sm-transcript 0.0.6 → 0.0.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,2535 @@
1
+ 1
2
+ 00:00:22,350 --> 00:00:25,768
3
+ So let's start right away with
4
+ stuff that we will need to see
5
+
6
+ 2
7
+ 00:00:25,768 --> 00:00:28,390
8
+ before we can go on to more
9
+ advanced things.
10
+
11
+ 3
12
+ 00:00:28,390 --> 00:00:31,677
13
+ So, hopefully yesterday in
14
+ recitation, you heard a bit
15
+
16
+ 4
17
+ 00:00:31,677 --> 00:00:34,586
18
+ about vectors.
19
+ How many of you actually knew
20
+
21
+ 5
22
+ 00:00:34,586 --> 00:00:39,060
23
+ about vectors before that?
24
+ OK, that's the vast majority.
25
+
26
+ 6
27
+ 00:00:39,060 --> 00:00:42,066
28
+ If you are not one of those
29
+ people, well,
30
+
31
+ 7
32
+ 00:00:42,066 --> 00:00:45,750
33
+ hopefully you'll learn about
34
+ vectors right now.
35
+
36
+ 8
37
+ 00:00:45,750 --> 00:00:48,564
38
+ I'm sorry that the learning
39
+ curve will be a bit steeper for
40
+
41
+ 9
42
+ 00:00:48,564 --> 00:00:50,950
43
+ the first week.
44
+ But hopefully,
45
+
46
+ 10
47
+ 00:00:50,950 --> 00:00:55,152
48
+ you'll adjust fine.
49
+ If you have trouble with
50
+
51
+ 11
52
+ 00:00:55,152 --> 00:00:59,426
53
+ vectors, do go to your
54
+ recitation instructor's office
55
+
56
+ 12
57
+ 00:00:59,426 --> 00:01:03,700
58
+ hours for extra practice if you
59
+ feel the need to.
60
+
61
+ 13
62
+ 00:01:03,700 --> 00:01:09,931
63
+ You will see it's pretty easy.
64
+ So, just to remind you,
65
+
66
+ 14
67
+ 00:01:09,931 --> 00:01:18,783
68
+ a vector is a quantity that has
69
+ both a direction and a magnitude
70
+
71
+ 15
72
+ 00:01:18,783 --> 00:01:20,610
73
+ of length.
74
+
75
+
76
+ 16
77
+ 00:01:20,610 --> 00:01:33,890
78
+
79
+
80
+ 17
81
+ 00:01:33,890 --> 00:01:38,306
82
+ So -- So, concretely the way
83
+ you draw a vector is by some
84
+
85
+ 18
86
+ 00:01:38,306 --> 00:01:40,120
87
+ arrow, like that,
88
+ OK?
89
+
90
+ 19
91
+ 00:01:40,120 --> 00:01:43,726
92
+ And so, it has a length,
93
+ and it's pointing in some
94
+
95
+ 20
96
+ 00:01:43,726 --> 00:01:45,674
97
+ direction.
98
+ And, so, now,
99
+
100
+ 21
101
+ 00:01:45,674 --> 00:01:49,195
102
+ the way that we compute things
103
+ with vectors,
104
+
105
+ 22
106
+ 00:01:49,195 --> 00:01:53,290
107
+ typically, as we introduce a
108
+ coordinate system.
109
+
110
+ 23
111
+ 00:01:53,290 --> 00:01:57,664
112
+ So, if we are in the plane,
113
+ x-y-axis, if we are in space,
114
+
115
+ 24
116
+ 00:01:57,664 --> 00:02:00,965
117
+ x-y-z axis.
118
+ So, usually I will try to draw
119
+
120
+ 25
121
+ 00:02:00,965 --> 00:02:04,469
122
+ my x-y-z axis consistently to
123
+ look like this.
124
+
125
+ 26
126
+ 00:02:04,469 --> 00:02:07,717
127
+ And then, I can represent my
128
+ vector in terms of its
129
+
130
+ 27
131
+ 00:02:07,717 --> 00:02:10,250
132
+ components along the coordinate
133
+ axis.
134
+
135
+ 28
136
+ 00:02:10,250 --> 00:02:13,205
137
+ So, that means when I have this
138
+ row, I can ask,
139
+
140
+ 29
141
+ 00:02:13,205 --> 00:02:15,840
142
+ how much does it go in the x
143
+ direction?
144
+
145
+ 30
146
+ 00:02:15,840 --> 00:02:17,590
147
+ How much does it go in the y
148
+ direction?
149
+
150
+ 31
151
+ 00:02:17,590 --> 00:02:20,530
152
+ How much does it go in the z
153
+ direction?
154
+
155
+ 32
156
+ 00:02:20,530 --> 00:02:25,770
157
+ And, so, let's call this a
158
+ vector A.
159
+
160
+ 33
161
+ 00:02:25,770 --> 00:02:29,256
162
+ So, it's more convention.
163
+ When we have a vector quantity,
164
+
165
+ 34
166
+ 00:02:29,256 --> 00:02:32,050
167
+ we put an arrow on top to
168
+ remind us that it's a vector.
169
+
170
+ 35
171
+ 00:02:32,050 --> 00:02:35,231
172
+ If it's in the textbook,
173
+ then sometimes it's in bold
174
+
175
+ 36
176
+ 00:02:35,231 --> 00:02:39,558
177
+ because it's easier to typeset.
178
+ If you've tried in your
179
+
180
+ 37
181
+ 00:02:39,558 --> 00:02:44,686
182
+ favorite word processor,
183
+ bold is easy and vectors are
184
+
185
+ 38
186
+ 00:02:44,686 --> 00:02:49,182
187
+ not easy.
188
+ So, the vector you can try to
189
+
190
+ 39
191
+ 00:02:49,182 --> 00:02:56,036
192
+ decompose terms of unit vectors
193
+ directed along the coordinate
194
+
195
+ 40
196
+ 00:02:56,036 --> 00:02:59,691
197
+ axis.
198
+ So, the convention is there is
199
+
200
+ 41
201
+ 00:02:59,691 --> 00:03:03,894
202
+ a vector that we call
203
+ ***amp***lt;i***amp***gt;
204
+
205
+ 42
206
+ 00:03:03,894 --> 00:03:08,919
207
+ hat that points along the x
208
+ axis and has length one.
209
+
210
+ 43
211
+ 00:03:08,919 --> 00:03:10,576
212
+ There's a vector called
213
+ ***amp***lt;j***amp***gt;
214
+
215
+ 44
216
+ 00:03:10,576 --> 00:03:12,060
217
+ hat that does the same along
218
+ the y axis,
219
+
220
+ 45
221
+ 00:03:12,060 --> 00:03:14,152
222
+ and the
223
+ ***amp***lt;k***amp***gt;
224
+
225
+ 46
226
+ 00:03:14,152 --> 00:03:16,900
227
+ hat that does the same along
228
+ the z axis.
229
+
230
+ 47
231
+ 00:03:16,900 --> 00:03:20,922
232
+ And, so, we can express any
233
+ vector in terms of its
234
+
235
+ 48
236
+ 00:03:20,922 --> 00:03:24,998
237
+ components.
238
+ So, the other notation is
239
+
240
+ 49
241
+ 00:03:24,998 --> 00:03:29,089
242
+ ***amp***lt;a1,
243
+ a2, a3 ***amp***gt;
244
+
245
+ 50
246
+ 00:03:29,089 --> 00:03:37,160
247
+ between these square brackets.
248
+ Well, in angular brackets.
249
+
250
+ 51
251
+ 00:03:37,160 --> 00:03:42,370
252
+ So, the length of a vector we
253
+ denote by, if you want,
254
+
255
+ 52
256
+ 00:03:42,370 --> 00:03:47,080
257
+ it's the same notation as the
258
+ absolute value.
259
+
260
+ 53
261
+ 00:03:47,080 --> 00:03:50,333
262
+ So, that's going to be a
263
+ number, as we say,
264
+
265
+ 54
266
+ 00:03:50,333 --> 00:03:54,465
267
+ now, a scalar quantity.
268
+ OK, so, a scalar quantity is a
269
+
270
+ 55
271
+ 00:03:54,465 --> 00:03:58,710
272
+ usual numerical quantity as
273
+ opposed to a vector quantity.
274
+
275
+ 56
276
+ 00:03:58,710 --> 00:04:08,930
277
+ And, its direction is sometimes
278
+ called dir A,
279
+
280
+ 57
281
+ 00:04:08,930 --> 00:04:13,887
282
+ and that can be obtained just
283
+ by scaling the vector down to
284
+
285
+ 58
286
+ 00:04:13,887 --> 00:04:17,064
287
+ unit length,
288
+ for example,
289
+
290
+ 59
291
+ 00:04:17,064 --> 00:04:26,985
292
+ by dividing it by its length.
293
+ So -- Well, there's a lot of
294
+
295
+ 60
296
+ 00:04:26,985 --> 00:04:32,875
297
+ notation to be learned.
298
+ So, for example,
299
+
300
+ 61
301
+ 00:04:32,875 --> 00:04:37,122
302
+ if I have two points,
303
+ P and Q, then I can draw a
304
+
305
+ 62
306
+ 00:04:37,122 --> 00:04:42,153
307
+ vector from P to Q.
308
+ And, that vector is called
309
+
310
+ 63
311
+ 00:04:42,153 --> 00:04:46,500
312
+ vector PQ, OK?
313
+ So, maybe we'll call it A.
314
+
315
+ 64
316
+ 00:04:46,500 --> 00:04:48,794
317
+ But, a vector doesn't really
318
+ have, necessarily,
319
+
320
+ 65
321
+ 00:04:48,794 --> 00:04:50,740
322
+ a starting point and an ending
323
+ point.
324
+
325
+ 66
326
+ 00:04:50,740 --> 00:04:54,004
327
+ OK, so if I decide to start
328
+ here and I go by the same
329
+
330
+ 67
331
+ 00:04:54,004 --> 00:04:57,520
332
+ distance in the same direction,
333
+ this is also vector A.
