swe4r 0.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,590 @@
1
+ /*********************************************************
2
+ $Header: /home/dieter/sweph/RCS/swedate.c,v 1.75 2009/04/08 07:17:29 dieter Exp $
3
+ version 15-feb-89 16:30
4
+
5
+ swe_date_conversion()
6
+ swe_revjul()
7
+ swe_julday()
8
+
9
+ ************************************************************/
10
+ /* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
11
+
12
+ License conditions
13
+ ------------------
14
+
15
+ This file is part of Swiss Ephemeris.
16
+
17
+ Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
18
+ or distributor accepts any responsibility for the consequences of using it,
19
+ or for whether it serves any particular purpose or works at all, unless he
20
+ or she says so in writing.
21
+
22
+ Swiss Ephemeris is made available by its authors under a dual licensing
23
+ system. The software developer, who uses any part of Swiss Ephemeris
24
+ in his or her software, must choose between one of the two license models,
25
+ which are
26
+ a) GNU public license version 2 or later
27
+ b) Swiss Ephemeris Professional License
28
+
29
+ The choice must be made before the software developer distributes software
30
+ containing parts of Swiss Ephemeris to others, and before any public
31
+ service using the developed software is activated.
32
+
33
+ If the developer choses the GNU GPL software license, he or she must fulfill
34
+ the conditions of that license, which includes the obligation to place his
35
+ or her whole software project under the GNU GPL or a compatible license.
36
+ See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
37
+
38
+ If the developer choses the Swiss Ephemeris Professional license,
39
+ he must follow the instructions as found in http://www.astro.com/swisseph/
40
+ and purchase the Swiss Ephemeris Professional Edition from Astrodienst
41
+ and sign the corresponding license contract.
42
+
43
+ The License grants you the right to use, copy, modify and redistribute
44
+ Swiss Ephemeris, but only under certain conditions described in the License.
45
+ Among other things, the License requires that the copyright notices and
46
+ this notice be preserved on all copies.
47
+
48
+ Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
49
+
50
+ The authors of Swiss Ephemeris have no control or influence over any of
51
+ the derived works, i.e. over software or services created by other
52
+ programmers which use Swiss Ephemeris functions.
53
+
54
+ The names of the authors or of the copyright holder (Astrodienst) must not
55
+ be used for promoting any software, product or service which uses or contains
56
+ the Swiss Ephemeris. This copyright notice is the ONLY place where the
57
+ names of the authors can legally appear, except in cases where they have
58
+ given special permission in writing.
59
+
60
+ The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
61
+ for promoting such software, products or services.
62
+ */
63
+
64
+ /*
65
+ swe_date_conversion():
66
+ This function converts some date+time input {d,m,y,uttime}
67
+ into the Julian day number tjd.
68
+ The function checks that the input is a legal combination
69
+ of dates; for illegal dates like 32 January 1993 it returns ERR
70
+ but still converts the date correctly, i.e. like 1 Feb 1993.
71
+ The function is usually used to convert user input of birth data
72
+ into the Julian day number. Illegal dates should be notified to the user.
73
+
74
+ Be aware that we always use astronomical year numbering for the years
75
+ before Christ, not the historical year numbering.
76
+ Astronomical years are done with negative numbers, historical
77
+ years with indicators BC or BCE (before common era).
78
+ Year 0 (astronomical) = 1 BC historical.
79
+ year -1 (astronomical) = 2 BC
80
+ etc.
81
+ Many users of Astro programs do not know about this difference.
