sm-transcript 0.0.6 → 0.0.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,3437 @@
1
+ 1
2
+ 0:00:00 --> 00:00:06
3
+ I'm Walter Lewin.
4
+
5
+ 2
6
+ 00:00:02 --> 00:00:08
7
+ I will be your lecturer
8
+ this term.
9
+
10
+ 3
11
+ 00:00:04 --> 00:00:10
12
+ In physics, we explore the
13
+ very small to the very large.
14
+
15
+ 4
16
+ 00:00:10 --> 00:00:16
17
+ The very small is a small
18
+ fraction of a proton
19
+
20
+ 5
21
+ 00:00:13 --> 00:00:19
22
+ and the very large is
23
+ the universe itself.
24
+
25
+ 6
26
+ 00:00:16 --> 00:00:22
27
+ They span 45 orders
28
+ of magnitude--
29
+
30
+ 7
31
+ 00:00:19 --> 00:00:25
32
+ a 1 with 45 zeroes.
33
+
34
+ 8
35
+ 00:00:24 --> 00:00:30
36
+ To express measurements
37
+ quantitatively
38
+
39
+ 9
40
+ 00:00:28 --> 00:00:34
41
+ we have to introduce units.
42
+
43
+ 10
44
+ 00:00:31 --> 00:00:37
45
+ And we introduce for the unit
46
+ of length, the meter;
47
+
48
+ 11
49
+ 00:00:37 --> 00:00:43
50
+ for the unit of time,
51
+ the second;
52
+
53
+ 12
54
+ 00:00:41 --> 00:00:47
55
+ and for the unit of mass,
56
+ the kilogram.
57
+
58
+ 13
59
+ 00:00:46 --> 00:00:52
60
+ Now, you can read in your book
61
+ how these are defined
62
+
63
+ 14
64
+ 00:00:49 --> 00:00:55
65
+ and how the definition
66
+ evolved historically.
67
+
68
+ 15
69
+ 00:00:53 --> 00:00:59
70
+ Now, there are
71
+ many derived units
72
+
73
+ 16
74
+ 00:00:55 --> 00:01:01
75
+ which we use in our daily life
76
+ for convenience
77
+
78
+ 17
79
+ 00:00:59 --> 00:01:05
80
+ and some are tailored
81
+ toward specific fields.
82
+
83
+ 18
84
+ 00:01:02 --> 00:01:08
85
+ We have centimeters,
86
+ we have millimeters
87
+
88
+ 19
89
+ 00:01:05 --> 00:01:11
90
+ kilometers.
91
+
92
+ 20
93
+ 00:01:06 --> 00:01:12
94
+ We have inches, feet, miles.
95
+
96
+ 21
97
+ 00:01:09 --> 00:01:15
98
+ Astronomers even use
99
+ the astronomical unit
100
+
101
+ 22
102
+ 00:01:12 --> 00:01:18
103
+ which is the mean distance
104
+ between the Earth and the sun
105
+
106
+ 23
107
+ 00:01:15 --> 00:01:21
108
+ and they use light-years
109
+
110
+ 24
111
+ 00:01:17 --> 00:01:23
112
+ which is the distance that
113
+ light travels in one year.
114
+
115
+ 25
116
+ 00:01:21 --> 00:01:27
117
+ We have milliseconds,
118
+ we have microseconds
119
+
120
+ 26
121
+ 00:01:23 --> 00:01:29
122
+ we have days, weeks, hours,
123
+ centuries, months--
124
+
125
+ 27
126
+ 00:01:27 --> 00:01:33
127
+ all derived units.
128
+
129
+ 28
130
+ 00:01:29 --> 00:01:35
131
+ For the mass, we have
132
+ milligrams, we have pounds
133
+
134
+ 29
135
+ 00:01:33 --> 00:01:39
136
+ we have metric tons.
137
+
138
+ 30
139
+ 00:01:36 --> 00:01:42
140
+ So lots of derived units exist.
141
+
142
+ 31
143
+ 00:01:41 --> 00:01:47
144
+ Not all of them are
145
+ very easy to work with.
146
+
147
+ 32
148
+ 00:01:44 --> 00:01:50
149
+ I find it extremely difficult
150
+ to work with inches and feet.
151
+
152
+ 33
153
+ 00:01:47 --> 00:01:53
154
+ It's an extremely
155
+ uncivilized system.
156
+
157
+ 34
158
+ 00:01:50 --> 00:01:56
159
+ I don't mean to insult you,
160
+ but think about it--
161
+
162
+ 35
163
+ 00:01:52 --> 00:01:58
164
+ 12 inches in a foot,
165
+ three feet in a yard.
166
+
167
+ 36
168
+ 00:01:56 --> 00:02:02
169
+ Could drive you nuts.
170
+
171
+ 37
172
+ 00:01:58 --> 00:02:04
173
+ I work almost
174
+ exclusively decimal,
175
+
176
+ 38
177
+ 00:02:01 --> 00:02:07
178
+ and I hope you will do the same
179
+ during this course
180
+
181
+ 39
182
+ 00:02:03 --> 00:02:09
183
+ but we may make some exceptions.
184
+
185
+ 40
186
+ 00:02:06 --> 00:02:12
187
+ I will now first show you
188
+ a movie,
189
+
190
+ 41
191
+ 00:02:08 --> 00:02:14
192
+ which is called
193
+ The Powers of Ten.
194
+
195
+ 42
196
+ 00:02:11 --> 00:02:17
197
+ It covers 40 orders
198
+ of magnitude.
199
+
200
+ 43
201
+ 00:02:13 --> 00:02:19
202
+ It was originally conceived
203
+ by a Dutchman named Kees Boeke
204
+
205
+ 44
206
+ 00:02:17 --> 00:02:23
207
+ in the early '50s.
208
+
209
+ 45
210
+ 00:02:19 --> 00:02:25
211
+ This is the second-generation
212
+ movie, and you will hear
213
+
214
+ 46
215
+ 00:02:23 --> 00:02:29
216
+ the voice of Professor Morrison,
217
+ who is a professor at MIT.
218
+
219
+ 47
220
+ 00:02:30 --> 00:02:36
221
+ The Power of Ten--
222
+ 40 Orders of Magnitude.
223
+
224
+ 48
225
+ 00:02:37 --> 00:02:43
226
+ Here we go.