334
+
335
+ 68
336
+ 00:04:57,520 --> 00:05:04,095
337
+ It's the same thing.
338
+ So, a lot of vectors we'll draw
339
+
340
+ 69
341
+ 00:05:04,095 --> 00:05:08,139
342
+ starting at the origin,
343
+ but we don't have to.
344
+
345
+ 70
346
+ 00:05:08,139 --> 00:05:19,610
347
+ So, let's just check and see
348
+ how things went in recitation.
349
+
350
+ 71
351
+ 00:05:19,610 --> 00:05:23,993
352
+ So, let's say that I give you
353
+ the vector
354
+
355
+ 72
356
+ 00:05:23,993 --> 00:05:34,709
357
+ ***amp***lt;3,2,1***amp***gt;.
358
+ And so, what do you think about
359
+
360
+ 73
361
+ 00:05:34,709 --> 00:05:46,100
362
+ the length of this vector?
363
+ OK, I see an answer forming.
364
+
365
+ 74
366
+ 00:05:46,100 --> 00:05:49,540
367
+ So, a lot of you are answering
368
+ the same thing.
369
+
370
+ 75
371
+ 00:05:49,540 --> 00:05:54,389
372
+ Maybe it shouldn't spoil it for
373
+ those who haven't given it yet.
374
+
375
+ 76
376
+ 00:05:54,389 --> 00:05:59,572
377
+ OK, I think the overwhelming
378
+ vote is in favor of answer
379
+
380
+ 77
381
+ 00:05:59,572 --> 00:06:02,470
382
+ number two.
383
+ I see some sixes, I don't know.
384
+
385
+ 78
386
+ 00:06:02,470 --> 00:06:06,851
387
+ That's a perfectly good answer,
388
+ too, but hopefully in a few
389
+
390
+ 79
391
+ 00:06:06,851 --> 00:06:10,100
392
+ minutes it won't be I don't know
393
+ anymore.
394
+
395
+ 80
396
+ 00:06:10,100 --> 00:06:17,901
397
+ So, let's see.
398
+ How do we find -- -- the length
399
+
400
+ 81
401
+ 00:06:17,901 --> 00:06:24,170
402
+ of a vector three,
403
+ two, one?
404
+
405
+ 82
406
+ 00:06:24,170 --> 00:06:30,503
407
+ Well, so, this vector,
408
+ A, it comes towards us along
409
+
410
+ 83
411
+ 00:06:30,503 --> 00:06:37,222
412
+ the x axis by three units.
413
+ It goes to the right along the
414
+
415
+ 84
416
+ 00:06:37,222 --> 00:06:42,615
417
+ y axis by two units,
418
+ and then it goes up by one unit
419
+
420
+ 85
421
+ 00:06:42,615 --> 00:06:46,875
422
+ along the z axis.
423
+ OK, so, it's pointing towards
424
+
425
+ 86
426
+ 00:06:46,875 --> 00:06:51,850
427
+ here.
428
+ That's pretty hard to draw.
429
+
430
+ 87
431
+ 00:06:51,850 --> 00:06:55,416
432
+ So, how do we get its length?
433
+ Well, maybe we can start with
434
+
435
+ 88
436
+ 00:06:55,416 --> 00:06:58,257
437
+ something easier,
438
+ the length of the vector in the
439
+
440
+ 89
441
+ 00:06:58,257 --> 00:07:01,756
442
+ plane.
443
+ So, observe that A is obtained
444
+
445
+ 90
446
+ 00:07:01,756 --> 00:07:04,920
447
+ from a vector,
448
+ B, in the plane.
449
+
450
+ 91
451
+ 00:07:04,920 --> 00:07:09,970
452
+ Say, B equals three (i) hat
453
+ plus two (j) hat.
454
+
455
+ 92
456
+ 00:07:09,970 --> 00:07:15,015
457
+ And then, we just have to,
458
+ still, go up by one unit,
459
+
460
+ 93
461
+ 00:07:15,015 --> 00:07:17,011
462
+ OK?
463
+ So, let me try to draw a
464
+
465
+ 94
466
+ 00:07:17,011 --> 00:07:20,389
467
+ picture in this vertical plane
468
+ that contains A and B.
469
+
470
+ 95
471
+ 00:07:20,389 --> 00:07:23,240
472
+ If I draw it in the vertical
473
+ plane,
474
+
475
+ 96
476
+ 00:07:23,240 --> 00:07:27,340
477
+ so, that's the Z axis,
478
+ that's not any particular axis,
479
+
480
+ 97
481
+ 00:07:27,340 --> 00:07:38,405
482
+ then my vector B will go here,
483
+ and my vector A will go above
484
+
485
+ 98
486
+ 00:07:38,405 --> 00:07:43,960
487
+ it.
488
+ And here, that's one unit.
489
+
490
+ 99
491
+ 00:07:43,960 --> 00:07:49,446
492
+ And, here I have a right angle.
493
+ So, I can use the Pythagorean
494
+
495
+ 100
496
+ 00:07:49,446 --> 00:07:57,220
497
+ theorem to find that length A^2
498
+ equals length B^2 plus one.
499
+
500
+ 101
501
+ 00:07:57,220 --> 00:08:00,060
502
+ Now, we are reduced to finding
503
+ the length of B.
504
+
505
+ 102
506
+ 00:08:00,060 --> 00:08:02,844
507
+ The length of B,
508
+ we can again find using the
509
+
510
+ 103
511
+ 00:08:02,844 --> 00:08:06,664
512
+ Pythagorean theorem in the XY
513
+ plane because here we have the
514
+
515
+ 104
516
+ 00:08:06,664 --> 00:08:09,487
517
+ right angle.
518
+ Here we have three units,
519
+
520
+ 105
521
+ 00:08:09,487 --> 00:08:12,967
522
+ and here we have two units.
523
+ OK, so, if you do the
524
+
525
+ 106
526
+ 00:08:12,967 --> 00:08:15,148
527
+ calculations,
528
+ you will see that,
529
+
530
+ 107
531
+ 00:08:15,148 --> 00:08:18,314
532
+ well, length of B is square
533
+ root of (3^2 2^2),
534
+
535
+ 108
536
+ 00:08:18,314 --> 00:08:23,865
537
+ that's 13.
538
+ So, the square root of 13 -- --
539
+
540
+ 109
541
+ 00:08:23,865 --> 00:08:32,565
542
+ and length of A is square root
543
+ of length B^2 plus one (square
544
+
545
+ 110
546
+ 00:08:32,565 --> 00:08:41,554
547
+ it if you want) which is going
548
+ to be square root of 13 plus one
549
+
550
+ 111
551
+ 00:08:41,554 --> 00:08:49,961
552
+ is the square root of 14,
553
+ hence, answer number two which
554
+
555
+ 112
556
+ 00:08:49,961 --> 00:08:54,659
557
+ almost all of you gave.
558
+ OK, so the general formula,
559
+
560
+ 113
561
+ 00:08:54,659 --> 00:09:02,067
562
+ if you follow it with it,
563
+ in general if we have a vector
564
+
565
+ 114
566
+ 00:09:02,067 --> 00:09:07,710
567
+ with components a1,
568
+ a2, a3,
569
+
570
+ 115
571
+ 00:09:07,710 --> 00:09:16,085
572
+ then the length of A is the
573
+ square root of a1^2 plus a2^2
574
+
575
+ 116
576
+ 00:09:16,085 --> 00:09:23,870
577
+ plus a3^2.
578
+ OK, any questions about that?
579
+
580
+ 117
581
+ 00:09:23,870 --> 00:09:29,597
582
+ Yes?
583
+ Yes.
584
+
585
+ 118
586
+ 00:09:29,597 --> 00:09:32,490
587
+ So, in general,
588
+ we indeed can consider vectors
589
+
590
+ 119
591
+ 00:09:32,490 --> 00:09:36,220
592
+ in abstract spaces that have any
593
+ number of coordinates.
594
+
595
+ 120
596
+ 00:09:36,220 --> 00:09:38,460
597
+ And that you have more
598
+ components.
599
+
600
+ 121
601
+ 00:09:38,460 --> 00:09:40,896
602
+ In this class,
603
+ we'll mostly see vectors with
604
+
605
+ 122
606
+ 00:09:40,896 --> 00:09:44,240
607
+ two or three components because
608
+ they are easier to draw,
609
+
610
+ 123
611
+ 00:09:44,240 --> 00:09:47,423
612
+ and because a lot of the math
613
+ that we'll see works exactly the
614
+
615
+ 124
616
+ 00:09:47,423 --> 00:09:50,189
617
+ same way whether you have three
618
+ variables or a million
619
+
620
+ 125
621
+ 00:09:50,189 --> 00:09:52,428
622
+ variables.
623
+ If we had a factor with more
624
+
625
+ 126
626
+ 00:09:52,428 --> 00:09:55,659
627
+ components, then we would have a
628
+ lot of trouble drawing it.
629
+
630
+ 127
631
+ 00:09:55,659 --> 00:09:58,610
632
+ But we could still define its
633
+ length in the same way,
634
+
635
+ 128
636
+ 00:09:58,610 --> 00:10:01,049
637
+ by summing the squares of the
638
+ components.
639
+
640
+ 129
641
+ 00:10:01,049 --> 00:10:04,845
642
+ So, I'm sorry to say that here,
643
+ multi-variable,
644
+
645
+ 130
646
+ 00:10:04,845 --> 00:10:07,980
647
+ multi will mean mostly two or
648
+ three.
649
+
650
+ 131
651
+ 00:10:07,980 --> 00:10:13,659
652
+ But, be assured that it works
653
+ just the same way if you have
654
+
655
+ 132
656
+ 00:10:13,659 --> 00:10:20,600
657
+ 10,000 variables.
