STR*(Ea - 2.*Ma);
1061
+ cg = cos(g);
1062
+ sg = sin(g);
1063
+ l += -0.216579 * cg + 0.241702 * sg;
1064
+ l1 += 197.67 * cg + 125.23 * sg;
1065
+
1066
+ g = STR*(a + MP);
1067
+ cg = cos(g);
1068
+ sg = sin(g);
1069
+ l += -0.165009 * cg + 0.044176 * sg;
1070
+ l1 += 4.67 * cg + 201.55 * sg;
1071
+
1072
+ g = STR*(a + 2.*D - MP);
1073
+ cg = cos(g);
1074
+ sg = sin(g);
1075
+ l += -0.133533 * cg + 0.041116 * sg;
1076
+ l1 += 6.95 * cg + 187.07 * sg;
1077
+
1078
+ g = STR*(a - 2.*D + MP);
1079
+ cg = cos(g);
1080
+ sg = sin(g);
1081
+ l += -0.133430 * cg + 0.041079 * sg;
1082
+ l1 += 6.28 * cg + 169.08 * sg;
1083
+
1084
+ g = STR*(3.*Ve - 4.*Ea);
1085
+ cg = cos(g);
1086
+ sg = sin(g);
1087
+ l += -0.175074 * cg + 0.003035 * sg;
1088
+ l1 += 49.17 * cg + 150.57 * sg;
1089
+
1090
+ g = STR*(2.*(Ea + D - MP) - 3.*Ju + 213534.);
1091
+ l1 += 158.4 * sin(g);
1092
+ l1 += moonpol[0];
1093
+
1094
+ a = 0.1 * T; /* set amplitude scale of 1.0 = 10^-4 arcsec */
1095
+ moonpol[1] *= a;
1096
+ moonpol[2] *= a;
1097
+ }
1098
+ #else
1099
+ static void moon1()
1100
+ {
1101
+ double a;
1102
+ /* This code added by Bhanu Pinnamaneni, 17-aug-2009 */
1103
+ /* Note by Dieter: Bhanu noted that ss and cc are not sufficiently
1104
+ * initialised and random values are used for the calculation.
1105
+ * However, this may be only part of the bug.
1106
+ * The bug could be in sscc(). Or may be the bug is rather in
1107
+ * the 116th line of NLR, where the value "5" may be wrong.
1108
+ * Still, this will make a maximum difference of only 0.1", while the error
1109
+ * of the Moshier lunar ephemeris can reach 7". */
1110
+ int i, j;
1111
+ for (i = 0; i < 5; i++) {
1112
+ for (j = 0; j < 8; j++) {
1113
+ ss[i][j] = 0;
1114
+ cc[i][j] = 0;
1115
+ }
1116
+ }
1117
+ /* End of code addition */
1118
+ sscc( 0, STR*D, 6 );
1119
+ sscc( 1, STR*M, 4 );
1120
+ sscc( 2, STR*MP, 4 );
1121
+ sscc( 3, STR*NF, 4 );
1122
+ moonpol[0] = 0.0;
1123
+ moonpol[1] = 0.0;
1124
+ moonpol[2] = 0.0;
1125
+ /* terms in T^2, scale 1.0 = 10^-5" */
1126
+ chewm( LRT2, NLRT2, 4, 2, moonpol );
1127
+ chewm( BT2, NBT2, 4, 4, moonpol );
1128
+ f = 18 * Ve - 16 * Ea;
1129
+ g = STR*(f - MP ); /* 18V - 16E - l */
1130
+ cg = cos(g);
1131
+ sg = sin(g);
1132
+ l = 6.367278 * cg + 12.747036 * sg; /* t^0 */
1133
+ l1 = 23123.70 * cg - 10570.02 * sg; /* t^1 */
1134
+ l2 = z[12] * cg + z[13] * sg; /* t^2 */
1135
+ moonpol[2] += 5.01 * cg + 2.72 * sg;
1136
+ g = STR * (10.*Ve - 3.*Ea - MP);
1137
+ cg = cos(g);
1138
+ sg = sin(g);
1139
+ l += -0.253102 * cg + 0.503359 * sg;
1140
+ l1 += 1258.46 * cg + 707.29 * sg;
1141
+ l2 += z[14] * cg + z[15] * sg;
1142
+ g = STR*(8.*Ve - 13.*Ea);
1143
+ cg = cos(g);
1144
+ sg = sin(g);
1145
+ l += -0.187231 * cg - 0.127481 * sg;
1146
+ l1 += -319.87 * cg - 18.34 * sg;
1147
+ l2 += z[16] * cg + z[17] * sg;
1148
+ a = 4.0*Ea - 8.0*Ma + 3.0*Ju;
1149
+ g = STR * a;
1150
+ cg = cos(g);
1151
+ sg = sin(g);
1152
+ l += -0.866287 * cg + 0.248192 * sg;
1153
+ l1 += 41.87 * cg + 1053.97 * sg;
1154
+ l2 += z[18] * cg + z[19] * sg;
1155
+ g = STR*(a - MP);
1156
+ cg = cos(g);
1157
+ sg = sin(g);
1158
+ l += -0.165009 * cg + 0.044176 * sg;
1159
