swe4r 0.0.0
Sign up to get free protection for your applications and to get access to all the features.
- data/ext/swe4r/extconf.rb +3 -0
- data/ext/swe4r/src/swemptab.c +10642 -0
- data/ext/swe4r/swe4r.c +129 -0
- data/ext/swe4r/swecl.c +4948 -0
- data/ext/swe4r/swedate.c +590 -0
- data/ext/swe4r/swedate.h +82 -0
- data/ext/swe4r/swehel.c +3445 -0
- data/ext/swe4r/swehouse.c +1727 -0
- data/ext/swe4r/swehouse.h +85 -0
- data/ext/swe4r/swejpl.c +937 -0
- data/ext/swe4r/swejpl.h +105 -0
- data/ext/swe4r/swemmoon.c +1824 -0
- data/ext/swe4r/swemplan.c +959 -0
- data/ext/swe4r/swenut2000a.h +2820 -0
- data/ext/swe4r/sweodef.h +325 -0
- data/ext/swe4r/sweph.c +6241 -0
- data/ext/swe4r/sweph.h +556 -0
- data/ext/swe4r/swephexp.h +749 -0
- data/ext/swe4r/swephlib.c +2581 -0
- data/ext/swe4r/swephlib.h +177 -0
- data/lib/swe4r.rb +2 -0
- metadata +66 -0
@@ -0,0 +1,2581 @@
|
|
1
|
+
|
2
|
+
/* SWISSEPH
|
3
|
+
$Header: /home/dieter/sweph/RCS/swephlib.c,v 1.75 2009/11/27 11:00:57 dieter Exp $
|
4
|
+
|
5
|
+
SWISSEPH modules that may be useful for other applications
|
6
|
+
e.g. chopt.c, venus.c, swetest.c
|
7
|
+
|
8
|
+
Authors: Dieter Koch and Alois Treindl, Astrodienst Zurich
|
9
|
+
|
10
|
+
coordinate transformations
|
11
|
+
obliquity of ecliptic
|
12
|
+
nutation
|
13
|
+
precession
|
14
|
+
delta t
|
15
|
+
sidereal time
|
16
|
+
setting or getting of tidal acceleration of moon
|
17
|
+
chebyshew interpolation
|
18
|
+
ephemeris file name generation
|
19
|
+
cyclic redundancy checksum CRC
|
20
|
+
modulo and normalization functions
|
21
|
+
|
22
|
+
**************************************************************/
|
23
|
+
/* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
|
24
|
+
|
25
|
+
License conditions
|
26
|
+
------------------
|
27
|
+
|
28
|
+
This file is part of Swiss Ephemeris.
|
29
|
+
|
30
|
+
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
|
31
|
+
or distributor accepts any responsibility for the consequences of using it,
|
32
|
+
or for whether it serves any particular purpose or works at all, unless he
|
33
|
+
or she says so in writing.
|
34
|
+
|
35
|
+
Swiss Ephemeris is made available by its authors under a dual licensing
|
36
|
+
system. The software developer, who uses any part of Swiss Ephemeris
|
37
|
+
in his or her software, must choose between one of the two license models,
|
38
|
+
which are
|
39
|
+
a) GNU public license version 2 or later
|
40
|
+
b) Swiss Ephemeris Professional License
|
41
|
+
|
42
|
+
The choice must be made before the software developer distributes software
|
43
|
+
containing parts of Swiss Ephemeris to others, and before any public
|
44
|
+
service using the developed software is activated.
|
45
|
+
|
46
|
+
If the developer choses the GNU GPL software license, he or she must fulfill
|
47
|
+
the conditions of that license, which includes the obligation to place his
|
48
|
+
or her whole software project under the GNU GPL or a compatible license.
|
49
|
+
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
50
|
+
|
51
|
+
If the developer choses the Swiss Ephemeris Professional license,
|
52
|
+
he must follow the instructions as found in http://www.astro.com/swisseph/
|
53
|
+
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
|
54
|
+
and sign the corresponding license contract.
|
55
|
+
|
56
|
+
The License grants you the right to use, copy, modify and redistribute
|
57
|
+
Swiss Ephemeris, but only under certain conditions described in the License.
|
58
|
+
Among other things, the License requires that the copyright notices and
|
59
|
+
this notice be preserved on all copies.
|
60
|
+
|
61
|
+
Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
|
62
|
+
|
63
|
+
The authors of Swiss Ephemeris have no control or influence over any of
|
64
|
+
the derived works, i.e. over software or services created by other
|
65
|
+
programmers which use Swiss Ephemeris functions.
|
66
|
+
|
67
|
+
The names of the authors or of the copyright holder (Astrodienst) must not
|
68
|
+
be used for promoting any software, product or service which uses or contains
|
69
|
+
the Swiss Ephemeris. This copyright notice is the ONLY place where the
|
70
|
+
names of the authors can legally appear, except in cases where they have
|
71
|
+
given special permission in writing.
|
72
|
+
|
73
|
+
The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
|
74
|
+
for promoting such software, products or services.
|
75
|
+
*/
|
76
|
+
|
77
|
+
#include <string.h>
|
78
|
+
#include <ctype.h>
|
79
|
+
#include "swephexp.h"
|
80
|
+
#include "sweph.h"
|
81
|
+
#include "swephlib.h"
|
82
|
+
#if MSDOS
|
83
|
+
# include <process.h>
|
84
|
+
#endif
|
85
|
+
|
86
|
+
#ifdef TRACE
|
87
|
+
void swi_open_trace(char *serr);
|
88
|
+
FILE *swi_fp_trace_c = NULL;
|
89
|
+
FILE *swi_fp_trace_out = NULL;
|
90
|
+
int32 swi_trace_count = 0;
|
91
|
+
#endif
|
92
|
+
|
93
|
+
static double tid_acc = SE_TIDAL_DEFAULT;
|
94
|
+
static AS_BOOL init_dt_done = FALSE;
|
95
|
+
static void init_crc32(void);
|
96
|
+
static int init_dt(void);
|
97
|
+
static double adjust_for_tidacc(double ans, double Y);
|
98
|
+
static double deltat_espenak_meeus_1620(double tjd);
|
99
|
+
static double deltat_longterm_morrison_stephenson(double tjd);
|
100
|
+
static double deltat_stephenson_morrison_1600(double tjd);
|
101
|
+
static double deltat_aa(double tjd);
|
102
|
+
|
103
|
+
/* Reduce x modulo 360 degrees
|
104
|
+
*/
|
105
|
+
double FAR PASCAL_CONV swe_degnorm(double x)
|
106
|
+
{
|
107
|
+
double y;
|
108
|
+
y = fmod(x, 360.0);
|
109
|
+
if (fabs(y) < 1e-13) y = 0; /* Alois fix 11-dec-1999 */
|
110
|
+
if( y < 0.0 ) y += 360.0;
|
111
|
+
return(y);
|
112
|
+
}
|
113
|
+
|
114
|
+
/* Reduce x modulo TWOPI degrees
|
115
|
+
*/
|
116
|
+
double FAR PASCAL_CONV swe_radnorm(double x)
|
117
|
+
{
|
118
|
+
double y;
|
119
|
+
y = fmod(x, TWOPI);
|
120
|
+
if (fabs(y) < 1e-13) y = 0; /* Alois fix 11-dec-1999 */
|
121
|
+
if( y < 0.0 ) y += TWOPI;
|
122
|
+
return(y);
|
123
|
+
}
|
124
|
+
|
125
|
+
double FAR PASCAL_CONV swe_deg_midp(double x1, double x0)
|
126
|
+
{
|
127
|
+
double d, y;
|
128
|
+
d = swe_difdeg2n(x1, x0); /* arc from x0 to x1 */
|
129
|
+
y = swe_degnorm(x0 + d / 2);
|
130
|
+
return(y);
|
131
|
+
}
|
132
|
+
|
133
|
+
double FAR PASCAL_CONV swe_rad_midp(double x1, double x0)
|
134
|
+
{
|
135
|
+
return DEGTORAD * swe_deg_midp(x1 * RADTODEG, x0 * RADTODEG);
|
136
|
+
}
|
137
|
+
|
138
|
+
/* Reduce x modulo 2*PI
|
139
|
+
*/
|
140
|
+
double swi_mod2PI(double x)
|
141
|
+
{
|
142
|
+
double y;
|
143
|
+
y = fmod(x, TWOPI);
|
144
|
+
if( y < 0.0 ) y += TWOPI;
|
145
|
+
return(y);
|
146
|
+
}
|
147
|
+
|
148
|
+
|
149
|
+
double swi_angnorm(double x)
|
150
|
+
{
|
151
|
+
if (x < 0.0 )
|
152
|
+
return x + TWOPI;
|
153
|
+
else if (x >= TWOPI)
|
154
|
+
return x - TWOPI;
|
155
|
+
else
|
156
|
+
return x;
|
157
|
+
}
|
158
|
+
|
159
|
+
void swi_cross_prod(double *a, double *b, double *x)
|
160
|
+
{
|
161
|
+
x[0] = a[1]*b[2] - a[2]*b[1];
|
162
|
+
x[1] = a[2]*b[0] - a[0]*b[2];
|
163
|
+
x[2] = a[0]*b[1] - a[1]*b[0];
|
164
|
+
}
|
165
|
+
|
166
|
+
/* Evaluates a given chebyshev series coef[0..ncf-1]
|
167
|
+
* with ncf terms at x in [-1,1]. Communications of the ACM, algorithm 446,
|
168
|
+
* April 1973 (vol. 16 no.4) by Dr. Roger Broucke.
|
169
|
+
*/
|
170
|
+
double swi_echeb(double x, double *coef, int ncf)
|
171
|
+
{
|
172
|
+
int j;
|
173
|
+
double x2, br, brp2, brpp;
|
174
|
+
x2 = x * 2.;
|
175
|
+
br = 0.;
|
176
|
+
brp2 = 0.; /* dummy assign to silence gcc warning */
|
177
|
+
brpp = 0.;
|
178
|
+
for (j = ncf - 1; j >= 0; j--) {
|
179
|
+
brp2 = brpp;
|
180
|
+
brpp = br;
|
181
|
+
br = x2 * brpp - brp2 + coef[j];
|
182
|
+
}
|
183
|
+
return (br - brp2) * .5;
|
184
|
+
}
|
185
|
+
|
186
|
+
/*
|
187
|
+
* evaluates derivative of chebyshev series, see echeb
|
188
|
+
*/
|
189
|
+
double swi_edcheb(double x, double *coef, int ncf)
|
190
|
+
{
|
191
|
+
double bjpl, xjpl;
|
192
|
+
int j;
|
193
|
+
double x2, bf, bj, dj, xj, bjp2, xjp2;
|
194
|
+
x2 = x * 2.;
|
195
|
+
bf = 0.; /* dummy assign to silence gcc warning */
|
196
|
+
bj = 0.; /* dummy assign to silence gcc warning */
|
197
|
+
xjp2 = 0.;
|
198
|
+
xjpl = 0.;
|
199
|
+
bjp2 = 0.;
|
200
|
+
bjpl = 0.;
|
201
|
+
for (j = ncf - 1; j >= 1; j--) {
|
202
|
+
dj = (double) (j + j);
|
203
|
+
xj = coef[j] * dj + xjp2;
|
204
|
+
bj = x2 * bjpl - bjp2 + xj;
|
205
|
+
bf = bjp2;
|
206
|
+
bjp2 = bjpl;
|
207
|
+
bjpl = bj;
|
208
|
+
xjp2 = xjpl;
|
209
|
+
xjpl = xj;
|
210
|
+
}
|
211
|
+
return (bj - bf) * .5;
|
212
|
+
}
|
213
|
+
|
214
|
+
/*
|
215
|
+
* conversion between ecliptical and equatorial polar coordinates.
|
216
|
+
* for users of SWISSEPH, not used by our routines.
|
217
|
+
* for ecl. to equ. eps must be negative.
|
218
|
+
* for equ. to ecl. eps must be positive.
|
219
|
+
* xpo, xpn are arrays of 3 doubles containing position.
|
220
|
+
* attention: input must be in degrees!
|
221
|
+
*/
|
222
|
+
void FAR PASCAL_CONV swe_cotrans(double *xpo, double *xpn, double eps)
|
223
|
+
{
|
224
|
+
int i;
|
225
|
+
double x[6], e = eps * DEGTORAD;
|
226
|
+
for(i = 0; i <= 1; i++)
|
227
|
+
x[i] = xpo[i];
|
228
|
+
x[0] *= DEGTORAD;
|
229
|
+
x[1] *= DEGTORAD;
|
230
|
+
x[2] = 1;
|
231
|
+
for(i = 3; i <= 5; i++)
|
232
|
+
x[i] = 0;
|
233
|
+
swi_polcart(x, x);
|
234
|
+
swi_coortrf(x, x, e);
|
235
|
+
swi_cartpol(x, x);
|
236
|
+
xpn[0] = x[0] * RADTODEG;
|
237
|
+
xpn[1] = x[1] * RADTODEG;
|
238
|
+
xpn[2] = xpo[2];
|
239
|
+
}
|
240
|
+
|
241
|
+
/*
|
242
|
+
* conversion between ecliptical and equatorial polar coordinates
|
243
|
+
* with speed.
|
244
|
+
* for users of SWISSEPH, not used by our routines.
|
245
|
+
* for ecl. to equ. eps must be negative.
|
246
|
+
* for equ. to ecl. eps must be positive.
|
247
|
+
* xpo, xpn are arrays of 6 doubles containing position and speed.
|
248
|
+
* attention: input must be in degrees!
|
249
|
+
*/
|
250
|
+
void FAR PASCAL_CONV swe_cotrans_sp(double *xpo, double *xpn, double eps)
|
251
|
+
{
|
252
|
+
int i;
|
253
|
+
double x[6], e = eps * DEGTORAD;
|
254
|
+
for (i = 0; i <= 5; i++)
|
255
|
+
x[i] = xpo[i];
|
256
|
+
x[0] *= DEGTORAD;
|
257
|
+
x[1] *= DEGTORAD;
|
258
|
+
x[2] = 1; /* avoids problems with polcart(), if x[2] = 0 */
|
259
|
+
x[3] *= DEGTORAD;
|
260
|
+
x[4] *= DEGTORAD;
|
261
|
+
swi_polcart_sp(x, x);
|
262
|
+
swi_coortrf(x, x, e);
|
263
|
+
swi_coortrf(x+3, x+3, e);
|
264
|
+
swi_cartpol_sp(x, xpn);
|
265
|
+
xpn[0] *= RADTODEG;
|
266
|
+
xpn[1] *= RADTODEG;
|
267
|
+
xpn[2] = xpo[2];
|
268
|
+
xpn[3] *= RADTODEG;
|
269
|
+
xpn[4] *= RADTODEG;
|
270
|
+
xpn[5] = xpo[5];
|
271
|
+
}
|
272
|
+
|
273
|
+
/*
|
274
|
+
* conversion between ecliptical and equatorial cartesian coordinates
|
275
|
+
* for ecl. to equ. eps must be negative
|
276
|
+
* for equ. to ecl. eps must be positive
|
277
|
+
*/
|
278
|
+
void swi_coortrf(double *xpo, double *xpn, double eps)
|
279
|
+
{
|
280
|
+
double sineps, coseps;
|
281
|
+
double x[3];
|
282
|
+
sineps = sin(eps);
|
283
|
+
coseps = cos(eps);
|
284
|
+
x[0] = xpo[0];
|
285
|
+
x[1] = xpo[1] * coseps + xpo[2] * sineps;
|
286
|
+
x[2] = -xpo[1] * sineps + xpo[2] * coseps;
|
287
|
+
xpn[0] = x[0];
|
288
|
+
xpn[1] = x[1];
|
289
|
+
xpn[2] = x[2];
|
290
|
+
}
|
291
|
+
|
292
|
+
/*
|
293
|
+
* conversion between ecliptical and equatorial cartesian coordinates
|
294
|
+
* sineps sin(eps)
|
295
|
+
* coseps cos(eps)
|
296
|
+
* for ecl. to equ. sineps must be -sin(eps)
|
297
|
+
*/
|
298
|
+
void swi_coortrf2(double *xpo, double *xpn, double sineps, double coseps)
|
299
|
+
{
|
300
|
+
double x[3];
|
301
|
+
x[0] = xpo[0];
|
302
|
+
x[1] = xpo[1] * coseps + xpo[2] * sineps;
|
303
|
+
x[2] = -xpo[1] * sineps + xpo[2] * coseps;
|
304
|
+
xpn[0] = x[0];
|
305
|
+
xpn[1] = x[1];
|
306
|
+
xpn[2] = x[2];
|
307
|
+
}
|
308
|
+
|
309
|
+
/* conversion of cartesian (x[3]) to polar coordinates (l[3]).
|
310
|
+
* x = l is allowed.
|
311
|
+
* if |x| = 0, then lon, lat and rad := 0.
|
312
|
+
*/
|
313
|
+
void swi_cartpol(double *x, double *l)
|
314
|
+
{
|
315
|
+
double rxy;
|
316
|
+
double ll[3];
|
317
|
+
if (x[0] == 0 && x[1] == 0 && x[2] == 0) {
|
318
|
+
l[0] = l[1] = l[2] = 0;
|
319
|
+
return;
|
320
|
+
}
|
321
|
+
rxy = x[0]*x[0] + x[1]*x[1];
|
322
|
+
ll[2] = sqrt(rxy + x[2]*x[2]);
|
323
|
+
rxy = sqrt(rxy);
|
324
|
+
ll[0] = atan2(x[1], x[0]);
|
325
|
+
if (ll[0] < 0.0) ll[0] += TWOPI;
|
326
|
+
ll[1] = atan(x[2] / rxy);
|
327
|
+
l[0] = ll[0];
|
328
|
+
l[1] = ll[1];
|
329
|
+
l[2] = ll[2];
|
330
|
+
}
|
331
|
+
|
332
|
+
/* conversion from polar (l[3]) to cartesian coordinates (x[3]).
|
333
|
+
* x = l is allowed.
|
334
|
+
*/
|
335
|
+
void swi_polcart(double *l, double *x)
|
336
|
+
{
|
337
|
+
double xx[3];
|
338
|
+
double cosl1;
|
339
|
+
cosl1 = cos(l[1]);
|
340
|
+
xx[0] = l[2] * cosl1 * cos(l[0]);
|
341
|
+
xx[1] = l[2] * cosl1 * sin(l[0]);
|
342
|
+
xx[2] = l[2] * sin(l[1]);
|
343
|
+
x[0] = xx[0];
|
344
|
+
x[1] = xx[1];
|
345
|
+
x[2] = xx[2];
|
346
|
+
}
|
347
|
+
|
348
|
+
/* conversion of position and speed.
|
349
|
+
* from cartesian (x[6]) to polar coordinates (l[6]).
|
350
|
+
* x = l is allowed.
|
351
|
+
* if position is 0, function returns direction of
|
352
|
+
* motion.
|
353
|
+
*/
|
354
|
+
void swi_cartpol_sp(double *x, double *l)
|
355
|
+
{
|
356
|
+
double xx[6], ll[6];
|
357
|
+
double rxy, coslon, sinlon, coslat, sinlat;
|
358
|
+
/* zero position */
|
359
|
+
if (x[0] == 0 && x[1] == 0 && x[2] == 0) {
|
360
|
+
l[0] = l[1] = l[3] = l[4] = 0;
|
361
|
+
l[5] = sqrt(square_sum((x+3)));
|
362
|
+
swi_cartpol(x+3, l);
|
363
|
+
l[2] = 0;
|
364
|
+
return;
|
365
|
+
}
|
366
|
+
/* zero speed */
|
367
|
+
if (x[3] == 0 && x[4] == 0 && x[5] == 0) {
|
368
|
+
l[3] = l[4] = l[5] = 0;
|
369
|
+
swi_cartpol(x, l);
|
370
|
+
return;
|
371
|
+
}
|
372
|
+
/* position */
|
373
|
+
rxy = x[0]*x[0] + x[1]*x[1];
|
374
|
+
ll[2] = sqrt(rxy + x[2]*x[2]);
|
375
|
+
rxy = sqrt(rxy);
|
376
|
+
ll[0] = atan2(x[1], x[0]);
|
377
|
+
if (ll[0] < 0.0) ll[0] += TWOPI;
|
378
|
+
ll[1] = atan(x[2] / rxy);
|
379
|
+
/* speed:
|
380
|
+
* 1. rotate coordinate system by longitude of position about z-axis,
|
381
|
+
* so that new x-axis = position radius projected onto x-y-plane.