227
+
228
+ 49
229
+ 00:02:48 --> 00:02:54
230
+ I already introduced,
231
+ as you see there
232
+
233
+ 50
234
+ 00:02:50.700,0:02:56.700
235
+ length, time and mass
236
+
237
+ 51
238
+ 00:02:53 --> 00:02:59
239
+ and we call these
240
+
241
+ 52
242
+ 00:02:55.200,0:03:01.200
243
+ the three fundamental quantities
244
+ in physics.
245
+
246
+ 53
247
+ 00:02:59.900,0:03:05.900
248
+ I will give this the symbol
249
+ capital L for length
250
+
251
+ 54
252
+ 00:03:03 --> 00:03:09
253
+ capital T for time,
254
+ and capital M for mass.
255
+
256
+ 55
257
+ 00:03:06 --> 00:03:12
258
+ All other quantities in physics
259
+ can be derived
260
+
261
+ 56
262
+ 00:03:10.500,0:03:16.500
263
+ from these fundamental
264
+ quantities.
265
+
266
+ 57
267
+ 00:03:13 --> 00:03:19
268
+ I'll give you an example.
269
+
270
+ 58
271
+ 00:03:16 --> 00:03:22
272
+ I put a bracket around here.
273
+
274
+ 59
275
+ 00:03:18 --> 00:03:24
276
+ I say speed, and that means
277
+ the dimensions of speed.
278
+
279
+ 60
280
+ 00:03:22.200,0:03:28.200
281
+ The dimensions of speed is
282
+ the dimension of length
283
+
284
+ 61
285
+ 00:03:24 --> 00:03:30
286
+ divided by the dimension
287
+ of time.
288
+
289
+ 62
290
+ 00:03:27 --> 00:03:33
291
+ So I can write for that:
292
+ [L] divided by [T].
293
+
294
+ 63
295
+ 00:03:32 --> 00:03:38
296
+ Whether it's meters per second
297
+ or inches per year
298
+
299
+ 64
300
+ 00:03:35 --> 00:03:41
301
+ that's not what matters.
302
+
303
+ 65
304
+ 00:03:36 --> 00:03:42
305
+ It has the dimension
306
+ length per time.
307
+
308
+ 66
309
+ 00:03:39.900,0:03:45.900
310
+ Volume would have
311
+ the dimension
312
+
313
+ 67
314
+ 00:03:44 --> 00:03:50
315
+ of length to the power three.
316
+
317
+ 68
318
+ 00:03:50 --> 00:03:56
319
+ Density would have
320
+ the dimension
321
+
322
+ 69
323
+ 00:03:54 --> 00:04:00
324
+ of mass per unit volume
325
+
326
+ 70
327
+ 00:03:59 --> 00:04:05
328
+ so that means
329
+ length to the power three.
330
+
331
+ 71
332
+ 00:04:03 --> 00:04:09
333
+ All-important in our course
334
+ is acceleration.
335
+
336
+ 72
337
+ 00:04:07 --> 00:04:13
338
+ We will deal a lot
339
+ with acceleration.
340
+
341
+ 73
342
+ 00:04:10 --> 00:04:16
343
+ Acceleration, as you will see,
344
+ is length per time squared.
345
+
346
+ 74
347
+ 00:04:14.200,0:04:20.200
348
+ The unit is meters
349
+ per second squared.
350
+
351
+ 75
352
+ 00:04:17 --> 00:04:23
353
+ So you get length
354
+ divided by time squared.
355
+
356
+ 76
357
+ 00:04:25 --> 00:04:31
358
+ So all other quantities
359
+ can be derived
360
+
361
+ 77
362
+ 00:04:27.700,0:04:33.700
363
+ from these three fundamental.
364
+
365
+ 78
366
+ 00:04:30.600,0:04:36.600
367
+ So now that we have agreed
368
+ on the units--
369
+
370
+ 79
371
+ 00:04:33.900,0:04:39.900
372
+ we have the meter,
373
+ the second and the kilogram--
374
+
375
+ 80
376
+ 00:04:36 --> 00:04:42
377
+ we can start making
378
+ measurements.
379
+
380
+ 81
381
+ 00:04:38.800,0:04:44.800
382
+ Now, all-important
383
+ in making measurements
384
+
385
+ 82
386
+ 00:04:41 --> 00:04:47
387
+ which is always ignored
388
+ in every college book
389
+
390
+ 83
391
+ 00:04:44 --> 00:04:50
392
+ is the uncertainty
393
+ in your measurement.
394
+
395
+ 84
396
+ 00:04:48 --> 00:04:54
397
+ Any measurement that you make
398
+
399
+ 85
400
+ 00:04:50 --> 00:04:56
401
+ without any knowledge
402
+ of the uncertainty
403
+
404
+ 86
405
+ 00:04:53 --> 00:04:59
406
+ is meaningless.
407
+
408
+ 87
409
+ 00:04:55.900,0:05:01.900
410
+ I will repeat this.
411
+
412
+ 88
413
+ 00:04:57 --> 00:05:03
414
+ I want you to hear it tonight
415
+ at 3:00 when you wake up.
416
+
417
+ 89
418
+ 00:05:00.800,0:05:06.800
419
+ Any measurement that you make
420
+
421
+ 90
422
+ 00:05:02 --> 00:05:08
423
+ without the knowledge
424
+ of its uncertainty
425
+
426
+ 91
427
+ 00:05:05 --> 00:05:11
428
+ is completely meaningless.
429
+
430
+ 92
431
+ 00:05:08 --> 00:05:14
432
+ My grandmother used
433
+ to tell me that...
434
+
435
+ 93
436
+ 00:05:13 --> 00:05:19
437
+ at least she believed it...
438
+
439
+ 94
440
+ 00:05:15 --> 00:05:21
441
+ that someone who is lying in bed
442
+
443
+ 95
444
+ 00:05:18 --> 00:05:24
445
+ is longer than
446
+ someone who stands up.
447
+
448
+ 96
449
+ 00:05:21 --> 00:05:27
450
+ And in honor of my grandmother
451
+
452
+ 97
453
+ 00:05:22 --> 00:05:28
454
+ I'm going to bring
455
+ this today to a test.
456
+
457
+ 98
458
+ 00:05:26 --> 00:05:32
459
+ I have here a setup where I can
460
+ measure a person standing up
461
+
462
+ 99
463
+ 00:05:31 --> 00:05:37
464
+ and a person lying down.