658
+ Just, calculations are longer.
659
+
660
+ 133
661
+ 00:10:20,600 --> 00:10:28,272
662
+ OK, more questions?
663
+ So, what else can we do with
664
+
665
+ 134
666
+ 00:10:28,272 --> 00:10:31,111
667
+ vectors?
668
+ Well, another thing that I'm
669
+
670
+ 135
671
+ 00:10:31,111 --> 00:10:35,918
672
+ sure you know how to do with
673
+ vectors is to add them to scale
674
+
675
+ 136
676
+ 00:10:35,918 --> 00:10:39,653
677
+ them.
678
+ So, vector addition,
679
+
680
+ 137
681
+ 00:10:39,653 --> 00:10:48,133
682
+ so, if you have two vectors,
683
+ A and B, then you can form,
684
+
685
+ 138
686
+ 00:10:48,133 --> 00:10:52,629
687
+ their sum, A plus B.
688
+ How do we do that?
689
+
690
+ 139
691
+ 00:10:52,629 --> 00:10:54,368
692
+ Well, first,
693
+ I should tell you,
694
+
695
+ 140
696
+ 00:10:54,368 --> 00:10:56,570
697
+ vectors, they have this double
698
+ life.
699
+
700
+ 141
701
+ 00:10:56,570 --> 00:10:59,679
702
+ They are, at the same time,
703
+ geometric objects that we can
704
+
705
+ 142
706
+ 00:10:59,679 --> 00:11:02,442
707
+ draw like this in pictures,
708
+ and there are also
709
+
710
+ 143
711
+ 00:11:02,442 --> 00:11:06,029
712
+ computational objects that we
713
+ can represent by numbers.
714
+
715
+ 144
716
+ 00:11:06,029 --> 00:11:09,634
717
+ So, every question about
718
+ vectors will have two answers,
719
+
720
+ 145
721
+ 00:11:09,634 --> 00:11:11,970
722
+ one geometric,
723
+ and one numerical.
724
+
725
+ 146
726
+ 00:11:11,970 --> 00:11:14,409
727
+ OK, so let's start with the
728
+ geometric.
729
+
730
+ 147
731
+ 00:11:14,409 --> 00:11:17,775
732
+ So, let's say that I have two
733
+ vectors, A and B,
734
+
735
+ 148
736
+ 00:11:17,775 --> 00:11:21,027
737
+ given to me.
738
+ And, let's say that I thought
739
+
740
+ 149
741
+ 00:11:21,027 --> 00:11:24,789
742
+ of drawing them at the same
743
+ place to start with.
744
+
745
+ 150
746
+ 00:11:24,789 --> 00:11:28,902
747
+ Well, to take the sum,
748
+ what I should do is actually
749
+
750
+ 151
751
+ 00:11:28,902 --> 00:11:33,920
752
+ move B so that it starts at the
753
+ end of A, at the head of A.
754
+
755
+ 152
756
+ 00:11:33,920 --> 00:11:38,369
757
+ OK, so this is, again, vector B.
758
+ So, observe,
759
+
760
+ 153
761
+ 00:11:38,369 --> 00:11:41,305
762
+ this actually forms,
763
+ now, a parallelogram,
764
+
765
+ 154
766
+ 00:11:41,305 --> 00:11:43,894
767
+ right?
768
+ So, this side is,
769
+
770
+ 155
771
+ 00:11:43,894 --> 00:11:48,546
772
+ again, vector A.
773
+ And now, if we take the
774
+
775
+ 156
776
+ 00:11:48,546 --> 00:11:57,769
777
+ diagonal of that parallelogram,
778
+ this is what we call A plus B,
779
+
780
+ 157
781
+ 00:11:57,769 --> 00:12:00,450
782
+ OK, so, the idea being that to
783
+ move along A plus B,
784
+
785
+ 158
786
+ 00:12:00,450 --> 00:12:03,880
787
+ it's the same as to move first
788
+ along A and then along B,
789
+
790
+ 159
791
+ 00:12:03,880 --> 00:12:09,370
792
+ or, along B, then along A.
793
+ A plus B equals B plus A.
794
+
795
+ 160
796
+ 00:12:09,370 --> 00:12:13,570
797
+ OK, now, if we do it
798
+ numerically,
799
+
800
+ 161
801
+ 00:12:13,570 --> 00:12:19,413
802
+ then all you do is you just add
803
+ the first component of A with
804
+
805
+ 162
806
+ 00:12:19,413 --> 00:12:23,840
807
+ the first component of B,
808
+ the second with the second,
809
+
810
+ 163
811
+ 00:12:23,840 --> 00:12:28,275
812
+ and the third with the third.
813
+ OK, say that A was
814
+
815
+ 164
816
+ 00:12:28,275 --> 00:12:31,476
817
+ ***amp***lt;a1,
818
+ a2, a3***amp***gt;
819
+
820
+ 165
821
+ 00:12:31,476 --> 00:12:35,356
822
+ B was ***amp***lt;b1,
823
+ b2, b3***amp***gt;,
824
+
825
+ 166
826
+ 00:12:35,356 --> 00:12:40,789
827
+ then you just add this way.
828
+ OK, so it's pretty
829
+
830
+ 167
831
+ 00:12:40,789 --> 00:12:44,227
832
+ straightforward.
833
+ So, for example,
834
+
835
+ 168
836
+ 00:12:44,227 --> 00:12:48,712
837
+ I said that my vector over
838
+ there, its components are three,
839
+
840
+ 169
841
+ 00:12:48,712 --> 00:12:54,220
842
+ two, one.
843
+ But, I also wrote it as 3i 2j k.
844
+
845
+ 170
846
+ 00:12:54,220 --> 00:12:57,264
847
+ What does that mean?
848
+ OK, so I need to tell you first
849
+
850
+ 171
851
+ 00:12:57,264 --> 00:13:06,940
852
+ about multiplying by a scalar.
853
+ So, this is about addition.
854
+
855
+ 172
856
+ 00:13:06,940 --> 00:13:11,029
857
+ So, multiplication by a scalar,
858
+ it's very easy.
859
+
860
+ 173
861
+ 00:13:11,029 --> 00:13:15,142
862
+ If you have a vector,
863
+ A, then you can form a vector
864
+
865
+ 174
866
+ 00:13:15,142 --> 00:13:20,159
867
+ 2A just by making it go twice as
868
+ far in the same direction.
869
+
870
+ 175
871
+ 00:13:20,159 --> 00:13:24,700
872
+ Or, we can make half A more
873
+ modestly.
874
+
875
+ 176
876
+ 00:13:24,700 --> 00:13:31,679
877
+ We can even make minus A,
878
+ and so on.
879
+
880
+ 177
881
+ 00:13:31,679 --> 00:13:35,408
882
+ So now, you see,
883
+ if I do the calculation,
884
+
885
+ 178
886
+ 00:13:35,408 --> 00:13:38,669
887
+ 3i 2j k, well,
888
+ what does it mean?
889
+
890
+ 179
891
+ 00:13:38,669 --> 00:13:43,460
892
+ 3i is just going to go along
893
+ the x axis, but by distance of
894
+
895
+ 180
896
+ 00:13:43,460 --> 00:13:47,565
897
+ three instead of one.
898
+ And then, 2j goes two units
899
+
900
+ 181
901
+ 00:13:47,565 --> 00:13:51,240
902
+ along the y axis,
903
+ and k goes up by one unit.
904
+
905
+ 182
906
+ 00:13:51,240 --> 00:13:54,760
907
+ Well, if you add these
908
+ together, you will go from the
909
+
910
+ 183
911
+ 00:13:54,760 --> 00:13:58,686
912
+ origin, then along the x axis,
913
+ then parallel to the y axis,
914
+
915
+ 184
916
+ 00:13:58,686 --> 00:14:02,011
917
+ and then up.
918
+ And, you will end up,
919
+
920
+ 185
921
+ 00:14:02,011 --> 00:14:05,960
922
+ indeed, at the endpoint of a
923
+ vector.
924
+
925
+ 186
926
+ 00:14:05,960 --> 00:14:19,470
927
+ OK, any questions at this point?
928
+ Yes?
929
+
930
+ 187
931
+ 00:14:19,470 --> 00:14:21,822
932
+ Exactly.
933
+ To add vectors geometrically,
934
+
935
+ 188
936
+ 00:14:21,822 --> 00:14:25,035
937
+ you just put the head of the
938
+ first vector and the tail of the
939
+
940
+ 189
941
+ 00:14:25,035 --> 00:14:30,879
942
+ second vector in the same place.
943
+ And then, it's head to tail
944
+
945
+ 190
946
+ 00:14:30,879 --> 00:14:35,390
947
+ addition.
948
+ Any other questions?
949
+
950
+ 191
951
+ 00:14:35,390 --> 00:14:41,129
952
+ Yes?
953
+ That's correct.
954
+
955
+ 192
956
+ 00:14:41,129 --> 00:14:43,626
957
+ If you subtract two vectors,
958
+ that just means you add the
959
+
960
+ 193
961
+ 00:14:43,626 --> 00:14:45,673
962
+ opposite of a vector.
963
+ So, for example,
964
+
965
+ 194
966
+ 00:14:45,673 --> 00:14:49,185
967
+ if I wanted to do A minus B,
968
+ I would first go along A and
969
+
970
+ 195
971
+ 00:14:49,185 --> 00:14:52,195
972
+ then along minus B,
973
+ which would take me somewhere
974
+
975
+ 196
976
+ 00:14:52,195 --> 00:14:55,455
977
+ over there, OK?
978
+ So, A minus B,
979
+
980
+ 197
981
+ 00:14:55,455 --> 00:15:01,330
982
+ if you want,
983
+ would go from here to here.
984
+
985
+ 198
986
+ 00:15:01,330 --> 00:15:08,883
987
+ OK, so hopefully you've kind of
988
+ seen that stuff either before in
989
+
990
+ 199
991
+ 00:15:08,883 --> 00:15:13,200
992
+ your lives, or at least
993
+ yesterday.