|
382
|
+
* in the new coordinate system
|
383
|
+
* vy'/r = dlong/dt, where r = sqrt(x^2 +y^2).
|
384
|
+
* 2. rotate coordinate system by latitude about new y-axis.
|
385
|
+
* vz"/r = dlat/dt, where r = position radius.
|
386
|
+
* vx" = dr/dt
|
387
|
+
*/
|
388
|
+
coslon = x[0] / rxy; /* cos(l[0]); */
|
389
|
+
sinlon = x[1] / rxy; /* sin(l[0]); */
|
390
|
+
coslat = rxy / ll[2]; /* cos(l[1]); */
|
391
|
+
sinlat = x[2] / ll[2]; /* sin(ll[1]); */
|
392
|
+
xx[3] = x[3] * coslon + x[4] * sinlon;
|
393
|
+
xx[4] = -x[3] * sinlon + x[4] * coslon;
|
394
|
+
l[3] = xx[4] / rxy; /* speed in longitude */
|
395
|
+
xx[4] = -sinlat * xx[3] + coslat * x[5];
|
396
|
+
xx[5] = coslat * xx[3] + sinlat * x[5];
|
397
|
+
l[4] = xx[4] / ll[2]; /* speed in latitude */
|
398
|
+
l[5] = xx[5]; /* speed in radius */
|
399
|
+
l[0] = ll[0]; /* return position */
|
400
|
+
l[1] = ll[1];
|
401
|
+
l[2] = ll[2];
|
402
|
+
}
|
403
|
+
|
404
|
+
/* conversion of position and speed
|
405
|
+
* from polar (l[6]) to cartesian coordinates (x[6])
|
406
|
+
* x = l is allowed
|
407
|
+
* explanation s. swi_cartpol_sp()
|
408
|
+
*/
|
409
|
+
void swi_polcart_sp(double *l, double *x)
|
410
|
+
{
|
411
|
+
double sinlon, coslon, sinlat, coslat;
|
412
|
+
double xx[6], rxy, rxyz;
|
413
|
+
/* zero speed */
|
414
|
+
if (l[3] == 0 && l[4] == 0 && l[5] == 0) {
|
415
|
+
x[3] = x[4] = x[5] = 0;
|
416
|
+
swi_polcart(l, x);
|
417
|
+
return;
|
418
|
+
}
|
419
|
+
/* position */
|
420
|
+
coslon = cos(l[0]);
|
421
|
+
sinlon = sin(l[0]);
|
422
|
+
coslat = cos(l[1]);
|
423
|
+
sinlat = sin(l[1]);
|
424
|
+
xx[0] = l[2] * coslat * coslon;
|
425
|
+
xx[1] = l[2] * coslat * sinlon;
|
426
|
+
xx[2] = l[2] * sinlat;
|
427
|
+
/* speed; explanation s. swi_cartpol_sp(), same method the other way round*/
|
428
|
+
rxyz = l[2];
|
429
|
+
rxy = sqrt(xx[0] * xx[0] + xx[1] * xx[1]);
|
430
|
+
xx[5] = l[5];
|
431
|
+
xx[4] = l[4] * rxyz;
|
432
|
+
x[5] = sinlat * xx[5] + coslat * xx[4]; /* speed z */
|
433
|
+
xx[3] = coslat * xx[5] - sinlat * xx[4];
|
434
|
+
xx[4] = l[3] * rxy;
|
435
|
+
x[3] = coslon * xx[3] - sinlon * xx[4]; /* speed x */
|
436
|
+
x[4] = sinlon * xx[3] + coslon * xx[4]; /* speed y */
|
437
|
+
x[0] = xx[0]; /* return position */
|
438
|
+
x[1] = xx[1];
|
439
|
+
x[2] = xx[2];
|
440
|
+
}
|
441
|
+
|
442
|
+
double swi_dot_prod_unit(double *x, double *y)
|
443
|
+
{
|
444
|
+
double dop = x[0]*y[0]+x[1]*y[1]+x[2]*y[2];
|
445
|
+
double e1 = sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);
|
446
|
+
double e2 = sqrt(y[0]*y[0]+y[1]*y[1]+y[2]*y[2]);
|
447
|
+
dop /= e1;
|
448
|
+
dop /= e2;
|
449
|
+
if (dop > 1)
|
450
|
+
dop = 1;
|
451
|
+
if (dop < -1)
|
452
|
+
dop = -1;
|
453
|
+
return dop;
|
454
|
+
}
|
455
|
+
|
456
|
+
/* Obliquity of the ecliptic at Julian date J
|
457
|
+
*
|
458
|
+
* IAU Coefficients are from:
|
459
|
+
* J. H. Lieske, T. Lederle, W. Fricke, and B. Morando,
|
460
|
+
* "Expressions for the Precession Quantities Based upon the IAU
|
461
|
+
* (1976) System of Astronomical Constants," Astronomy and Astrophysics
|
462
|
+
* 58, 1-16 (1977).
|
463
|
+
*
|
464
|
+
* Before or after 200 years from J2000, the formula used is from:
|
465
|
+
* J. Laskar, "Secular terms of classical planetary theories
|
466
|
+
* using the results of general theory," Astronomy and Astrophysics
|
467
|
+
* 157, 59070 (1986).
|
468
|
+
*
|
469
|
+
* Bretagnon, P. et al.: 2003, "Expressions for Precession Consistent with
|
470
|
+
* the IAU 2000A Model". A&A 400,785
|
471
|
+
*B03 84381.4088 -46.836051*t -1667*10-7*t2 +199911*10-8*t3 -523*10-9*t4 -248*10-10*t5 -3*10-11*t6
|
472
|
+
*C03 84381.406 -46.836769*t -1831*10-7*t2 +20034*10-7*t3 -576*10-9*t4 -434*10-10*t5
|
473
|
+
*
|
474
|
+
* See precess and page B18 of the Astronomical Almanac.
|
475
|
+
*/
|
476
|
+
double swi_epsiln(double J)
|
477
|
+
{
|
478
|
+
double T, eps;
|
479
|
+
T = (J - 2451545.0)/36525.0;
|
480
|
+
if (PREC_IAU_1976 && fabs(T) <= PREC_IAU_1976_CTIES )
|
481
|
+
eps = (((1.813e-3*T-5.9e-4)*T-46.8150)*T+84381.448)*DEGTORAD/3600;
|
482
|
+
else if (PREC_IAU_2003 && fabs(T) <= PREC_IAU_2003_CTIES)
|
483
|
+
eps = (((((-4.34e-8 * T -5.76e-7) * T +2.0034e-3) * T -1.831e-4) * T -46.836769) * T + 84381.406) * DEGTORAD / 3600.0;
|
484
|
+
else if (PREC_BRETAGNON_2003)
|
485
|
+
eps = ((((((-3e-11 * T - 2.48e-8) * T -5.23e-7) * T +1.99911e-3) * T -1.667e-4) * T -46.836051) * T + 84381.40880) * DEGTORAD / 3600.0;/* */
|
486
|
+
else if (PREC_SIMON_1994)
|
487
|
+
eps = (((((2.5e-8 * T -5.1e-7) * T +1.9989e-3) * T -1.52e-4) * T -46.80927) * T + 84381.412) * DEGTORAD / 3600.0;/* */
|
488
|
+
else if (PREC_WILLIAMS_1994)
|
489
|
+
eps = ((((-1.0e-6 * T +2.0e-3) * T -1.74e-4) * T -46.833960) * T + 84381.409) * DEGTORAD / 3600.0;/* */
|
490
|
+
else { /* PREC_LASKAR_1986 */
|
491
|
+
T /= 10.0;
|
492
|
+
eps = ((((((((( 2.45e-10*T + 5.79e-9)*T + 2.787e-7)*T
|
493
|
+
+ 7.12e-7)*T - 3.905e-5)*T - 2.4967e-3)*T
|
494
|
+
- 5.138e-3)*T + 1.99925)*T - 0.0155)*T - 468.093)*T
|
495
|
+
+ 84381.448;
|
496
|
+
eps *= DEGTORAD/3600;
|
497
|
+
}
|
498
|
+
return(eps);
|
499
|
+
}
|
500
|
+
|
501
|
+
/* Precession of the equinox and ecliptic
|
502
|
+
* from epoch Julian date J to or from J2000.0
|
503
|
+
*
|
504
|
+
* Program by Steve Moshier.
|
505
|
+
* Changes in program structure by Dieter Koch.
|
506
|
+
*
|
507
|
+
* #define PREC_WILLIAMS_1994 1
|
508
|
+
* James G. Williams, "Contributions to the Earth's obliquity rate,
|
509
|
+
* precession, and nutation," Astron. J. 108, 711-724 (1994).
|
510
|
+
*
|
511
|
+
* #define PREC_SIMON_1994 0
|
512
|
+
* J. L. Simon, P. Bretagnon, J. Chapront, M. Chapront-Touze', G. Francou,
|
513
|
+
* and J. Laskar, "Numerical Expressions for precession formulae and
|
514
|
+
* mean elements for the Moon and the planets," Astronomy and Astrophysics
|
515
|
+
* 282, 663-683 (1994).
|
516
|
+
*
|
517
|
+
* #define PREC_IAU_1976 0
|
518
|
+
* IAU Coefficients are from:
|
519
|
+
* J. H. Lieske, T. Lederle, W. Fricke, and B. Morando,
|
520
|
+
* "Expressions for the Precession Quantities Based upon the IAU
|
521
|
+
* (1976) System of Astronomical Constants," Astronomy and
|
522
|
+
* Astrophysics 58, 1-16 (1977).
|
523
|
+
*
|
524
|
+
* #define PREC_LASKAR_1986 0
|
525
|
+
* Newer formulas that cover a much longer time span are from:
|
526
|
+
* J. Laskar, "Secular terms of classical planetary theories
|
527
|
+
* using the results of general theory," Astronomy and Astrophysics
|
528
|
+
* 157, 59070 (1986).
|
529
|
+
*
|
530
|
+
* See also:
|
531
|
+
* P. Bretagnon and G. Francou, "Planetary theories in rectangular
|
532
|
+
* and spherical variables. VSOP87 solutions," Astronomy and
|
533
|
+
* Astrophysics 202, 309-315 (1988).
|
534
|
+
*
|
535
|
+
* Laskar's expansions are said by Bretagnon and Francou
|
536
|
+
* to have "a precision of about 1" over 10000 years before
|
537
|
+
* and after J2000.0 in so far as the precession constants p^0_A
|
538
|
+
* and epsilon^0_A are perfectly known."
|
539
|
+
*
|
540
|
+
* Bretagnon and Francou's expansions for the node and inclination
|
541
|
+
* of the ecliptic were derived from Laskar's data but were truncated
|
542
|
+
* after the term in T**6. I have recomputed these expansions from
|
543
|
+
* Laskar's data, retaining powers up to T**10 in the result.
|
544
|
+
*
|
545
|
+
* The following table indicates the differences between the result
|
546
|
+
* of the IAU formula and Laskar's formula using four different test
|
547
|
+
* vectors, checking at J2000 plus and minus the indicated number
|
548
|
+
* of years.
|
549
|
+
*
|
550
|
+
* Years Arc
|
551
|
+
* from J2000 Seconds
|
552
|
+
* ---------- -------
|
553
|
+
* 0 0
|
554
|
+
* 100 .006
|
555
|
+
* 200 .006
|
556
|
+
* 500 .015
|
557
|
+
* 1000 .28
|
558
|
+
* 2000 6.4
|
559
|
+
* 3000 38.
|
560
|
+
* 10000 9400.
|
561
|
+
*/
|
562
|
+
/* In WILLIAMS and SIMON, Laskar's terms of order higher than t^4
|
563
|
+
have been retained, because Simon et al mention that the solution
|
564
|
+
is the same except for the lower order terms. */
|
565
|
+
|
566
|
+
#if PREC_WILLIAMS_1994
|
567
|
+
static double pAcof[] = {
|
568
|
+
-8.66e-10, -4.759e-8, 2.424e-7, 1.3095e-5, 1.7451e-4, -1.8055e-3,
|
569
|
+
-0.235316, 0.076, 110.5407, 50287.70000 };
|
570
|
+
static double nodecof[] = {
|
571
|
+
6.6402e-16, -2.69151e-15, -1.547021e-12, 7.521313e-12, 1.9e-10,
|
572
|
+
-3.54e-9, -1.8103e-7, 1.26e-7, 7.436169e-5,
|
573
|
+
-0.04207794833, 3.052115282424};
|
574
|
+
static double inclcof[] = {
|
575
|
+
1.2147e-16, 7.3759e-17, -8.26287e-14, 2.503410e-13, 2.4650839e-11,
|
576
|
+
-5.4000441e-11, 1.32115526e-9, -6.012e-7, -1.62442e-5,
|
577
|
+
0.00227850649, 0.0 };
|
578
|
+
#endif
|
579
|
+
|
580
|
+
#if PREC_SIMON_1994
|
581
|
+
/* Precession coefficients from Simon et al: */
|
582
|
+
static double pAcof[] = {
|
583
|
+
-8.66e-10, -4.759e-8, 2.424e-7, 1.3095e-5, 1.7451e-4, -1.8055e-3,
|
584
|
+
-0.235316, 0.07732, 111.2022, 50288.200 };
|
585
|
+
static double nodecof[] = {
|
586
|
+
6.6402e-16, -2.69151e-15, -1.547021e-12, 7.521313e-12, 1.9e-10,
|
587
|
+
-3.54e-9, -1.8103e-7, 2.579e-8, 7.4379679e-5,
|
588
|
+
-0.0420782900, 3.0521126906};
|
589
|
+
static double inclcof[] = {
|
590
|
+
1.2147e-16, 7.3759e-17, -8.26287e-14, 2.503410e-13, 2.4650839e-11,
|
591
|
+
-5.4000441e-11, 1.32115526e-9, -5.99908e-7, -1.624383e-5,
|
592
|
+
0.002278492868, 0.0 };
|
593
|
+
#endif
|
594
|
+
|
595
|
+
#if PREC_LASKAR_1986
|
596
|
+
/* Precession coefficients taken from Laskar's paper: */
|
597
|
+
static double pAcof[] = {
|
598
|
+
-8.66e-10, -4.759e-8, 2.424e-7, 1.3095e-5, 1.7451e-4, -1.8055e-3,
|
599
|
+
-0.235316, 0.07732, 111.1971, 50290.966 };
|
600
|
+
/* Node and inclination of the earth's orbit computed from
|
601
|
+
* Laskar's data as done in Bretagnon and Francou's paper.
|
602
|
+
* Units are radians.
|
603
|
+
*/
|
604
|
+
static double nodecof[] = {
|
605
|
+
6.6402e-16, -2.69151e-15, -1.547021e-12, 7.521313e-12, 6.3190131e-10,
|
606
|
+
-3.48388152e-9, -1.813065896e-7, 2.75036225e-8, 7.4394531426e-5,
|
607
|
+
-0.042078604317, 3.052112654975 };
|
608
|
+
static double inclcof[] = {
|
609
|
+
1.2147e-16, 7.3759e-17, -8.26287e-14, 2.503410e-13, 2.4650839e-11,
|
610
|
+
-5.4000441e-11, 1.32115526e-9, -5.998737027e-7, -1.6242797091e-5,
|
611
|
+
0.002278495537, 0.0 };
|
612
|
+
#endif
|
613
|
+
|
614
|
+
#if PREC_BRETAGNON_2003
|
615
|
+
static double pAcof[] = {};
|
616
|
+
static double nodecof[] = {};
|
617
|
+
static double inclcof[] = {};
|
618
|
+
#endif
|
619
|
+
|
620
|
+
/* Subroutine arguments:
|
621
|
+
*
|
622
|
+
* R = rectangular equatorial coordinate vector to be precessed.
|
623
|
+
* The result is written back into the input vector.
|
624
|
+
* J = Julian date
|
625
|
+
* direction =
|
626
|
+
* Precess from J to J2000: direction = 1
|
627
|
+
* Precess from J2000 to J: direction = -1
|
628
|
+
* Note that if you want to precess from J1 to J2, you would
|
629
|
+
* first go from J1 to J2000, then call the program again
|
630
|
+
* to go from J2000 to J2.
|
631
|
+
*/
|
632
|
+
int swi_precess(double *R, double J, int direction )
|
633
|
+
{
|
634
|
+
double sinth, costh, sinZ, cosZ, sinz, cosz;
|
635
|
+
double eps, sineps, coseps;
|
636
|
+
double A, B, T, Z, z, TH, pA, W;
|
637
|
+
double x[3];
|
638
|
+
double *p;
|
639
|
+
int i;
|
640
|
+
if( J == J2000 )
|
641
|
+
return(0);
|
642
|
+
/* Each precession angle is specified by a polynomial in
|
643
|
+
* T = Julian centuries from J2000.0. See AA page B18.
|
644
|
+
*/
|
645
|
+
T = (J - J2000)/36525.0;
|
646
|
+
/* Use IAU formula for a few centuries. */
|
647
|
+
if (PREC_IAU_1976 && fabs(T) <= PREC_IAU_1976_CTIES) {
|
648
|
+
Z = (( 0.017998*T + 0.30188)*T + 2306.2181)*T*DEGTORAD/3600;
|
649
|
+
z = (( 0.018203*T + 1.09468)*T + 2306.2181)*T*DEGTORAD/3600;
|
650
|
+
TH = ((-0.041833*T - 0.42665)*T + 2004.3109)*T*DEGTORAD/3600;
|
651
|
+
} else if (PREC_IAU_2003 && fabs(T) <= PREC_IAU_2003_CTIES) {
|
652
|
+
Z = (((((- 0.0000003173*T - 0.000005971)*T + 0.01801828)*T + 0.2988499)*T + 2306.083227)*T + 2.650545)*DEGTORAD/3600;
|
653
|
+
z = (((((- 0.0000002904*T - 0.000028596)*T + 0.01826837)*T + 1.0927348)*T + 2306.077181)*T - 2.650545)*DEGTORAD/3600;
|
654
|
+
TH = ((((-0.00000011274*T - 0.000007089)*T - 0.04182264)*T - 0.4294934)*T + 2004.191903)*T*DEGTORAD/3600;
|
655
|
+
/* AA 2006 B28:
|
656
|
+
Z = (((((- 0.0000002*T - 0.0000327)*T + 0.0179663)*T + 0.3019015)*T + 2306.0809506)*T + 2.5976176)*DEGTORAD/3600;
|
657
|
+
z = (((((- 0.0000003*T - 0.000047)*T + 0.0182237)*T + 1.0947790)*T + 2306.0803226)*T - 2.5976176)*DEGTORAD/3600;
|
658
|
+
TH = ((((-0.0000001*T - 0.0000601)*T - 0.0418251)*T - 0.4269353)*T + 2004.1917476)*T*DEGTORAD/3600;
|
659
|
+
*/
|
660
|
+
} else if (PREC_BRETAGNON_2003) {
|
661
|
+
Z = ((((((-0.00000000013*T - 0.0000003040)*T - 0.000005708)*T + 0.01801752)*T + 0.3023262)*T + 2306.080472)*T + 2.72767)*DEGTORAD/3600;
|
662
|
+
z = ((((((-0.00000000005*T - 0.0000002486)*T - 0.000028276)*T + 0.01826676)*T + 1.0956768)*T + 2306.076070)*T - 2.72767)*DEGTORAD/3600;
|
663
|
+
TH = ((((((0.000000000009*T + 0.00000000036)*T -0.0000001127)*T - 0.000007291)*T - 0.04182364)*T - 0.4266980)*T + 2004.190936)*T*DEGTORAD/3600;
|
664
|
+
} else {
|
665
|
+
goto laskar;
|
666
|
+
}
|
667
|
+
sinth = sin(TH);
|
668
|
+
costh = cos(TH);
|
669
|
+
sinZ = sin(Z);
|
670
|
+
cosZ = cos(Z);
|
671
|
+
sinz = sin(z);
|
672
|
+
cosz = cos(z);
|
673
|
+
A = cosZ*costh;
|
674
|
+
B = sinZ*costh;
|
675
|
+
if( direction < 0 ) { /* From J2000.0 to J */
|
676
|
+
x[0] = (A*cosz - sinZ*sinz)*R[0]
|
677
|
+
- (B*cosz + cosZ*sinz)*R[1]
|
678
|
+
- sinth*cosz*R[2];
|
679
|
+
x[1] = (A*sinz + sinZ*cosz)*R[0]
|
680
|
+
- (B*sinz - cosZ*cosz)*R[1]
|
681
|
+
- sinth*sinz*R[2];
|
682
|
+
x[2] = cosZ*sinth*R[0]
|
683
|
+
- sinZ*sinth*R[1]
|
684
|
+
+ costh*R[2];
|
685
|
+
}
|
686
|
+
else { /* From J to J2000.0 */
|
687
|
+
x[0] = (A*cosz - sinZ*sinz)*R[0]
|
688
|
+
+ (A*sinz + sinZ*cosz)*R[1]
|
689
|
+
+ cosZ*sinth*R[2];
|
690
|
+
x[1] = - (B*cosz + cosZ*sinz)*R[0]
|
691
|
+
- (B*sinz - cosZ*cosz)*R[1]
|
692
|
+
- sinZ*sinth*R[2];
|
693
|
+
x[2] = - sinth*cosz*R[0]
|
694
|
+
- sinth*sinz*R[1]
|
695
|
+
+ costh*R[2];
|
696
|
+
}
|
697
|
+
goto done;
|
698
|
+
laskar:
|
699
|
+
/* Implementation by elementary rotations using Laskar's expansions.