465
+
466
+ 100
467
+ 00:05:34.700,0:05:40.700
468
+ It's not the greatest bed,
469
+ but lying down.
470
+
471
+ 101
472
+ 00:05:37 --> 00:05:43
473
+ I have to convince you
474
+
475
+ 102
476
+ 00:05:38.900,0:05:44.900
477
+ about the uncertainty
478
+ in my measurement
479
+
480
+ 103
481
+ 00:05:41 --> 00:05:47
482
+ because a measurement without
483
+ knowledge of the uncertainty
484
+
485
+ 104
486
+ 00:05:43 --> 00:05:49
487
+ is meaningless.
488
+
489
+ 105
490
+ 00:05:45.100,0:05:51.100
491
+ And therefore, what I will do
492
+ is the following.
493
+
494
+ 106
495
+ 00:05:47.900,0:05:53.900
496
+ I have here an aluminum bar
497
+
498
+ 107
499
+ 00:05:50.200,0:05:56.200
500
+ and I make the reasonable,
501
+ plausible assumption
502
+
503
+ 108
504
+ 00:05:53.500,0:05:59.500
505
+ that when this aluminum bar
506
+ is sleeping--
507
+
508
+ 109
509
+ 00:05:56 --> 00:06:02
510
+ when it is horizontal--
511
+
512
+ 110
513
+ 00:05:57.400,0:06:03.400
514
+ that it is not longer than
515
+ when it is standing up.
516
+
517
+ 111
518
+ 00:06:00 --> 00:06:06
519
+ If you accept that,
520
+ we can compare
521
+
522
+ 112
523
+ 00:06:02 --> 00:06:08
524
+ the length of this aluminum bar
525
+ with this setup
526
+
527
+ 113
528
+ 00:06:06 --> 00:06:12
529
+ and with this setup.
530
+
531
+ 114
532
+ 00:06:07.300,0:06:13.300
533
+ At least we have some kind
534
+ of calibration to start with.
535
+
536
+ 115
537
+ 00:06:10.900,0:06:16.900
538
+ I will measure it.
539
+
540
+ 116
541
+ 00:06:12 --> 00:06:18
542
+ You have to trust me.
543
+
544
+ 117
545
+ 00:06:13.800,0:06:19.800
546
+ During these three months,
547
+ we have to trust each other.
548
+
549
+ 118
550
+ 00:06:16.800,0:06:22.800
551
+ So I measure here,
552
+ 149.9 centimeters.
553
+
554
+ 119
555
+ 00:06:24 --> 00:06:30
556
+ However, I would think
557
+ that the...
558
+
559
+ 120
560
+ 00:06:27 --> 00:06:33
561
+ so this is the aluminum bar.
562
+
563
+ 121
564
+ 00:06:29 --> 00:06:35
565
+ This is in vertical position.
566
+
567
+ 122
568
+ 00:06:32 --> 00:06:38
569
+ 149.9.
570
+
571
+ 123
572
+ 00:06:35 --> 00:06:41
573
+ But I would think that the
574
+ uncertainty of my measurement
575
+
576
+ 124
577
+ 00:06:39 --> 00:06:45
578
+ is probably 1 millimeter.
579
+
580
+ 125
581
+ 00:06:40.500,0:06:46.500
582
+ I can't really guarantee you
583
+
584
+ 126
585
+ 00:06:41 --> 00:06:47
586
+ that I did it accurately
587
+ any better.
588
+
589
+ 127
590
+ 00:06:44.200,0:06:50.200
591
+ So that's the vertical one.
592
+
593
+ 128
594
+ 00:06:46 --> 00:06:52
595
+ Now we're going to measure
596
+ the bar horizontally
597
+
598
+ 129
599
+ 00:06:50.300,0:06:56.300
600
+ for which we have a setup here.
601
+
602
+ 130
603
+ 00:06:51.800,0:06:57.800
604
+ Oops!
605
+
606
+ 131
607
+ 00:06:52.800,0:06:58.800
608
+ The scale is on your side.
609
+
610
+ 132
611
+ 00:06:54 --> 00:07:00
612
+ So now I measure
613
+ the length of this bar.
614
+
615
+ 133
616
+ 00:06:57 --> 00:07:03
617
+ 150.0 horizontally.
618
+
619
+ 134
620
+ 00:07:04 --> 00:07:10
621
+ 150.0, again, plus or minus
622
+ 0.1 centimeter.
623
+
624
+ 135
625
+ 00:07:09.600,0:07:15.600
626
+ So you would agree with me
627
+ that I am capable of measuring
628
+
629
+ 136
630
+ 00:07:13 --> 00:07:19
631
+ plus or minus 1 millimeter.
632
+
633
+ 137
634
+ 00:07:15 --> 00:07:21
635
+ That's the uncertainty
636
+ of my measurement.
637
+
638
+ 138
639
+ 00:07:17 --> 00:07:23
640
+ Now, if the difference
641
+ in lengths
642
+
643
+ 139
644
+ 00:07:22 --> 00:07:28
645
+ between lying down
646
+ and standing up
647
+
648
+ 140
649
+ 00:07:24 --> 00:07:30
650
+ if that were one foot
651
+
652
+ 141
653
+ 00:07:26.800,0:07:32.800
654
+ we would all know it,
655
+ wouldn't we?
656
+
657
+ 142
658
+ 00:07:28 --> 00:07:34
659
+ You get out of bed
660
+ in the morning
661
+
662
+ 143
663
+ 00:07:29 --> 00:07:35
664
+ you lie down and you get up
665
+ and you go, clunk!
666
+
667
+ 144
668
+ 00:07:31 --> 00:07:37
669
+ And you're one foot shorter.
670
+
671
+ 145
672
+ 00:07:32 --> 00:07:38
673
+ And we know that that's
674
+ not the case.
675
+
676
+ 146
677
+ 00:07:34 --> 00:07:40
678
+ If the difference were
679
+ only one millimeter
680
+
681
+ 147
682
+ 00:07:37 --> 00:07:43
683
+ we would never know.
684
+
685
+ 148
686
+ 00:07:39 --> 00:07:45
687
+ Therefore, I suspect that
688
+ if my grandmother was right
689
+
690
+ 149
691
+ 00:07:43 --> 00:07:49
692
+ then it's probably only
693
+ a few centimeters,
694
+
695
+ 150
696
+ 00:07:45 --> 00:07:51
697
+ maybe an inch.