994
+
995
+ 200
996
+ 00:15:13,200 --> 00:15:23,730
997
+ So, I'm going to use that as an
998
+ excuse to move quickly forward.
999
+
1000
+ 201
1001
+ 00:15:23,730 --> 00:15:28,854
1002
+ So, now we are going to learn a
1003
+ few more operations about
1004
+
1005
+ 202
1006
+ 00:15:28,854 --> 00:15:31,365
1007
+ vectors.
1008
+ And, these operations will be
1009
+
1010
+ 203
1011
+ 00:15:31,365 --> 00:15:34,610
1012
+ useful to us when we start
1013
+ trying to do a bit of geometry.
1014
+
1015
+ 204
1016
+ 00:15:34,610 --> 00:15:37,049
1017
+ So, of course,
1018
+ you've all done some geometry.
1019
+
1020
+ 205
1021
+ 00:15:37,049 --> 00:15:40,299
1022
+ But, we are going to see that
1023
+ geometry can be done using
1024
+
1025
+ 206
1026
+ 00:15:40,299 --> 00:15:42,058
1027
+ vectors.
1028
+ And, in many ways,
1029
+
1030
+ 207
1031
+ 00:15:42,058 --> 00:15:44,330
1032
+ it's the right language for
1033
+ that,
1034
+
1035
+ 208
1036
+ 00:15:44,330 --> 00:15:47,665
1037
+ and in particular when we learn
1038
+ about functions we really will
1039
+
1040
+ 209
1041
+ 00:15:47,665 --> 00:15:51,576
1042
+ want to use vectors more than,
1043
+ maybe, the other kind of
1044
+
1045
+ 210
1046
+ 00:15:51,576 --> 00:15:54,559
1047
+ geometry that you've seen
1048
+ before.
1049
+
1050
+ 211
1051
+ 00:15:54,559 --> 00:15:56,960
1052
+ I mean, of course,
1053
+ it's just a language in a way.
1054
+
1055
+ 212
1056
+ 00:15:56,960 --> 00:15:59,783
1057
+ I mean, we are just
1058
+ reformulating things that you
1059
+
1060
+ 213
1061
+ 00:15:59,783 --> 00:16:02,490
1062
+ have seen, you already know
1063
+ since childhood.
1064
+
1065
+ 214
1066
+ 00:16:02,490 --> 00:16:07,828
1067
+ But, you will see that notation
1068
+ somehow helps to make it more
1069
+
1070
+ 215
1071
+ 00:16:07,828 --> 00:16:10,870
1072
+ straightforward.
1073
+ So, what is dot product?
1074
+
1075
+ 216
1076
+ 00:16:10,870 --> 00:16:16,619
1077
+ Well, dot product as a way of
1078
+ multiplying two vectors to get a
1079
+
1080
+ 217
1081
+ 00:16:16,619 --> 00:16:21,006
1082
+ number, a scalar.
1083
+ And, well, let me start by
1084
+
1085
+ 218
1086
+ 00:16:21,006 --> 00:16:25,799
1087
+ giving you a definition in terms
1088
+ of components.
1089
+
1090
+ 219
1091
+ 00:16:25,799 --> 00:16:29,186
1092
+ What we do, let's say that we
1093
+ have a vector,
1094
+
1095
+ 220
1096
+ 00:16:29,186 --> 00:16:32,572
1097
+ A, with components a1,
1098
+ a2, a3, vector B with
1099
+
1100
+ 221
1101
+ 00:16:32,572 --> 00:16:34,620
1102
+ components b1,
1103
+ b2, b3.
1104
+
1105
+ 222
1106
+ 00:16:34,620 --> 00:16:38,504
1107
+ Well, we multiply the first
1108
+ components by the first
1109
+
1110
+ 223
1111
+ 00:16:38,504 --> 00:16:43,399
1112
+ components, the second by the
1113
+ second, the third by the third.
1114
+
1115
+ 224
1116
+ 00:16:43,399 --> 00:16:46,190
1117
+ If you have N components,
1118
+ you keep going.
1119
+
1120
+ 225
1121
+ 00:16:46,190 --> 00:16:49,429
1122
+ And, you sum all of these
1123
+ together.
1124
+
1125
+ 226
1126
+ 00:16:49,429 --> 00:16:55,720
1127
+ OK, and important:
1128
+ this is a scalar.
1129
+
1130
+ 227
1131
+ 00:16:55,720 --> 00:16:59,009
1132
+ OK, you do not get a vector.
1133
+ You get a number.
1134
+
1135
+ 228
1136
+ 00:16:59,009 --> 00:17:01,013
1137
+ I know it sounds completely
1138
+ obvious from the definition
1139
+
1140
+ 229
1141
+ 00:17:01,013 --> 00:17:03,591
1142
+ here,
1143
+ but in the middle of the action
1144
+
1145
+ 230
1146
+ 00:17:03,591 --> 00:17:07,050
1147
+ when you're going to do
1148
+ complicated problems,
1149
+
1150
+ 231
1151
+ 00:17:07,050 --> 00:17:14,230
1152
+ it's sometimes easy to forget.
1153
+ So, that's the definition.
1154
+
1155
+ 232
1156
+ 00:17:14,230 --> 00:17:17,757
1157
+ What is it good for?
1158
+ Why would we ever want to do
1159
+
1160
+ 233
1161
+ 00:17:17,757 --> 00:17:20,391
1162
+ that?
1163
+ That's kind of a strange
1164
+
1165
+ 234
1166
+ 00:17:20,391 --> 00:17:23,469
1167
+ operation.
1168
+ So, probably to see what it's
1169
+
1170
+ 235
1171
+ 00:17:23,469 --> 00:17:27,730
1172
+ good for, I should first tell
1173
+ you what it is geometrically.
1174
+
1175
+ 236
1176
+ 00:17:27,730 --> 00:17:29,480
1177
+ OK, so what does it do
1178
+ geometrically?
1179
+
1180
+ 237
1181
+ 00:17:29,480 --> 00:17:38,660
1182
+
1183
+
1184
+
1185
+ 238
1186
+ 00:17:38,660 --> 00:17:42,723
1187
+ Well, what you do when you
1188
+ multiply two vectors in this
1189
+
1190
+ 239
1191
+ 00:17:42,723 --> 00:17:45,869
1192
+ way,
1193
+ I claim the answer is equal to
1194
+
1195
+ 240
1196
+ 00:17:45,869 --> 00:17:51,108
1197
+ the length of A times the length
1198
+ of B times the cosine of the
1199
+
1200
+ 241
1201
+ 00:17:51,108 --> 00:17:59,560
1202
+ angle between them.
1203
+ So, I have my vector, A,
1204
+
1205
+ 242
1206
+ 00:17:59,560 --> 00:18:04,144
1207
+ and if I have my vector, B,
1208
+ and I have some angle between
1209
+
1210
+ 243
1211
+ 00:18:04,144 --> 00:18:06,559
1212
+ them,
1213
+ I multiply the length of A
1214
+
1215
+ 244
1216
+ 00:18:06,559 --> 00:18:10,630
1217
+ times the length of B times the
1218
+ cosine of that angle.
1219
+
1220
+ 245
1221
+ 00:18:10,630 --> 00:18:13,880
1222
+ So, that looks like a very
1223
+ artificial operation.
1224
+
1225
+ 246
1226
+ 00:18:13,880 --> 00:18:16,970
1227
+ I mean, why would want to do
1228
+ that complicated multiplication?
1229
+
1230
+ 247
1231
+ 00:18:16,970 --> 00:18:21,525
1232
+ Well, the basic answer is it
1233
+ tells us at the same time about
1234
+
1235
+ 248
1236
+ 00:18:21,525 --> 00:18:25,681
1237
+ lengths and about angles.
1238
+ And, the extra bonus thing is
1239
+
1240
+ 249
1241
+ 00:18:25,681 --> 00:18:29,466
1242
+ that it's very easy to compute
1243
+ if you have components,
1244
+
1245
+ 250
1246
+ 00:18:29,466 --> 00:18:32,680
1247
+ see, that formula is actually
1248
+ pretty easy.
1249
+
1250
+ 251
1251
+ 00:18:32,680 --> 00:18:39,012
1252
+ So, OK, maybe I should first
1253
+ tell you, how do we get this
1254
+
1255
+ 252
1256
+ 00:18:39,012 --> 00:18:41,325
1257
+ from that?
1258
+ Because, you know,
1259
+
1260
+ 253
1261
+ 00:18:41,325 --> 00:18:44,509
1262
+ in math, one tries to justify
1263
+ everything to prove theorems.
1264
+
1265
+ 254
1266
+ 00:18:44,509 --> 00:18:45,559
1267
+ So, if you want,
1268
+ that's the theorem.
1269
+
1270
+ 255
1271
+ 00:18:45,559 --> 00:18:47,750
1272
+ That's the first theorem in
1273
+ 18.02.
1274
+
1275
+ 256
1276
+ 00:18:47,750 --> 00:18:52,014
1277
+ So, how do we prove the theorem?
1278
+ How do we check that this is,
1279
+
1280
+ 257
1281
+ 00:18:52,014 --> 00:18:55,529
1282
+ indeed, correct using this
1283
+ definition?
1284
+
1285
+ 258
1286
+ 00:18:55,529 --> 00:19:06,019
1287
+ So, in more common language,
1288
+ what does this geometric
1289
+
1290
+ 259
1291
+ 00:19:06,019 --> 00:19:11,211
1292
+ definition mean?
1293
+ Well, the first thing it means,
1294
+
1295
+ 260
1296
+ 00:19:11,211 --> 00:19:14,031
1297
+ before we multiply two vectors,
1298
+ let's start multiplying a
1299
+
1300
+ 261
1301
+ 00:19:14,031 --> 00:19:17,390
1302
+ vector with itself.