|
700
|
+
* First rotate about the x axis from the initial equator
|
701
|
+
* to the ecliptic. (The input is equatorial.)
|
702
|
+
*/
|
703
|
+
if( direction == 1 )
|
704
|
+
eps = swi_epsiln(J); /* To J2000 */
|
705
|
+
else
|
706
|
+
eps = swi_epsiln(J2000); /* From J2000 */
|
707
|
+
sineps = sin(eps);
|
708
|
+
coseps = cos(eps);
|
709
|
+
x[0] = R[0];
|
710
|
+
z = coseps*R[1] + sineps*R[2];
|
711
|
+
x[2] = -sineps*R[1] + coseps*R[2];
|
712
|
+
x[1] = z;
|
713
|
+
/* Precession in longitude */
|
714
|
+
T /= 10.0; /* thousands of years */
|
715
|
+
p = pAcof;
|
716
|
+
pA = *p++;
|
717
|
+
for( i=0; i<9; i++ )
|
718
|
+
pA = pA * T + *p++;
|
719
|
+
pA *= DEGTORAD/3600 * T;
|
720
|
+
/* Node of the moving ecliptic on the J2000 ecliptic.
|
721
|
+
*/
|
722
|
+
p = nodecof;
|
723
|
+
W = *p++;
|
724
|
+
for( i=0; i<10; i++ )
|
725
|
+
W = W * T + *p++;
|
726
|
+
/* Rotate about z axis to the node.
|
727
|
+
*/
|
728
|
+
if( direction == 1 )
|
729
|
+
z = W + pA;
|
730
|
+
else
|
731
|
+
z = W;
|
732
|
+
B = cos(z);
|
733
|
+
A = sin(z);
|
734
|
+
z = B * x[0] + A * x[1];
|
735
|
+
x[1] = -A * x[0] + B * x[1];
|
736
|
+
x[0] = z;
|
737
|
+
/* Rotate about new x axis by the inclination of the moving
|
738
|
+
* ecliptic on the J2000 ecliptic.
|
739
|
+
*/
|
740
|
+
p = inclcof;
|
741
|
+
z = *p++;
|
742
|
+
for( i=0; i<10; i++ )
|
743
|
+
z = z * T + *p++;
|
744
|
+
if( direction == 1 )
|
745
|
+
z = -z;
|
746
|
+
B = cos(z);
|
747
|
+
A = sin(z);
|
748
|
+
z = B * x[1] + A * x[2];
|
749
|
+
x[2] = -A * x[1] + B * x[2];
|
750
|
+
x[1] = z;
|
751
|
+
/* Rotate about new z axis back from the node.
|
752
|
+
*/
|
753
|
+
if( direction == 1 )
|
754
|
+
z = -W;
|
755
|
+
else
|
756
|
+
z = -W - pA;
|
757
|
+
B = cos(z);
|
758
|
+
A = sin(z);
|
759
|
+
z = B * x[0] + A * x[1];
|
760
|
+
x[1] = -A * x[0] + B * x[1];
|
761
|
+
x[0] = z;
|
762
|
+
/* Rotate about x axis to final equator.
|
763
|
+
*/
|
764
|
+
if( direction == 1 )
|
765
|
+
eps = swi_epsiln(J2000);
|
766
|
+
else
|
767
|
+
eps = swi_epsiln(J);
|
768
|
+
sineps = sin(eps);
|
769
|
+
coseps = cos(eps);
|
770
|
+
z = coseps * x[1] - sineps * x[2];
|
771
|
+
x[2] = sineps * x[1] + coseps * x[2];
|
772
|
+
x[1] = z;
|
773
|
+
done:
|
774
|
+
for( i=0; i<3; i++ )
|
775
|
+
R[i] = x[i];
|
776
|
+
return(0);
|
777
|
+
}
|
778
|
+
|
779
|
+
#if NUT_IAU_1980
|
780
|
+
/* Nutation in longitude and obliquity
|
781
|
+
* computed at Julian date J.
|
782
|
+
*
|
783
|
+
* References:
|
784
|
+
* "Summary of 1980 IAU Theory of Nutation (Final Report of the
|
785
|
+
* IAU Working Group on Nutation)", P. K. Seidelmann et al., in
|
786
|
+
* Transactions of the IAU Vol. XVIII A, Reports on Astronomy,
|
787
|
+
* P. A. Wayman, ed.; D. Reidel Pub. Co., 1982.
|
788
|
+
*
|
789
|
+
* "Nutation and the Earth's Rotation",
|
790
|
+
* I.A.U. Symposium No. 78, May, 1977, page 256.
|
791
|
+
* I.A.U., 1980.
|
792
|
+
*
|
793
|
+
* Woolard, E.W., "A redevelopment of the theory of nutation",
|
794
|
+
* The Astronomical Journal, 58, 1-3 (1953).
|
795
|
+
*
|
796
|
+
* This program implements all of the 1980 IAU nutation series.
|
797
|
+
* Results checked at 100 points against the 1986 AA; all agreed.
|
798
|
+
*
|
799
|
+
*
|
800
|
+
* - S. L. Moshier, November 1987
|
801
|
+
* October, 1992 - typo fixed in nutation matrix
|
802
|
+
*
|
803
|
+
* - D. Koch, November 1995: small changes in structure,
|
804
|
+
* Corrections to IAU 1980 Series added from Expl. Suppl. p. 116
|
805
|
+
*
|
806
|
+
* Each term in the expansion has a trigonometric
|
807
|
+
* argument given by
|
808
|
+
* W = i*MM + j*MS + k*FF + l*DD + m*OM
|
809
|
+
* where the variables are defined below.
|
810
|
+
* The nutation in longitude is a sum of terms of the
|
811
|
+
* form (a + bT) * sin(W). The terms for nutation in obliquity
|
812
|
+
* are of the form (c + dT) * cos(W). The coefficients
|
813
|
+
* are arranged in the tabulation as follows:
|
814
|
+
*
|
815
|
+
* Coefficient:
|
816
|
+
* i j k l m a b c d
|
817
|
+
* 0, 0, 0, 0, 1, -171996, -1742, 92025, 89,
|
818
|
+
* The first line of the table, above, is done separately
|
819
|
+
* since two of the values do not fit into 16 bit integers.
|
820
|
+
* The values a and c are arc seconds times 10000. b and d
|
821
|
+
* are arc seconds per Julian century times 100000. i through m
|
822
|
+
* are integers. See the program for interpretation of MM, MS,
|
823
|
+
* etc., which are mean orbital elements of the Sun and Moon.
|
824
|
+
*
|
825
|
+
* If terms with coefficient less than X are omitted, the peak
|
826
|
+
* errors will be:
|
827
|
+
*
|
828
|
+
* omit error, omit error,
|
829
|
+
* a < longitude c < obliquity
|
830
|
+
* .0005" .0100" .0008" .0094"
|
831
|
+
* .0046 .0492 .0095 .0481
|
832
|
+
* .0123 .0880 .0224 .0905
|
833
|
+
* .0386 .1808 .0895 .1129
|
834
|
+
*/
|
835
|
+
static short FAR nt[] = {
|
836
|
+
/* LS and OC are units of 0.0001"
|
837
|
+
*LS2 and OC2 are units of 0.00001"
|
838
|
+
*MM,MS,FF,DD,OM, LS, LS2,OC, OC2 */
|
839
|
+
0, 0, 0, 0, 2, 2062, 2,-895, 5,
|
840
|
+
-2, 0, 2, 0, 1, 46, 0,-24, 0,
|
841
|
+
2, 0,-2, 0, 0, 11, 0, 0, 0,
|
842
|
+
-2, 0, 2, 0, 2,-3, 0, 1, 0,
|
843
|
+
1,-1, 0,-1, 0,-3, 0, 0, 0,
|
844
|
+
0,-2, 2,-2, 1,-2, 0, 1, 0,
|
845
|
+
2, 0,-2, 0, 1, 1, 0, 0, 0,
|
846
|
+
0, 0, 2,-2, 2,-13187,-16, 5736,-31,
|
847
|
+
0, 1, 0, 0, 0, 1426,-34, 54,-1,
|
848
|
+
0, 1, 2,-2, 2,-517, 12, 224,-6,
|
849
|
+
0,-1, 2,-2, 2, 217,-5,-95, 3,
|
850
|
+
0, 0, 2,-2, 1, 129, 1,-70, 0,
|
851
|
+
2, 0, 0,-2, 0, 48, 0, 1, 0,
|
852
|
+
0, 0, 2,-2, 0,-22, 0, 0, 0,
|
853
|
+
0, 2, 0, 0, 0, 17,-1, 0, 0,
|
854
|
+
0, 1, 0, 0, 1,-15, 0, 9, 0,
|
855
|
+
0, 2, 2,-2, 2,-16, 1, 7, 0,
|
856
|
+
0,-1, 0, 0, 1,-12, 0, 6, 0,
|
857
|
+
-2, 0, 0, 2, 1,-6, 0, 3, 0,
|
858
|
+
0,-1, 2,-2, 1,-5, 0, 3, 0,
|
859
|
+
2, 0, 0,-2, 1, 4, 0,-2, 0,
|
860
|
+
0, 1, 2,-2, 1, 4, 0,-2, 0,
|
861
|
+
1, 0, 0,-1, 0,-4, 0, 0, 0,
|
862
|
+
2, 1, 0,-2, 0, 1, 0, 0, 0,
|
863
|
+
0, 0,-2, 2, 1, 1, 0, 0, 0,
|
864
|
+
0, 1,-2, 2, 0,-1, 0, 0, 0,
|
865
|
+
0, 1, 0, 0, 2, 1, 0, 0, 0,
|
866
|
+
-1, 0, 0, 1, 1, 1, 0, 0, 0,
|
867
|
+
0, 1, 2,-2, 0,-1, 0, 0, 0,
|
868
|
+
0, 0, 2, 0, 2,-2274,-2, 977,-5,
|
869
|
+
1, 0, 0, 0, 0, 712, 1,-7, 0,
|
870
|
+
0, 0, 2, 0, 1,-386,-4, 200, 0,
|
871
|
+
1, 0, 2, 0, 2,-301, 0, 129,-1,
|
872
|
+
1, 0, 0,-2, 0,-158, 0,-1, 0,
|
873
|
+
-1, 0, 2, 0, 2, 123, 0,-53, 0,
|
874
|
+
0, 0, 0, 2, 0, 63, 0,-2, 0,
|
875
|
+
1, 0, 0, 0, 1, 63, 1,-33, 0,
|
876
|
+
-1, 0, 0, 0, 1,-58,-1, 32, 0,
|
877
|
+
-1, 0, 2, 2, 2,-59, 0, 26, 0,
|
878
|
+
1, 0, 2, 0, 1,-51, 0, 27, 0,
|
879
|
+
0, 0, 2, 2, 2,-38, 0, 16, 0,
|
880
|
+
2, 0, 0, 0, 0, 29, 0,-1, 0,
|
881
|
+
1, 0, 2,-2, 2, 29, 0,-12, 0,
|
882
|
+
2, 0, 2, 0, 2,-31, 0, 13, 0,
|
883
|
+
0, 0, 2, 0, 0, 26, 0,-1, 0,
|
884
|
+
-1, 0, 2, 0, 1, 21, 0,-10, 0,
|
885
|
+
-1, 0, 0, 2, 1, 16, 0,-8, 0,
|
886
|
+
1, 0, 0,-2, 1,-13, 0, 7, 0,
|
887
|
+
-1, 0, 2, 2, 1,-10, 0, 5, 0,
|
888
|
+
1, 1, 0,-2, 0,-7, 0, 0, 0,
|
889
|
+
0, 1, 2, 0, 2, 7, 0,-3, 0,
|
890
|
+
0,-1, 2, 0, 2,-7, 0, 3, 0,
|
891
|
+
1, 0, 2, 2, 2,-8, 0, 3, 0,
|
892
|
+
1, 0, 0, 2, 0, 6, 0, 0, 0,
|
893
|
+
2, 0, 2,-2, 2, 6, 0,-3, 0,
|
894
|
+
0, 0, 0, 2, 1,-6, 0, 3, 0,
|
895
|
+
0, 0, 2, 2, 1,-7, 0, 3, 0,
|
896
|
+
1, 0, 2,-2, 1, 6, 0,-3, 0,
|
897
|
+
0, 0, 0,-2, 1,-5, 0, 3, 0,
|
898
|
+
1,-1, 0, 0, 0, 5, 0, 0, 0,
|
899
|
+
2, 0, 2, 0, 1,-5, 0, 3, 0,
|
900
|
+
0, 1, 0,-2, 0,-4, 0, 0, 0,
|
901
|
+
1, 0,-2, 0, 0, 4, 0, 0, 0,
|
902
|
+
0, 0, 0, 1, 0,-4, 0, 0, 0,
|
903
|
+
1, 1, 0, 0, 0,-3, 0, 0, 0,
|
904
|
+
1, 0, 2, 0, 0, 3, 0, 0, 0,
|
905
|
+
1,-1, 2, 0, 2,-3, 0, 1, 0,
|
906
|
+
-1,-1, 2, 2, 2,-3, 0, 1, 0,
|
907
|
+
-2, 0, 0, 0, 1,-2, 0, 1, 0,
|
908
|
+
3, 0, 2, 0, 2,-3, 0, 1, 0,
|
909
|
+
0,-1, 2, 2, 2,-3, 0, 1, 0,
|
910
|
+
1, 1, 2, 0, 2, 2, 0,-1, 0,
|
911
|
+
-1, 0, 2,-2, 1,-2, 0, 1, 0,
|
912
|
+
2, 0, 0, 0, 1, 2, 0,-1, 0,
|
913
|
+
1, 0, 0, 0, 2,-2, 0, 1, 0,
|
914
|
+
3, 0, 0, 0, 0, 2, 0, 0, 0,
|
915
|
+
0, 0, 2, 1, 2, 2, 0,-1, 0,
|
916
|
+
-1, 0, 0, 0, 2, 1, 0,-1, 0,
|
917
|
+
1, 0, 0,-4, 0,-1, 0, 0, 0,
|
918
|
+
-2, 0, 2, 2, 2, 1, 0,-1, 0,
|
919
|
+
-1, 0, 2, 4, 2,-2, 0, 1, 0,
|
920
|
+
2, 0, 0,-4, 0,-1, 0, 0, 0,
|
921
|
+
1, 1, 2,-2, 2, 1, 0,-1, 0,
|
922
|
+
1, 0, 2, 2, 1,-1, 0, 1, 0,
|
923
|
+
-2, 0, 2, 4, 2,-1, 0, 1, 0,
|
924
|
+
-1, 0, 4, 0, 2, 1, 0, 0, 0,
|
925
|
+
1,-1, 0,-2, 0, 1, 0, 0, 0,
|
926
|
+
2, 0, 2,-2, 1, 1, 0,-1, 0,
|
927
|
+
2, 0, 2, 2, 2,-1, 0, 0, 0,
|
928
|
+
1, 0, 0, 2, 1,-1, 0, 0, 0,
|
929
|
+
0, 0, 4,-2, 2, 1, 0, 0, 0,
|
930
|
+
3, 0, 2,-2, 2, 1, 0, 0, 0,
|
931
|
+
1, 0, 2,-2, 0,-1, 0, 0, 0,
|
932
|
+
0, 1, 2, 0, 1, 1, 0, 0, 0,
|
933
|
+
-1,-1, 0, 2, 1, 1, 0, 0, 0,
|
934
|
+
0, 0,-2, 0, 1,-1, 0, 0, 0,
|
935
|
+
0, 0, 2,-1, 2,-1, 0, 0, 0,
|
936
|
+
0, 1, 0, 2, 0,-1, 0, 0, 0,
|
937
|
+
1, 0,-2,-2, 0,-1, 0, 0, 0,
|
938
|
+
0,-1, 2, 0, 1,-1, 0, 0, 0,
|
939
|
+
1, 1, 0,-2, 1,-1, 0, 0, 0,
|
940
|
+
1, 0,-2, 2, 0,-1, 0, 0, 0,
|
941
|
+
2, 0, 0, 2, 0, 1, 0, 0, 0,
|
942
|
+
0, 0, 2, 4, 2,-1, 0, 0, 0,
|
943
|
+
0, 1, 0, 1, 0, 1, 0, 0, 0,
|
944
|
+
#if NUT_CORR_1987
|
945
|
+
/* corrections to IAU 1980 nutation series by Herring 1987
|
946
|
+
* in 0.00001" !!!
|
947
|
+
* LS OC */
|
948
|
+
101, 0, 0, 0, 1,-725, 0, 213, 0,
|
949
|
+
101, 1, 0, 0, 0, 523, 0, 208, 0,
|
950
|
+
101, 0, 2,-2, 2, 102, 0, -41, 0,
|
951
|
+
101, 0, 2, 0, 2, -81, 0, 32, 0,
|
952
|
+
/* LC OS !!! */
|
953
|
+
102, 0, 0, 0, 1, 417, 0, 224, 0,
|
954
|
+
102, 1, 0, 0, 0, 61, 0, -24, 0,
|
955
|
+
102, 0, 2,-2, 2,-118, 0, -47, 0,
|
956
|
+
#endif
|
957
|
+
ENDMARK,
|
958
|
+
};
|
959
|
+
#endif
|
960
|
+
|
961
|
+
#if NUT_IAU_1980
|
962
|
+
int swi_nutation(double J, double *nutlo)
|
963
|
+
{
|
964
|
+
/* arrays to hold sines and cosines of multiple angles */
|
965
|
+
double ss[5][8];
|
966
|
+
double cc[5][8];
|
967
|
+
double arg;
|
968
|
+
double args[5];
|
969
|
+
double f, g, T, T2;
|
970
|
+
double MM, MS, FF, DD, OM;
|
971
|
+
double cu, su, cv, sv, sw, s;
|
972
|
+
double C, D;
|
973
|
+
int i, j, k, k1, m, n;
|
974
|
+
int ns[5];
|
975
|
+
short *p;
|
976
|
+
/* Julian centuries from 2000 January 1.5,
|
977
|
+
* barycentric dynamical time
|
978
|
+
*/
|
979
|
+
T = (J - 2451545.0) / 36525.0;
|
980
|
+
T2 = T * T;
|
981
|
+
/* Fundamental arguments in the FK5 reference system.