+ l1 += 4.67 * cg + 201.55 * sg;
1160
+ g = STR*f; /* 18V - 16E */
1161
+ cg = cos(g);
1162
+ sg = sin(g);
1163
+ l += 0.330401 * cg + 0.661362 * sg;
1164
+ l1 += 1202.67 * cg - 555.59 * sg;
1165
+ l2 += z[20] * cg + z[21] * sg;
1166
+ g = STR*(f - 2.0*MP ); /* 18V - 16E - 2l */
1167
+ cg = cos(g);
1168
+ sg = sin(g);
1169
+ l += 0.352185 * cg + 0.705041 * sg;
1170
+ l1 += 1283.59 * cg - 586.43 * sg;
1171
+ g = STR * (2.0*Ju - 5.0*Sa);
1172
+ cg = cos(g);
1173
+ sg = sin(g);
1174
+ l += -0.034700 * cg + 0.160041 * sg;
1175
+ l2 += z[22] * cg + z[23] * sg;
1176
+ g = STR * (SWELP - NF);
1177
+ cg = cos(g);
1178
+ sg = sin(g);
1179
+ l += 0.000116 * cg + 7.063040 * sg;
1180
+ l1 += 298.8 * sg;
1181
+ /* T^3 terms */
1182
+ sg = sin( STR * M );
1183
+ /* l3 += z[24] * sg; moshier! l3 not initialized! */
1184
+ l3 = z[24] * sg;
1185
+ l4 = 0;
1186
+ g = STR * (2.0*D - M);
1187
+ sg = sin(g);
1188
+ cg = cos(g);
1189
+ moonpol[2] += -0.2655 * cg * T;
1190
+ g = STR * (M - MP);
1191
+ moonpol[2] += -0.1568 * cos( g ) * T;
1192
+ g = STR * (M + MP);
1193
+ moonpol[2] += 0.1309 * cos( g ) * T;
1194
+ g = STR * (2.0*(D + M) - MP);
1195
+ sg = sin(g);
1196
+ cg = cos(g);
1197
+ moonpol[2] += 0.5568 * cg * T;
1198
+ l2 += moonpol[0];
1199
+ g = STR*(2.0*D - M - MP);
1200
+ moonpol[2] += -0.1910 * cos( g ) * T;
1201
+ moonpol[1] *= T;
1202
+ moonpol[2] *= T;
1203
+ /* terms in T */
1204
+ moonpol[0] = 0.0;
1205
+ chewm( BT, NBT, 4, 4, moonpol );
1206
+ chewm( LRT, NLRT, 4, 1, moonpol );
1207
+ g = STR*(f - MP - NF - 2355767.6); /* 18V - 16E - l - F */
1208
+ moonpol[1] += -1127. * sin(g);
1209
+ g = STR*(f - MP + NF - 235353.6); /* 18V - 16E - l + F */
1210
+ moonpol[1] += -1123. * sin(g);
1211
+ g = STR*(Ea + D + 51987.6);
1212
+ moonpol[1] += 1303. * sin(g);
1213
+ g = STR*SWELP;
1214
+ moonpol[1] += 342. * sin(g);
1215
+ g = STR*(2.*Ve - 3.*Ea);
1216
+ cg = cos(g);
1217
+ sg = sin(g);
1218
+ l += -0.343550 * cg - 0.000276 * sg;
1219
+ l1 += 105.90 * cg + 336.53 * sg;
1220
+ g = STR*(f - 2.*D); /* 18V - 16E - 2D */
1221
+ cg = cos(g);
1222
+ sg = sin(g);
1223
+ l += 0.074668 * cg + 0.149501 * sg;
1224
+ l1 += 271.77 * cg - 124.20 * sg;
1225
+ g = STR*(f - 2.*D - MP);
1226
+ cg = cos(g);
1227
+ sg = sin(g);
1228
+ l += 0.073444 * cg + 0.147094 * sg;
1229
+ l1 += 265.24 * cg - 121.16 * sg;
1230
+ g = STR*(f + 2.*D - MP);
1231
+ cg = cos(g);
1232
+ sg = sin(g);
1233
+ l += 0.072844 * cg + 0.145829 * sg;
1234
+ l1 += 265.18 * cg - 121.29 * sg;
1235
+ g = STR*(f + 2.*(D - MP));
1236
+ cg = cos(g);
1237
+ sg = sin(g);
1238
+ l += 0.070201 * cg + 0.140542 * sg;
1239
+ l1 += 255.36 * cg - 116.79 * sg;
1240
+ g = STR*(Ea + D - NF);
1241
+ cg = cos(g);
1242
+ sg = sin(g);
1243
+ l += 0.288209 * cg - 0.025901 * sg;
1244
+ l1 += -63.51 * cg - 240.14 * sg;
1245
+ g = STR*(2.*Ea - 3.*Ju + 2.*D - MP);
1246
+ cg = cos(g);
1247
+ sg = sin(g);
1248
+ l += 0.077865 * cg + 0.438460 * sg;
1249
+ l1 += 210.57 * cg + 124.84 * sg;
1250
+ g = STR*(Ea - 2.*Ma);
1251
+ cg = cos(g);
1252
+ sg = sin(g);
1253
+ l += -0.216579 * cg + 0.241702 * sg;
1254
+ l1 += 197.67 * cg + 125.23 * sg;
1255
+ g = STR*(a + MP);
1256
+ cg = cos(g);
1257
+ sg = sin(g);
1258