1303
+ That's probably easier.
1304
+
1305
+ 262
1306
+ 00:19:17,390 --> 00:19:19,891
1307
+ So, if we multiply a vector,
1308
+ A, with itself,
1309
+
1310
+ 263
1311
+ 00:19:19,891 --> 00:19:22,102
1312
+ using this dot product,
1313
+ so, by the way,
1314
+
1315
+ 264
1316
+ 00:19:22,102 --> 00:19:24,720
1317
+ I should point out,
1318
+ we put this dot here.
1319
+
1320
+ 265
1321
+ 00:19:24,720 --> 00:19:28,809
1322
+ That's why it's called dot
1323
+ product.
1324
+
1325
+ 266
1326
+ 00:19:28,809 --> 00:19:33,684
1327
+ So, what this tells us is we
1328
+ should get the same thing as
1329
+
1330
+ 267
1331
+ 00:19:33,684 --> 00:19:38,210
1332
+ multiplying the length of A with
1333
+ itself, so, squared,
1334
+
1335
+ 268
1336
+ 00:19:38,210 --> 00:19:43,988
1337
+ times the cosine of the angle.
1338
+ But now, the cosine of an
1339
+
1340
+ 269
1341
+ 00:19:43,988 --> 00:19:49,060
1342
+ angle, of zero,
1343
+ cosine of zero you all know is
1344
+
1345
+ 270
1346
+ 00:19:49,060 --> 00:19:52,991
1347
+ one.
1348
+ OK, so that's going to be
1349
+
1350
+ 271
1351
+ 00:19:52,991 --> 00:19:56,035
1352
+ length A^2.
1353
+ Well, doesn't stand a chance of
1354
+
1355
+ 272
1356
+ 00:19:56,035 --> 00:19:57,730
1357
+ being true?
1358
+ Well, let's see.
1359
+
1360
+ 273
1361
+ 00:19:57,730 --> 00:20:03,238
1362
+ If we do AdotA using this
1363
+ formula, we will get a1^2 a2^2
1364
+
1365
+ 274
1366
+ 00:20:03,238 --> 00:20:07,208
1367
+ a3^2.
1368
+ That is, indeed,
1369
+
1370
+ 275
1371
+ 00:20:07,208 --> 00:20:14,510
1372
+ the square of the length.
1373
+ So, check.
1374
+
1375
+ 276
1376
+ 00:20:14,510 --> 00:20:18,660
1377
+ That works.
1378
+ OK, now, what about two
1379
+
1380
+ 277
1381
+ 00:20:18,660 --> 00:20:23,740
1382
+ different vectors?
1383
+ Can we understand what this
1384
+
1385
+ 278
1386
+ 00:20:23,740 --> 00:20:27,380
1387
+ says, and how it relates to
1388
+ that?
1389
+
1390
+ 279
1391
+ 00:20:27,380 --> 00:20:33,073
1392
+ So, let's say that I have two
1393
+ different vectors,
1394
+
1395
+ 280
1396
+ 00:20:33,073 --> 00:20:40,220
1397
+ A and B, and I want to try to
1398
+ understand what's going on.
1399
+
1400
+ 281
1401
+ 00:20:40,220 --> 00:20:45,067
1402
+ So, my claim is that we are
1403
+ going to be able to understand
1404
+
1405
+ 282
1406
+ 00:20:45,067 --> 00:20:49,829
1407
+ the relation between this and
1408
+ that in terms of the law of
1409
+
1410
+ 283
1411
+ 00:20:49,829 --> 00:20:52,537
1412
+ cosines.
1413
+ So, the law of cosines is
1414
+
1415
+ 284
1416
+ 00:20:52,537 --> 00:20:56,656
1417
+ something that tells you about
1418
+ the length of the third side in
1419
+
1420
+ 285
1421
+ 00:20:56,656 --> 00:21:00,370
1422
+ the triangle like this in terms
1423
+ of these two sides,
1424
+
1425
+ 286
1426
+ 00:21:00,370 --> 00:21:07,315
1427
+ and the angle here.
1428
+ OK, so the law of cosines,
1429
+
1430
+ 287
1431
+ 00:21:07,315 --> 00:21:11,393
1432
+ which hopefully you have seen
1433
+ before, says that,
1434
+
1435
+ 288
1436
+ 00:21:11,393 --> 00:21:14,690
1437
+ so let me give a name to this
1438
+ side.
1439
+
1440
+ 289
1441
+ 00:21:14,690 --> 00:21:19,934
1442
+ Let's call this side C,
1443
+ and as a vector,
1444
+
1445
+ 290
1446
+ 00:21:19,934 --> 00:21:29,519
1447
+ C is A minus B.
1448
+ It's minus B plus A.
1449
+
1450
+ 291
1451
+ 00:21:29,519 --> 00:21:37,440
1452
+ So, it's getting a bit
1453
+ cluttered here.
1454
+
1455
+ 292
1456
+ 00:21:37,440 --> 00:21:45,220
1457
+ So, the law of cosines says
1458
+ that the length of the third
1459
+
1460
+ 293
1461
+ 00:21:45,220 --> 00:21:53,849
1462
+ side in this triangle is equal
1463
+ to length A2 plus length B2.
1464
+
1465
+ 294
1466
+ 00:21:53,849 --> 00:21:56,234
1467
+ Well, if I stopped here,
1468
+ that would be Pythagoras,
1469
+
1470
+ 295
1471
+ 00:21:56,234 --> 00:22:01,743
1472
+ but I don't have a right angle.
1473
+ So, I have a third term which
1474
+
1475
+ 296
1476
+ 00:22:01,743 --> 00:22:07,262
1477
+ is twice length A,
1478
+ length B, cosine theta,
1479
+
1480
+ 297
1481
+ 00:22:07,262 --> 00:22:10,799
1482
+ OK?
1483
+ Has everyone seen this formula
1484
+
1485
+ 298
1486
+ 00:22:10,799 --> 00:22:13,360
1487
+ sometime?
1488
+ I hear some yeah's.
1489
+
1490
+ 299
1491
+ 00:22:13,360 --> 00:22:16,324
1492
+ I hear some no's.
1493
+ Well, it's a fact about,
1494
+
1495
+ 300
1496
+ 00:22:16,324 --> 00:22:19,131
1497
+ I mean, you probably haven't
1498
+ seen it with vectors,
1499
+
1500
+ 301
1501
+ 00:22:19,131 --> 00:22:22,339
1502
+ but it's a fact about the side
1503
+ lengths in a triangle.
1504
+
1505
+ 302
1506
+ 00:22:22,339 --> 00:22:27,188
1507
+ And, well, let's say,
1508
+ if you haven't seen it before,
1509
+
1510
+ 303
1511
+ 00:22:27,188 --> 00:22:32,513
1512
+ then this is going to be a
1513
+ proof of the law of cosines if
1514
+
1515
+ 304
1516
+ 00:22:32,513 --> 00:22:39,980
1517
+ you believe this.
1518
+ Otherwise, it's the other way
1519
+
1520
+ 305
1521
+ 00:22:39,980 --> 00:22:43,725
1522
+ around.
1523
+ So, let's try to see how this
1524
+
1525
+ 306
1526
+ 00:22:43,725 --> 00:22:47,579
1527
+ relates to what I'm saying about
1528
+ the dot product.
1529
+
1530
+ 307
1531
+ 00:22:47,579 --> 00:22:54,012
1532
+ So, I've been saying that
1533
+ length C^2, that's the same
1534
+
1535
+ 308
1536
+ 00:22:54,012 --> 00:22:56,610
1537
+ thing as CdotC,
1538
+ OK?
1539
+
1540
+ 309
1541
+ 00:22:56,610 --> 00:23:01,572
1542
+ That, we have checked.
1543
+ Now, CdotC, well,
1544
+
1545
+ 310
1546
+ 00:23:01,572 --> 00:23:06,382
1547
+ C is A minus B.
1548
+ So, it's A minus B,
1549
+
1550
+ 311
1551
+ 00:23:06,382 --> 00:23:09,529
1552
+ dot product,
1553
+ A minus B.
1554
+
1555
+ 312
1556
+ 00:23:09,529 --> 00:23:11,529
1557
+ Now, what do we want to do in a
1558
+ situation like that?
1559
+
1560
+ 313
1561
+ 00:23:11,529 --> 00:23:16,310
1562
+ Well, we want to expand this
1563
+ into a sum of four terms.
1564
+
1565
+ 314
1566
+ 00:23:16,310 --> 00:23:19,987
1567
+ Are we allowed to do that?
1568
+ Well, we have this dot product
1569
+
1570
+ 315
1571
+ 00:23:19,987 --> 00:23:22,050
1572
+ that's a mysterious new
1573
+ operation.
1574
+
1575
+ 316
1576
+ 00:23:22,050 --> 00:23:24,352
1577
+ We don't really know.
1578
+ Well, the answer is yes,
1579
+
1580
+ 317
1581
+ 00:23:24,352 --> 00:23:27,062
1582
+ we can do it.
1583
+ You can check from this
1584
+
1585
+ 318
1586
+ 00:23:27,062 --> 00:23:31,435
1587
+ definition that it behaves in
1588
+ the usual way in terms of
1589
+
1590
+ 319
1591
+ 00:23:31,435 --> 00:23:34,269
1592
+ expanding, vectoring,
1593
+ and so on.
1594
+
1595
+ 320
1596
+ 00:23:34,269 --> 00:23:49,239
1597
+ So, I can write that as AdotA
1598
+ minus AdotB minus BdotA plus
1599
+
1600
+ 321
1601
+ 00:23:49,239 --> 00:23:55,069
1602
+ BdotB.
1603
+ So, AdotA is length A^2.
1604
+
1605
+ 322
1606
+ 00:23:55,069 --> 00:23:56,740
1607
+ Let me jump ahead to the last
1608
+ term.