|
982
|
+
* The coefficients, originally given to 0.001",
|
983
|
+
* are converted here to degrees.
|
984
|
+
*/
|
985
|
+
/* longitude of the mean ascending node of the lunar orbit
|
986
|
+
* on the ecliptic, measured from the mean equinox of date
|
987
|
+
*/
|
988
|
+
OM = -6962890.539 * T + 450160.280 + (0.008 * T + 7.455) * T2;
|
989
|
+
OM = swe_degnorm(OM/3600) * DEGTORAD;
|
990
|
+
/* mean longitude of the Sun minus the
|
991
|
+
* mean longitude of the Sun's perigee
|
992
|
+
*/
|
993
|
+
MS = 129596581.224 * T + 1287099.804 - (0.012 * T + 0.577) * T2;
|
994
|
+
MS = swe_degnorm(MS/3600) * DEGTORAD;
|
995
|
+
/* mean longitude of the Moon minus the
|
996
|
+
* mean longitude of the Moon's perigee
|
997
|
+
*/
|
998
|
+
MM = 1717915922.633 * T + 485866.733 + (0.064 * T + 31.310) * T2;
|
999
|
+
MM = swe_degnorm(MM/3600) * DEGTORAD;
|
1000
|
+
/* mean longitude of the Moon minus the
|
1001
|
+
* mean longitude of the Moon's node
|
1002
|
+
*/
|
1003
|
+
FF = 1739527263.137 * T + 335778.877 + (0.011 * T - 13.257) * T2;
|
1004
|
+
FF = swe_degnorm(FF/3600) * DEGTORAD;
|
1005
|
+
/* mean elongation of the Moon from the Sun.
|
1006
|
+
*/
|
1007
|
+
DD = 1602961601.328 * T + 1072261.307 + (0.019 * T - 6.891) * T2;
|
1008
|
+
DD = swe_degnorm(DD/3600) * DEGTORAD;
|
1009
|
+
args[0] = MM;
|
1010
|
+
ns[0] = 3;
|
1011
|
+
args[1] = MS;
|
1012
|
+
ns[1] = 2;
|
1013
|
+
args[2] = FF;
|
1014
|
+
ns[2] = 4;
|
1015
|
+
args[3] = DD;
|
1016
|
+
ns[3] = 4;
|
1017
|
+
args[4] = OM;
|
1018
|
+
ns[4] = 2;
|
1019
|
+
/* Calculate sin( i*MM ), etc. for needed multiple angles
|
1020
|
+
*/
|
1021
|
+
for (k = 0; k <= 4; k++) {
|
1022
|
+
arg = args[k];
|
1023
|
+
n = ns[k];
|
1024
|
+
su = sin(arg);
|
1025
|
+
cu = cos(arg);
|
1026
|
+
ss[k][0] = su; /* sin(L) */
|
1027
|
+
cc[k][0] = cu; /* cos(L) */
|
1028
|
+
sv = 2.0*su*cu;
|
1029
|
+
cv = cu*cu - su*su;
|
1030
|
+
ss[k][1] = sv; /* sin(2L) */
|
1031
|
+
cc[k][1] = cv;
|
1032
|
+
for( i=2; i<n; i++ ) {
|
1033
|
+
s = su*cv + cu*sv;
|
1034
|
+
cv = cu*cv - su*sv;
|
1035
|
+
sv = s;
|
1036
|
+
ss[k][i] = sv; /* sin( i+1 L ) */
|
1037
|
+
cc[k][i] = cv;
|
1038
|
+
}
|
1039
|
+
}
|
1040
|
+
/* first terms, not in table: */
|
1041
|
+
C = (-0.01742*T - 17.1996)*ss[4][0]; /* sin(OM) */
|
1042
|
+
D = ( 0.00089*T + 9.2025)*cc[4][0]; /* cos(OM) */
|
1043
|
+
for(p = &nt[0]; *p != ENDMARK; p += 9) {
|
1044
|
+
/* argument of sine and cosine */
|
1045
|
+
k1 = 0;
|
1046
|
+
cv = 0.0;
|
1047
|
+
sv = 0.0;
|
1048
|
+
for( m=0; m<5; m++ ) {
|
1049
|
+
j = p[m];
|
1050
|
+
if (j > 100)
|
1051
|
+
j = 0; /* p[0] is a flag */
|
1052
|
+
if( j ) {
|
1053
|
+
k = j;
|
1054
|
+
if( j < 0 )
|
1055
|
+
k = -k;
|
1056
|
+
su = ss[m][k-1]; /* sin(k*angle) */
|
1057
|
+
if( j < 0 )
|
1058
|
+
su = -su;
|
1059
|
+
cu = cc[m][k-1];
|
1060
|
+
if( k1 == 0 ) { /* set first angle */
|
1061
|
+
sv = su;
|
1062
|
+
cv = cu;
|
1063
|
+
k1 = 1;
|
1064
|
+
}
|
1065
|
+
else { /* combine angles */
|
1066
|
+
sw = su*cv + cu*sv;
|
1067
|
+
cv = cu*cv - su*sv;
|
1068
|
+
sv = sw;
|
1069
|
+
}
|
1070
|
+
}
|
1071
|
+
}
|
1072
|
+
/* longitude coefficient, in 0.0001" */
|
1073
|
+
f = p[5] * 0.0001;
|
1074
|
+
if( p[6] != 0 )
|
1075
|
+
f += 0.00001 * T * p[6];
|
1076
|
+
/* obliquity coefficient, in 0.0001" */
|
1077
|
+
g = p[7] * 0.0001;
|
1078
|
+
if( p[8] != 0 )
|
1079
|
+
g += 0.00001 * T * p[8];
|
1080
|
+
if (*p >= 100) { /* coefficients in 0.00001" */
|
1081
|
+
f *= 0.1;
|
1082
|
+
g *= 0.1;
|
1083
|
+
}
|
1084
|
+
/* accumulate the terms */
|
1085
|
+
if (*p != 102) {
|
1086
|
+
C += f * sv;
|
1087
|
+
D += g * cv;
|
1088
|
+
}
|
1089
|
+
else { /* cos for nutl and sin for nuto */
|
1090
|
+
C += f * cv;
|
1091
|
+
D += g * sv;
|
1092
|
+
}
|
1093
|
+
/*
|
1094
|
+
if (i >= 105) {
|
1095
|
+
printf("%4.10f, %4.10f\n",f*sv,g*cv);
|
1096
|
+
}
|
1097
|
+
*/
|
1098
|
+
}
|
1099
|
+
/*
|
1100
|
+
printf("%4.10f, %4.10f, %4.10f, %4.10f\n",MS*RADTODEG,FF*RADTODEG,DD*RADTODEG,OM*RADTODEG);
|
1101
|
+
printf( "nutation: in longitude %.9f\", in obliquity %.9f\"\n", C, D );
|
1102
|
+
*/
|
1103
|
+
/* Save answers, expressed in radians */
|
1104
|
+
nutlo[0] = DEGTORAD * C / 3600.0;
|
1105
|
+
nutlo[1] = DEGTORAD * D / 3600.0;
|
1106
|
+
return(0);
|
1107
|
+
}
|
1108
|
+
#endif
|
1109
|
+
|
1110
|
+
#if NUT_IAU_2000A || NUT_IAU_2000B
|
1111
|
+
/* Nutation IAU 2000A model
|
1112
|
+
* (MHB2000 luni-solar and planetary nutation, without free core nutation)
|
1113
|
+
*
|
1114
|
+
* Function returns nutation in longitude and obliquity in radians with
|
1115
|
+
* respect to the equinox of date. For the obliquity of the ecliptic
|
1116
|
+
* the calculation of Lieske & al. (1977) must be used.
|
1117
|
+
*
|
1118
|
+
* The precision in recent years is about 0.001 arc seconds.
|
1119
|
+
*
|
1120
|
+
* The calculation includes luni-solar and planetary nutation.
|
1121
|
+
* Free core nutation, which cannot be predicted, is omitted,
|
1122
|
+
* the error being of the order of a few 0.0001 arc seconds.
|
1123
|
+
*
|
1124
|
+
* References:
|
1125
|
+
*
|
1126
|
+
* Capitaine, N., Wallace, P.T., Chapront, J., A & A 432, 366 (2005).
|
1127
|
+
*
|
1128
|
+
* Chapront, J., Chapront-Touze, M. & Francou, G., A & A 387, 700 (2002).
|
1129
|
+
*
|
1130
|
+
* Lieske, J.H., Lederle, T., Fricke, W. & Morando, B., "Expressions
|
1131
|
+
* for the precession quantities based upon the IAU (1976) System of
|
1132
|
+
* Astronomical Constants", A & A 58, 1-16 (1977).
|
1133
|
+
*
|
1134
|
+
* Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation
|
1135
|
+
* and precession New nutation series for nonrigid Earth and
|
1136
|
+
* insights into the Earth's interior", J.Geophys.Res., 107, B4,
|
1137
|
+
* 2002.
|
1138
|
+
*
|
1139
|
+
* Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
|
1140
|
+
* Francou, G., Laskar, J., A & A 282, 663-683 (1994).
|
1141
|
+
*
|
1142
|
+
* Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M., A & A Supp.
|
1143
|
+
* Ser. 135, 111 (1999).
|
1144
|
+
*
|
1145
|
+
* Wallace, P.T., "Software for Implementing the IAU 2000
|
1146
|
+
* Resolutions", in IERS Workshop 5.1 (2002).
|
1147
|
+
*
|
1148
|
+
* Nutation IAU 2000A series in:
|
1149
|
+
* Kaplan, G.H., United States Naval Observatory Circular No. 179 (Oct. 2005)
|
1150
|
+
* aa.usno.navy.mil/publications/docs/Circular_179.html
|
1151
|
+
*
|
1152
|
+
* MHB2000 code at
|
1153
|
+
* - ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.
|
1154
|
+
* - http://www.iau-sofa.rl.ac.uk/2005_0901/Downloads.html
|
1155
|
+
*/
|
1156
|
+
|
1157
|
+
#include "swenut2000a.h"
|
1158
|
+
int swi_nutation(double J, double *nutlo)
|
1159
|
+
{
|
1160
|
+
int i, j, k, inls;
|
1161
|
+
double M, SM, F, D, OM;
|
1162
|
+
#if NUT_IAU_2000A
|
1163
|
+
double AL, ALSU, AF, AD, AOM, APA;
|
1164
|
+
double ALME, ALVE, ALEA, ALMA, ALJU, ALSA, ALUR, ALNE;
|
1165
|
+
#endif
|
1166
|
+
double darg, sinarg, cosarg;
|
1167
|
+
double dpsi = 0, deps = 0;
|
1168
|
+
double T = (J - J2000 ) / 36525.0;
|
1169
|
+
/* luni-solar nutation */
|
1170
|
+
/* Fundamental arguments, Simon & al. (1994) */
|
1171
|
+
/* Mean anomaly of the Moon. */
|
1172
|
+
M = swe_degnorm(( 485868.249036 +
|
1173
|
+
T*( 1717915923.2178 +
|
1174
|
+
T*( 31.8792 +
|
1175
|
+
T*( 0.051635 +
|
1176
|
+
T*( - 0.00024470 ))))) / 3600.0) * DEGTORAD;
|
1177
|
+
/* Mean anomaly of the Sun */
|
1178
|
+
SM = swe_degnorm((1287104.79305 +
|
1179
|
+
T*( 129596581.0481 +
|
1180
|
+
T*( - 0.5532 +
|
1181
|
+
T*( 0.000136 +
|
1182
|
+
T*( - 0.00001149 ))))) / 3600.0) * DEGTORAD;
|
1183
|
+
/* Mean argument of the latitude of the Moon. */
|
1184
|
+
F = swe_degnorm(( 335779.526232 +
|
1185
|
+
T*( 1739527262.8478 +
|
1186
|
+
T*( - 12.7512 +
|
1187
|
+
T*( - 0.001037 +
|
1188
|
+
T*( 0.00000417 ))))) / 3600.0) * DEGTORAD;
|
1189
|
+
/* Mean elongation of the Moon from the Sun. */
|
1190
|
+
D = swe_degnorm((1072260.70369 +
|
1191
|
+
T*( 1602961601.2090 +
|
1192
|
+
T*( - 6.3706 +
|
1193
|
+
T*( 0.006593 +
|
1194
|
+
T*( - 0.00003169 ))))) / 3600.0) * DEGTORAD;
|
1195
|
+
/* Mean longitude of the ascending node of the Moon. */
|
1196
|
+
OM = swe_degnorm(( 450160.398036 +
|
1197
|
+
T*( - 6962890.5431 +
|
1198
|
+
T*( 7.4722 +
|
1199
|
+
T*( 0.007702 +
|
1200
|
+
T*( - 0.00005939 ))))) / 3600.0) * DEGTORAD;
|
1201
|
+
/* luni-solar nutation series, in reverse order, starting with small terms */
|
1202
|
+
#if NUT_IAU_2000B
|
1203
|
+
inls = NLS_2000B;
|
1204
|
+
#else
|
1205
|
+
inls = NLS;
|
1206
|
+
#endif
|
1207
|
+
for (i = inls - 1; i >= 0; i--) {
|
1208
|
+
j = i * 5;
|
1209
|
+
darg = swe_radnorm((double) nls[j + 0] * M +
|
1210
|
+
(double) nls[j + 1] * SM +
|
1211
|
+
(double) nls[j + 2] * F +
|
1212
|
+
(double) nls[j + 3] * D +
|
1213
|
+
(double) nls[j + 4] * OM);
|
1214
|
+
sinarg = sin(darg);
|
1215
|
+
cosarg = cos(darg);
|
1216
|
+
k = i * 6;
|
1217
|
+
dpsi += (cls[k+0] + cls[k+1] * T) * sinarg + cls[k+2] * cosarg;
|
1218
|
+
deps += (cls[k+3] + cls[k+4] * T) * cosarg + cls[k+5] * sinarg;
|
1219
|
+
}
|
1220
|
+
nutlo[0] = dpsi * O1MAS2DEG;
|
1221
|
+
nutlo[1] = deps * O1MAS2DEG;
|
1222
|
+
#if NUT_IAU_2000A
|
1223
|
+
/* planetary nutation
|
1224
|
+
* note: The MHB2000 code computes the luni-solar and planetary nutation
|
1225
|
+
* in different routines, using slightly different Delaunay
|
1226
|
+
* arguments in the two cases. This behaviour is faithfully
|
1227
|
+
* reproduced here. Use of the Simon et al. expressions for both
|
1228
|
+
* cases leads to negligible changes, well below 0.1 microarcsecond.*/
|
1229
|
+
/* Mean anomaly of the Moon.*/
|
1230
|
+
AL = swe_radnorm(2.35555598 + 8328.6914269554 * T);
|
1231
|
+
/* Mean anomaly of the Sun.*/
|
1232
|
+
ALSU = swe_radnorm(6.24006013 + 628.301955 * T);
|
1233
|
+
/* Mean argument of the latitude of the Moon. */
|
1234
|
+
AF = swe_radnorm(1.627905234 + 8433.466158131 * T);
|
1235
|
+
/* Mean elongation of the Moon from the Sun. */
|
1236
|
+
AD = swe_radnorm(5.198466741 + 7771.3771468121 * T);
|
1237
|
+
/* Mean longitude of the ascending node of the Moon. */
|
1238
|
+
AOM = swe_radnorm(2.18243920 - 33.757045 * T);
|
1239
|
+
/* General accumulated precession in longitude. */
|
1240
|
+
APA = (0.02438175 + 0.00000538691 * T) * T;
|
1241
|
+
/* Planetary longitudes, Mercury through Neptune (Souchay et al. 1999). */
|
1242
|
+
ALME = swe_radnorm(4.402608842 + 2608.7903141574 * T);
|
1243
|
+
ALVE = swe_radnorm(3.176146697 + 1021.3285546211 * T);
|
1244
|
+
ALEA = swe_radnorm(1.753470314 + 628.3075849991 * T);
|
1245
|
+
ALMA = swe_radnorm(6.203480913 + 334.0612426700 * T);
|
1246
|
+
ALJU = swe_radnorm(0.599546497 + 52.9690962641 * T);
|
1247
|
+
ALSA = swe_radnorm(0.874016757 + 21.3299104960 * T);
|
1248
|
+
ALUR = swe_radnorm(5.481293871 + 7.4781598567 * T);
|
1249
|
+
ALNE = swe_radnorm(5.321159000 + 3.8127774000 * T);
|
1250
|
+
/* planetary nutation series (in reverse order).*/
|
1251
|
+
dpsi = 0;
|
1252
|
+
deps = 0;
|
1253
|
+
for (i = NPL - 1; i >= 0; i--) {
|
1254
|
+
j = i * 14;
|
1255
|
+
darg = swe_radnorm((double) npl[j + 0] * AL +
|
1256
|
+
(double) npl[j + 1] * ALSU +
|
1257
|
+
(double) npl[j + 2] * AF +
|
1258
|
+
(double) npl[j + 3] * AD +
|
1259
|
+
(double) npl[j + 4] * AOM +
|
1260
|
+
(double) npl[j + 5] * ALME +
|
1261
|
+
(double) npl[j + 6] * ALVE +
|
1262
|
+
(double) npl[j + 7] * ALEA +
|
1263
|
+
(double) npl[j + 8] * ALMA +
|
1264
|
+
(double) npl[j + 9] * ALJU +
|
1265
|
+
(double) npl[j +10] * ALSA +
|
1266
|
+
(double) npl[j +11] * ALUR +
|
1267
|
+
(double) npl[j +12] * ALNE +
|
1268
|
+
(double) npl[j +13] * APA);
|
1269
|
+
k = i * 4;
|
1270
|
+
sinarg = sin(darg);
|
1271
|
+
cosarg = cos(darg);
|
1272
|
+
dpsi += (double) icpl[k+0] * sinarg + (double) icpl[k+1] * cosarg;
|
1273
|
+
deps += (double) icpl[k+2] * sinarg + (double) icpl[k+3] * cosarg;
|
1274
|
+
}
|
1275
|
+
nutlo[0] += dpsi * O1MAS2DEG;
|
1276
|
+
nutlo[1] += deps * O1MAS2DEG;
|
1277
|
+
#if 1
|
1278
|
+
/* changes required by adoption of P03 precession
|
1279
|
+
* according to Capitaine et al. A & A 412, 366 (2005) */
|
1280
|
+
dpsi = -8.1 * sin(OM) - 0.6 * sin(2 * F - 2 * D + 2 * OM);
|
1281
|
+
dpsi += T * (47.8 * sin(OM) + 3.7 * sin(2 * F - 2 * D + 2 * OM) + 0.6 * sin(2 * F + 2 * OM) - 0.6 * sin(2 * OM));
|
1282
|
+
deps = T * (-25.6 * cos(OM) - 1.6 * cos(2 * F - 2 * D + 2 * OM));
|
1283
|
+
nutlo[0] += dpsi / (3600.0 * 1000000.0);
|
1284
|
+
nutlo[1] += deps / (3600.0 * 1000000.0);
|
1285
|
+
#endif
|
1286
|
+
#endif
|
1287
|
+
nutlo[0] *= DEGTORAD;
|
1288
|
+
nutlo[1] *= DEGTORAD;
|
1289
|
+
return 0;
|
1290
|
+
}
|
1291
|
+
#endif
|
1292
|
+
|
1293
|
+
/* GCRS to J2000 */
|
1294
|
+
void swi_bias(double *x, int32 iflag, AS_BOOL backward)
|
1295
|
+
{
|
1296
|
+
#if 0
|
1297
|
+
double DAS2R = 1.0 / 3600.0 * DEGTORAD;
|
1298
|
+
double dpsi_bias = -0.041775 * DAS2R;
|
1299
|
+
double deps_bias = -0.0068192 * DAS2R;
|
1300
|
+
double dra0 = -0.0146 * DAS2R;
|
1301
|
+
double deps2000 = 84381.448 * DAS2R;
|
1302
|
+
#endif
|
1303
|
+
double xx[6], rb[3][3];
|
1304
|
+
int i;
|
1305
|
+
rb[0][0] = +0.9999999999999942;
|
1306
|
+
rb[0][1] = +0.0000000707827948;
|
1307
|
+
rb[0][2] = -0.0000000805621738;
|
1308
|
+
rb[1][0] = -0.0000000707827974;
|
1309
|
+
rb[1][1] = +0.9999999999999969;
|
1310
|
+
rb[1][2] = -0.0000000330604088;
|
1311
|
+
rb[2][0] = +0.0000000805621715;
|
1312
|
+
rb[2][1] = +0.0000000330604145;
|
1313
|
+
rb[2][2] = +0.9999999999999962;
|
1314
|
+
if (backward) {
|
1315
|
+
for (i = 0; i <= 2; i++) {
|
1316
|
+
xx[i] = x[0] * rb[i][0] +
|
1317
|
+
x[1] * rb[i][1] +
|
1318
|
+
x[2] * rb[i][2];
|
1319
|
+
if (iflag & SEFLG_SPEED)
|
1320
|
+
xx[i+3] = x[3] * rb[i][0] +
|
1321
|
+
x[4] * rb[i][1] +
|
1322
|
+
x[5] * rb[i][2];
|
1323
|
+
}
|
1324
|
+
} else {
|
1325
|
+
for (i = 0; i <= 2; i++) {
|
1326
|
+
xx[i] = x[0] * rb[0][i] +
|
1327
|
+
x[1] * rb[1][i] +
|
1328
|
+
x[2] * rb[2][i];
|
1329
|
+
if (iflag & SEFLG_SPEED)
|
1330
|
+
xx[i+3] = x[3] * rb[0][i] +
|
1331
|
+
x[4] * rb[1][i] +
|
1332
|
+
x[5] * rb[2][i];
|
1333
|
+
}
|
1334
|
+
}
|
1335
|
+
for (i = 0; i <= 2; i++) x[i] = xx[i];
|
1336
|
+
if (iflag & SEFLG_SPEED)
|
1337
|
+
for (i = 3; i <= 5; i++) x[i] = xx[i];
|
1338
|
+
}
|
1339
|
+
|
1340
|
+
|
1341
|
+
/* GCRS to FK5 */
|
1342
|
+
void swi_icrs2fk5(double *x, int32 iflag, AS_BOOL backward)
|
1343
|
+
{
|
1344
|
+
#if 0
|
1345
|
+
double DAS2R = 1.0 / 3600.0 * DEGTORAD;
|
1346
|
+
double dra0 = -0.0229 * DAS2R;
|
1347
|
+
double dxi0 = 0.0091 * DAS2R;
|
1348
|
+
double det0 = -0.0199 * DAS2R;
|
1349
|
+
#endif
|
1350
|
+
double xx[6], rb[3][3];
|
1351
|
+
int i;
|
1352
|
+
rb[0][0] = +0.9999999999999928;
|
1353
|
+
rb[0][1] = +0.0000001110223287;
|
1354
|
+
rb[0][2] = +0.0000000441180557;
|
1355
|
+
rb[1][0] = -0.0000001110223330;
|
1356
|
+
rb[1][1] = +0.9999999999999891;
|
1357
|
+
rb[1][2] = +0.0000000964779176;
|
1358
|
+
rb[2][0] = -0.0000000441180450;
|
1359
|
+
rb[2][1] = -0.0000000964779225;
|
1360
|
+
rb[2][2] = +0.9999999999999943;
|
1361
|
+
if (backward) {
|
1362
|
+
for (i = 0; i <= 2; i++) {
|
1363
|
+
xx[i] = x[0] * rb[i][0] +
|
1364
|
+
x[1] * rb[i][1] +
|
1365
|
+
x[2] * rb[i][2];
|
1366
|
+
if (iflag & SEFLG_SPEED)
|
1367
|
+
xx[i+3] = x[3] * rb[i][0] +
|
1368
|
+
x[4] * rb[i][1] +
|
1369
|
+
x[5] * rb[i][2];
|
1370
|
+
}
|
1371
|
+
} else {
|
1372
|
+
for (i = 0; i <= 2; i++) {
|
1373
|
+
xx[i] = x[0] * rb[0][i] +
|
1374
|
+
x[1] * rb[1][i] +
|
1375
|
+
x[2] * rb[2][i];
|
1376
|
+
if (iflag & SEFLG_SPEED)
|
1377
|
+
xx[i+3] = x[3] * rb[0][i] +
|
1378
|
+
x[4] * rb[1][i] +
|
1379
|
+
x[5] * rb[2][i];
|
1380
|
+
}
|
1381
|
+
}
|
1382
|
+
for (i = 0; i <= 5; i++) x[i] = xx[i];
|
1383
|
+
}
|
1384
|
+
|
1385
|
+
/* DeltaT = Ephemeris Time - Universal Time, in days.