698
+
699
+ 151
700
+ 00:07:46 --> 00:07:52
701
+ And so I would argue that
702
+ if I can measure
703
+
704
+ 152
705
+ 00:07:49.800,0:07:55.800
706
+ the length of a student
707
+ to one millimeter accuracy
708
+
709
+ 153
710
+ 00:07:53.400,0:07:59.400
711
+ that should settle the issue.
712
+
713
+ 154
714
+ 00:07:55 --> 00:08:01
715
+ So I need a volunteer.
716
+
717
+ 155
718
+ 00:07:58 --> 00:08:04
719
+ You want to volunteer?
720
+
721
+ 156
722
+ 00:08:00 --> 00:08:06
723
+ You look like you're very tall.
724
+
725
+ 157
726
+ 00:08:01 --> 00:08:07
727
+ I hope that... yeah, I hope that
728
+ we don't run out of, uh...
729
+
730
+ 158
731
+ 00:08:06 --> 00:08:12
732
+ You're not taller
733
+ than 178 or so?
734
+
735
+ 159
736
+ 00:08:10.700,0:08:16.700
737
+ What is your name?
738
+
739
+ 160
740
+ 00:08:11.700,0:08:17.700
741
+ STUDENT:
742
+ Rick Ryder.
743
+
744
+ 161
745
+ 00:08:12.500,0:08:18.500
746
+ LEWIN:
747
+ Rick-- Rick Ryder.
748
+
749
+ 162
750
+ 00:08:13 --> 00:08:19
751
+ You're not nervous, right?
752
+
753
+ 163
754
+ 00:08:15 --> 00:08:21
755
+ RICK:
756
+ No!
757
+
758
+ 164
759
+ 00:08:16.500,0:08:22.500
760
+ LEWIN:
761
+ Man!
762
+
763
+ 165
764
+ 00:08:17.500,0:08:23.500
765
+ (class laughs )
766
+
767
+ 166
768
+ 00:08:20.100,0:08:26.100
769
+ Sit down.
770
+
771
+ 167
772
+ 00:08:21.100,0:08:27.100
773
+ (class laughs )
774
+
775
+ 168
776
+ 00:08:23 --> 00:08:29
777
+ I can't have tall guys here.
778
+
779
+ 169
780
+ 00:08:24 --> 00:08:30
781
+ Come on.
782
+
783
+ 170
784
+ 00:08:25 --> 00:08:31
785
+ We need someone
786
+ more modest in size.
787
+
788
+ 171
789
+ 00:08:29 --> 00:08:35
790
+ Don't take it personal, Rick.
791
+
792
+ 172
793
+ 00:08:32 --> 00:08:38
794
+ Okay, what is your name?
795
+
796
+ 173
797
+ 00:08:35 --> 00:08:41
798
+ STUDENT:
799
+ Zach.
800
+
801
+ 174
802
+ 00:08:36.100,0:08:42.100
803
+ LEWIN:
804
+ Zach.
805
+
806
+ 175
807
+ 00:08:38 --> 00:08:44
808
+ Nice day today, Zach, yeah?
809
+
810
+ 176
811
+ 00:08:40 --> 00:08:46
812
+ You feel all right?
813
+
814
+ 177
815
+ 00:08:42 --> 00:08:48
816
+ Your first lecture at MIT?
817
+
818
+ 178
819
+ 00:08:43.900,0:08:49.900
820
+ I don't.
821
+
822
+ 179
823
+ 00:08:47.400,0:08:53.400
824
+ Okay, man.
825
+
826
+ 180
827
+ 00:08:48 --> 00:08:54
828
+ Stand there, yeah.
829
+
830
+ 181
831
+ 00:08:52 --> 00:08:58
832
+ Okay, 183.2.
833
+
834
+ 182
835
+ 00:08:57 --> 00:09:03
836
+ Stay there, stay there.
837
+
838
+ 183
839
+ 00:08:58 --> 00:09:04
840
+ Don't move.
841
+
842
+ 184
843
+ 00:08:59.800,0:09:05.800
844
+ Zach...
845
+
846
+ 185
847
+ 00:09:03 --> 00:09:09
848
+ This is vertical.
849
+
850
+ 186
851
+ 00:09:06 --> 00:09:12
852
+ What did I say?
853
+
854
+ 187
855
+ 00:09:06 --> 00:09:12
856
+ 180?
857
+
858
+ 188
859
+ 00:09:09 --> 00:09:15
860
+ Only one person.
861
+
862
+ 189
863
+ 00:09:10.600,0:09:16.600
864
+ 183?
865
+
866
+ 190
867
+ 00:09:15 --> 00:09:21
868
+ Come on.
869
+
870
+ 191
871
+ 00:09:16 --> 00:09:22
872
+ .2--
873
+
874
+ 192
875
+ 00:09:18 --> 00:09:24
876
+ Okay, 183.2.
877
+
878
+ 193
879
+ 00:09:21 --> 00:09:27
880
+ Yeah.
881
+
882
+ 194
883
+ 00:09:22 --> 00:09:28
884
+ And an uncertainty
885
+ of about one...
886
+
887
+ 195
888
+ 00:09:28.200,0:09:34.200
889
+ Oh, this is centimeters--
890
+ 0.1 centimeters.
891
+
892
+ 196
893
+ 00:09:32.500,0:09:38.500
894
+ And now we're going to measure
895
+ him horizontally.
896
+
897
+ 197
898
+ 00:09:37 --> 00:09:43
899
+ Zach, I don't want you
900
+ to break your bones
901
+
902
+ 198
903
+ 00:09:39.600,0:09:45.600
904
+ so we have a little step
905
+ for you here.
906
+
907
+ 199
908
+ 00:09:44 --> 00:09:50
909
+ Put your feet there.
910
+
911
+ 200
912
+ 00:09:45 --> 00:09:51
913
+ Oh, let me remove
914
+ the aluminum bar.
915
+
916
+ 201
917
+ 00:09:46 --> 00:09:52
918
+ Watch out for the scale.
919
+
920
+ 202
921
+ 00:09:48.600,0:09:54.600
922
+ That you don't break that,
923
+ because then it's all over.
924
+
925
+ 203
926
+ 00:09:52 --> 00:09:58
927
+ Okay, I'll come on your side.
928
+
929
+ 204
930
+ 00:09:54 --> 00:10:00
931
+ I have to do that-- yeah, yeah.
932
+
933
+ 205
934
+ 00:09:56.800,0:10:02.800
935
+ Relax.