82
+
83
+ Return: OK or ERR (for illegal date)
84
+ *********************************************************/
85
+
86
+ # include "swephexp.h"
87
+ # include "sweph.h"
88
+
89
+ static AS_BOOL init_leapseconds_done = FALSE;
90
+
91
+
92
+ int FAR PASCAL_CONV swe_date_conversion(int y,
93
+ int m,
94
+ int d, /* day, month, year */
95
+ double uttime, /* UT in hours (decimal) */
96
+ char c, /* calendar g[regorian]|j[ulian] */
97
+ double *tjd)
98
+ {
99
+ int rday, rmon, ryear;
100
+ double rut, jd;
101
+ int gregflag = SE_JUL_CAL;
102
+ if (c == 'g')
103
+ gregflag = SE_GREG_CAL;
104
+ rut = uttime; /* hours UT */
105
+ jd = swe_julday(y, m, d, rut, gregflag);
106
+ swe_revjul(jd, gregflag, &ryear, &rmon, &rday, &rut);
107
+ *tjd = jd;
108
+ if (rmon == m && rday == d && ryear == y) {
109
+ return OK;
110
+ } else {
111
+ return ERR;
112
+ }
113
+ } /* end date_conversion */
114
+
115
+ /*************** swe_julday ********************************************
116
+ * This function returns the absolute Julian day number (JD)
117
+ * for a given calendar date.
118
+ * The arguments are a calendar date: day, month, year as integers,
119
+ * hour as double with decimal fraction.
120
+ * If gregflag = SE_GREG_CAL (1), Gregorian calendar is assumed,
121
+ * if gregflag = SE_JUL_CAL (0),Julian calendar is assumed.
122
+
123
+ The Julian day number is system of numbering all days continously
124
+ within the time range of known human history. It should be familiar
125
+ for every astrological or astronomical programmer. The time variable
126
+ in astronomical theories is usually expressed in Julian days or
127
+ Julian centuries (36525 days per century) relative to some start day;
128
+ the start day is called 'the epoch'.
129
+ The Julian day number is a double representing the number of
130
+ days since JD = 0.0 on 1 Jan -4712, 12:00 noon.
131
+
132
+ Midnight has always a JD with fraction .5, because traditionally
133
+ the astronomical day started at noon. This was practical because
134
+ then there was no change of date during a night at the telescope.
135
+ From this comes also the fact the noon ephemerides were printed
136
+ before midnight ephemerides were introduced early in the 20th century.
137
+
138
+ NOTE: The Julian day number must not be confused with the Julian
139
+ calendar system.
140
+ The Julian day number was introduced by Josephus Justus Scaliger
141
+ in 1583 and named either after the Julian calendar year or
142
+ after his father Julius Caesar Scaliger.
143
+
144
+ Be aware the we always use astronomical year numbering for the years
145
+ before Christ, not the historical year numbering.
146
+ Astronomical years are done with negative numbers, historical
147
+ years with indicators BC or BCE (before common era).
148
+ Year 0 (astronomical) = 1 BC
149
+ year -1 (astronomical) = 2 BC
150
+ etc.
151
+
152
+ Original author: Marc Pottenger, Los Angeles.
153
+ with bug fix for year < -4711 15-aug-88 by Alois Treindl
154
+ (The parameter sequence m,d,y still indicates the US origin,
155
+ be careful because the similar function date_conversion() uses
156
+ other parameter sequence and also Astrodienst relative juldate.)
157
+
158
+ References: Oliver Montenbruck, Grundlagen der Ephemeridenrechnung,
159
+ Verlag Sterne und Weltraum (1987), p.49 ff
160
+
161
+ related functions: swe_revjul() reverse Julian day number: compute the
162
+ calendar date from a given JD
163
+ date_conversion() includes test for legal date values
164
+ and notifies errors like 32 January.