+ l += -0.165009 * cg + 0.044176 * sg;
1259
+ l1 += 4.67 * cg + 201.55 * sg;
1260
+ g = STR*(a + 2.*D - MP);
1261
+ cg = cos(g);
1262
+ sg = sin(g);
1263
+ l += -0.133533 * cg + 0.041116 * sg;
1264
+ l1 += 6.95 * cg + 187.07 * sg;
1265
+ g = STR*(a - 2.*D + MP);
1266
+ cg = cos(g);
1267
+ sg = sin(g);
1268
+ l += -0.133430 * cg + 0.041079 * sg;
1269
+ l1 += 6.28 * cg + 169.08 * sg;
1270
+ g = STR*(3.*Ve - 4.*Ea);
1271
+ cg = cos(g);
1272
+ sg = sin(g);
1273
+ l += -0.175074 * cg + 0.003035 * sg;
1274
+ l1 += 49.17 * cg + 150.57 * sg;
1275
+ g = STR*(2.*(Ea + D - MP) - 3.*Ju + 213534.);
1276
+ l1 += 158.4 * sin(g);
1277
+ l1 += moonpol[0];
1278
+ a = 0.1 * T; /* set amplitude scale of 1.0 = 10^-4 arcsec */
1279
+ moonpol[1] *= a;
1280
+ moonpol[2] *= a;
1281
+ }
1282
+ #endif /* MOSH_MOON_200 */
1283
+
1284
+ static void moon2()
1285
+ {
1286
+ /* terms in T^0 */
1287
+ g = STR*(2*(Ea-Ju+D)-MP+648431.172);
1288
+ l += 1.14307 * sin(g);
1289
+ g = STR*(Ve-Ea+648035.568);
1290
+ l += 0.82155 * sin(g);
1291
+ g = STR*(3*(Ve-Ea)+2*D-MP+647933.184);
1292
+ l += 0.64371 * sin(g);
1293
+ g = STR*(Ea-Ju+4424.04);
1294
+ l += 0.63880 * sin(g);
1295
+ g = STR*(SWELP + MP - NF + 4.68);
1296
+ l += 0.49331 * sin(g);
1297
+ g = STR*(SWELP - MP - NF + 4.68);
1298
+ l += 0.4914 * sin(g);
1299
+ g = STR*(SWELP+NF+2.52);
1300
+ l += 0.36061 * sin(g);
1301
+ g = STR*(2.*Ve - 2.*Ea + 736.2);
1302
+ l += 0.30154 * sin(g);
1303
+ g = STR*(2.*Ea - 3.*Ju + 2.*D - 2.*MP + 36138.2);
1304
+ l += 0.28282 * sin(g);
1305
+ g = STR*(2.*Ea - 2.*Ju + 2.*D - 2.*MP + 311.0);
1306
+ l += 0.24516 * sin(g);
1307
+ g = STR*(Ea - Ju - 2.*D + MP + 6275.88);
1308
+ l += 0.21117 * sin(g);
1309
+ g = STR*(2.*(Ea - Ma) - 846.36);
1310
+ l += 0.19444 * sin(g);
1311
+ g = STR*(2.*(Ea - Ju) + 1569.96);
1312
+ l -= 0.18457 * sin(g);
1313
+ g = STR*(2.*(Ea - Ju) - MP - 55.8);
1314
+ l += 0.18256 * sin(g);
1315
+ g = STR*(Ea - Ju - 2.*D + 6490.08);
1316
+ l += 0.16499 * sin(g);
1317
+ g = STR*(Ea - 2.*Ju - 212378.4);
1318
+ l += 0.16427 * sin(g);
1319
+ g = STR*(2.*(Ve - Ea - D) + MP + 1122.48);
1320
+ l += 0.16088 * sin(g);
1321
+ g = STR*(Ve - Ea - MP + 32.04);
1322
+ l -= 0.15350 * sin(g);
1323
+ g = STR*(Ea - Ju - MP + 4488.88);
1324
+ l += 0.14346 * sin(g);
1325
+ g = STR*(2.*(Ve - Ea + D) - MP - 8.64);
1326
+ l += 0.13594 * sin(g);
1327
+ g = STR*(2.*(Ve - Ea - D) + 1319.76);
1328
+ l += 0.13432 * sin(g);
1329
+ g = STR*(Ve - Ea - 2.*D + MP - 56.16);
1330
+ l -= 0.13122 * sin(g);
1331
+ g = STR*(Ve - Ea + MP + 54.36);
1332
+ l -= 0.12722 * sin(g);
1333
+ g = STR*(3.*(Ve - Ea) - MP + 433.8);
1334
+ l += 0.12539 * sin(g);
1335
+ g = STR*(Ea - Ju + MP + 4002.12);
1336
+ l += 0.10994 * sin(g);
1337
+ g = STR*(20.*Ve - 21.*Ea - 2.*D + MP - 317511.72);
1338
+ l += 0.10652 * sin(g);
1339
+ g = STR*(26.*Ve - 29.*Ea - MP + 270002.52);
1340
+ l += 0.10490 * sin(g);
1341
+ g = STR*(3.*Ve - 4.*Ea + D - MP - 322765.56);
1342
+ l += 0.10386 * sin(g);
1343
+ g = STR*(SWELP+648002.556);
1344
+ B = 8.04508 * sin(g);
1345
+ g = STR*(Ea+D+996048.252);
1346
+ B += 1.51021 * sin(g);
1347
+ g = STR*(f - MP + NF + 95554.332);
1348
+ B += 0.63037 * sin(g);
1349
+ g = STR*(f - MP - NF + 95553.792);