936
+
937
+ 206
938
+ 00:09:59.400,0:10:05.400
939
+ Think of this
940
+ as a small sacrifice
941
+
942
+ 207
943
+ 00:10:01 --> 00:10:07
944
+ for the sake of science, right?
945
+
946
+ 208
947
+ 00:10:03.500,0:10:09.500
948
+ Okay, you good?
949
+
950
+ 209
951
+ 00:10:04 --> 00:10:10
952
+ ZACH:
953
+ Yeah.
954
+
955
+ 210
956
+ 00:10:05 --> 00:10:11
957
+ LEWIN:
958
+ You comfortable?
959
+
960
+ 211
961
+ 00:10:07 --> 00:10:13
962
+ (students laugh )
963
+
964
+ 212
965
+ 00:10:09 --> 00:10:15
966
+ You're really comfortable,
967
+ right?
968
+
969
+ 213
970
+ 00:10:10 --> 00:10:16
971
+ ZACH:
972
+ Wonderful.
973
+
974
+ 214
975
+ 00:10:11.800,0:10:17.800
976
+ LEWIN:
977
+ Okay.
978
+
979
+ 215
980
+ 00:10:14 --> 00:10:20
981
+ You ready?
982
+
983
+ 216
984
+ 00:10:14.600,0:10:20.600
985
+ ZACH:
986
+ Yes.
987
+
988
+ 217
989
+ 00:10:16.100,0:10:22.100
990
+ LEWIN:
991
+ Okay.
992
+
993
+ 218
994
+ 00:10:18 --> 00:10:24
995
+ Okay.
996
+
997
+ 219
998
+ 00:10:21 --> 00:10:27
999
+ 185.7.
1000
+
1001
+ 220
1002
+ 00:10:24 --> 00:10:30
1003
+ Stay where you are.
1004
+
1005
+ 221
1006
+ 00:10:24 --> 00:10:30
1007
+ 185.7.
1008
+
1009
+ 222
1010
+ 00:10:27.300,0:10:33.300
1011
+ I'm sure... I want to first
1012
+ make the subtraction, right?
1013
+
1014
+ 223
1015
+ 00:10:30 --> 00:10:36
1016
+ 185.7, plus or minus
1017
+ 0.1 centimeter.
1018
+
1019
+ 224
1020
+ 00:10:35.900,0:10:41.900
1021
+ Oh, that is five...
1022
+
1023
+ 225
1024
+ 00:10:38.900,0:10:44.900
1025
+ that is 2.5 plus or minus
1026
+ 0.2 centimeters.
1027
+
1028
+ 226
1029
+ 00:10:43 --> 00:10:49
1030
+ You're about one inch taller
1031
+ when you sleep
1032
+
1033
+ 227
1034
+ 00:10:45 --> 00:10:51
1035
+ than when you stand up.
1036
+
1037
+ 228
1038
+ 00:10:46 --> 00:10:52
1039
+ My grandmother was right.
1040
+
1041
+ 229
1042
+ 00:10:47 --> 00:10:53
1043
+ She's always right.
1044
+
1045
+ 230
1046
+ 00:10:48 --> 00:10:54
1047
+ Can you get off here?
1048
+
1049
+ 231
1050
+ 00:10:51 --> 00:10:57
1051
+ I want you to appreciate
1052
+ that the accuracy...
1053
+
1054
+ 232
1055
+ 00:10:53 --> 00:10:59
1056
+ Thank you very much, Zach.
1057
+
1058
+ 233
1059
+ 00:10:55 --> 00:11:01
1060
+ That the accuracy
1061
+ of one millimeter
1062
+
1063
+ 234
1064
+ 00:10:56 --> 00:11:02
1065
+ was more than sufficient
1066
+ to make the case.
1067
+
1068
+ 235
1069
+ 00:10:59 --> 00:11:05
1070
+ If the accuracy
1071
+ of my measurements
1072
+
1073
+ 236
1074
+ 00:11:01 --> 00:11:07
1075
+ would have been much less
1076
+
1077
+ 237
1078
+ 00:11:03 --> 00:11:09
1079
+ this measurement would not
1080
+ have been convincing at all.
1081
+
1082
+ 238
1083
+ 00:11:07 --> 00:11:13
1084
+ So whenever you make
1085
+ a measurement
1086
+
1087
+ 239
1088
+ 00:11:09 --> 00:11:15
1089
+ you must know the uncertainty.
1090
+
1091
+ 240
1092
+ 00:11:11 --> 00:11:17
1093
+ Otherwise, it is meaningless.
1094
+
1095
+ 241
1096
+ 00:11:13.600,0:11:19.600
1097
+ Galileo Galilei asked himself
1098
+ the question:
1099
+
1100
+ 242
1101
+ 00:11:17.400,0:11:23.400
1102
+ Why are mammals as large as
1103
+ they are and not much larger?
1104
+
1105
+ 243
1106
+ 00:11:24 --> 00:11:30
1107
+ He had a very clever reasoning
1108
+ which I've never seen in print.
1109
+
1110
+ 244
1111
+ 00:11:29.100,0:11:35.100
1112
+ But it comes down to the fact
1113
+ that he argued
1114
+
1115
+ 245
1116
+ 00:11:31 --> 00:11:37
1117
+ that if the mammal
1118
+ becomes too massive
1119
+
1120
+ 246
1121
+ 00:11:35 --> 00:11:41
1122
+ that the bones will break
1123
+
1124
+ 247
1125
+ 00:11:37 --> 00:11:43
1126
+ and he thought that that
1127
+ was a limiting factor.
1128
+
1129
+ 248
1130
+ 00:11:40 --> 00:11:46
1131
+ Even though I've never
1132
+ seen his reasoning in print
1133
+
1134
+ 249
1135
+ 00:11:43.300,0:11:49.300
1136
+ I will try to reconstruct it
1137
+
1138
+ 250
1139
+ 00:11:45.300,0:11:51.300
1140
+ what could have gone
1141
+ through his head.
1142
+
1143
+ 251
1144
+ 00:11:47 --> 00:11:53
1145
+ Here is a mammal.
1146
+
1147
+ 252
1148
+ 00:11:52 --> 00:11:58
1149
+ And this is one of the
1150
+ four legs of the mammal.
1151
+
1152
+ 253
1153
+ 00:11:57 --> 00:12:03
1154
+ And this mammal has a size S.