165
+ ****************************************************************/
166
+
167
+ double FAR PASCAL_CONV swe_julday(int year, int month, int day, double hour, int gregflag)
168
+ {
169
+ double jd;
170
+ double u,u0,u1,u2;
171
+ u = year;
172
+ if (month < 3) u -=1;
173
+ u0 = u + 4712.0;
174
+ u1 = month + 1.0;
175
+ if (u1 < 4) u1 += 12.0;
176
+ jd = floor(u0*365.25)
177
+ + floor(30.6*u1+0.000001)
178
+ + day + hour/24.0 - 63.5;
179
+ if (gregflag == SE_GREG_CAL) {
180
+ u2 = floor(fabs(u) / 100) - floor(fabs(u) / 400);
181
+ if (u < 0.0) u2 = -u2;
182
+ jd = jd - u2 + 2;
183
+ if ((u < 0.0) && (u/100 == floor(u/100)) && (u/400 != floor(u/400)))
184
+ jd -=1;
185
+ }
186
+ return jd;
187
+ }
188
+
189
+ /*** swe_revjul ******************************************************
190
+ swe_revjul() is the inverse function to swe_julday(), see the description
191
+ there.
192
+ Arguments are julian day number, calendar flag (0=julian, 1=gregorian)
193
+ return values are the calendar day, month, year and the hour of
194
+ the day with decimal fraction (0 .. 23.999999).
195
+
196
+ Be aware the we use astronomical year numbering for the years
197
+ before Christ, not the historical year numbering.
198
+ Astronomical years are done with negative numbers, historical
199
+ years with indicators BC or BCE (before common era).
200
+ Year 0 (astronomical) = 1 BC historical year
201
+ year -1 (astronomical) = 2 BC historical year
202
+ year -234 (astronomical) = 235 BC historical year
203
+ etc.
204
+
205
+ Original author Mark Pottenger, Los Angeles.
206
+ with bug fix for year < -4711 16-aug-88 Alois Treindl
207
+ *************************************************************************/
208
+ void FAR PASCAL_CONV swe_revjul (double jd, int gregflag,
209
+ int *jyear, int *jmon, int *jday, double *jut)
210
+ {
211
+ double u0,u1,u2,u3,u4;
212
+ u0 = jd + 32082.5;
213
+ if (gregflag == SE_GREG_CAL) {
214
+ u1 = u0 + floor (u0/36525.0) - floor (u0/146100.0) - 38.0;
215
+ if (jd >= 1830691.5) u1 +=1;
216
+ u0 = u0 + floor (u1/36525.0) - floor (u1/146100.0) - 38.0;
217
+ }
218
+ u2 = floor (u0 + 123.0);
219
+ u3 = floor ( (u2 - 122.2) / 365.25);
220
+ u4 = floor ( (u2 - floor (365.25 * u3) ) / 30.6001);
221
+ *jmon = (int) (u4 - 1.0);
222
+ if (*jmon > 12) *jmon -= 12;
223
+ *jday = (int) (u2 - floor (365.25 * u3) - floor (30.6001 * u4));
224
+ *jyear = (int) (u3 + floor ( (u4 - 2.0) / 12.0) - 4800);
225
+ *jut = (jd - floor (jd + 0.5) + 0.5) * 24.0;
226
+ }
227
+
228
+ /* transform local time to UTC or UTC to local time
229
+ *
230
+ * input
231
+ * iyear ... dsec date and time
232
+ * d_timezone timezone offset
233
+ * output
234
+ * iyear_out ... dsec_out
235
+ *
236
+ * For time zones east of Greenwich, d_timezone is positive.
237
+ * For time zones west of Greenwich, d_timezone is negative.
238
+ *
239
+ * For conversion from local time to utc, use +d_timezone.
240
+ * For conversion from utc to local time, use -d_timezone.