|
1386
|
+
*
|
1387
|
+
* 1620 - today + a couple of years:
|
1388
|
+
* ---------------------------------
|
1389
|
+
* The tabulated values of deltaT, in hundredths of a second,
|
1390
|
+
* were taken from The Astronomical Almanac 1997, page K8. The program
|
1391
|
+
* adjusts for a value of secular tidal acceleration ndot = -25.7376.
|
1392
|
+
* arcsec per century squared, the value used in JPL's DE403 ephemeris.
|
1393
|
+
* ELP2000 (and DE200) used the value -23.8946.
|
1394
|
+
* To change ndot, one can
|
1395
|
+
* either redefine SE_TIDAL_DEFAULT in swephexp.h
|
1396
|
+
* or use the routine swe_set_tid_acc() before calling Swiss
|
1397
|
+
* Ephemeris.
|
1398
|
+
* Bessel's interpolation formula is implemented to obtain fourth
|
1399
|
+
* order interpolated values at intermediate times.
|
1400
|
+
*
|
1401
|
+
* -1000 - 1620:
|
1402
|
+
* ---------------------------------
|
1403
|
+
* For dates between -500 and 1600, the table given by Morrison &
|
1404
|
+
* Stephenson (2004; p. 332) is used, with linear interpolation.
|
1405
|
+
* This table is based on an assumed value of ndot = -26.
|
1406
|
+
* The program adjusts for ndot = -25.7376.
|
1407
|
+
* For 1600 - 1620, a linear interpolation between the last value
|
1408
|
+
* of the latter and the first value of the former table is made.
|
1409
|
+
*
|
1410
|
+
* before -1000:
|
1411
|
+
* ---------------------------------
|
1412
|
+
* For times before -1100, a formula of Morrison & Stephenson (2004)
|
1413
|
+
* (p. 332) is used:
|
1414
|
+
* dt = 32 * t * t - 20 sec, where t is centuries from 1820 AD.
|
1415
|
+
* For -1100 to -1000, a transition from this formula to the Stephenson
|
1416
|
+
* table has been implemented in order to avoid a jump.
|
1417
|
+
*
|
1418
|
+
* future:
|
1419
|
+
* ---------------------------------
|
1420
|
+
* For the time after the last tabulated value, we use the formula
|
1421
|
+
* of Stephenson (1997; p. 507), with a modification that avoids a jump
|
1422
|
+
* at the end of the tabulated period. A linear term is added that
|
1423
|
+
* makes a slow transition from the table to the formula over a period
|
1424
|
+
* of 100 years. (Need not be updated, when table will be enlarged.)
|
1425
|
+
*
|
1426
|
+
* References:
|
1427
|
+
*
|
1428
|
+
* Stephenson, F. R., and L. V. Morrison, "Long-term changes
|
1429
|
+
* in the rotation of the Earth: 700 B.C. to A.D. 1980,"
|
1430
|
+
* Philosophical Transactions of the Royal Society of London
|
1431
|
+
* Series A 313, 47-70 (1984)
|
1432
|
+
*
|
1433
|
+
* Borkowski, K. M., "ELP2000-85 and the Dynamical Time
|
1434
|
+
* - Universal Time relation," Astronomy and Astrophysics
|
1435
|
+
* 205, L8-L10 (1988)
|
1436
|
+
* Borkowski's formula is derived from partly doubtful eclipses
|
1437
|
+
* going back to 2137 BC and uses lunar position based on tidal
|
1438
|
+
* coefficient of -23.9 arcsec/cy^2.
|
1439
|
+
*
|
1440
|
+
* Chapront-Touze, Michelle, and Jean Chapront, _Lunar Tables
|
1441
|
+
* and Programs from 4000 B.C. to A.D. 8000_, Willmann-Bell 1991
|
1442
|
+
* Their table agrees with the one here, but the entries are
|
1443
|
+
* rounded to the nearest whole second.
|
1444
|
+
*
|
1445
|
+
* Stephenson, F. R., and M. A. Houlden, _Atlas of Historical
|
1446
|
+
* Eclipse Maps_, Cambridge U. Press (1986)
|
1447
|
+
*
|
1448
|
+
* Stephenson, F.R. & Morrison, L.V., "Long-Term Fluctuations in
|
1449
|
+
* the Earth's Rotation: 700 BC to AD 1990", Philosophical
|
1450
|
+
* Transactions of the Royal Society of London,
|
1451
|
+
* Ser. A, 351 (1995), 165-202.
|
1452
|
+
*
|
1453
|
+
* Stephenson, F. Richard, _Historical Eclipses and Earth's
|
1454
|
+
* Rotation_, Cambridge U. Press (1997)
|
1455
|
+
*
|
1456
|
+
* Morrison, L. V., and F.R. Stephenson, "Historical Values of the Earth's
|
1457
|
+
* Clock Error DT and the Calculation of Eclipses", JHA xxxv (2004),
|
1458
|
+
* pp.327-336
|
1459
|
+
*
|
1460
|
+
* Table from AA for 1620 through today
|
1461
|
+
* Note, Stephenson and Morrison's table starts at the year 1630.
|
1462
|
+
* The Chapronts' table does not agree with the Almanac prior to 1630.
|
1463
|
+
* The actual accuracy decreases rapidly prior to 1780.
|
1464
|
+
*
|
1465
|
+
* Jean Meeus, Astronomical Algorithms, 2nd edition, 1998.
|
1466
|
+
*
|
1467
|
+
* For a comprehensive collection of publications and formulae, see:
|
1468
|
+
* http://www.phys.uu.nl/~vgent/deltat/deltat_modern.htm
|
1469
|
+
* http://www.phys.uu.nl/~vgent/deltat/deltat_old.htm
|
1470
|
+
*
|
1471
|
+
* For future values of delta t, the following data from the
|
1472
|
+
* Earth Orientation Department of the US Naval Observatory can be used:
|
1473
|
+
* (TAI-UTC) from: ftp://maia.usno.navy.mil/ser7/tai-utc.dat
|
1474
|
+
* (UT1-UTC) from: ftp://maia.usno.navy.mil/ser7/finals.all
|
1475
|
+
* file description in: ftp://maia.usno.navy.mil/ser7/readme.finals
|
1476
|
+
* Delta T = TAI-UT1 + 32.184 sec = (TAI-UTC) - (UT1-UTC) + 32.184 sec
|
1477
|
+
*
|
1478
|
+
* Also, there is the following file:
|
1479
|
+
* http://maia.usno.navy.mil/ser7/deltat.data, but it is about 3 months
|
1480
|
+
* behind (on 3 feb 2009)
|
1481
|
+
*
|
1482
|
+
* Last update of table dt[]: Dieter Koch, 27 april 2010.
|
1483
|
+
* ATTENTION: Whenever updating this table, do not forget to adjust
|
1484
|
+
* the macros TABEND and TABSIZ !
|
1485
|
+
*/
|
1486
|
+
#define TABSTART 1620
|
1487
|
+
#define TABEND 2017
|
1488
|
+
#define TABSIZ (TABEND-TABSTART+1)
|
1489
|
+
/* we make the table greater for additional values read from external file */
|
1490
|
+
#define TABSIZ_SPACE (TABSIZ+100)
|
1491
|
+
static double FAR dt[TABSIZ_SPACE] = {
|
1492
|
+
/* 1620.0 thru 1659.0 */
|
1493
|
+
124.00, 119.00, 115.00, 110.00, 106.00, 102.00, 98.00, 95.00, 91.00, 88.00,
|
1494
|
+
85.00, 82.00, 79.00, 77.00, 74.00, 72.00, 70.00, 67.00, 65.00, 63.00,
|
1495
|
+
62.00, 60.00, 58.00, 57.00, 55.00, 54.00, 53.00, 51.00, 50.00, 49.00,
|
1496
|
+
48.00, 47.00, 46.00, 45.00, 44.00, 43.00, 42.00, 41.00, 40.00, 38.00,
|
1497
|
+
/* 1660.0 thru 1699.0 */
|
1498
|
+
37.00, 36.00, 35.00, 34.00, 33.00, 32.00, 31.00, 30.00, 28.00, 27.00,
|
1499
|
+
26.00, 25.00, 24.00, 23.00, 22.00, 21.00, 20.00, 19.00, 18.00, 17.00,
|
1500
|
+
16.00, 15.00, 14.00, 14.00, 13.00, 12.00, 12.00, 11.00, 11.00, 10.00,
|
1501
|
+
10.00, 10.00, 9.00, 9.00, 9.00, 9.00, 9.00, 9.00, 9.00, 9.00,
|
1502
|
+
/* 1700.0 thru 1739.0 */
|
1503
|
+
9.00, 9.00, 9.00, 9.00, 9.00, 9.00, 9.00, 9.00, 10.00, 10.00,
|
1504
|
+
10.00, 10.00, 10.00, 10.00, 10.00, 10.00, 10.00, 11.00, 11.00, 11.00,
|
1505
|
+
11.00, 11.00, 11.00, 11.00, 11.00, 11.00, 11.00, 11.00, 11.00, 11.00,
|
1506
|
+
11.00, 11.00, 11.00, 11.00, 12.00, 12.00, 12.00, 12.00, 12.00, 12.00,
|
1507
|
+
/* 1740.0 thru 1779.0 */
|
1508
|
+
12.00, 12.00, 12.00, 12.00, 13.00, 13.00, 13.00, 13.00, 13.00, 13.00,
|
1509
|
+
13.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 15.00, 15.00,
|
1510
|
+
15.00, 15.00, 15.00, 15.00, 15.00, 16.00, 16.00, 16.00, 16.00, 16.00,
|
1511
|
+
16.00, 16.00, 16.00, 16.00, 16.00, 17.00, 17.00, 17.00, 17.00, 17.00,
|
1512
|
+
/* 1780.0 thru 1799.0 */
|
1513
|
+
17.00, 17.00, 17.00, 17.00, 17.00, 17.00, 17.00, 17.00, 17.00, 17.00,
|
1514
|
+
17.00, 17.00, 16.00, 16.00, 16.00, 16.00, 15.00, 15.00, 14.00, 14.00,
|
1515
|
+
/* 1800.0 thru 1819.0 */
|
1516
|
+
13.70, 13.40, 13.10, 12.90, 12.70, 12.60, 12.50, 12.50, 12.50, 12.50,
|
1517
|
+
12.50, 12.50, 12.50, 12.50, 12.50, 12.50, 12.50, 12.40, 12.30, 12.20,
|
1518
|
+
/* 1820.0 thru 1859.0 */
|
1519
|
+
12.00, 11.70, 11.40, 11.10, 10.60, 10.20, 9.60, 9.10, 8.60, 8.00,
|
1520
|
+
7.50, 7.00, 6.60, 6.30, 6.00, 5.80, 5.70, 5.60, 5.60, 5.60,
|
1521
|
+
5.70, 5.80, 5.90, 6.10, 6.20, 6.30, 6.50, 6.60, 6.80, 6.90,
|
1522
|
+
7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70, 7.70, 7.80, 7.80,
|
1523
|
+
/* 1860.0 thru 1899.0 */
|
1524
|
+
7.88, 7.82, 7.54, 6.97, 6.40, 6.02, 5.41, 4.10, 2.92, 1.82,
|
1525
|
+
1.61, .10, -1.02, -1.28, -2.69, -3.24, -3.64, -4.54, -4.71, -5.11,
|
1526
|
+
-5.40, -5.42, -5.20, -5.46, -5.46, -5.79, -5.63, -5.64, -5.80, -5.66,
|
1527
|
+
-5.87, -6.01, -6.19, -6.64, -6.44, -6.47, -6.09, -5.76, -4.66, -3.74,
|
1528
|
+
/* 1900.0 thru 1939.0 */
|
1529
|
+
-2.72, -1.54, -.02, 1.24, 2.64, 3.86, 5.37, 6.14, 7.75, 9.13,
|
1530
|
+
10.46, 11.53, 13.36, 14.65, 16.01, 17.20, 18.24, 19.06, 20.25, 20.95,
|
1531
|
+
21.16, 22.25, 22.41, 23.03, 23.49, 23.62, 23.86, 24.49, 24.34, 24.08,
|
1532
|
+
24.02, 24.00, 23.87, 23.95, 23.86, 23.93, 23.73, 23.92, 23.96, 24.02,
|
1533
|
+
/* 1940.0 thru 1979.0 */
|
1534
|
+
24.33, 24.83, 25.30, 25.70, 26.24, 26.77, 27.28, 27.78, 28.25, 28.71,
|
1535
|
+
29.15, 29.57, 29.97, 30.36, 30.72, 31.07, 31.35, 31.68, 32.18, 32.68,
|
1536
|
+
33.15, 33.59, 34.00, 34.47, 35.03, 35.73, 36.54, 37.43, 38.29, 39.20,
|
1537
|
+
40.18, 41.17, 42.23, 43.37, 44.49, 45.48, 46.46, 47.52, 48.53, 49.59,
|
1538
|
+
/* 1980.0 thru 1999.0 */
|
1539
|
+
50.54, 51.38, 52.17, 52.96, 53.79, 54.34, 54.87, 55.32, 55.82, 56.30,
|
1540
|
+
56.86, 57.57, 58.31, 59.12, 59.98, 60.78, 61.63, 62.30, 62.97, 63.47,
|
1541
|
+
/* 2000.0 thru 2009.0 */
|
1542
|
+
63.83, 64.09, 64.30, 64.47, 64.57, 64.69, 64.85, 65.15, 65.46, 65.78,
|
1543
|
+
/* 2010.0 thru 2019.0 */
|
1544
|
+
66.07, 66.32,
|
1545
|
+
/* Extrapolated values, 2011 - 2014 */
|
1546
|
+
67.00, 67.50, 68.00, 68.50, 69.00, 69.50,
|
1547
|
+
};
|
1548
|
+
#define ESPENAK_MEEUS_2006 TRUE
|
1549
|
+
#define TAB2_SIZ 27
|
1550
|
+
#define TAB2_START (-1000)
|
1551
|
+
#define TAB2_END 1600
|
1552
|
+
#define TAB2_STEP 100
|
1553
|
+
#define LTERM_EQUATION_YSTART 1820
|
1554
|
+
#define LTERM_EQUATION_COEFF 32
|
1555
|
+
/* Table for -1000 through 1600, from Morrison & Stephenson (2004). */
|
1556
|
+
static short FAR dt2[TAB2_SIZ] = {
|
1557
|
+
/*-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100*/
|
1558
|
+
25400,23700,22000,21000,19040,17190,15530,14080,12790,11640,
|
1559
|
+
/* 0 100 200 300 400 500 600 700 800 900*/
|
1560
|
+
10580, 9600, 8640, 7680, 6700, 5710, 4740, 3810, 2960, 2200,
|
1561
|
+
/* 1000 1100 1200 1300 1400 1500 1600, */
|
1562
|
+
1570, 1090, 740, 490, 320, 200, 120,
|
1563
|
+
};
|
1564
|
+
/* returns DeltaT (ET - UT) in days
|
1565
|
+
* double tjd = julian day in UT
|
1566
|
+
*/
|
1567
|
+
#define DEMO 0
|
1568
|
+
double FAR PASCAL_CONV swe_deltat(double tjd)
|
1569
|
+
{
|
1570
|
+
double ans = 0;
|
1571
|
+
double B, Y, Ygreg, dd;
|
1572
|
+
int iy;
|
1573
|
+
/* read additional values from swedelta.txt */
|
1574
|
+
AS_BOOL use_espenak_meeus = ESPENAK_MEEUS_2006;
|
1575
|
+
Y = 2000.0 + (tjd - J2000)/365.25;
|
1576
|
+
Ygreg = 2000.0 + (tjd - J2000)/365.2425;
|
1577
|
+
/* Before 1633 AD, if the macro ESPENAK_MEEUS_2006 is TRUE:
|
1578
|
+
* Polynomials by Espenak & Meeus 2006, derived from Stephenson & Morrison
|
1579
|
+
* 2004.