1155
+
1156
+ 254
1157
+ 00:12:02 --> 00:12:08
1158
+ And what I mean by that is
1159
+
1160
+ 255
1161
+ 00:12:05 --> 00:12:11
1162
+ a mouse is yay big
1163
+ and a cat is yay big.
1164
+
1165
+ 256
1166
+ 00:12:09 --> 00:12:15
1167
+ That's what I mean by size--
1168
+ very crudely defined.
1169
+
1170
+ 257
1171
+ 00:12:14 --> 00:12:20
1172
+ The mass of the mammal is M
1173
+
1174
+ 258
1175
+ 00:12:17.900,0:12:23.900
1176
+ and this mammal has
1177
+ a thigh bone
1178
+
1179
+ 259
1180
+ 00:12:21 --> 00:12:27
1181
+ which we call the femur,
1182
+ which is here.
1183
+
1184
+ 260
1185
+ 00:12:25 --> 00:12:31
1186
+ And the femur of course carries
1187
+ the body, to a large extent.
1188
+
1189
+ 261
1190
+ 00:12:30.200,0:12:36.200
1191
+ And let's assume that the femur
1192
+ has a length l
1193
+
1194
+ 262
1195
+ 00:12:33 --> 00:12:39
1196
+ and has a thickness d.
1197
+
1198
+ 263
1199
+ 00:12:35.800,0:12:41.800
1200
+ Here is a femur.
1201
+
1202
+ 264
1203
+ 00:12:43 --> 00:12:49
1204
+ This is what a femur
1205
+ approximately looks like.
1206
+
1207
+ 265
1208
+ 00:12:46 --> 00:12:52
1209
+ So this will be the length
1210
+ of the femur...
1211
+
1212
+ 266
1213
+ 00:12:53 --> 00:12:59
1214
+ and this will be
1215
+ the thickness, d
1216
+
1217
+ 267
1218
+ 00:12:57.800,0:13:03.800
1219
+ and this will be
1220
+ the cross-sectional area A.
1221
+
1222
+ 268
1223
+ 00:13:01 --> 00:13:07
1224
+
1225
+ 269
1226
+ 00:13:05 --> 00:13:11
1227
+ I'm now going to take you
1228
+ through what we call in physics
1229
+
1230
+ 270
1231
+ 00:13:09 --> 00:13:15
1232
+ a scaling argument.
1233
+
1234
+ 271
1235
+ 00:13:13 --> 00:13:19
1236
+ I would argue that the length
1237
+ of the femur
1238
+
1239
+ 272
1240
+ 00:13:15 --> 00:13:21
1241
+ must be proportional
1242
+ to the size of the animal.
1243
+
1244
+ 273
1245
+ 00:13:18 --> 00:13:24
1246
+ That's completely plausible.
1247
+
1248
+ 274
1249
+ 00:13:19.900,0:13:25.900
1250
+ If an animal is four times
1251
+ larger than another
1252
+
1253
+ 275
1254
+ 00:13:22 --> 00:13:28
1255
+ you would need four times
1256
+ longer legs.
1257
+
1258
+ 276
1259
+ 00:13:24 --> 00:13:30
1260
+ And that's all this is saying.
1261
+
1262
+ 277
1263
+ 00:13:26.200,0:13:32.200
1264
+ It's very reasonable.
1265
+
1266
+ 278
1267
+ 00:13:29 --> 00:13:35
1268
+ It is also very reasonable
1269
+ that the mass of an animal
1270
+
1271
+ 279
1272
+ 00:13:32.800,0:13:38.800
1273
+ is proportional
1274
+ to the third power of the size
1275
+
1276
+ 280
1277
+ 00:13:36 --> 00:13:42
1278
+ because that's related
1279
+ to its volume.
1280
+
1281
+ 281
1282
+ 00:13:39 --> 00:13:45
1283
+ And so if it's related
1284
+ to the third power of the size
1285
+
1286
+ 282
1287
+ 00:13:42 --> 00:13:48
1288
+ it must also be proportional
1289
+
1290
+ 283
1291
+ 00:13:44 --> 00:13:50
1292
+ to the third power of the length
1293
+ of the femur
1294
+
1295
+ 284
1296
+ 00:13:47.900,0:13:53.900
1297
+ because of this relationship.
1298
+
1299
+ 285
1300
+ 00:13:49 --> 00:13:55
1301
+ Okay, that's one.
1302
+
1303
+ 286
1304
+ 00:13:52 --> 00:13:58
1305
+ Now comes the argument.
1306
+
1307
+ 287
1308
+ 00:13:56 --> 00:14:02
1309
+ Pressure on the femur
1310
+ is proportional
1311
+
1312
+ 288
1313
+ 00:14:01 --> 00:14:07
1314
+ to the weight of the animal
1315
+ divided by the cross-section A
1316
+
1317
+ 289
1318
+ 00:14:07 --> 00:14:13
1319
+ of the femur.
1320
+
1321
+ 290
1322
+ 00:14:09 --> 00:14:15
1323
+ That's what pressure is.
1324
+
1325
+ 291
1326
+ 00:14:11 --> 00:14:17
1327
+ And that is the mass
1328
+ of the animal
1329
+
1330
+ 292
1331
+ 00:14:13 --> 00:14:19
1332
+ that's proportional
1333
+
1334
+ 293
1335
+ 00:14:14 --> 00:14:20
1336
+ to the mass of the animal
1337
+ divided by d squared
1338
+
1339
+ 294
1340
+ 00:14:18.100,0:14:24.100
1341
+ because we want the area here,
1342
+ it's proportional to d squared.
1343
+
1344
+ 295
1345
+ 00:14:22 --> 00:14:28
1346
+ Now follow me closely.
1347
+
1348
+ 296
1349
+ 00:14:25 --> 00:14:31
1350
+ If the pressure is higher
1351
+ than a certain level
1352
+
1353
+ 297
1354
+ 00:14:30 --> 00:14:36
1355
+ the bones will break.
1356
+
1357
+ 298
1358
+ 00:14:33 --> 00:14:39
1359
+ Therefore, for an animal
1360
+ not to break its bones
1361
+
1362
+ 299
1363
+ 00:14:37 --> 00:14:43
1364
+ when the mass goes up
1365
+ by a certain factor
1366
+
1367
+ 300
1368
+ 00:14:39 --> 00:14:45
1369
+ let's say a factor of four
1370
+
1371
+ 301
1372
+ 00:14:41 --> 00:14:47
1373
+ in order for the bones
1374
+ not to break
1375
+
1376
+ 302
1377
+ 00:14:43.500,0:14:49.500
1378
+ d squared must also go up
1379
+ by a factor of four.