1350
+ B += 0.63014 * sin(g);
1351
+ g = STR*(SWELP - MP + 2.9);
1352
+ B += 0.45587 * sin(g);
1353
+ g = STR*(SWELP + MP + 2.5);
1354
+ B += -0.41573 * sin(g);
1355
+ g = STR*(SWELP - 2.0*NF + 3.2);
1356
+ B += 0.32623 * sin(g);
1357
+ g = STR*(SWELP - 2.0*D + 2.5);
1358
+ B += 0.29855 * sin(g);
1359
+ }
1360
+
1361
+ static void moon3()
1362
+ {
1363
+ /* terms in T^0 */
1364
+ moonpol[0] = 0.0;
1365
+ chewm( LR, NLR, 4, 1, moonpol );
1366
+ chewm( MB, NMB, 4, 3, moonpol );
1367
+ l += (((l4 * T + l3) * T + l2) * T + l1) * T * 1.0e-5;
1368
+ moonpol[0] = SWELP + l + 1.0e-4 * moonpol[0];
1369
+ moonpol[1] = 1.0e-4 * moonpol[1] + B;
1370
+ moonpol[2] = 1.0e-4 * moonpol[2] + 385000.52899; /* kilometers */
1371
+ }
1372
+
1373
+ /* Compute final ecliptic polar coordinates
1374
+ */
1375
+ static void moon4()
1376
+ {
1377
+ moonpol[2] /= AUNIT / 1000;
1378
+ moonpol[0] = STR * mods3600( moonpol[0] );
1379
+ moonpol[1] = STR * moonpol[1];
1380
+ B = moonpol[1];
1381
+ }
1382
+
1383
+ /* mean lunar node
1384
+ * J julian day
1385
+ * pol return array for position and velocity
1386
+ * (polar coordinates of ecliptic of date)
1387
+ */
1388
+ int swi_mean_node(double J, double *pol, char *serr)
1389
+ {
1390
+ #if 0
1391
+ double a, b, c;
1392
+ #endif
1393
+ char s[AS_MAXCH];
1394
+ T = (J-J2000)/36525.0;
1395
+ T2 = T*T;
1396
+ T3 = T*T2;
1397
+ T4 = T2*T2;
1398
+ /* with elements from swi_moshmoon2(), which are fitted to jpl-ephemeris */
1399
+ if (J < MOSHNDEPH_START || J > MOSHNDEPH_END) {
1400
+ if (serr != NULL) {
1401
+ sprintf(s, "jd %f outside mean node range %.2f .. %.2f ",
1402
+ J, MOSHNDEPH_START, MOSHNDEPH_END);
1403
+ if (strlen(serr) + strlen(s) < AS_MAXCH)
1404
+ strcat(serr, s);
1405
+ }
1406
+ return ERR;
1407
+ }
1408
+ mean_elements();
1409
+ /* longitude */
1410
+ pol[0] = swi_mod2PI((SWELP - NF) * STR);
1411
+ /* latitude */
1412
+ pol[1] = 0.0;
1413
+ /* distance */
1414
+ pol[2] = MOON_MEAN_DIST / AUNIT; /* or should it be derived from mean
1415
+ * orbital ellipse? */
1416
+ #if 0
1417
+ a = pol[0];
1418
+ /* Chapront, according to Meeus, German, p. 339 */
1419
+ pol[0] = 125.0445550 - 1934.1361849 * T + 0.0020762 * T2 +
1420
+ T3 / 467410 - T4 / 60616000;
1421
+ pol[0] = swi_mod2PI(pol[0] * DEGTORAD);
1422
+ c = pol[0];
1423
+ printf ("mean node\n");
1424
+ printf ("moshier de404 - chapront %f\"\n", (a-c) * RADTODEG * 3600);
1425
+ #endif
1426
+ return OK;
1427
+ }
1428
+
1429
+ /* mean lunar apogee ('dark moon', 'lilith')
1430
+ * J julian day
1431
+ * pol return array for position
1432
+ * (polar coordinates of ecliptic of date)
1433
+ * serr error return string
1434
+ */
1435
+ int swi_mean_apog(double J, double *pol, char *serr)
1436
+ {
1437
+ #if 0
1438
+ int i;
1439
+ double a, b;
1440
+ double x[3];
1441
+ #endif
1442
+ double node;
1443
+ char s[AS_MAXCH];
1444
+ T = (J-J2000)/36525.0;
1445
+ T2 = T*T;
1446
+ T3 = T*T2;
1447
+ T4 = T2*T2;
1448
+ /* with elements from swi_moshmoon2(), which are fitted to jpl-ephemeris */
1449
+ if (J < MOSHNDEPH_START || J > MOSHNDEPH_END) {
1450
+ if (serr != NULL) {
1451
+ sprintf(s, "jd %f outside mean apogee range %.2f .. %.2f ",