|
1580
|
+
* Note, Espenak & Meeus use their formulae only from 2000 BC on.
|
1581
|
+
* However, they use the long-term formula of Morrison & Stephenson,
|
1582
|
+
* which can be used even for the remoter past.
|
1583
|
+
*/
|
1584
|
+
if (use_espenak_meeus && tjd < 2317746.13090277789) {
|
1585
|
+
return deltat_espenak_meeus_1620(tjd);
|
1586
|
+
}
|
1587
|
+
/* If the macro ESPENAK_MEEUS_2006 is FALSE:
|
1588
|
+
* Before 1620, we follow Stephenson & Morrsion 2004. For the tabulated
|
1589
|
+
* values 1000 BC through 1600 AD, we use linear interpolation.
|
1590
|
+
*/
|
1591
|
+
if (Y < TABSTART) {
|
1592
|
+
if (Y < TAB2_END) {
|
1593
|
+
return deltat_stephenson_morrison_1600(tjd);
|
1594
|
+
} else {
|
1595
|
+
/* between 1600 and 1620:
|
1596
|
+
* linear interpolation between
|
1597
|
+
* end of table dt2 and start of table dt */
|
1598
|
+
if (Y >= TAB2_END) {
|
1599
|
+
B = TABSTART - TAB2_END;
|
1600
|
+
iy = (TAB2_END - TAB2_START) / TAB2_STEP;
|
1601
|
+
dd = (Y - TAB2_END) / B;
|
1602
|
+
/*ans = dt2[iy] + dd * (dt[0] / 100.0 - dt2[iy]);*/
|
1603
|
+
ans = dt2[iy] + dd * (dt[0] - dt2[iy]);
|
1604
|
+
ans = adjust_for_tidacc(ans, Ygreg);
|
1605
|
+
return ans / 86400.0;
|
1606
|
+
}
|
1607
|
+
}
|
1608
|
+
}
|
1609
|
+
/* 1620 - today + a few years (tabend):
|
1610
|
+
* Besselian interpolation from tabulated values in table dt.
|
1611
|
+
* See AA page K11.
|
1612
|
+
*/
|
1613
|
+
if (Y >= TABSTART) {
|
1614
|
+
return deltat_aa(tjd);
|
1615
|
+
}
|
1616
|
+
#ifdef TRACE
|
1617
|
+
swi_open_trace(NULL);
|
1618
|
+
if (swi_trace_count < TRACE_COUNT_MAX) {
|
1619
|
+
if (swi_fp_trace_c != NULL) {
|
1620
|
+
fputs("\n/*SWE_DELTAT*/\n", swi_fp_trace_c);
|
1621
|
+
fprintf(swi_fp_trace_c, " tjd = %.9f;", tjd);
|
1622
|
+
fprintf(swi_fp_trace_c, " t = swe_deltat(tjd);\n");
|
1623
|
+
fputs(" printf(\"swe_deltat: %f\\t%f\\t\\n\", ", swi_fp_trace_c);
|
1624
|
+
fputs("tjd, t);\n", swi_fp_trace_c);
|
1625
|
+
fflush(swi_fp_trace_c);
|
1626
|
+
}
|
1627
|
+
if (swi_fp_trace_out != NULL) {
|
1628
|
+
fprintf(swi_fp_trace_out, "swe_deltat: %f\t%f\t\n", tjd, ans);
|
1629
|
+
fflush(swi_fp_trace_out);
|
1630
|
+
}
|
1631
|
+
}
|
1632
|
+
#endif
|
1633
|
+
return ans / 86400.0;
|
1634
|
+
}
|
1635
|
+
|
1636
|
+
static double deltat_aa(double tjd)
|
1637
|
+
{
|
1638
|
+
double ans = 0, ans2, ans3;
|
1639
|
+
double p, B, B2, Y, dd;
|
1640
|
+
double d[6];
|
1641
|
+
int i, iy, k;
|
1642
|
+
/* read additional values from swedelta.txt */
|
1643
|
+
int tabsiz = init_dt();
|
1644
|
+
int tabend = TABSTART + tabsiz - 1;
|
1645
|
+
/*Y = 2000.0 + (tjd - J2000)/365.25;*/
|
1646
|
+
Y = 2000.0 + (tjd - J2000)/365.2425;
|
1647
|
+
if (Y <= tabend) {
|
1648
|
+
/* Index into the table.
|
1649
|
+
*/
|
1650
|
+
p = floor(Y);
|
1651
|
+
iy = (int) (p - TABSTART);
|
1652
|
+
/* Zeroth order estimate is value at start of year
|
1653
|
+
*/
|
1654
|
+
ans = dt[iy];
|
1655
|
+
k = iy + 1;
|
1656
|
+
if( k >= tabsiz )
|
1657
|
+
goto done; /* No data, can't go on. */
|
1658
|
+
/* The fraction of tabulation interval
|
1659
|
+
*/
|
1660
|
+
p = Y - p;
|
1661
|
+
/* First order interpolated value
|
1662
|
+
*/
|
1663
|
+
ans += p*(dt[k] - dt[iy]);
|
1664
|
+
if( (iy-1 < 0) || (iy+2 >= tabsiz) )
|
1665
|
+
goto done; /* can't do second differences */
|
1666
|
+
/* Make table of first differences
|
1667
|
+
*/
|
1668
|
+
k = iy - 2;
|
1669
|
+
for( i=0; i<5; i++ ) {
|
1670
|
+
if( (k < 0) || (k+1 >= tabsiz) )
|
1671
|
+
d[i] = 0;
|
1672
|
+
else
|
1673
|
+
d[i] = dt[k+1] - dt[k];
|
1674
|
+
k += 1;
|
1675
|
+
}
|
1676
|
+
/* Compute second differences
|
1677
|
+
*/
|
1678
|
+
for( i=0; i<4; i++ )
|
1679
|
+
d[i] = d[i+1] - d[i];
|
1680
|
+
B = 0.25*p*(p-1.0);
|
1681
|
+
ans += B*(d[1] + d[2]);
|
1682
|
+
#if DEMO
|
1683
|
+
printf( "B %.4lf, ans %.4lf\n", B, ans );
|
1684
|
+
#endif
|
1685
|
+
if( iy+2 >= tabsiz )
|
1686
|
+
goto done;
|
1687
|
+
/* Compute third differences
|
1688
|
+
*/
|
1689
|
+
for( i=0; i<3; i++ )
|
1690
|
+
d[i] = d[i+1] - d[i];
|
1691
|
+
B = 2.0*B/3.0;
|
1692
|
+
ans += (p-0.5)*B*d[1];
|
1693
|
+
#if DEMO
|
1694
|
+
printf( "B %.4lf, ans %.4lf\n", B*(p-0.5), ans );
|
1695
|
+
#endif
|
1696
|
+
if( (iy-2 < 0) || (iy+3 > tabsiz) )
|
1697
|
+
goto done;
|
1698
|
+
/* Compute fourth differences
|
1699
|
+
*/
|
1700
|
+
for( i=0; i<2; i++ )
|
1701
|
+
d[i] = d[i+1] - d[i];
|
1702
|
+
B = 0.125*B*(p+1.0)*(p-2.0);
|
1703
|
+
ans += B*(d[0] + d[1]);
|
1704
|
+
#if DEMO
|
1705
|
+
printf( "B %.4lf, ans %.4lf\n", B, ans );
|
1706
|
+
#endif
|
1707
|
+
done:
|
1708
|
+
ans = adjust_for_tidacc(ans, Y);
|
1709
|
+
return ans / 86400.0;
|
1710
|
+
}
|
1711
|
+
/* today - :
|
1712
|
+
* Formula Stephenson (1997; p. 507),
|
1713
|
+
* with modification to avoid jump at end of AA table,
|
1714
|
+
* similar to what Meeus 1998 had suggested.
|
1715
|
+
* Slow transition within 100 years.
|
1716
|
+
*/
|
1717
|
+
B = 0.01 * (Y - 1820);
|
1718
|
+
ans = -20 + 31 * B * B;
|
1719
|
+
/* slow transition from tabulated values to Stephenson formula: */
|
1720
|
+
if (Y <= tabend+100) {
|
1721
|
+
B2 = 0.01 * (tabend - 1820);
|
1722
|
+
ans2 = -20 + 31 * B2 * B2;
|
1723
|
+
ans3 = dt[tabsiz-1];
|
1724
|
+
dd = (ans2 - ans3);
|
1725
|
+
ans += dd * (Y - (tabend + 100)) * 0.01;
|
1726
|
+
}
|
1727
|
+
return ans / 86400.0;
|
1728
|
+
}
|
1729
|
+
|
1730
|
+
static double deltat_longterm_morrison_stephenson(double tjd)
|
1731
|
+
{
|
1732
|
+
double Ygreg = 2000.0 + (tjd - J2000)/365.2425;
|
1733
|
+
double u = (Ygreg - 1820) / 100.0;
|
1734
|
+
return (-20 + 32 * u * u);
|
1735
|
+
}
|
1736
|
+
|
1737
|
+
static double deltat_stephenson_morrison_1600(double tjd)
|
1738
|
+
{
|
1739
|
+
double ans = 0, ans2, ans3;
|
1740
|
+
double p, B, dd;
|
1741
|
+
double tjd0;
|
1742
|
+
int iy;
|
1743
|
+
/* read additional values from swedelta.txt */
|
1744
|
+
double Y = 2000.0 + (tjd - J2000)/365.2425;
|
1745
|
+
/* double Y = 2000.0 + (tjd - J2000)/365.25;*/
|
1746
|
+
/* before -1000:
|
1747
|
+
* formula by Stephenson&Morrison (2004; p. 335) but adjusted to fit the
|
1748
|
+
* starting point of table dt2. */
|
1749
|
+
if( Y < TAB2_START ) {
|
1750
|
+
/*B = (Y - LTERM_EQUATION_YSTART) * 0.01;
|
1751
|
+
ans = -20 + LTERM_EQUATION_COEFF * B * B;*/
|
1752
|
+
ans = deltat_longterm_morrison_stephenson(tjd);
|
1753
|
+
ans = adjust_for_tidacc(ans, Y);
|
1754
|
+
/* transition from formula to table over 100 years */
|
1755
|
+
if (Y >= TAB2_START - 100) {
|
1756
|
+
/* starting value of table dt2: */
|
1757
|
+
ans2 = adjust_for_tidacc(dt2[0], TAB2_START);
|
1758
|
+
/* value of formula at epoch TAB2_START */
|
1759
|
+
/* B = (TAB2_START - LTERM_EQUATION_YSTART) * 0.01;
|
1760
|
+
ans3 = -20 + LTERM_EQUATION_COEFF * B * B;*/
|
1761
|
+
tjd0 = (TAB2_START - 2000) * 365.2425 + J2000;
|
1762
|
+
ans3 = deltat_longterm_morrison_stephenson(tjd0);
|
1763
|
+
ans3 = adjust_for_tidacc(ans3, Y);
|
1764
|
+
dd = ans3 - ans2;
|
1765
|
+
B = (Y - (TAB2_START - 100)) * 0.01;
|
1766
|
+
/* fit to starting point of table dt2. */
|
1767
|
+
ans = ans - dd * B;
|
1768
|
+
}
|
1769
|
+
}
|
1770
|
+
/* between -1000 and 1600:
|
1771
|
+
* linear interpolation between values of table dt2 (Stephenson&Morrison 2004) */
|
1772
|
+
if (Y >= TAB2_START && Y < TAB2_END) {
|
1773
|
+
double Yjul = 2000 + (tjd - 2451557.5) / 365.25;
|
1774
|
+
p = floor(Yjul);
|
1775
|
+
iy = (int) ((p - TAB2_START) / TAB2_STEP);
|
1776
|
+
dd = (Yjul - (TAB2_START + TAB2_STEP * iy)) / TAB2_STEP;
|
1777
|
+
ans = dt2[iy] + (dt2[iy+1] - dt2[iy]) * dd;
|
1778
|
+
/* correction for tidal acceleration used by our ephemeris */
|
1779
|
+
ans = adjust_for_tidacc(ans, Y);
|
1780
|
+
}
|
1781
|
+
ans /= 86400.0;
|
1782
|
+
return ans;
|
1783
|
+
}
|
1784
|
+
|
1785
|
+
static double deltat_espenak_meeus_1620(double tjd)
|
1786
|
+
{
|
1787
|
+
double ans = 0;
|
1788
|
+
double Ygreg;
|
1789
|
+
double u;
|
1790
|
+
/* double Y = 2000.0 + (tjd - J2000)/365.25;*/
|
1791
|
+
Ygreg = 2000.0 + (tjd - J2000)/365.2425;
|
1792
|
+
if (Ygreg < -500) {
|
1793
|
+
ans = deltat_longterm_morrison_stephenson(tjd);
|
1794
|
+
} else if (Ygreg < 500) {
|
1795
|
+
u = Ygreg / 100.0;
|
1796
|
+
ans = (((((0.0090316521 * u + 0.022174192) * u - 0.1798452) * u - 5.952053) * u+ 33.78311) * u - 1014.41) * u + 10583.6;
|
1797
|
+
} else if (Ygreg < 1600) {
|
1798
|
+
u = (Ygreg - 1000) / 100.0;
|
1799
|
+
ans = (((((0.0083572073 * u - 0.005050998) * u - 0.8503463) * u + 0.319781) * u + 71.23472) * u - 556.01) * u + 1574.2;
|
1800
|
+
} else if (Ygreg < 1700) {
|
1801
|
+
u = Ygreg - 1600;
|
1802
|
+
ans = 120 - 0.9808 * u - 0.01532 * u * u + u * u * u / 7129.0;
|
1803
|
+
} else if (Ygreg < 1800) {
|
1804
|
+
u = Ygreg - 1700;
|
1805
|
+
ans = (((-u / 1174000.0 + 0.00013336) * u - 0.0059285) * u + 0.1603) * u + 8.83;
|
1806
|
+
} else if (Ygreg < 1860) {
|
1807
|
+
u = Ygreg - 1800;
|
1808
|
+
ans = ((((((0.000000000875 * u - 0.0000001699) * u + 0.0000121272) * u - 0.00037436) * u + 0.0041116) * u + 0.0068612) * u - 0.332447) * u + 13.72;
|
1809
|
+
} else if (Ygreg < 1900) {
|
1810
|
+
u = Ygreg - 1860;
|
1811
|
+
ans = ((((u / 233174.0 - 0.0004473624) * u + 0.01680668) * u - 0.251754) * u + 0.5737) * u + 7.62;
|
1812
|
+
} else if (Ygreg < 1920) {
|
1813
|
+
u = Ygreg - 1900;
|
1814
|
+
ans = (((-0.000197 * u + 0.0061966) * u - 0.0598939) * u + 1.494119) * u -2.79;
|
1815
|
+
} else if (Ygreg < 1941) {
|
1816
|
+
u = Ygreg - 1920;
|
1817
|
+
ans = 21.20 + 0.84493 * u - 0.076100 * u * u + 0.0020936 * u * u * u;
|
1818
|
+
} else if (Ygreg < 1961) {
|
1819
|
+
u = Ygreg - 1950;
|
1820
|
+
ans = 29.07 + 0.407 * u - u * u / 233.0 + u * u * u / 2547.0;
|
1821
|
+
} else if (Ygreg < 1986) {
|
1822
|
+
u = Ygreg - 1975;
|
1823
|
+
ans = 45.45 + 1.067 * u - u * u / 260.0 - u * u * u / 718.0;
|
1824
|
+
} else if (Ygreg < 2005) {
|
1825
|
+
u = Ygreg - 2000;
|
1826
|
+
ans = ((((0.00002373599 * u + 0.000651814) * u + 0.0017275) * u - 0.060374) * u + 0.3345) * u + 63.86;
|
1827
|
+
}
|
1828
|
+
ans = adjust_for_tidacc(ans, Ygreg);
|
1829
|
+
ans /= 86400.0;
|
1830
|
+
return ans;
|
1831
|
+
}
|
1832
|
+
|
1833
|
+
/* Read delta t values from external file.
|
1834
|
+
* record structure: year(whitespace)delta_t in 0.01 sec.
|
1835
|
+
*/
|
1836
|
+
static int init_dt(void)
|
1837
|
+
{
|
1838
|
+
FILE *fp;
|
1839
|
+
int year;
|
1840
|
+
int tab_index;
|
1841
|
+
int tabsiz;
|
1842
|
+
int i;
|
1843
|
+
char s[AS_MAXCH];
|
1844
|
+
char *sp;
|
1845
|
+
if (!init_dt_done) {
|
1846
|
+
init_dt_done = TRUE;
|
1847
|
+
/* no error message if file is missing */
|
1848
|
+
if ((fp = swi_fopen(-1, "swe_deltat.txt", swed.ephepath, NULL)) == NULL
|
1849
|
+
&& (fp = swi_fopen(-1, "sedeltat.txt", swed.ephepath, NULL)) == NULL)
|
1850
|
+
return TABSIZ;
|
1851
|
+
while(fgets(s, AS_MAXCH, fp) != NULL) {
|
1852
|
+
sp = s;
|
1853
|
+
while (strchr(" \t", *sp) != NULL && *sp != '\0')
|
1854
|
+
sp++; /* was *sp++ fixed by Alois 2-jul-2003 */
|
1855
|
+
if (*sp == '#' || *sp == '\n')
|
1856
|
+
continue;
|
1857
|
+
year = atoi(s);
|
1858
|
+
tab_index = year - TABSTART;
|
1859
|
+
/* table space is limited. no error msg, if exceeded */
|
1860
|
+
if (tab_index >= TABSIZ_SPACE)
|
1861
|
+
continue;
|
1862
|
+
sp += 4;
|
1863
|
+
while (strchr(" \t", *sp) != NULL && *sp != '\0')
|
1864
|
+
sp++; /* was *sp++ fixed by Alois 2-jul-2003 */
|
1865
|
+
/*dt[tab_index] = (short) (atof(sp) * 100 + 0.5);*/
|
1866
|
+
dt[tab_index] = atof(sp);
|
1867
|
+
}
|
1868
|
+
fclose(fp);
|
1869
|
+
}
|
1870
|
+
/* find table size */
|
1871
|
+
tabsiz = 2001 - TABSTART + 1;
|
1872
|
+
for (i = tabsiz - 1; i < TABSIZ_SPACE; i++) {
|
1873
|
+
if (dt[i] == 0)
|
1874
|
+
break;
|
1875
|
+
else
|
1876
|
+
tabsiz++;
|
1877
|
+
}
|
1878
|
+
tabsiz--;
|
1879
|
+
return tabsiz;
|
1880
|
+
}
|
1881
|
+
|
1882
|
+
/* Astronomical Almanac table is corrected by adding the expression
|
1883
|
+
* -0.000091 (ndot + 26)(year-1955)^2 seconds
|
1884
|
+
* to entries prior to 1955 (AA page K8), where ndot is the secular
|
1885
|
+
* tidal term in the mean motion of the Moon.