241
+ */
242
+ void FAR PASCAL_CONV swe_utc_time_zone(
243
+ int32 iyear, int32 imonth, int32 iday,
244
+ int32 ihour, int32 imin, double dsec,
245
+ double d_timezone,
246
+ int32 *iyear_out, int32 *imonth_out, int32 *iday_out,
247
+ int32 *ihour_out, int32 *imin_out, double *dsec_out
248
+ )
249
+ {
250
+ double tjd, d;
251
+ AS_BOOL have_leapsec = FALSE;
252
+ double dhour;
253
+ if (dsec >= 60.0) {
254
+ have_leapsec = TRUE;
255
+ dsec -= 1.0;
256
+ }
257
+ dhour = ((double) ihour) + ((double) imin) / 60.0 + dsec / 3600.0;
258
+ tjd = swe_julday(iyear, imonth, iday, 0, SE_GREG_CAL);
259
+ dhour -= d_timezone;
260
+ if (dhour < 0.0) {
261
+ tjd -= 1.0;
262
+ dhour += 24.0;
263
+ }
264
+ if (dhour >= 24.0) {
265
+ tjd += 1.0;
266
+ dhour -= 24.0;
267
+ }
268
+ swe_revjul(tjd + 0.001, SE_GREG_CAL, iyear_out, imonth_out, iday_out, &d);
269
+ *ihour_out = (int) dhour;
270
+ d = (dhour - (double) *ihour_out) * 60;
271
+ *imin_out = (int) d;
272
+ *dsec_out = (d - (double) *imin_out) * 60;
273
+ if (have_leapsec)
274
+ *dsec_out += 1.0;
275
+ }
276
+
277
+ /*
278
+ * functions for the handling of UTC
279
+ */
280
+
281
+ /* Leap seconds were inserted at the end of the following days:*/
282
+ #define NLEAP_SECONDS 24
283
+ #define NLEAP_SECONDS_SPACE 100
284
+ static int leap_seconds[NLEAP_SECONDS_SPACE] = {
285
+ 19720630,
286
+ 19721231,
287
+ 19731231,
288
+ 19741231,
289
+ 19751231,
290
+ 19761231,
291
+ 19771231,
292
+ 19781231,
293
+ 19791231,
294
+ 19810630,
295
+ 19820630,
296
+ 19830630,
297
+ 19850630,
298
+ 19871231,
299
+ 19891231,
300
+ 19901231,
301
+ 19920630,
302
+ 19930630,
303
+ 19940630,
304
+ 19951231,
305
+ 19970630,
306
+ 19981231,
307
+ 20051231,
308
+ 20081231,
309
+ 0 /* keep this 0 as end mark */
310
+ };
311
+ #define J1972 2441317.5
312
+ #define NLEAP_INIT 10
313
+
314
+ /* Read additional leap second dates from external file, if given.
315
+ */
316
+ static int init_leapsec(void)
317
+ {
318
+ FILE *fp;
319
+ int ndat, ndat_last;
320
+ int tabsiz = 0;
321
+ int i;
322
+ char s[AS_MAXCH];
323
+ char *sp;
324
+ if (!init_leapseconds_done) {
325
+ init_leapseconds_done = TRUE;
326
+ tabsiz = NLEAP_SECONDS;
327
+ ndat_last = leap_seconds[NLEAP_SECONDS - 1];
328
+ /* no error message if file is missing */
329
+ if ((fp = swi_fopen(-1, "seleapsec.txt", swed.ephepath, NULL)) == NULL)
330
+ return NLEAP_SECONDS;
331
+ while(fgets(s, AS_MAXCH, fp) != NULL) {
332
+ sp = s;
333
+ while (*sp == ' ' || *sp == '\t') sp++;
334
+ sp++;
335
+ if (*sp == '#' || *sp == '\n')
336
+ continue;
337
+ ndat = atoi(s);
338
+ if (ndat <= ndat_last)
339
+ continue;
340
+ /* table space is limited. no error msg, if exceeded */
341
+ if (tabsiz >= NLEAP_SECONDS_SPACE)
342
+ return tabsiz;
343
+ leap_seconds[tabsiz] = ndat;
344
+ tabsiz++;
345
+ }
346
+ if (tabsiz > NLEAP_SECONDS) leap_seconds[tabsiz] = 0; /* end mark */
347
+ fclose(fp);
348
+ return tabsiz;
349
+ }
350
+ /* find table size */
351
+ tabsiz = 0;
352
+ for (i = 0; i < NLEAP_SECONDS_SPACE; i++) {
353
+ if (leap_seconds[i] == 0)
354
+ break;
355
+ else
356
+ tabsiz++;
357
+ }
358
+ return tabsiz;
359
+ }
360
+
361
+ /*
362
+ * Input: Clock time UTC, year, month, day, hour, minute, second (decimal).