1609
+
1610
+ 323
1611
+ 00:23:56,740 --> 00:24:01,207
1612
+ BdotB is length B^2,
1613
+ and then these two terms,
1614
+
1615
+ 324
1616
+ 00:24:01,207 --> 00:24:04,920
1617
+ well, they're the same.
1618
+ You can check from the
1619
+
1620
+ 325
1621
+ 00:24:04,920 --> 00:24:07,830
1622
+ definition that AdotB and BdotA
1623
+ are the same thing.
1624
+
1625
+ 326
1626
+ 00:24:07,830 --> 00:24:20,299
1627
+
1628
+
1629
+
1630
+ 327
1631
+ 00:24:20,299 --> 00:24:24,933
1632
+ Well, you see that this term,
1633
+ I mean, this is the only
1634
+
1635
+ 328
1636
+ 00:24:24,933 --> 00:24:30,180
1637
+ difference between these two
1638
+ formulas for the length of C.
1639
+
1640
+ 329
1641
+ 00:24:30,180 --> 00:24:34,706
1642
+ So, if you believe in the law
1643
+ of cosines, then it tells you
1644
+
1645
+ 330
1646
+ 00:24:34,706 --> 00:24:39,233
1647
+ that, yes, this a proof that
1648
+ AdotB equals length A length B
1649
+
1650
+ 331
1651
+ 00:24:39,233 --> 00:24:41,635
1652
+ cosine theta.
1653
+ Or, vice versa,
1654
+
1655
+ 332
1656
+ 00:24:41,635 --> 00:24:45,793
1657
+ if you've never seen the law of
1658
+ cosines, you are willing to
1659
+
1660
+ 333
1661
+ 00:24:45,793 --> 00:24:49,509
1662
+ believe this.
1663
+ Then, this is the proof of the
1664
+
1665
+ 334
1666
+ 00:24:49,509 --> 00:24:53,577
1667
+ law of cosines.
1668
+ So, the law of cosines,
1669
+
1670
+ 335
1671
+ 00:24:53,577 --> 00:24:59,910
1672
+ or this interpretation,
1673
+ are equivalent to each other.
1674
+
1675
+ 336
1676
+ 00:24:59,910 --> 00:25:07,980
1677
+ OK, any questions?
1678
+ Yes?
1679
+
1680
+ 337
1681
+ 00:25:07,980 --> 00:25:12,234
1682
+ So, in the second one there
1683
+ isn't a cosine theta because I'm
1684
+
1685
+ 338
1686
+ 00:25:12,234 --> 00:25:16,237
1687
+ just expanding a dot product.
1688
+ OK, so I'm just writing C
1689
+
1690
+ 339
1691
+ 00:25:16,237 --> 00:25:19,348
1692
+ equals A minus B,
1693
+ and then I'm expanding this
1694
+
1695
+ 340
1696
+ 00:25:19,348 --> 00:25:22,223
1697
+ algebraically.
1698
+ And then, I get to an answer
1699
+
1700
+ 341
1701
+ 00:25:22,223 --> 00:25:24,759
1702
+ that has an A.B.
1703
+ So then, if I wanted to express
1704
+
1705
+ 342
1706
+ 00:25:24,759 --> 00:25:27,551
1707
+ that without a dot product,
1708
+ then I would have to introduce
1709
+
1710
+ 343
1711
+ 00:25:27,551 --> 00:25:31,743
1712
+ a cosine.
1713
+ And, I would get the same as
1714
+
1715
+ 344
1716
+ 00:25:31,743 --> 00:25:34,343
1717
+ that, OK?
1718
+ So, yeah, if you want,
1719
+
1720
+ 345
1721
+ 00:25:34,343 --> 00:25:38,105
1722
+ the next step to recall the law
1723
+ of cosines would be plug in this
1724
+
1725
+ 346
1726
+ 00:25:38,105 --> 00:25:43,367
1727
+ formula for AdotB.
1728
+ And then you would have a
1729
+
1730
+ 347
1731
+ 00:25:43,367 --> 00:25:58,120
1732
+ cosine.
1733
+ OK, let's keep going.
1734
+
1735
+ 348
1736
+ 00:25:58,120 --> 00:26:03,476
1737
+ OK, so what is this good for?
1738
+ Now that we have a definition,
1739
+
1740
+ 349
1741
+ 00:26:03,476 --> 00:26:06,049
1742
+ we should figure out what we
1743
+ can do with it.
1744
+
1745
+ 350
1746
+ 00:26:06,049 --> 00:26:11,390
1747
+ So, what are the applications
1748
+ of dot product?
1749
+
1750
+ 351
1751
+ 00:26:11,390 --> 00:26:14,565
1752
+ Well, will this discover new
1753
+ applications of dot product
1754
+
1755
+ 352
1756
+ 00:26:14,565 --> 00:26:17,566
1757
+ throughout the entire
1758
+ semester,but let me tell you at
1759
+
1760
+ 353
1761
+ 00:26:17,566 --> 00:26:20,279
1762
+ least about those that are
1763
+ readily visible.
1764
+
1765
+ 354
1766
+ 00:26:20,279 --> 00:26:33,450
1767
+ So, one is to compute lengths
1768
+ and angles, especially angles.
1769
+
1770
+ 355
1771
+ 00:26:33,450 --> 00:26:39,446
1772
+ So, let's do an example.
1773
+ Let's say that,
1774
+
1775
+ 356
1776
+ 00:26:39,446 --> 00:26:44,311
1777
+ for example,
1778
+ I have in space,
1779
+
1780
+ 357
1781
+ 00:26:44,311 --> 00:26:51,609
1782
+ I have a point,
1783
+ P, which is at (1,0,0).
1784
+
1785
+ 358
1786
+ 00:26:51,609 --> 00:26:55,849
1787
+ I have a point,
1788
+ Q, which is at (0,1,0).
1789
+
1790
+ 359
1791
+ 00:26:55,849 --> 00:26:58,789
1792
+ So, it's at distance one here,
1793
+ one here.
1794
+
1795
+ 360
1796
+ 00:26:58,789 --> 00:27:03,117
1797
+ And, I have a third point,
1798
+ R at (0,0,2),
1799
+
1800
+ 361
1801
+ 00:27:03,117 --> 00:27:07,607
1802
+ so it's at height two.
1803
+ And, let's say that I'm
1804
+
1805
+ 362
1806
+ 00:27:07,607 --> 00:27:11,660
1807
+ curious, and I'm wondering what
1808
+ is the angle here?
1809
+
1810
+ 363
1811
+ 00:27:11,660 --> 00:27:15,637
1812
+ So, here I have a triangle in
1813
+ space connect P,
1814
+
1815
+ 364
1816
+ 00:27:15,637 --> 00:27:20,500
1817
+ Q, and R, and I'm wondering,
1818
+ what is this angle here?
1819
+
1820
+ 365
1821
+ 00:27:20,500 --> 00:27:23,099
1822
+ OK, so, of course,
1823
+ one solution is to build a
1824
+
1825
+ 366
1826
+ 00:27:23,099 --> 00:27:25,580
1827
+ model and then go and measure
1828
+ the angle.
1829
+
1830
+ 367
1831
+ 00:27:25,580 --> 00:27:28,778
1832
+ But, we can do better than that.
1833
+ We can just find the angle
1834
+
1835
+ 368
1836
+ 00:27:28,778 --> 00:27:32,410
1837
+ using dot product.
1838
+ So, how would we do that?
1839
+
1840
+ 369
1841
+ 00:27:32,410 --> 00:27:38,107
1842
+ Well, so, if we look at this
1843
+ formula, we see,
1844
+
1845
+ 370
1846
+ 00:27:38,107 --> 00:27:44,839
1847
+ so, let's say that we want to
1848
+ find the angle here.
1849
+
1850
+ 371
1851
+ 00:27:44,839 --> 00:27:50,980
1852
+ Well, let's look at the formula
1853
+ for PQdotPR.
1854
+
1855
+ 372
1856
+ 00:27:50,980 --> 00:27:56,365
1857
+ Well, we said it should be
1858
+ length PQ times length PR times
1859
+
1860
+ 373
1861
+ 00:27:56,365 --> 00:27:59,200
1862
+ the cosine of the angle,
1863
+ OK?
1864
+
1865
+ 374
1866
+ 00:27:59,200 --> 00:28:01,549
1867
+ Now, what do we know,
1868
+ and what do we not know?
1869
+
1870
+ 375
1871
+ 00:28:01,549 --> 00:28:04,364
1872
+ Well, certainly at this point
1873
+ we don't know the cosine of the
1874
+
1875
+ 376
1876
+ 00:28:04,364 --> 00:28:06,798
1877
+ angle.
1878
+ That's what we would like to
1879
+
1880
+ 377
1881
+ 00:28:06,798 --> 00:28:08,042
1882
+ find.
1883
+ The lengths,
1884
+
1885
+ 378
1886
+ 00:28:08,042 --> 00:28:11,471
1887
+ certainly we can compute.
1888
+ We know how to find these
1889
+
1890
+ 379
1891
+ 00:28:11,471 --> 00:28:14,000
1892
+ lengths.
1893
+ And, this dot product we know
1894
+
1895
+ 380
1896
+ 00:28:14,000 --> 00:28:17,509
1897
+ how to compute because we have
1898
+ an easy formula here.
1899
+
1900
+ 381
1901
+ 00:28:17,509 --> 00:28:20,130
1902
+ OK, so we can compute
1903
+ everything else and then find
1904
+
1905
+ 382
1906
+ 00:28:20,130 --> 00:28:25,118
1907
+ theta.
1908
+ So, I'll tell you what we will
1909
+
1910
+ 383
1911
+ 00:28:25,118 --> 00:28:31,819
1912
+ do is we will find theta -- --
1913
+ in this way.