1452
+ J, MOSHNDEPH_START, MOSHNDEPH_END);
1453
+ if (strlen(serr) + strlen(s) < AS_MAXCH)
1454
+ strcat(serr, s);
1455
+ }
1456
+ return(ERR);
1457
+ }
1458
+ mean_elements();
1459
+ pol[0] = swi_mod2PI((SWELP - MP) * STR + PI);
1460
+ #if 0
1461
+ a = pol[0];
1462
+ /* Chapront, according to Meeus, German, p. 339 */
1463
+ pol[0] = 83.3532430 + 4069.0137111 * T - 0.0103238 * T2
1464
+ - T3 / 80053 + T4 / 18999000;
1465
+ pol[0] = swi_mod2PI(pol[0] * DEGTORAD + PI);
1466
+ b = pol[0];
1467
+ printf ("mean apogee\n");
1468
+ printf ("moshier de404 - chapront %f\"\n", (a-b) * RADTODEG * 3600);
1469
+ #endif
1470
+ pol[1] = 0;
1471
+ pol[2] = MOON_MEAN_DIST * (1 + MOON_MEAN_ECC) / AUNIT; /* apogee */
1472
+ #if 0
1473
+ pol[2] = 2 * MOON_MEAN_ECC * MOON_MEAN_DIST / AUNIT; /* 2nd focus */
1474
+ #endif
1475
+ /* Lilith or Dark Moon is either the empty focal point of the mean
1476
+ * lunar ellipse or, for some people, its apogee ("aphelion").
1477
+ * This is 180 degrees from the perigee.
1478
+ *
1479
+ * Since the lunar orbit is not in the ecliptic, the apogee must be
1480
+ * projected onto the ecliptic.
1481
+ * Joelle de Gravelaine has in her book "Lilith der schwarze Mond"
1482
+ * (Astrodata, 1990) an ephemeris which gives noon (12.00) positions
1483
+ * but does not project them onto the ecliptic.
1484
+ * This results in a mistake of several arc minutes.
1485
+ *
1486
+ * There is also another problem. The other focal point doesn't
1487
+ * coincide with the geocenter but with the barycenter of the
1488
+ * earth-moon-system. The difference is about 4700 km. If one
1489
+ * took this into account, it would result in an oscillation
1490
+ * of the Black Moon. If defined as the apogee, this oscillation
1491
+ * would be about +/- 40 arcmin.
1492
+ * If defined as the second focus, the effect is very large:
1493
+ * +/- 6 deg!
1494
+ * We neglect this influence.
1495
+ */
1496
+ /* apogee is now projected onto ecliptic */
1497
+ node = (SWELP - NF) * STR;
1498
+ pol[0] = swi_mod2PI(pol[0] - node);
1499
+ swi_polcart(pol, pol);
1500
+ swi_coortrf(pol, pol, -MOON_MEAN_INCL * DEGTORAD);
1501
+ swi_cartpol(pol, pol);
1502
+ pol[0] = swi_mod2PI(pol[0] + node);
1503
+ #if 0
1504
+ /* speed */
1505
+ mean_elements(T-PLAN_SPEED_INTV, &SWELP, &MP, &NF, &M, &D);
1506
+ pol[3] = swi_mod2PI((SWELP - MP) * STR + PI);
1507
+ pol[4] = 0;
1508
+ pol[5] = MOON_MEAN_DIST * (1 + MOON_MEAN_ECC) / AUNIT; /* apogee */
1509
+ #if 0
1510
+ pol[2] = 2 * MOON_MEAN_ECC * MOON_MEAN_DIST / AUNIT; /* 2nd focus */
1511
+ #endif
1512
+ node = (SWELP - NF) * STR;
1513
+ pol[3] = swi_mod2PI(pol[3] - node);
1514
+ swi_polcart(pol+3, pol+3);
1515
+ swi_coortrf(pol+3, pol+3, -MOON_MEAN_INCL * DEGTORAD);
1516
+ swi_cartpol(pol+3, pol+3);
1517
+ pol[3] = swi_mod2PI(pol[3] + node);
1518
+ for (i = 0; i <= 2; i++)
1519
+ pol[3+i] = pol[i] - pol[3+i];
1520
+ pol[3] = swi_mod2PI(pol[3]);
1521
+ #endif
1522
+ return OK;
1523
+ }
1524
+
1525
+ /* Program to step through the perturbation table
1526
+ */
1527
+ static void chewm(short *pt, int nlines, int nangles, int typflg, double *ans )
1528
+ {
1529
+ int i, j, k, k1, m;
1530
+ double cu, su, cv, sv, ff;