363
+ * gregflag Calendar flag
364
+ * serr error string
365
+ * Output: An array of doubles:
366
+ * dret[0] = Julian day number TT (ET)
367
+ * dret[1] = Julian day number UT1
368
+ *
369
+ * Function returns OK or Error.
370
+ *
371
+ * - Before 1972, swe_utc_to_jd() treats its input time as UT1.
372
+ * Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
373
+ * UTC second was regularly changed, so that UTC remained very close to UT1.
374
+ * - From 1972 on, input time is treated as UTC.
375
+ * - If delta_t - nleap - 32.184 > 1, the input time is treated as UT1.
376
+ * Note: Like this we avoid errors greater than 1 second in case that
377
+ * the leap seconds table (or the Swiss Ephemeris version) is not updated
378
+ * for a long time.
379
+ */
380
+ int32 FAR PASCAL_CONV swe_utc_to_jd(int32 iyear, int32 imonth, int32 iday, int32 ihour, int32 imin, double dsec, int32 gregflag, double *dret, char *serr)
381
+ {
382
+ double tjd_ut1, tjd_et, tjd_et_1972, dhour, d;
383
+ int iyear2, imonth2, iday2;
384
+ int i, j, ndat, nleap, tabsiz_nleap;
385
+ /*
386
+ * error handling: invalid iyear etc.
387
+ */
388
+ tjd_ut1 = swe_julday(iyear, imonth, iday, 0, gregflag);
389
+ swe_revjul(tjd_ut1, gregflag, &iyear2, &imonth2, &iday2, &d);
390
+ if (iyear != iyear2 || imonth != imonth2 || iday != iday2) {
391
+ if (serr != NULL)
392
+ sprintf(serr, "invalid date: year = %d, month = %d, day = %d", iyear, imonth, iday);
393
+ return ERR;
394
+ }
395
+ if (ihour < 0 || ihour > 23
396
+ || imin < 0 || imin > 59
397
+ || dsec < 0 || dsec >= 61
398
+ || (dsec >= 60 && (imin < 59 || ihour < 23 || tjd_ut1 < J1972))) {
399
+ if (serr != NULL)
400
+ sprintf(serr, "invalid time: %d:%d:%.2f", ihour, imin, dsec);
401
+ return ERR;
402
+ }
403
+ dhour = (double) ihour + ((double) imin) / 60.0 + dsec / 3600.0;
404
+ /*
405
+ * before 1972, we treat input date as UT1
406
+ */
407
+ if (tjd_ut1 < J1972) {
408
+ dret[1] = swe_julday(iyear, imonth, iday, dhour, gregflag);
409
+ dret[0] = dret[1] + swe_deltat(dret[1]);
410
+ return OK;
411
+ }
412
+ /*
413
+ * if gregflag = Julian calendar, convert to gregorian calendar
414
+ */
415
+ if (gregflag == SE_JUL_CAL) {
416
+ gregflag = SE_GREG_CAL;
417
+ swe_revjul(tjd_ut1, gregflag, &iyear, &imonth, &iday, &d);
418
+ }
419
+ /*
420
+ * number of leap seconds since 1972:
421
+ */
422
+ tabsiz_nleap = init_leapsec();
423
+ nleap = NLEAP_INIT; /* initial difference between UTC and TAI in 1972 */
424
+ ndat = iyear * 10000 + imonth * 100 + iday;
425
+ for (i = 0; i < tabsiz_nleap; i++) {
426
+ if (ndat <= leap_seconds[i])
427
+ break;
428
+ nleap++;
429
+ }
430
+ /*
431
+ * For input dates > today:
432
+ * If leap seconds table is not up to date, we'd better interpret the
433
+ * input time as UT1, not as UTC. How do we find out?