1380
+
1381
+ 303
1382
+ 00:14:46 --> 00:14:52
1383
+ That's a key argument
1384
+ in the scaling here.
1385
+
1386
+ 304
1387
+ 00:14:48 --> 00:14:54
1388
+ You really have to think
1389
+ that through carefully.
1390
+
1391
+ 305
1392
+ 00:14:51.200,0:14:57.200
1393
+ Therefore, I would argue
1394
+
1395
+ 306
1396
+ 00:14:53 --> 00:14:59
1397
+ that the mass must be
1398
+ proportional to d squared.
1399
+
1400
+ 307
1401
+ 00:14:56 --> 00:15:02
1402
+ This is the breaking argument.
1403
+
1404
+ 308
1405
+ 00:14:59 --> 00:15:05
1406
+ Now compare these two.
1407
+
1408
+ 309
1409
+ 00:15:01 --> 00:15:07
1410
+ The mass is proportional
1411
+ to the length of the femur
1412
+
1413
+ 310
1414
+ 00:15:04 --> 00:15:10
1415
+ to the power three
1416
+
1417
+ 311
1418
+ 00:15:05 --> 00:15:11
1419
+ and to the thickness of
1420
+ the femur to the power two.
1421
+
1422
+ 312
1423
+ 00:15:09 --> 00:15:15
1424
+ Therefore, the thickness of
1425
+ the femur to the power two
1426
+
1427
+ 313
1428
+ 00:15:13 --> 00:15:19
1429
+ must be proportional
1430
+ to the length l
1431
+
1432
+ 314
1433
+ 00:15:15 --> 00:15:21
1434
+ and therefore the thickness of
1435
+ the femur must be proportional
1436
+
1437
+ 315
1438
+ 00:15:18.900,0:15:24.900
1439
+ to l to the power three-halfs.
1440
+
1441
+ 316
1442
+ 00:15:22.100,0:15:28.100
1443
+ A very interesting result.
1444
+
1445
+ 317
1446
+ 00:15:25.400,0:15:31.400
1447
+ What is this result telling you?
1448
+
1449
+ 318
1450
+ 00:15:28.200,0:15:34.200
1451
+ It tells you that if
1452
+ I have two animals
1453
+
1454
+ 319
1455
+ 00:15:31 --> 00:15:37
1456
+ and one is ten times larger
1457
+ than the other
1458
+
1459
+ 320
1460
+ 00:15:34 --> 00:15:40
1461
+ then S is ten times larger
1462
+
1463
+ 321
1464
+ 00:15:36 --> 00:15:42
1465
+ that the lengths of the legs
1466
+ are ten times larger
1467
+
1468
+ 322
1469
+ 00:15:40 --> 00:15:46
1470
+ but that the thickness
1471
+ of the femur is 30 times larger
1472
+
1473
+ 323
1474
+ 00:15:46.200,0:15:52.200
1475
+ because it is l to the power
1476
+ three halves.
1477
+
1478
+ 324
1479
+ 00:15:48 --> 00:15:54
1480
+ If I were to compare
1481
+ a mouse with an elephant
1482
+
1483
+ 325
1484
+ 00:15:50.900,0:15:56.900
1485
+ an elephant is about a hundred
1486
+ times larger in size
1487
+
1488
+ 326
1489
+ 00:15:54 --> 00:16:00
1490
+ so the length of the femur
1491
+ of the elephant
1492
+
1493
+ 327
1494
+ 00:15:56 --> 00:16:02
1495
+ would be a hundred times larger
1496
+ than that of a mouse
1497
+
1498
+ 328
1499
+ 00:15:58 --> 00:16:04
1500
+ but the thickness of the femur
1501
+
1502
+ 329
1503
+ 00:16:00.700,0:16:06.700
1504
+ would have to be
1505
+ 1,000 times larger.
1506
+
1507
+ 330
1508
+ 00:16:05.800,0:16:11.800
1509
+ And that may have convinced
1510
+ Galileo Galilei
1511
+
1512
+ 331
1513
+ 00:16:09.600,0:16:15.600
1514
+ that that's the reason
1515
+
1516
+ 332
1517
+ 00:16:11.200,0:16:17.200
1518
+ why the largest animals are
1519
+ as large as they are.
1520
+
1521
+ 333
1522
+ 00:16:14 --> 00:16:20
1523
+ Because clearly,
1524
+ if you increase the mass
1525
+
1526
+ 334
1527
+ 00:16:17.600,0:16:23.600
1528
+ there comes a time that
1529
+ the thickness of the bones
1530
+
1531
+ 335
1532
+ 00:16:20.800,0:16:26.800
1533
+ is the same as the length
1534
+ of the bones.
1535
+
1536
+ 336
1537
+ 00:16:22 --> 00:16:28
1538
+ You're all made of bones
1539
+
1540
+ 337
1541
+ 00:16:24 --> 00:16:30
1542
+ and that is biologically
1543
+ not feasible.
1544
+
1545
+ 338
1546
+ 00:16:27 --> 00:16:33
1547
+ And so there is
1548
+ a limit somewhere
1549
+
1550
+ 339
1551
+ 00:16:29 --> 00:16:35
1552
+ set by this scaling law.
1553
+
1554
+ 340
1555
+ 00:16:33 --> 00:16:39
1556
+ Well, I wanted to bring
1557
+ this to a test.
1558
+
1559
+ 341
1560
+ 00:16:36 --> 00:16:42
1561
+ After all
1562
+
1563
+ 342
1564
+ 00:16:37 --> 00:16:43
1565
+ I brought my grandmother's
1566
+ statement to a test
1567
+
1568
+ 343
1569
+ 00:16:39 --> 00:16:45
1570
+ so why not bring Galileo
1571
+ Galilei's statement to a test?
1572
+
1573
+ 344
1574
+ 00:16:43.100,0:16:49.100
1575
+ And so I went to Harvard
1576
+
1577
+ 345
1578
+ 00:16:47.100,0:16:53.100
1579
+ where they have a beautiful
1580
+ collection of femurs
1581
+
1582
+ 346
1583
+ 00:16:50.300,0:16:56.300
1584
+ and I asked them for the femur
1585
+ of a raccoon and a horse.