1531
+ for( i=0; i<nlines; i++ ) {
1532
+ k1 = 0;
1533
+ sv = 0.0;
1534
+ cv = 0.0;
1535
+ for( m=0; m<nangles; m++ ) {
1536
+ j = *pt++; /* multiple angle factor */
1537
+ if( j ) {
1538
+ k = j;
1539
+ if( j < 0 ) k = -k; /* make angle factor > 0 */
1540
+ /* sin, cos (k*angle) from lookup table */
1541
+ su = ss[m][k-1];
1542
+ cu = cc[m][k-1];
1543
+ if( j < 0 ) su = -su; /* negative angle factor */
1544
+ if( k1 == 0 ) {
1545
+ /* Set sin, cos of first angle. */
1546
+ sv = su;
1547
+ cv = cu;
1548
+ k1 = 1;
1549
+ }
1550
+ else {
1551
+ /* Combine angles by trigonometry. */
1552
+ ff = su*cv + cu*sv;
1553
+ cv = cu*cv - su*sv;
1554
+ sv = ff;
1555
+ }
1556
+ }
1557
+ }
1558
+ /* Accumulate
1559
+ */
1560
+ switch( typflg ) {
1561
+ /* large longitude and radius */
1562
+ case 1:
1563
+ j = *pt++;
1564
+ k = *pt++;
1565
+ ans[0] += (10000.0 * j + k) * sv;
1566
+ j = *pt++;
1567
+ k = *pt++;
1568
+ if( k ) ans[2] += (10000.0 * j + k) * cv;
1569
+ break;
1570
+ /* longitude and radius */
1571
+ case 2:
1572
+ j = *pt++;
1573
+ k = *pt++;
1574
+ ans[0] += j * sv;
1575
+ ans[2] += k * cv;
1576
+ break;
1577
+ /* large latitude */
1578
+ case 3:
1579
+ j = *pt++;
1580
+ k = *pt++;
1581
+ ans[1] += ( 10000.0*j + k)*sv;
1582
+ break;
1583
+ /* latitude */
1584
+ case 4:
1585
+ j = *pt++;
1586
+ ans[1] += j * sv;
1587
+ break;
1588
+ }
1589
+ }
1590
+ }
1591
+
1592
+ /* Prepare lookup table of sin and cos ( i*Lj )
1593
+ * for required multiple angles
1594
+ */
1595
+ static void sscc(int k, double arg, int n )
1596
+ {
1597
+ double cu, su, cv, sv, s;
1598
+ int i;
1599
+ su = sin(arg);
1600
+ cu = cos(arg);
1601
+ ss[k][0] = su; /* sin(L) */
1602
+ cc[k][0] = cu; /* cos(L) */
1603
+ sv = 2.0*su*cu;
1604
+ cv = cu*cu - su*su;
1605
+ ss[k][1] = sv; /* sin(2L) */
1606
+ cc[k][1] = cv;
1607
+ for( i=2; i<n; i++ ) {
1608
+ s = su*cv + cu*sv;
1609
+ cv = cu*cv - su*sv;
1610
+ sv = s;
1611
+ ss[k][i] = sv; /* sin( i+1 L ) */
1612
+ cc[k][i] = cv;
1613
+ }
1614
+ }
1615
+
1616
+ /* converts from polar coordinates of ecliptic of date
1617
+ * to cartesian coordinates of equator 2000
1618
+ * tjd date
1619
+ * x array of position
1620
+ */
1621
+ static void ecldat_equ2000(double tjd, double *xpm) {
1622
+ /* cartesian */
1623
+ swi_polcart(xpm, xpm);
1624
+ /* equatorial */
1625
+ swi_coortrf2(xpm, xpm, -swed.oec.seps, swed.oec.ceps);
1626
+ /* j2000 */
1627
+ swi_precess(xpm, tjd, J_TO_J2000);/**/
1628
+ }
1629
+
1630
+ /* Reduce arc seconds modulo 360 degrees
1631
+ * answer in arc seconds
1632
+ */
1633
+ static double mods3600(double x)
1634
+ {
1635
+ double lx;
1636
+ lx = x;
1637
+ lx = lx - 1296000.0 * floor( lx/1296000.0 );
1638
+ return( lx );
1639
+ }
1640
+
1641
+ void swi_mean_lunar_elements(double tjd,
1642
+ double *node, double *dnode,
1643
+ double *peri, double *dperi)
1644
+ {
1645
+ T = (tjd - J2000) / 36525.0;
1646
+ T2 = T*T;
1647
+ mean_elements();
1648
+ *node = swe_degnorm((SWELP - NF) * STR * RADTODEG);
1649
+ *peri = swe_degnorm((SWELP - MP) * STR * RADTODEG);
1650
+ T -= 1.0 / 36525;
1651
+ mean_elements();
1652
+ *dnode = swe_degnorm(*node - (SWELP - NF) * STR * RADTODEG);
1653
+ *dnode -= 360;