434
+ * Check, if delta_t - nleap - 32.184 > 0.9
435
+ */
436
+ d = swe_deltat(tjd_ut1) * 86400.0;
437
+ if (d - (double) nleap - 32.184 >= 1.0) {
438
+ dret[1] = tjd_ut1 + dhour / 24.0;
439
+ dret[0] = dret[1] + swe_deltat(dret[1]);
440
+ return OK;
441
+ }
442
+ /*
443
+ * if input second is 60: is it a valid leap second ?
444
+ */
445
+ if (dsec >= 60) {
446
+ j = 0;
447
+ for (i = 0; i < tabsiz_nleap; i++) {
448
+ if (ndat == leap_seconds[i]) {
449
+ j = 1;
450
+ break;
451
+ }
452
+ }
453
+ if (j != 1) {
454
+ if (serr != NULL)
455
+ sprintf(serr, "invalid time (no leap second!): %d:%d:%.2f", ihour, imin, dsec);
456
+ return ERR;
457
+ }
458
+ }
459
+ /*
460
+ * convert UTC to ET and UT1
461
+ */
462
+ /* the number of days between input date and 1 jan 1972: */
463
+ d = tjd_ut1 - J1972;
464
+ /* SI time since 1972, ignoring leap seconds: */
465
+ d += (double) ihour / 24.0 + (double) imin / 1440.0 + dsec / 86400.0;
466
+ /* ET (TT) */
467
+ tjd_et_1972 = J1972 + (32.184 + NLEAP_INIT) / 86400.0;
468
+ tjd_et = tjd_et_1972 + d + ((double) (nleap - NLEAP_INIT)) / 86400.0;
469
+ d = swe_deltat(tjd_et);
470
+ tjd_ut1 = tjd_et - swe_deltat(tjd_et - d);
471
+ dret[0] = tjd_et;
472
+ dret[1] = tjd_ut1;
473
+ return OK;
474
+ }
475
+
476
+ /*
477
+ * Input: tjd_et Julian day number, terrestrial time (ephemeris time).
478
+ * gregfalg Calendar flag
479
+ * Output: UTC year, month, day, hour, minute, second (decimal).
480
+ *
481
+ * - Before 1 jan 1972 UTC, output UT1.
482
+ * Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
483
+ * UTC second was regularly changed, so that UTC remained very close to UT1.
484
+ * - From 1972 on, output is UTC.
485
+ * - If delta_t - nleap - 32.184 > 1, the output is UT1.
486
+ * Note: Like this we avoid errors greater than 1 second in case that
487
+ * the leap seconds table (or the Swiss Ephemeris version) has not been
488
+ * updated for a long time.
489
+ */
490
+ void FAR PASCAL_CONV swe_jdet_to_utc(double tjd_et, int32 gregflag, int32 *iyear, int32 *imonth, int32 *iday, int32 *ihour, int32 *imin, double *dsec)
491
+ {
492
+ int i;
493
+ int second_60 = 0;
494
+ int iyear2, imonth2, iday2, nleap, ndat, tabsiz_nleap;
495
+ double d, tjd, tjd_et_1972, tjd_ut, dret[10];
496
+ /*
497
+ * if tjd_et is before 1 jan 1972 UTC, return UT1
498
+ */
499
+ tjd_et_1972 = J1972 + (32.184 + NLEAP_INIT) / 86400.0;
500
+ d = swe_deltat(tjd_et);
501
+ tjd_ut = tjd_et - swe_deltat(tjd_et - d);
502
+ if (tjd_et < tjd_et_1972) {
503
+ swe_revjul(tjd_ut, gregflag, iyear, imonth, iday, &d);
504
+ *ihour = (int32) d;
505
+ d -= (double) *ihour;
506
+ d *= 60;
507
+ *imin = (int32) d;
508
+ *dsec = (d - (double) *imin) * 60.0;
509
+ return;
510
+ }
511
+ /*
512