|
1886
|
+
*
|
1887
|
+
* Entries after 1955 are referred to atomic time standards and
|
1888
|
+
* are not affected by errors in Lunar or planetary theory.
|
1889
|
+
*/
|
1890
|
+
static double adjust_for_tidacc(double ans, double Y)
|
1891
|
+
{
|
1892
|
+
double B;
|
1893
|
+
if( Y < 1955.0 ) {
|
1894
|
+
B = (Y - 1955.0);
|
1895
|
+
ans += -0.000091 * (tid_acc + 26.0) * B * B;
|
1896
|
+
}
|
1897
|
+
return ans;
|
1898
|
+
}
|
1899
|
+
|
1900
|
+
/* returns tidal acceleration used in swe_deltat() */
|
1901
|
+
double FAR PASCAL_CONV swe_get_tid_acc()
|
1902
|
+
{
|
1903
|
+
#if 0
|
1904
|
+
if (tid_acc == TID_ACC_DE403)
|
1905
|
+
return 403;
|
1906
|
+
if (tid_acc == TID_ACC_DE402)
|
1907
|
+
return 200;
|
1908
|
+
#endif
|
1909
|
+
return tid_acc;
|
1910
|
+
}
|
1911
|
+
|
1912
|
+
void FAR PASCAL_CONV swe_set_tid_acc(double t_acc)
|
1913
|
+
{
|
1914
|
+
tid_acc = t_acc;
|
1915
|
+
#if TRACE
|
1916
|
+
swi_open_trace(NULL);
|
1917
|
+
if (swi_trace_count < TRACE_COUNT_MAX) {
|
1918
|
+
if (swi_fp_trace_c != NULL) {
|
1919
|
+
fputs("\n/*SWE_SET_TID_ACC*/\n", swi_fp_trace_c);
|
1920
|
+
fprintf(swi_fp_trace_c, " t = %.9f;\n", t_acc);
|
1921
|
+
fprintf(swi_fp_trace_c, " swe_set_tid_acc(t);\n");
|
1922
|
+
fputs(" printf(\"swe_set_tid_acc: %f\\t\\n\", ", swi_fp_trace_c);
|
1923
|
+
fputs("t);\n", swi_fp_trace_c);
|
1924
|
+
fflush(swi_fp_trace_c);
|
1925
|
+
}
|
1926
|
+
if (swi_fp_trace_out != NULL) {
|
1927
|
+
fprintf(swi_fp_trace_out, "swe_set_tid_acc: %f\t\n", t_acc);
|
1928
|
+
fflush(swi_fp_trace_out);
|
1929
|
+
}
|
1930
|
+
}
|
1931
|
+
#endif
|
1932
|
+
}
|
1933
|
+
|
1934
|
+
/* Apparent Sidereal Time at Greenwich with equation of the equinoxes
|
1935
|
+
* AA page B6
|
1936
|
+
*
|
1937
|
+
* returns sidereal time in hours.
|
1938
|
+
*
|
1939
|
+
* Caution. At epoch J2000.0, the 16 decimal precision
|
1940
|
+
* of IEEE double precision numbers
|
1941
|
+
* limits time resolution measured by Julian date
|
1942
|
+
* to approximately 24 microseconds.
|
1943
|
+
*
|
1944
|
+
* program returns sidereal hours since sidereal midnight
|
1945
|
+
* tjd julian day UT
|
1946
|
+
* eps obliquity of ecliptic, degrees
|
1947
|
+
* nut nutation, degrees
|
1948
|
+
*/
|
1949
|
+
double FAR PASCAL_CONV swe_sidtime0( double tjd, double eps, double nut )
|
1950
|
+
{
|
1951
|
+
double jd0; /* Julian day at midnight Universal Time */
|
1952
|
+
double secs; /* Time of day, UT seconds since UT midnight */
|
1953
|
+
double eqeq, jd, tu, tt, msday;
|
1954
|
+
double gmst;
|
1955
|
+
/* Julian day at given UT */
|
1956
|
+
jd = tjd;
|
1957
|
+
jd0 = floor(jd);
|
1958
|
+
secs = tjd - jd0;
|
1959
|
+
if( secs < 0.5 ) {
|
1960
|
+
jd0 -= 0.5;
|
1961
|
+
secs += 0.5;
|
1962
|
+
} else {
|
1963
|
+
jd0 += 0.5;
|
1964
|
+
secs -= 0.5;
|
1965
|
+
}
|
1966
|
+
secs *= 86400.0;
|
1967
|
+
tu = (jd0 - J2000)/36525.0; /* UT1 in centuries after J2000 */
|
1968
|
+
if (PREC_IAU_2003) {
|
1969
|
+
tt = (jd0 + swe_deltat(jd0) - J2000)/36525.0; /* TT in centuries after J2000 */
|
1970
|
+
gmst = (((-0.000000002454*tt - 0.00000199708)*tt - 0.0000002926)*tt + 0.092772110)*tt*tt + 307.4771013*(tt-tu) + 8640184.79447825*tu + 24110.5493771;
|
1971
|
+
/* mean solar days per sidereal day at date tu;
|
1972
|
+
* for the derivative of gmst, we can assume UT1 =~ TT */
|
1973
|
+
msday = 1 + ((((-0.000000012270*tt - 0.00000798832)*tt - 0.0000008778)*tt + 0.185544220)*tt + 8640184.79447825)/(86400.*36525.);
|
1974
|
+
} else {
|
1975
|
+
/* Greenwich Mean Sidereal Time at 0h UT of date */
|
1976
|
+
gmst = (( -6.2e-6*tu + 9.3104e-2)*tu + 8640184.812866)*tu + 24110.54841;
|
1977
|
+
/* mean solar days per sidereal day at date tu, = 1.00273790934 in 1986 */
|
1978
|
+
msday = 1.0 + ((-1.86e-5*tu + 0.186208)*tu + 8640184.812866)/(86400.*36525.);
|
1979
|
+
}
|
1980
|
+
/* Local apparent sidereal time at given UT at Greenwich */
|
1981
|
+
eqeq = 240.0 * nut * cos(eps * DEGTORAD);
|
1982
|
+
gmst = gmst + msday*secs + eqeq /* + 240.0*tlong */;
|
1983
|
+
/* Sidereal seconds modulo 1 sidereal day */
|
1984
|
+
gmst = gmst - 86400.0 * floor( gmst/86400.0 );
|
1985
|
+
/* return in hours */
|
1986
|
+
gmst /= 3600;
|
1987
|
+
#ifdef TRACE
|
1988
|
+
swi_open_trace(NULL);
|
1989
|
+
if (swi_trace_count < TRACE_COUNT_MAX) {
|
1990
|
+
if (swi_fp_trace_c != NULL) {
|
1991
|
+
fputs("\n/*SWE_SIDTIME0*/\n", swi_fp_trace_c);
|
1992
|
+
fprintf(swi_fp_trace_c, " tjd = %.9f;", tjd);
|
1993
|
+
fprintf(swi_fp_trace_c, " eps = %.9f;", eps);
|
1994
|
+
fprintf(swi_fp_trace_c, " nut = %.9f;\n", nut);
|
1995
|
+
fprintf(swi_fp_trace_c, " t = swe_sidtime0(tjd, eps, nut);\n");
|
1996
|
+
fputs(" printf(\"swe_sidtime0: %f\\tsidt = %f\\teps = %f\\tnut = %f\\t\\n\", ", swi_fp_trace_c);
|
1997
|
+
fputs("tjd, t, eps, nut);\n", swi_fp_trace_c);
|
1998
|
+
fflush(swi_fp_trace_c);
|
1999
|
+
}
|
2000
|
+
if (swi_fp_trace_out != NULL) {
|
2001
|
+
fprintf(swi_fp_trace_out, "swe_sidtime0: %f\tsidt = %f\teps = %f\tnut = %f\t\n", tjd, gmst, eps, nut);
|
2002
|
+
fflush(swi_fp_trace_out);
|
2003
|
+
}
|
2004
|
+
}
|
2005
|
+
#endif
|
2006
|
+
return gmst;
|
2007
|
+
}
|
2008
|
+
|
2009
|
+
/* sidereal time, without eps and nut as parameters.
|
2010
|
+
* tjd must be UT !!!
|
2011
|
+
* for more informsation, see comment with swe_sidtime0()
|
2012
|
+
*/
|
2013
|
+
double FAR PASCAL_CONV swe_sidtime(double tjd_ut)
|
2014
|
+
{
|
2015
|
+
int i;
|
2016
|
+
double eps, nutlo[2], tsid;
|
2017
|
+
double tjde = tjd_ut + swe_deltat(tjd_ut);
|
2018
|
+
eps = swi_epsiln(tjde) * RADTODEG;
|
2019
|
+
swi_nutation(tjde, nutlo);
|
2020
|
+
for (i = 0; i < 2; i++)
|
2021
|
+
nutlo[i] *= RADTODEG;
|
2022
|
+
tsid = swe_sidtime0(tjd_ut, eps + nutlo[1], nutlo[0]);
|
2023
|
+
#ifdef TRACE
|
2024
|
+
swi_open_trace(NULL);
|
2025
|
+
if (swi_trace_count < TRACE_COUNT_MAX) {
|
2026
|
+
if (swi_fp_trace_c != NULL) {
|
2027
|
+
fputs("\n/*SWE_SIDTIME*/\n", swi_fp_trace_c);
|
2028
|
+
fprintf(swi_fp_trace_c, " tjd = %.9f;\n", tjd_ut);
|
2029
|
+
fprintf(swi_fp_trace_c, " t = swe_sidtime(tjd);\n");
|
2030
|
+
fputs(" printf(\"swe_sidtime: %f\\t%f\\t\\n\", ", swi_fp_trace_c);
|
2031
|
+
fputs("tjd, t);\n", swi_fp_trace_c);
|
2032
|
+
fflush(swi_fp_trace_c);
|
2033
|
+
}
|
2034
|
+
if (swi_fp_trace_out != NULL) {
|
2035
|
+
fprintf(swi_fp_trace_out, "swe_sidtime: %f\t%f\t\n", tjd_ut, tsid);
|
2036
|
+
fflush(swi_fp_trace_out);
|
2037
|
+
}
|
2038
|
+
}
|
2039
|
+
#endif
|
2040
|
+
return tsid;
|
2041
|
+
}
|
2042
|
+
|
2043
|
+
/* SWISSEPH
|
2044
|
+
* generates name of ephemeris file
|
2045
|
+
* file name looks as follows:
|
2046
|
+
* swephpl.m30, where
|
2047
|
+
*
|
2048
|
+
* "sweph" "swiss ephemeris"
|
2049
|
+
* "pl","mo","as" planet, moon, or asteroid
|
2050
|
+
* "m" or "_" BC or AD
|
2051
|
+
*
|
2052
|
+
* "30" start century
|
2053
|
+
* tjd = ephemeris file for which julian day
|
2054
|
+
* ipli = number of planet
|
2055
|
+
* fname = ephemeris file name
|
2056
|
+
*/
|
2057
|
+
void swi_gen_filename(double tjd, int ipli, char *fname)
|
2058
|
+
{
|
2059
|
+
int icty;
|
2060
|
+
int ncties = (int) NCTIES;
|
2061
|
+
short gregflag;
|
2062
|
+
int jmon, jday, jyear, sgn;
|
2063
|
+
double jut;
|
2064
|
+
char *sform;
|
2065
|
+
switch(ipli) {
|
2066
|
+
case SEI_MOON:
|
2067
|
+
strcpy(fname, "semo");
|
2068
|
+
break;
|
2069
|
+
case SEI_EMB:
|
2070
|
+
case SEI_MERCURY:
|
2071
|
+
case SEI_VENUS:
|
2072
|
+
case SEI_MARS:
|
2073
|
+
case SEI_JUPITER:
|
2074
|
+
case SEI_SATURN:
|
2075
|
+
case SEI_URANUS:
|
2076
|
+
case SEI_NEPTUNE:
|
2077
|
+
case SEI_PLUTO:
|
2078
|
+
case SEI_SUNBARY:
|
2079
|
+
strcpy(fname, "sepl");
|
2080
|
+
break;
|
2081
|
+
case SEI_CERES:
|
2082
|
+
case SEI_PALLAS:
|
2083
|
+
case SEI_JUNO:
|
2084
|
+
case SEI_VESTA:
|
2085
|
+
case SEI_CHIRON:
|
2086
|
+
case SEI_PHOLUS:
|
2087
|
+
strcpy(fname, "seas");
|
2088
|
+
break;
|
2089
|
+
default: /* asteroid */
|
2090
|
+
sform = "ast%d%sse%05d.%s";
|
2091
|
+
if (ipli - SE_AST_OFFSET > 99999)
|
2092
|
+
sform = "ast%d%ss%06d.%s";
|
2093
|
+
sprintf(fname, sform,
|
2094
|
+
(ipli - SE_AST_OFFSET) / 1000, DIR_GLUE, ipli - SE_AST_OFFSET,
|
2095
|
+
SE_FILE_SUFFIX);
|
2096
|
+
return; /* asteroids: only one file 3000 bc - 3000 ad */
|
2097
|
+
/* break; */
|
2098
|
+
}
|
2099
|
+
/* century of tjd */
|
2100
|
+
/* if tjd > 1600 then gregorian calendar */
|
2101
|
+
if (tjd >= 2305447.5) {
|
2102
|
+
gregflag = TRUE;
|
2103
|
+
swe_revjul(tjd, gregflag, &jyear, &jmon, &jday, &jut);
|
2104
|
+
/* else julian calendar */
|
2105
|
+
} else {
|
2106
|
+
gregflag = FALSE;
|
2107
|
+
swe_revjul(tjd, gregflag, &jyear, &jmon, &jday, &jut);
|
2108
|
+
}
|
2109
|
+
/* start century of file containing tjd */
|
2110
|
+
if (jyear < 0)
|
2111
|
+
sgn = -1;
|
2112
|
+
else
|
2113
|
+
sgn = 1;
|
2114
|
+
icty = jyear / 100;
|
2115
|
+
if (sgn < 0 && jyear % 100 != 0)
|
2116
|
+
icty -=1;
|
2117
|
+
while(icty % ncties != 0)
|
2118
|
+
icty--;
|
2119
|
+
#if 0
|
2120
|
+
if (icty < BEG_YEAR / 100)
|
2121
|
+
icty = BEG_YEAR / 100;
|
2122
|
+
if (icty >= END_YEAR / 100)
|
2123
|
+
icty = END_YEAR / 100 - ncties;
|
2124
|
+
#endif
|
2125
|
+
/* B.C. or A.D. */
|
2126
|
+
if (icty < 0)
|
2127
|
+
strcat(fname, "m");
|
2128
|
+
else
|
2129
|
+
strcat(fname, "_");
|
2130
|
+
icty = abs(icty);
|
2131
|
+
sprintf(fname + strlen(fname), "%02d.%s", icty, SE_FILE_SUFFIX);
|
2132
|
+
#if 0
|
2133
|
+
printf("fname %s\n", fname);
|
2134
|
+
fflush(stdout);
|
2135
|
+
#endif
|
2136
|
+
}
|
2137
|
+
|
2138
|
+
/**************************************************************
|
2139
|
+
cut the string s at any char in cutlist; put pointers to partial strings
|
2140
|
+
into cpos[0..n-1], return number of partial strings;
|
2141
|
+
if less than nmax fields are found, the first empty pointer is
|
2142
|
+
set to NULL.
|
2143
|
+
More than one character of cutlist in direct sequence count as one
|
2144
|
+
separator only! cut_str_any("word,,,word2",","..) cuts only two parts,
|
2145
|
+
cpos[0] = "word" and cpos[1] = "word2".
|
2146
|
+
If more than nmax fields are found, nmax is returned and the
|
2147
|
+
last field nmax-1 rmains un-cut.
|
2148
|
+
**************************************************************/
|
2149
|
+
int swi_cutstr(char *s, char *cutlist, char *cpos[], int nmax)
|
2150
|
+
{
|
2151
|
+
int n = 1;
|
2152
|
+
cpos [0] = s;
|
2153
|
+
while (*s != '\0') {
|
2154
|
+
if ((strchr(cutlist, (int) *s) != NULL) && n < nmax) {
|
2155
|
+
*s = '\0';
|
2156
|
+
while (*(s + 1) != '\0' && strchr (cutlist, (int) *(s + 1)) != NULL) s++;
|
2157
|
+
cpos[n++] = s + 1;
|
2158
|
+
}
|
2159
|
+
if (*s == '\n' || *s == '\r') { /* treat nl or cr like end of string */
|
2160
|
+
*s = '\0';
|
2161
|
+
break;
|
2162
|
+
}
|
2163
|
+
s++;
|
2164
|
+
}
|
2165
|
+
if (n < nmax) cpos[n] = NULL;
|
2166
|
+
return (n);
|
2167
|
+
} /* cutstr */
|
2168
|
+
|
2169
|
+
char *swi_right_trim(char *s)
|
2170
|
+
{
|
2171
|
+
char *sp = s + strlen(s) - 1;
|
2172
|
+
while (isspace((int)(unsigned char) *sp) && sp >= s)
|
2173
|
+
*sp-- = '\0';
|
2174
|
+
return s;
|
2175
|
+
}
|
2176
|
+
|
2177
|
+
/*
|
2178
|
+
* The following C code (by Rob Warnock rpw3@sgi.com) does CRC-32 in
|
2179
|
+
* BigEndian/BigEndian byte/bit order. That is, the data is sent most
|
2180
|
+
* significant byte first, and each of the bits within a byte is sent most
|
2181
|
+
* significant bit first, as in FDDI. You will need to twiddle with it to do
|
2182
|
+
* Ethernet CRC, i.e., BigEndian/LittleEndian byte/bit order.
|
2183
|
+
*
|
2184
|
+
* The CRCs this code generates agree with the vendor-supplied Verilog models
|
2185
|
+
* of several of the popular FDDI "MAC" chips.
|
2186
|
+
*/
|
2187
|
+
static uint32 crc32_table[256];
|
2188
|
+
/* Initialized first time "crc32()" is called. If you prefer, you can
|
2189
|
+
* statically initialize it at compile time. [Another exercise.]
|
2190
|
+
*/
|
2191
|
+
|
2192
|
+
uint32 swi_crc32(unsigned char *buf, int len)
|
2193
|
+
{
|
2194
|
+
unsigned char *p;
|
2195
|
+
uint32 crc;
|
2196
|
+
if (!crc32_table[1]) /* if not already done, */
|
2197
|
+
init_crc32(); /* build table */
|
2198
|
+
crc = 0xffffffff; /* preload shift register, per CRC-32 spec */
|
2199
|
+
for (p = buf; len > 0; ++p, --len)
|
2200
|
+
crc = (crc << 8) ^ crc32_table[(crc >> 24) ^ *p];
|
2201
|
+
return ~crc; /* transmit complement, per CRC-32 spec */
|
2202
|
+
}
|
2203
|
+
|
2204
|
+
/*
|
2205
|
+
* Build auxiliary table for parallel byte-at-a-time CRC-32.
|
2206
|
+
*/
|
2207
|
+
#define CRC32_POLY 0x04c11db7 /* AUTODIN II, Ethernet, & FDDI */
|
2208
|
+
|
2209
|
+
static void init_crc32(void)
|
2210
|
+
{
|
2211
|
+
int32 i, j;
|
2212
|
+
uint32 c;
|
2213
|
+
for (i = 0; i < 256; ++i) {
|
2214
|
+
for (c = i << 24, j = 8; j > 0; --j)
|
2215
|
+
c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY : (c << 1);
|
2216
|
+
crc32_table[i] = c;
|
2217
|
+
}
|
2218
|
+
}
|
2219
|
+
|
2220
|
+
/*******************************************************
|
2221
|
+
* other functions from swephlib.c;
|
2222
|
+
* they are not needed for Swiss Ephemeris,
|
2223
|
+
* but may be useful to former Placalc users.