1914
+
1915
+ 384
1916
+ 00:28:31,819 --> 00:28:34,785
1917
+ We'll take the dot product of
1918
+ PQ with PR, and then we'll
1919
+
1920
+ 385
1921
+ 00:28:34,785 --> 00:28:36,080
1922
+ divide by the lengths.
1923
+
1924
+
1925
+ 386
1926
+ 00:28:36,080 --> 00:29:14,630
1927
+
1928
+
1929
+ 387
1930
+ 00:29:14,630 --> 00:29:27,994
1931
+ OK, so let's see.
1932
+ So, we said cosine theta is
1933
+
1934
+ 388
1935
+ 00:29:27,994 --> 00:29:33,829
1936
+ PQdotPR over length PQ length
1937
+ PR.
1938
+
1939
+ 389
1940
+ 00:29:33,829 --> 00:29:36,126
1941
+ So, let's try to figure out
1942
+ what this vector,
1943
+
1944
+ 390
1945
+ 00:29:36,126 --> 00:29:39,279
1946
+ PQ,
1947
+ well, to go from P to Q,
1948
+
1949
+ 391
1950
+ 00:29:39,279 --> 00:29:43,028
1951
+ I should go minus one unit
1952
+ along the x direction plus one
1953
+
1954
+ 392
1955
+ 00:29:43,028 --> 00:29:46,872
1956
+ unit along the y direction.
1957
+ And, I'm not moving in the z
1958
+
1959
+ 393
1960
+ 00:29:46,872 --> 00:29:49,798
1961
+ direction.
1962
+ So, to go from P to Q,
1963
+
1964
+ 394
1965
+ 00:29:49,798 --> 00:29:54,750
1966
+ I have to move by
1967
+ ***amp***lt;-1,1,0***amp***gt;.
1968
+
1969
+ 395
1970
+ 00:29:54,750 --> 00:29:59,141
1971
+ To go from P to R,
1972
+ I go -1 along the x axis and 2
1973
+
1974
+ 396
1975
+ 00:29:59,141 --> 00:30:04,529
1976
+ along the z axis.
1977
+ So, PR, I claim, is this.
1978
+
1979
+ 397
1980
+ 00:30:04,529 --> 00:30:12,480
1981
+ OK, then, the lengths of these
1982
+ vectors, well,(-1)^2 (1)^2
1983
+
1984
+ 398
1985
+ 00:30:12,480 --> 00:30:19,152
1986
+ (0)^2, square root,
1987
+ and then same thing with the
1988
+
1989
+ 399
1990
+ 00:30:19,152 --> 00:30:24,012
1991
+ other one.
1992
+ OK, so, the denominator will
1993
+
1994
+ 400
1995
+ 00:30:24,012 --> 00:30:30,270
1996
+ become the square root of 2,
1997
+ and there's a square root of 5.
1998
+
1999
+ 401
2000
+ 00:30:30,270 --> 00:30:34,545
2001
+ What about the numerator?
2002
+ Well, so, remember,
2003
+
2004
+ 402
2005
+ 00:30:34,545 --> 00:30:37,849
2006
+ to do the dot product,
2007
+ we multiply this by this,
2008
+
2009
+ 403
2010
+ 00:30:37,849 --> 00:30:40,240
2011
+ and that by that,
2012
+ that by that.
2013
+
2014
+ 404
2015
+ 00:30:40,240 --> 00:30:45,712
2016
+ And, we add.
2017
+ Minus 1 times minus 1 makes 1
2018
+
2019
+ 405
2020
+ 00:30:45,712 --> 00:30:49,230
2021
+ plus 1 times 0,
2022
+ that's 0.
2023
+
2024
+ 406
2025
+ 00:30:49,230 --> 00:30:55,888
2026
+ Zero times 2 is 0 again.
2027
+ So, we will get 1 over square
2028
+
2029
+ 407
2030
+ 00:30:55,888 --> 00:30:59,400
2031
+ root of 10.
2032
+ That's the cosine of the angle.
2033
+
2034
+ 408
2035
+ 00:30:59,400 --> 00:31:03,394
2036
+ And, of course if we want the
2037
+ actual angle,
2038
+
2039
+ 409
2040
+ 00:31:03,394 --> 00:31:08,245
2041
+ well, we have to take a
2042
+ calculator, find the inverse
2043
+
2044
+ 410
2045
+ 00:31:08,245 --> 00:31:12,619
2046
+ cosine, and you'll find it's
2047
+ about 71.5°.
2048
+
2049
+ 411
2050
+ 00:31:12,619 --> 00:31:18,665
2051
+ Actually, we'll be using mostly
2052
+ radians, but for today,
2053
+
2054
+ 412
2055
+ 00:31:18,665 --> 00:31:26,690
2056
+ that's certainly more speaking.
2057
+ OK, any questions about that?
2058
+
2059
+ 413
2060
+ 00:31:26,690 --> 00:31:29,268
2061
+ No?
2062
+ OK, so in particular,
2063
+
2064
+ 414
2065
+ 00:31:29,268 --> 00:31:32,544
2066
+ I should point out one thing
2067
+ that's really neat about the
2068
+
2069
+ 415
2070
+ 00:31:32,544 --> 00:31:34,369
2071
+ answer.
2072
+ I mean, we got this number.
2073
+
2074
+ 416
2075
+ 00:31:34,369 --> 00:31:37,477
2076
+ We don't really know what it
2077
+ means exactly because it mixes
2078
+
2079
+ 417
2080
+ 00:31:37,477 --> 00:31:39,460
2081
+ together the lengths and the
2082
+ angle.
2083
+
2084
+ 418
2085
+ 00:31:39,460 --> 00:31:41,898
2086
+ But, one thing that's
2087
+ interesting here,
2088
+
2089
+ 419
2090
+ 00:31:41,898 --> 00:31:45,684
2091
+ it's the sign of the answer,
2092
+ the fact that we got a positive
2093
+
2094
+ 420
2095
+ 00:31:45,684 --> 00:31:48,214
2096
+ number.
2097
+ So, if you think about it,
2098
+
2099
+ 421
2100
+ 00:31:48,214 --> 00:31:50,529
2101
+ the lengths are always
2102
+ positive.
2103
+
2104
+ 422
2105
+ 00:31:50,529 --> 00:31:56,653
2106
+ So, the sign of a dot product
2107
+ is the same as a sign of cosine
2108
+
2109
+ 423
2110
+ 00:31:56,653 --> 00:32:00,045
2111
+ theta.
2112
+ So, in fact,
2113
+
2114
+ 424
2115
+ 00:32:00,045 --> 00:32:13,139
2116
+ the sign of AdotB is going to
2117
+ be positive if the angle is less
2118
+
2119
+ 425
2120
+ 00:32:13,139 --> 00:32:17,599
2121
+ than 90°.
2122
+ So, that means geometrically,
2123
+
2124
+ 426
2125
+ 00:32:17,599 --> 00:32:21,110
2126
+ my two vectors are going more
2127
+ or less in the same direction.
2128
+
2129
+ 427
2130
+ 00:32:21,110 --> 00:32:27,595
2131
+ They make an acute angle.
2132
+ It's going to be zero if the
2133
+
2134
+ 428
2135
+ 00:32:27,595 --> 00:32:33,607
2136
+ angle is exactly 90°,
2137
+ OK, because that's when the
2138
+
2139
+ 429
2140
+ 00:32:33,607 --> 00:32:39,164
2141
+ cosine will be zero.
2142
+ And, it will be negative if the
2143
+
2144
+ 430
2145
+ 00:32:39,164 --> 00:32:43,337
2146
+ angle is more than 90°.
2147
+ So, that means they go,
2148
+
2149
+ 431
2150
+ 00:32:43,337 --> 00:32:46,160
2151
+ however, in opposite
2152
+ directions.
2153
+
2154
+ 432
2155
+ 00:32:46,160 --> 00:32:50,694
2156
+ So, that's basically one way to
2157
+ think about what dot product
2158
+
2159
+ 433
2160
+ 00:32:50,694 --> 00:32:54,598
2161
+ measures.
2162
+ It measures how much the two
2163
+
2164
+ 434
2165
+ 00:32:54,598 --> 00:32:58,529
2166
+ vectors are going along each
2167
+ other.
2168
+
2169
+ 435
2170
+ 00:32:58,529 --> 00:33:02,619
2171
+ OK, and that actually leads us
2172
+ to the next application.
2173
+
2174
+ 436
2175
+ 00:33:02,619 --> 00:33:05,820
2176
+ So, let's see,
2177
+ did I have a number one there?
2178
+
2179
+ 437
2180
+ 00:33:05,820 --> 00:33:07,844
2181
+ Yes.
2182
+ So, if I had a number one,
2183
+
2184
+ 438
2185
+ 00:33:07,844 --> 00:33:12,048
2186
+ I must have number two.
2187
+ The second application is to
2188
+
2189
+ 439
2190
+ 00:33:12,048 --> 00:33:16,807
2191
+ detect orthogonality.
2192
+ It's to figure out when two
2193
+
2194
+ 440
2195
+ 00:33:16,807 --> 00:33:21,729
2196
+ things are perpendicular.
2197
+ OK, so orthogonality is just a
2198
+
2199
+ 441
2200
+ 00:33:21,729 --> 00:33:26,710
2201
+ complicated word from Greek to
2202
+ say things are perpendicular.
2203
+
2204
+ 442
2205
+ 00:33:26,710 --> 00:33:34,316
2206
+ So, let's just take an example.
2207
+ Let's say I give you the
2208
+
2209
+ 443
2210
+ 00:33:34,316 --> 00:33:41,055
2211
+ equation x 2y 3z = 0.
2212
+ OK, so that defines a certain
2213
+
2214
+ 444
2215
+ 00:33:41,055 --> 00:33:46,551
2216
+ set of points in space,
2217
+ and what do you think the set
2218
+
2219
+ 445
2220
+ 00:33:46,551 --> 00:33:52,259
2221
+ of solutions look like if I give
2222
+ you this equation?