+ * minimum number of leap seconds since 1972; we may be missing one leap
513
+ * second
514
+ */
515
+ tabsiz_nleap = init_leapsec();
516
+ swe_revjul(tjd_ut-1, SE_GREG_CAL, &iyear2, &imonth2, &iday2, &d);
517
+ ndat = iyear2 * 10000 + imonth2 * 100 + iday2;
518
+ nleap = 0;
519
+ for (i = 0; i < tabsiz_nleap; i++) {
520
+ if (ndat <= leap_seconds[i])
521
+ break;
522
+ nleap++;
523
+ }
524
+ /* date of potentially missing leapsecond */
525
+ if (nleap < tabsiz_nleap) {
526
+ i = leap_seconds[nleap];
527
+ iyear2 = i / 10000;
528
+ imonth2 = (i % 10000) / 100;;
529
+ iday2 = i % 100;
530
+ tjd = swe_julday(iyear2, imonth2, iday2, 0, SE_GREG_CAL);
531
+ swe_revjul(tjd+1, SE_GREG_CAL, &iyear2, &imonth2, &iday2, &d);
532
+ swe_utc_to_jd(iyear2,imonth2,iday2, 0, 0, 0, SE_GREG_CAL, dret, NULL);
533
+ d = tjd_et - dret[0];
534
+ if (d >= 0) {
535
+ nleap++;
536
+ } else if (d < 0 && d > -1.0/86400.0) {
537
+ second_60 = 1;
538
+ }
539
+ }
540
+ /*
541
+ * UTC, still unsure about one leap second
542
+ */
543
+ tjd = J1972 + (tjd_et - tjd_et_1972) - ((double) nleap + second_60) / 86400.0;
544
+ swe_revjul(tjd, SE_GREG_CAL, iyear, imonth, iday, &d);
545
+ *ihour = (int32) d;
546
+ d -= (double) *ihour;
547
+ d *= 60;
548
+ *imin = (int32) d;
549
+ *dsec = (d - (double) *imin) * 60.0 + second_60;
550
+ /*
551
+ * For input dates > today:
552
+ * If leap seconds table is not up to date, we'd better interpret the
553
+ * input time as UT1, not as UTC. How do we find out?
554
+ * Check, if delta_t - nleap - 32.184 > 0.9
555
+ */
556
+ d = swe_deltat(tjd_et);
557
+ d = swe_deltat(tjd_et - d);
558
+ if (d * 86400.0 - (double) (nleap + NLEAP_INIT) - 32.184 >= 1.0) {
559
+ swe_revjul(tjd_et - d, SE_GREG_CAL, iyear, imonth, iday, &d);
560
+ *ihour = (int32) d;
561
+ d -= (double) *ihour;
562
+ d *= 60;
563
+ *imin = (int32) d;
564
+ *dsec = (d - (double) *imin) * 60.0;
565
+ }
566
+ if (gregflag == SE_JUL_CAL) {
567
+ tjd = swe_julday(*iyear, *imonth, *iday, 0, SE_GREG_CAL);
568
+ swe_revjul(tjd, gregflag, iyear, imonth, iday, &d);
569
+ }
570
+ }
571
+
572
+ /*
573
+ * Input: tjd_ut Julian day number, universal time (UT1).
574
+ * gregfalg Calendar flag
575
+ * Output: UTC year, month, day, hour, minute, second (decimal).
576
+ *
577
+ * - Before 1 jan 1972 UTC, output UT1.
578
+ * Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
579
+ * UTC second was regularly changed, so that UTC remained very close to UT1.
580
+ * - From 1972 on, output is UTC.
581
+ * - If delta_t - nleap - 32.184 > 1, the output is UT1.
582
+ * Note: Like this we avoid errors greater than 1 second in case that
583
+ * the leap seconds table (or the Swiss Ephemeris version) has not been
584
+ * updated for a long time.