1654
+ *dperi = swe_degnorm(*peri - (SWELP - MP) * STR * RADTODEG);
1655
+ }
1656
+
1657
+ static void mean_elements()
1658
+ {
1659
+ double fracT = fmod(T, 1);
1660
+ /* Mean anomaly of sun = l' (J. Laskar) */
1661
+ /*M = mods3600(129596581.038354 * T + 1287104.76154);*/
1662
+ M = mods3600(129600000.0 * fracT - 3418.961646 * T + 1287104.76154);
1663
+ M += ((((((((
1664
+ 1.62e-20 * T
1665
+ - 1.0390e-17 ) * T
1666
+ - 3.83508e-15 ) * T
1667
+ + 4.237343e-13 ) * T
1668
+ + 8.8555011e-11 ) * T
1669
+ - 4.77258489e-8 ) * T
1670
+ - 1.1297037031e-5 ) * T
1671
+ + 1.4732069041e-4 ) * T
1672
+ - 0.552891801772 ) * T2;
1673
+ #ifdef MOSH_MOON_200
1674
+ /* Mean distance of moon from its ascending node = F */
1675
+ NF = mods3600( 1739527263.0983 * T + 335779.55755 );
1676
+ /* Mean anomaly of moon = l */
1677
+ MP = mods3600( 1717915923.4728 * T + 485868.28096 );
1678
+ /* Mean elongation of moon = D */
1679
+ D = mods3600( 1602961601.4603 * T + 1072260.73512 );
1680
+ /* Mean longitude of moon */
1681
+ SWELP = mods3600( 1732564372.83264 * T + 785939.95571 );
1682
+ /* Higher degree secular terms found by least squares fit */
1683
+ NF += (((((z[5] *T+z[4] )*T + z[3] )*T + z[2] )*T + z[1] )*T + z[0] )*T2;
1684
+ MP += (((((z[11]*T+z[10])*T + z[9] )*T + z[8] )*T + z[7] )*T + z[6] )*T2;
1685
+ D += (((((z[17]*T+z[16])*T + z[15])*T + z[14])*T + z[13])*T + z[12])*T2;
1686
+ SWELP += (((((z[23]*T+z[22])*T + z[21])*T + z[20])*T + z[19])*T + z[18])*T2;
1687
+ #else
1688
+ /* Mean distance of moon from its ascending node = F */
1689
+ /*NF = mods3600((1739527263.0983 - 2.079419901760e-01) * T + 335779.55755);*/
1690
+ NF = mods3600(1739232000.0 * fracT + 295263.0983 * T - 2.079419901760e-01 * T + 335779.55755);
1691
+ /* Mean anomaly of moon = l */
1692
+ /*MP = mods3600((1717915923.4728 - 2.035946368532e-01) * T + 485868.28096);*/
1693
+ MP = mods3600(1717200000.0 * fracT + 715923.4728 * T - 2.035946368532e-01 * T + 485868.28096);
1694
+ /* Mean elongation of moon = D */
1695
+ /*D = mods3600((1602961601.4603 + 3.962893294503e-01) * T + 1072260.73512);*/
1696
+ D = mods3600(1601856000.0 * fracT + 1105601.4603 * T + 3.962893294503e-01 * T + 1072260.73512);
1697
+ /* Mean longitude of moon, referred to the mean ecliptic and equinox of date */
1698
+ /*SWELP = mods3600((1732564372.83264 - 6.784914260953e-01) * T + 785939.95571);*/
1699
+ SWELP = mods3600(1731456000.0 * fracT + 1108372.83264 * T - 6.784914260953e-01 * T + 785939.95571);
1700
+ /* Higher degree secular terms found by least squares fit */
1701
+ NF += ((z[2]*T + z[1])*T + z[0])*T2;
1702
+ MP += ((z[5]*T + z[4])*T + z[3])*T2;
1703
+ D += ((z[8]*T + z[7])*T + z[6])*T2;
1704
+ SWELP += ((z[11]*T + z[10])*T + z[9])*T2;
1705
+ #endif /* ! MOSH_MOON_200 */
1706
+ /* sensitivity of mean elements
1707
+ * delta argument = scale factor times delta amplitude (arcsec)
1708
+ * cos l 9.0019 = mean eccentricity
1709
+ * cos 2D 43.6
1710
+ * cos F 11.2 (latitude term)
1711
+ */
1712
+ }
1713
+
1714
+ void mean_elements_pl()
1715
+ {
1716
+ /* Mean longitudes of planets (Laskar, Bretagnon) */
1717
+ Ve = mods3600( 210664136.4335482 * T + 655127.283046 );
1718
+ Ve += ((((((((