|
2224
|
+
********************************************************/
|
2225
|
+
|
2226
|
+
/************************************
|
2227
|
+
normalize argument into interval [0..DEG360]
|
2228
|
+
*************************************/
|
2229
|
+
centisec FAR PASCAL_CONV swe_csnorm(centisec p)
|
2230
|
+
{
|
2231
|
+
if (p < 0)
|
2232
|
+
do { p += DEG360; } while (p < 0);
|
2233
|
+
else if (p >= DEG360)
|
2234
|
+
do { p -= DEG360; } while (p >= DEG360);
|
2235
|
+
return (p);
|
2236
|
+
}
|
2237
|
+
|
2238
|
+
/************************************
|
2239
|
+
distance in centisecs p1 - p2
|
2240
|
+
normalized to [0..360[
|
2241
|
+
**************************************/
|
2242
|
+
centisec FAR PASCAL_CONV swe_difcsn (centisec p1, centisec p2)
|
2243
|
+
{
|
2244
|
+
return (swe_csnorm(p1 - p2));
|
2245
|
+
}
|
2246
|
+
|
2247
|
+
double FAR PASCAL_CONV swe_difdegn (double p1, double p2)
|
2248
|
+
{
|
2249
|
+
return (swe_degnorm(p1 - p2));
|
2250
|
+
}
|
2251
|
+
|
2252
|
+
/************************************
|
2253
|
+
distance in centisecs p1 - p2
|
2254
|
+
normalized to [-180..180[
|
2255
|
+
**************************************/
|
2256
|
+
centisec FAR PASCAL_CONV swe_difcs2n(centisec p1, centisec p2)
|
2257
|
+
{ centisec dif;
|
2258
|
+
dif = swe_csnorm(p1 - p2);
|
2259
|
+
if (dif >= DEG180) return (dif - DEG360);
|
2260
|
+
return (dif);
|
2261
|
+
}
|
2262
|
+
|
2263
|
+
double FAR PASCAL_CONV swe_difdeg2n(double p1, double p2)
|
2264
|
+
{ double dif;
|
2265
|
+
dif = swe_degnorm(p1 - p2);
|
2266
|
+
if (dif >= 180.0) return (dif - 360.0);
|
2267
|
+
return (dif);
|
2268
|
+
}
|
2269
|
+
|
2270
|
+
double FAR PASCAL_CONV swe_difrad2n(double p1, double p2)
|
2271
|
+
{ double dif;
|
2272
|
+
dif = swe_radnorm(p1 - p2);
|
2273
|
+
if (dif >= TWOPI / 2) return (dif - TWOPI);
|
2274
|
+
return (dif);
|
2275
|
+
}
|
2276
|
+
|
2277
|
+
/*************************************
|
2278
|
+
round second, but at 29.5959 always down
|
2279
|
+
*************************************/
|
2280
|
+
centisec FAR PASCAL_CONV swe_csroundsec(centisec x)
|
2281
|
+
{
|
2282
|
+
centisec t;
|
2283
|
+
t = (x + 50) / 100 *100L; /* round to seconds */
|
2284
|
+
if (t > x && t % DEG30 == 0) /* was rounded up to next sign */
|
2285
|
+
t = x / 100 * 100L; /* round last second of sign downwards */
|
2286
|
+
return (t);
|
2287
|
+
}
|
2288
|
+
|
2289
|
+
/*************************************
|
2290
|
+
double to int32 with rounding, no overflow check
|
2291
|
+
*************************************/
|
2292
|
+
int32 FAR PASCAL_CONV swe_d2l(double x)
|
2293
|
+
{
|
2294
|
+
if (x >=0)
|
2295
|
+
return ((int32) (x + 0.5));
|
2296
|
+
else
|
2297
|
+
return (- (int32) (0.5 - x));
|
2298
|
+
}
|
2299
|
+
|
2300
|
+
/*
|
2301
|
+
* monday = 0, ... sunday = 6
|
2302
|
+
*/
|
2303
|
+
int FAR PASCAL_CONV swe_day_of_week(double jd)
|
2304
|
+
{
|
2305
|
+
return (((int) floor (jd - 2433282 - 1.5) %7) + 7) % 7;
|
2306
|
+
}
|
2307
|
+
|
2308
|
+
char *FAR PASCAL_CONV swe_cs2timestr(CSEC t, int sep, AS_BOOL suppressZero, char *a)
|
2309
|
+
/* does not suppress zeros in hours or minutes */
|
2310
|
+
{
|
2311
|
+
/* static char a[9];*/
|
2312
|
+
centisec h,m,s;
|
2313
|
+
strcpy (a, " ");
|
2314
|
+
a[2] = a [5] = sep;
|
2315
|
+
t = ((t + 50) / 100) % (24L *3600L); /* round to seconds */
|
2316
|
+
s = t % 60L;
|
2317
|
+
m = (t / 60) % 60L;
|
2318
|
+
h = t / 3600 % 100L;
|
2319
|
+
if (s == 0 && suppressZero)
|
2320
|
+
a[5] = '\0';
|
2321
|
+
else {
|
2322
|
+
a [6] = (char) (s / 10 + '0');
|
2323
|
+
a [7] = (char) (s % 10 + '0');
|
2324
|
+
};
|
2325
|
+
a [0] = (char) (h / 10 + '0');
|
2326
|
+
a [1] = (char) (h % 10 + '0');
|
2327
|
+
a [3] = (char) (m / 10 + '0');
|
2328
|
+
a [4] = (char) (m % 10 + '0');
|
2329
|
+
return (a);
|
2330
|
+
} /* swe_cs2timestr() */
|
2331
|
+
|
2332
|
+
char *FAR PASCAL_CONV swe_cs2lonlatstr(CSEC t, char pchar, char mchar, char *sp)
|
2333
|
+
{
|
2334
|
+
char a[10]; /* must be initialized at each call */
|
2335
|
+
char *aa;
|
2336
|
+
centisec h,m,s;
|
2337
|
+
strcpy (a, " ' ");
|
2338
|
+
/* mask dddEmm'ss" */
|
2339
|
+
if (t < 0 ) pchar = mchar;
|
2340
|
+
t = (ABS4 (t) + 50) / 100; /* round to seconds */
|
2341
|
+
s = t % 60L;
|
2342
|
+
m = t / 60 % 60L;
|
2343
|
+
h = t / 3600 % 1000L;
|
2344
|
+
if (s == 0)
|
2345
|
+
a[6] = '\0'; /* cut off seconds */
|
2346
|
+
else {
|
2347
|
+
a [7] = (char) (s / 10 + '0');
|
2348
|
+
a [8] = (char) (s % 10 + '0');
|
2349
|
+
}
|
2350
|
+
a [3] = pchar;
|
2351
|
+
if (h > 99) a [0] = (char) (h / 100 + '0');
|
2352
|
+
if (h > 9) a [1] = (char) (h % 100 / 10 + '0');
|
2353
|
+
a [2] = (char) (h % 10 + '0');
|
2354
|
+
a [4] = (char) (m / 10 + '0');
|
2355
|
+
a [5] = (char) (m % 10 + '0');
|
2356
|
+
aa = a;
|
2357
|
+
while (*aa == ' ') aa++;
|
2358
|
+
strcpy(sp, aa);
|
2359
|
+
return (sp);
|
2360
|
+
} /* swe_cs2lonlatstr() */
|
2361
|
+
|
2362
|
+
char *FAR PASCAL_CONV swe_cs2degstr(CSEC t, char *a)
|
2363
|
+
/* does suppress leading zeros in degrees */
|
2364
|
+
{
|
2365
|
+
/* char a[9]; must be initialized at each call */
|
2366
|
+
centisec h,m,s;
|
2367
|
+
t = t / 100 % (30L*3600L); /* truncate to seconds */
|
2368
|
+
s = t % 60L;
|
2369
|
+
m = t / 60 % 60L;
|
2370
|
+
h = t / 3600 % 100L; /* only 0..99 degrees */
|
2371
|
+
sprintf(a, "%2d%s%02d'%02d", h, ODEGREE_STRING, m, s);
|
2372
|
+
return (a);
|
2373
|
+
} /* swe_cs2degstr() */
|
2374
|
+
|
2375
|
+
/*********************************************************
|
2376
|
+
* function for splitting centiseconds into *
|
2377
|
+
* ideg degrees,
|
2378
|
+
* imin minutes,
|
2379
|
+
* isec seconds,
|
2380
|
+
* dsecfr fraction of seconds
|
2381
|
+
* isgn zodiac sign number;
|
2382
|
+
* or +/- sign
|
2383
|
+
*
|
2384
|
+
*********************************************************/
|
2385
|
+
void FAR PASCAL_CONV swe_split_deg(double ddeg, int32 roundflag, int32 *ideg, int32 *imin, int32 *isec, double *dsecfr, int32 *isgn)
|
2386
|
+
{
|
2387
|
+
double dadd = 0;
|
2388
|
+
*isgn = 1;
|
2389
|
+
if (ddeg < 0) {
|
2390
|
+
*isgn = -1;
|
2391
|
+
ddeg = -ddeg;
|
2392
|
+
}
|
2393
|
+
if (roundflag & SE_SPLIT_DEG_ROUND_DEG) {
|
2394
|
+
dadd = 0.5;
|
2395
|
+
} else if (roundflag & SE_SPLIT_DEG_ROUND_MIN) {
|
2396
|
+
dadd = 0.5 / 60;
|
2397
|
+
} else if (roundflag & SE_SPLIT_DEG_ROUND_SEC) {
|
2398
|
+
dadd = 0.5 / 3600;
|
2399
|
+
}
|
2400
|
+
if (roundflag & SE_SPLIT_DEG_KEEP_DEG) {
|
2401
|
+
if ((int32) (ddeg + dadd) - (int32) ddeg > 0)
|
2402
|
+
dadd = 0;
|
2403
|
+
} else if (roundflag & SE_SPLIT_DEG_KEEP_SIGN) {
|
2404
|
+
if (fmod(ddeg, 30) + dadd >= 30)
|
2405
|
+
dadd = 0;
|
2406
|
+
}
|
2407
|
+
ddeg += dadd;
|
2408
|
+
if (roundflag & SE_SPLIT_DEG_ZODIACAL) {
|
2409
|
+
*isgn = (int32) (ddeg / 30);
|
2410
|
+
ddeg = fmod(ddeg, 30);
|
2411
|
+
}
|
2412
|
+
*ideg = (int32) ddeg;
|
2413
|
+
ddeg -= *ideg;
|
2414
|
+
*imin = (int32) (ddeg * 60);
|
2415
|
+
ddeg -= *imin / 60.0;
|
2416
|
+
*isec = (int32) (ddeg * 3600);
|
2417
|
+
if (!(roundflag & (SE_SPLIT_DEG_ROUND_DEG | SE_SPLIT_DEG_ROUND_MIN | SE_SPLIT_DEG_ROUND_SEC))) {
|
2418
|
+
*dsecfr = ddeg * 3600 - *isec;
|
2419
|
+
}
|
2420
|
+
} /* end split_deg */
|
2421
|
+
|
2422
|
+
double swi_kepler(double E, double M, double ecce)
|
2423
|
+
{
|
2424
|
+
double dE = 1, E0;
|
2425
|
+
double x;
|
2426
|
+
/* simple formula for small eccentricities */
|
2427
|
+
if (ecce < 0.4) {
|
2428
|
+
while(dE > 1e-12) {
|
2429
|
+
E0 = E;
|
2430
|
+
E = M + ecce * sin(E0);
|
2431
|
+
dE = fabs(E - E0);
|
2432
|
+
}
|
2433
|
+
/* complicated formula for high eccentricities */
|
2434
|
+
} else {
|
2435
|
+
while(dE > 1e-12) {
|
2436
|
+
E0 = E;
|
2437
|
+
/*
|
2438
|
+
* Alois 21-jul-2000: workaround an optimizer problem in gcc
|
2439
|
+
* swi_mod2PI sees very small negative argument e-322 and returns +2PI;
|
2440
|
+
* we avoid swi_mod2PI for small x.
|
2441
|
+
*/
|
2442
|
+
x = (M + ecce * sin(E0) - E0) / (1 - ecce * cos(E0));
|
2443
|
+
dE = fabs(x);
|
2444
|
+
if (dE < 1e-2) {
|
2445
|
+
E = E0 + x;
|
2446
|
+
} else {
|
2447
|
+
E = swi_mod2PI(E0 + x);
|
2448
|
+
dE = fabs(E - E0);
|
2449
|
+
}
|
2450
|
+
}
|
2451
|
+
}
|
2452
|
+
return E;
|
2453
|
+
}
|
2454
|
+
|
2455
|
+
void swi_FK4_FK5(double *xp, double tjd)
|
2456
|
+
{
|
2457
|
+
if (xp[0] == 0 && xp[1] == 0 && xp[2] == 0)
|
2458
|
+
return;
|
2459
|
+
swi_cartpol(xp, xp);
|
2460
|
+
/* according to Expl.Suppl., p. 167f. */
|
2461
|
+
xp[0] += (0.035 + 0.085 * (tjd - B1950) / 36524.2198782) / 3600 * 15 * DEGTORAD;
|
2462
|
+
xp[3] += (0.085 / 36524.2198782) / 3600 * 15 * DEGTORAD;
|
2463
|
+
swi_polcart(xp, xp);
|
2464
|
+
}
|
2465
|
+
|
2466
|
+
void swi_FK5_FK4(double *xp, double tjd)
|
2467
|
+
{
|
2468
|
+
if (xp[0] == 0 && xp[1] == 0 && xp[2] == 0)
|
2469
|
+
return;
|
2470
|
+
swi_cartpol(xp, xp);
|
2471
|
+
/* according to Expl.Suppl., p. 167f. */
|
2472
|
+
xp[0] -= (0.035 + 0.085 * (tjd - B1950) / 36524.2198782) / 3600 * 15 * DEGTORAD;
|
2473
|
+
xp[3] -= (0.085 / 36524.2198782) / 3600 * 15 * DEGTORAD;
|
2474
|
+
swi_polcart(xp, xp);
|
2475
|
+
}
|
2476
|
+
|
2477
|
+
char *swi_strcpy(char *to, char *from)
|
2478
|
+
{
|
2479
|
+
char *s;
|
2480
|
+
if (*from == '\0') {
|
2481
|
+
*to = '\0';
|
2482
|
+
return to;
|
2483
|
+
}
|
2484
|
+
s = strdup(from);
|
2485
|
+
if (s == NULL) {
|
2486
|
+
strcpy(to, from);
|
2487
|
+
return to;
|
2488
|
+
}
|
2489
|
+
strcpy(to, s);
|
2490
|
+
free(s);
|
2491
|
+
return to;
|
2492
|
+
}
|
2493
|
+
|
2494
|
+
char *swi_strncpy(char *to, char *from, size_t n)
|
2495
|
+
{
|
2496
|
+
char *s;
|
2497
|
+
if (*from == '\0') {
|
2498
|
+
return to;
|
2499
|
+
}
|
2500
|
+
s = strdup(from);
|
2501
|
+
if (s == NULL) {
|
2502
|
+
strncpy(to, from, n);
|
2503
|
+
return to;
|
2504
|
+
}
|
2505
|
+
strncpy(to, s, n);
|
2506
|
+
free(s);
|
2507
|
+
return to;
|
2508
|
+
}
|
2509
|
+
|
2510
|
+
#ifdef TRACE
|
2511
|
+
void swi_open_trace(char *serr)
|
2512
|
+
{
|
2513
|
+
swi_trace_count++;
|
2514
|
+
if (swi_trace_count >= TRACE_COUNT_MAX) {
|
2515
|
+
if (swi_trace_count == TRACE_COUNT_MAX) {
|
2516
|
+
if (serr != NULL)
|
2517
|
+
sprintf(serr, "trace stopped, %d calls exceeded.", TRACE_COUNT_MAX);
|
2518
|
+
if (swi_fp_trace_out != NULL)
|
2519
|
+
fprintf(swi_fp_trace_out, "trace stopped, %d calls exceeded.\n", TRACE_COUNT_MAX);
|
2520
|
+
if (swi_fp_trace_c != NULL)
|
2521
|
+
fprintf(swi_fp_trace_c, "/* trace stopped, %d calls exceeded. */\n", TRACE_COUNT_MAX);
|
2522
|
+
}
|
2523
|
+
return;
|
2524
|
+
}
|
2525
|
+
if (swi_fp_trace_c == NULL) {
|
2526
|
+
char fname[AS_MAXCH];
|
2527
|
+
#if TRACE == 2
|
2528
|
+
char *sp, *sp1;
|
2529
|
+
int ipid;
|
2530
|
+
#endif
|
2531
|
+
/* remove(fname_trace_c); */
|
2532
|
+
strcpy(fname, fname_trace_c);
|
2533
|
+
#if TRACE == 2
|
2534
|
+
sp = strchr(fname_trace_c, '.');
|
2535
|
+
sp1 = strchr(fname, '.');
|
2536
|
+
# if MSDOS
|
2537
|
+
ipid = _getpid();
|
2538
|
+
# else
|
2539
|
+
ipid = getpid();
|
2540
|
+
# endif
|
2541
|
+
sprintf(sp1, "_%d%s", ipid, sp);
|
2542
|
+
#endif
|
2543
|
+
if ((swi_fp_trace_c = fopen(fname, FILE_A_ACCESS)) == NULL) {
|
2544
|
+
if (serr != NULL)
|
2545
|
+
sprintf(serr, "could not open trace output file '%s'", fname);
|
2546
|
+
} else {
|
2547
|
+
fputs("#include \"sweodef.h\"\n", swi_fp_trace_c);
|
2548
|
+
fputs("#include \"swephexp.h\"\n\n", swi_fp_trace_c);
|
2549
|
+
fputs("void main()\n{\n", swi_fp_trace_c);
|
2550
|
+
fputs(" double tjd, t, nut, eps; int i, ipl, retc; int32 iflag;\n", swi_fp_trace_c);
|
2551
|
+
fputs(" double armc, geolat, cusp[12], ascmc[10]; int hsys;\n", swi_fp_trace_c);
|
2552
|
+
fputs(" double xx[6]; int32 iflgret;\n", swi_fp_trace_c);
|
2553
|
+
fputs(" char s[AS_MAXCH], star[AS_MAXCH], serr[AS_MAXCH];\n", swi_fp_trace_c);
|
2554
|
+
fflush(swi_fp_trace_c);
|
2555
|
+
}
|
2556
|
+
}
|
2557
|
+
if (swi_fp_trace_out == NULL) {
|
2558
|
+
char fname[AS_MAXCH];
|
2559
|
+
#if TRACE == 2
|
2560
|
+
char *sp, *sp1;
|
2561
|
+
int ipid;
|
2562
|
+
#endif
|
2563
|
+
/* remove(fname_trace_out); */
|
2564
|
+
strcpy(fname, fname_trace_out);
|
2565
|
+
#if TRACE == 2
|
2566
|
+
sp = strchr(fname_trace_out, '.');
|
2567
|
+
sp1 = strchr(fname, '.');
|
2568
|
+
# if MSDOS
|
2569
|
+
ipid = _getpid();
|
2570
|
+
# else
|
2571
|
+
ipid = getpid();
|
2572
|
+
# endif
|
2573
|
+
sprintf(sp1, "_%d%s", ipid, sp);
|
2574
|
+
#endif
|
2575
|
+
if ((swi_fp_trace_out = fopen(fname, FILE_A_ACCESS)) == NULL) {
|
2576
|
+
if (serr != NULL)
|
2577
|
+
sprintf(serr, "could not open trace output file '%s'", fname);
|
2578
|
+
}
|
2579
|
+
}
|
2580
|
+
}
|
2581
|
+
#endif
|