585
+ */
586
+ void FAR PASCAL_CONV swe_jdut1_to_utc(double tjd_ut, int32 gregflag, int32 *iyear, int32 *imonth, int32 *iday, int32 *ihour, int32 *imin, double *dsec)
587
+ {
588
+ double tjd_et = tjd_ut + swe_deltat(tjd_ut);
589
+ swe_jdet_to_utc(tjd_et, gregflag, iyear, imonth, iday, ihour, imin, dsec);
590
+ }
@@ -0,0 +1,82 @@
1
+ /*********************************************************
2
+ $Header: /home/dieter/sweph/RCS/swedate.h,v 1.74 2008/06/16 10:07:20 dieter Exp $
3
+ version 15-feb-89 16:30
4
+ *********************************************************/
5
+
6
+ /* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
7
+
8
+ License conditions
9
+ ------------------
10
+
11
+ This file is part of Swiss Ephemeris.
12
+
13
+ Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
14
+ or distributor accepts any responsibility for the consequences of using it,
15
+ or for whether it serves any particular purpose or works at all, unless he
16
+ or she says so in writing.
17
+
18
+ Swiss Ephemeris is made available by its authors under a dual licensing
19
+ system. The software developer, who uses any part of Swiss Ephemeris
20
+ in his or her software, must choose between one of the two license models,
21
+ which are
22
+ a) GNU public license version 2 or later
23
+ b) Swiss Ephemeris Professional License
24
+
25
+ The choice must be made before the software developer distributes software
26
+ containing parts of Swiss Ephemeris to others, and before any public
27
+ service using the developed software is activated.
28
+
29
+ If the developer choses the GNU GPL software license, he or she must fulfill
30
+ the conditions of that license, which includes the obligation to place his
31
+ or her whole software project under the GNU GPL or a compatible license.
32
+ See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
33
+
34
+ If the developer choses the Swiss Ephemeris Professional license,
35
+ he must follow the instructions as found in http://www.astro.com/swisseph/
36
+ and purchase the Swiss Ephemeris Professional Edition from Astrodienst
37
+ and sign the corresponding license contract.
38
+
39
+ The License grants you the right to use, copy, modify and redistribute
40
+ Swiss Ephemeris, but only under certain conditions described in the License.
41
+ Among other things, the License requires that the copyright notices and
42
+ this notice be preserved on all copies.
43
+
44
+ Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
45
+
46
+ The authors of Swiss Ephemeris have no control or influence over any of
47
+ the derived works, i.e. over software or services created by other
48
+ programmers which use Swiss Ephemeris functions.
49
+
50
+ The names of the authors or of the copyright holder (Astrodienst) must not
51
+ be used for promoting any software, product or service which uses or contains
52
+ the Swiss Ephemeris. This copyright notice is the ONLY place where the
53
+ names of the authors can legally appear, except in cases where they have
54
+ given special permission in writing.
55
+
56
+ The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
57
+ for promoting such software, products or services.
58
+ */
59
+
60
+ #ifdef __cplusplus
61
+ extern "C" {
62
+ #endif
63
+
64
+ #ifndef _SWEDLL_H
65
+ extern EXP32 int FAR PASCAL_CONV EXP16 swe_date_conversion (
66
+ int y , int m , int d , /* year, month, day */
67
+ double utime, /* universal time in hours (decimal) */
68
+ char c, /* calendar g[regorian]|j[ulian]|a[stro = greg] */
69
+ double *tgmt);
70
+
71
+ extern EXP32 double *FAR PASCAL_CONV EXP16 swe_julday(
72
+ int year, int month, int day, double hour,
73
+ int gregflag);
74
+
75
+ extern EXP32 void FAR PASCAL_CONV EXP16 swe_revjul (
76
+ double jd,
77
+ int gregflag,
78
+ int *jyear, int *jmon, int *jday, double *jut);
79
+ #endif
80
+ #ifdef __cplusplus
81
+ } /* extern C */
82
+ #endif