1719
+ -9.36e-023 * T
1720
+ - 1.95e-20 ) * T
1721
+ + 6.097e-18 ) * T
1722
+ + 4.43201e-15 ) * T
1723
+ + 2.509418e-13 ) * T
1724
+ - 3.0622898e-10 ) * T
1725
+ - 2.26602516e-9 ) * T
1726
+ - 1.4244812531e-5 ) * T
1727
+ + 0.005871373088 ) * T2;
1728
+ Ea = mods3600( 129597742.26669231 * T + 361679.214649 );
1729
+ Ea += (((((((( -1.16e-22 * T
1730
+ + 2.976e-19 ) * T
1731
+ + 2.8460e-17 ) * T
1732
+ - 1.08402e-14 ) * T
1733
+ - 1.226182e-12 ) * T
1734
+ + 1.7228268e-10 ) * T
1735
+ + 1.515912254e-7 ) * T
1736
+ + 8.863982531e-6 ) * T
1737
+ - 2.0199859001e-2 ) * T2;
1738
+ Ma = mods3600( 68905077.59284 * T + 1279559.78866 );
1739
+ Ma += (-1.043e-5*T + 9.38012e-3)*T2;
1740
+ Ju = mods3600( 10925660.428608 * T + 123665.342120 );
1741
+ Ju += (1.543273e-5*T - 3.06037836351e-1)*T2;
1742
+ Sa = mods3600( 4399609.65932 * T + 180278.89694 );
1743
+ Sa += (( 4.475946e-8*T - 6.874806E-5 ) * T + 7.56161437443E-1)*T2;
1744
+ }
1745
+
1746
+ /* Calculate geometric coordinates of true interpolated Moon apsides
1747
+ */
1748
+ int swi_intp_apsides(double J, double *pol, int ipli)
1749
+ {
1750
+ double dd;
1751
+ double rsv[3];
1752
+ double sNF, sD, sLP, sMP, sM, sVe, sEa, sMa, sJu, sSa, fM, fVe, fEa, fMa, fJu, fSa, cMP, zMP, fNF, fD, fLP;
1753
+ double dMP, mLP, mNF, mD, mMP;
1754
+ int i, ii, iii, niter = 4; /* niter: silence compiler warning */
1755
+ ii=1;
1756
+ zMP=27.55454988;
1757
+ fNF = 27.212220817/zMP;/**/
1758
+ fD = 29.530588835/zMP;/**/
1759
+ fLP = 27.321582/zMP;/**/
1760
+ fM = 365.2596359/zMP;
1761
+ fVe = 224.7008001/zMP;
1762
+ fEa = 365.2563629/zMP;
1763
+ fMa = 686.9798519/zMP;
1764
+ fJu = 4332.589348/zMP;
1765
+ fSa = 10759.22722/zMP;
1766
+ T = (J-J2000)/36525.0;
1767
+ T2 = T*T;
1768
+ T4 = T2*T2;
1769
+ mean_elements();
1770
+ mean_elements_pl();
1771
+ sNF = NF;
1772
+ sD = D;
1773
+ sLP = SWELP;
1774
+ sMP = MP;
1775
+ sM = M ;
1776
+ sVe = Ve;
1777
+ sEa = Ea;
1778
+ sMa = Ma;
1779
+ sJu = Ju;
1780
+ sSa = Sa;
1781
+ sNF = mods3600(NF);
1782
+ sD = mods3600(D);
1783
+ sLP = mods3600(SWELP);
1784
+ sMP = mods3600(MP);
1785
+ if (ipli == SEI_INTP_PERG) {MP = 0.0; niter = 5;}
1786
+ if (ipli == SEI_INTP_APOG) {MP = 648000.0; niter = 4;}
1787
+ cMP = 0;
1788
+ dd = 18000.0;
1789
+ for (iii= 0; iii<=niter; iii++) {/**/
1790
+ dMP = sMP - MP;
1791
+ mLP = sLP - dMP;
1792
+ mNF = sNF - dMP;
1793
+ mD = sD - dMP;
1794
+ mMP = sMP - dMP;
1795
+ for (ii = 0; ii <=2; ii++) {/**/
1796
+ MP = mMP + (ii-1)*dd; /**/
1797
+ NF = mNF + (ii-1)*dd/fNF;
1798
+ D = mD + (ii-1)*dd/fD;
1799
+ SWELP = mLP + (ii-1)*dd/fLP;
1800
+ M = sM + (ii-1)*dd/fM ;
1801
+ Ve = sVe + (ii-1)*dd/fVe;
1802
+ Ea = sEa + (ii-1)*dd/fEa;
1803
+ Ma = sMa + (ii-1)*dd/fMa;
1804
+ Ju = sJu + (ii-1)*dd/fJu;
1805
+ Sa = sSa + (ii-1)*dd/fSa;
1806
+ moon1();
1807
+ moon2();
1808
+ moon3();
1809
+ moon4();
1810
+ if (ii==1) {
1811
+ for( i=0; i<3; i++ ) pol[i] = moonpol[i];
1812
+ }
1813
+ rsv[ii] = moonpol[2];
1814
+ }
1815
+ cMP = (1.5*rsv[0] - 2*rsv[1] + 0.5*rsv[2]) / (rsv[0] + rsv[2] - 2*rsv[1]);/**/
1816
+ cMP *= dd;
1817
+ cMP = cMP - dd;
1818
+ mMP += cMP;
1819
+ MP = mMP;
1820
+ dd /= 10;
1821
+ }
1822
+ return(0);
1823
+ }
1824
+