2223
+
2224
+ 446
2225
+ 00:33:52,259 --> 00:34:01,277
2226
+ So far I see one,
2227
+ two, three answers,
2228
+
2229
+ 447
2230
+ 00:34:01,277 --> 00:34:06,220
2231
+ OK.
2232
+ So, I see various competing
2233
+
2234
+ 448
2235
+ 00:34:06,220 --> 00:34:11,688
2236
+ answers, but,
2237
+ yeah, I see a lot of people
2238
+
2239
+ 449
2240
+ 00:34:11,688 --> 00:34:18,096
2241
+ voting for answer number four.
2242
+ I see also some I don't knows,
2243
+
2244
+ 450
2245
+ 00:34:18,096 --> 00:34:22,678
2246
+ and some other things.
2247
+ But, the majority vote seems to
2248
+
2249
+ 451
2250
+ 00:34:22,678 --> 00:34:26,179
2251
+ be a plane.
2252
+ And, indeed that's the correct
2253
+
2254
+ 452
2255
+ 00:34:26,179 --> 00:34:28,320
2256
+ answer.
2257
+ So, how do we see that it's a
2258
+
2259
+ 453
2260
+ 00:34:28,320 --> 00:34:28,690
2261
+ plane?
2262
+
2263
+
2264
+ 454
2265
+ 00:34:28,690 --> 00:34:43,699
2266
+
2267
+
2268
+ 455
2269
+ 00:34:43,699 --> 00:34:49,235
2270
+ So, I should say,
2271
+ this is the equation of a
2272
+
2273
+ 456
2274
+ 00:34:49,235 --> 00:34:52,319
2275
+ plane.
2276
+ So, there's many ways to see
2277
+
2278
+ 457
2279
+ 00:34:52,319 --> 00:34:55,869
2280
+ that, and I'm not going to give
2281
+ you all of them.
2282
+
2283
+ 458
2284
+ 00:34:55,869 --> 00:34:58,820
2285
+ But, here's one way to think
2286
+ about it.
2287
+
2288
+ 459
2289
+ 00:34:58,820 --> 00:35:03,862
2290
+ So, let's think geometrically
2291
+ about how to express this
2292
+
2293
+ 460
2294
+ 00:35:03,862 --> 00:35:09,755
2295
+ condition in terms of vectors.
2296
+ So, let's take the origin O,
2297
+
2298
+ 461
2299
+ 00:35:09,755 --> 00:35:13,489
2300
+ by convention is the point
2301
+ (0,0,0).
2302
+
2303
+ 462
2304
+ 00:35:13,489 --> 00:35:18,217
2305
+ And, let's take a point,
2306
+ P, that will satisfy this
2307
+
2308
+ 463
2309
+ 00:35:18,217 --> 00:35:21,691
2310
+ equation on it,
2311
+ so, at coordinates x,
2312
+
2313
+ 464
2314
+ 00:35:21,691 --> 00:35:24,534
2315
+ y, z.
2316
+ So, what does this condition
2317
+
2318
+ 465
2319
+ 00:35:24,534 --> 00:35:28,461
2320
+ here mean?
2321
+ Well, it means the following
2322
+
2323
+ 466
2324
+ 00:35:28,461 --> 00:35:32,789
2325
+ thing.
2326
+ So, let's take the vector, OP.
2327
+
2328
+ 467
2329
+ 00:35:32,789 --> 00:35:37,714
2330
+ OK, so vector OP,
2331
+ of course, has components x,
2332
+
2333
+ 468
2334
+ 00:35:37,714 --> 00:35:40,410
2335
+ y, z.
2336
+ Now, we can think of this as
2337
+
2338
+ 469
2339
+ 00:35:40,410 --> 00:35:44,614
2340
+ actually a dot product between
2341
+ OP and a mysterious vector that
2342
+
2343
+ 470
2344
+ 00:35:44,614 --> 00:35:47,510
2345
+ won't remain mysterious for very
2346
+ long,
2347
+
2348
+ 471
2349
+ 00:35:47,510 --> 00:35:50,849
2350
+ namely, the vector one,
2351
+ two, three.
2352
+
2353
+ 472
2354
+ 00:35:50,849 --> 00:35:59,881
2355
+ OK, so, this condition is the
2356
+ same as OP.A equals zero,
2357
+
2358
+ 473
2359
+ 00:35:59,881 --> 00:36:03,702
2360
+ right?
2361
+ If I take the dot product
2362
+
2363
+ 474
2364
+ 00:36:03,702 --> 00:36:09,860
2365
+ OPdotA I get x times one plus y
2366
+ times two plus z times three.
2367
+
2368
+ 475
2369
+ 00:36:09,860 --> 00:36:14,632
2370
+ But now, what does it mean that
2371
+ the dot product between OP and A
2372
+
2373
+ 476
2374
+ 00:36:14,632 --> 00:36:19,613
2375
+ is zero?
2376
+ Well, it means that OP and A
2377
+
2378
+ 477
2379
+ 00:36:19,613 --> 00:36:25,869
2380
+ are perpendicular.
2381
+ OK, so I have this vector, A.
2382
+
2383
+ 478
2384
+ 00:36:25,869 --> 00:36:28,220
2385
+ I'm not going to be able to
2386
+ draw it realistically.
2387
+
2388
+ 479
2389
+ 00:36:28,220 --> 00:36:32,632
2390
+ Let's say it goes this way.
2391
+ Then, a point,
2392
+
2393
+ 480
2394
+ 00:36:32,632 --> 00:36:37,304
2395
+ P, solves this equation exactly
2396
+ when the vector from O to P is
2397
+
2398
+ 481
2399
+ 00:36:37,304 --> 00:36:40,768
2400
+ perpendicular to A.
2401
+ And, I claim that defines a
2402
+
2403
+ 482
2404
+ 00:36:40,768 --> 00:36:41,953
2405
+ plane.
2406
+ For example,
2407
+
2408
+ 483
2409
+ 00:36:41,953 --> 00:36:45,030
2410
+ if it helps you to see it,
2411
+ take a vertical vector.
2412
+
2413
+ 484
2414
+ 00:36:45,030 --> 00:36:47,195
2415
+ What does it mean to be
2416
+ perpendicular to the vertical
2417
+
2418
+ 485
2419
+ 00:36:47,195 --> 00:36:49,320
2420
+ vector?
2421
+ It means you are horizontal.
2422
+
2423
+ 486
2424
+ 00:36:49,320 --> 00:36:56,159
2425
+ It's the horizontal plane.
2426
+ Here, it's a plane that passes
2427
+
2428
+ 487
2429
+ 00:36:56,159 --> 00:37:05,770
2430
+ through the origin and is
2431
+ perpendicular to this vector,
2432
+
2433
+ 488
2434
+ 00:37:05,770 --> 00:37:14,831
2435
+ A.
2436
+ OK, so what we get is a plane
2437
+
2438
+ 489
2439
+ 00:37:14,831 --> 00:37:25,820
2440
+ through the origin perpendicular
2441
+ to A.
2442
+
2443
+ 490
2444
+ 00:37:25,820 --> 00:37:29,503
2445
+ And, in general,
2446
+ what you should remember is
2447
+
2448
+ 491
2449
+ 00:37:29,503 --> 00:37:35,193
2450
+ that two vectors have a dot
2451
+ product equal to zero if and
2452
+
2453
+ 492
2454
+ 00:37:35,193 --> 00:37:41,815
2455
+ only if that's equivalent to the
2456
+ cosine of the angle between them
2457
+
2458
+ 493
2459
+ 00:37:41,815 --> 00:37:46,900
2460
+ is zero.
2461
+ That means the angle is 90°.
2462
+
2463
+ 494
2464
+ 00:37:46,900 --> 00:37:51,340
2465
+ That means A and B are
2466
+ perpendicular.
2467
+
2468
+ 495
2469
+ 00:37:51,340 --> 00:37:57,245
2470
+ So, we have a very fast way of
2471
+ checking whether two vectors are
2472
+
2473
+ 496
2474
+ 00:37:57,245 --> 00:38:01,421
2475
+ perpendicular.
2476
+ So, one additional application
2477
+
2478
+ 497
2479
+ 00:38:01,421 --> 00:38:05,753
2480
+ I think we'll see actually
2481
+ tomorrow is to find the
2482
+
2483
+ 498
2484
+ 00:38:05,753 --> 00:38:10,349
2485
+ components of a vector along a
2486
+ certain direction.
2487
+
2488
+ 499
2489
+ 00:38:10,349 --> 00:38:13,403
2490
+ So, I claim we can use this
2491
+ intuition I gave about dot
2492
+
2493
+ 500
2494
+ 00:38:13,403 --> 00:38:16,975
2495
+ product telling us how much to
2496
+ vectors go in the same direction
2497
+
2498
+ 501
2499
+ 00:38:16,975 --> 00:38:19,856
2500
+ to actually give a precise
2501
+ meaning to the notion of
2502
+
2503
+ 502
2504
+ 00:38:19,856 --> 00:38:22,811
2505
+ component for vector,
2506
+ not just along the x,
2507
+
2508
+ 503
2509
+ 00:38:22,811 --> 00:38:27,260
2510
+ y, or z axis,
2511
+ but along any direction in
2512
+
2513
+ 504
2514
+ 00:38:27,260 --> 00:38:31,600
2515
+ space.
2516
+ So, I think I should probably
2517
+
2518
+ 505
2519
+ 00:38:31,600 --> 00:38:34,920
2520
+ stop here.
2521
+ But, I will see you tomorrow at
2522
+
2523
+ 506
2524
+ 00:38:34,920 --> 00:38:38,654
2525
+ 2:00 here, and we'll learn more
2526
+ about that and about cross
2527
+
2528
+ 507
2529
+ 00:38:38,654 --> 00:38:44,440
2530
+ products.
2531
+
2532
+
2533
+ 508
2534
+ 00:38:44,440 --> 00:38:49,440
2535
+