1586
+
1587
+ 347
1588
+ 00:16:56 --> 00:17:02
1589
+ A raccoon is this big
1590
+
1591
+ 348
1592
+ 00:16:58 --> 00:17:04
1593
+ a horse is about
1594
+ four times bigger
1595
+
1596
+ 349
1597
+ 00:17:02.300,0:17:08.300
1598
+ so the length of the femur
1599
+ of a horse
1600
+
1601
+ 350
1602
+ 00:17:05.400,0:17:11.400
1603
+ must be about four times
1604
+ the length of the raccoon.
1605
+
1606
+ 351
1607
+ 00:17:09.100,0:17:15.100
1608
+ Close.
1609
+
1610
+ 352
1611
+ 00:17:11 --> 00:17:17
1612
+ So I was not surprised.
1613
+
1614
+ 353
1615
+ 00:17:14.200,0:17:20.200
1616
+ Then I measured the thickness,
1617
+ and I said to myself, "Aha!"
1618
+
1619
+ 354
1620
+ 00:17:19 --> 00:17:25
1621
+ If the length is
1622
+ four times higher
1623
+
1624
+ 355
1625
+ 00:17:22 --> 00:17:28
1626
+ then the thickness has
1627
+ to be eight times higher
1628
+
1629
+ 356
1630
+ 00:17:26 --> 00:17:32
1631
+ if this holds.
1632
+
1633
+ 357
1634
+ 00:17:28 --> 00:17:34
1635
+ And what I'm going
1636
+ to plot for you
1637
+
1638
+ 358
1639
+ 00:17:29 --> 00:17:35
1640
+ you will see that shortly
1641
+ is d divided by l, versus l
1642
+
1643
+ 359
1644
+ 00:17:35 --> 00:17:41
1645
+ and that, of course,
1646
+ must be proportional
1647
+
1648
+ 360
1649
+ 00:17:37 --> 00:17:43
1650
+ to l to the power one-half.
1651
+
1652
+ 361
1653
+ 00:17:38 --> 00:17:44
1654
+ I bring one l here.
1655
+
1656
+ 362
1657
+ 00:17:40 --> 00:17:46
1658
+ So, if I compare the horse
1659
+ and I compare the raccoon
1660
+
1661
+ 363
1662
+ 00:17:44.200,0:17:50.200
1663
+ I would argue that the thickness
1664
+
1665
+ 364
1666
+ 00:17:46.500,0:17:52.500
1667
+ divided by the length
1668
+ of the femur for the horse
1669
+
1670
+ 365
1671
+ 00:17:49.900,0:17:55.900
1672
+ must be the square root of four,
1673
+ twice as much
1674
+
1675
+ 366
1676
+ 00:17:53 --> 00:17:59
1677
+ as that of the raccoon.
1678
+
1679
+ 367
1680
+ 00:17:56 --> 00:18:02
1681
+ And so I was very anxious
1682
+ to plot that, and I did that
1683
+
1684
+ 368
1685
+ 00:18:00 --> 00:18:06
1686
+ and I'll show you the result.
1687
+
1688
+ 369
1689
+ 00:18:03 --> 00:18:09
1690
+ Here is my first result.
1691
+
1692
+ 370
1693
+ 00:18:09.700,0:18:15.700
1694
+ So we see there, d over l.
1695
+
1696
+ 371
1697
+ 00:18:12 --> 00:18:18
1698
+ I explained to you why
1699
+ I prefer that.
1700
+
1701
+ 372
1702
+ 00:18:14.600,0:18:20.600
1703
+ And here you see the length.
1704
+
1705
+ 373
1706
+ 00:18:17 --> 00:18:23
1707
+ You see here the raccoon
1708
+ and you see the horse.
1709
+
1710
+ 374
1711
+ 00:18:19 --> 00:18:25
1712
+ And if you look carefully,
1713
+ then the d over l for the horse
1714
+
1715
+ 375
1716
+ 00:18:22 --> 00:18:28
1717
+ is only about one and a half
1718
+ times larger than the raccoon.
1719
+
1720
+ 376
1721
+ 00:18:25 --> 00:18:31
1722
+ Well, I wasn't too disappointed.
1723
+
1724
+ 377
1725
+ 00:18:28 --> 00:18:34
1726
+ One and a half is not two, but
1727
+ it is in the right direction.
1728
+
1729
+ 378
1730
+ 00:18:30 --> 00:18:36
1731
+ The horse clearly has a larger
1732
+ value for d over l
1733
+
1734
+ 379
1735
+ 00:18:33 --> 00:18:39
1736
+ than the raccoon.
1737
+
1738
+ 380
1739
+ 00:18:36 --> 00:18:42
1740
+ I realized I needed more data,
1741
+ so I went back to Harvard.
1742
+
1743
+ 381
1744
+ 00:18:39 --> 00:18:45
1745
+ I said, "Look, I need a smaller
1746
+ animal, an opossum maybe
1747
+
1748
+ 382
1749
+ 00:18:43 --> 00:18:49
1750
+ maybe a rat, maybe a mouse,"
1751
+ and they said, "okay."
1752
+
1753
+ 383
1754
+ 00:18:47 --> 00:18:53
1755
+ They gave me three more bones.
1756
+
1757
+ 384
1758
+ 00:18:51 --> 00:18:57
1759
+ They gave me an antelope
1760
+
1761
+ 385
1762
+ 00:18:52.200,0:18:58.200
1763
+ which is actually a little
1764
+ larger than a raccoon
1765
+
1766
+ 386
1767
+ 00:18:54 --> 00:19:00
1768
+ and they gave me an opossum
1769
+ and they gave me a mouse.
1770
+
1771
+ 387
1772
+ 00:19:00.066,0:19:06.066
1773
+ Here is the bone
1774
+ of the antelope.
1775
+
1776
+ 388
1777
+ 00:19:08 --> 00:19:14
1778
+ Here is the one of the raccoon.
1779
+
1780
+ 389
1781
+ 00:19:14 --> 00:19:20
1782
+ Here is the one of the opossum.
1783
+
1784
+ 390
1785
+ 00:19:18.200,0:19:24.200
1786
+ And now you won't believe this.
1787
+
1788
+ 391
1789
+ 00:19:20.500,0:19:26.500
1790
+ This is so wonderful,
1791
+ so romantic.
1792
+
1793
+ 392
1794
+ 00:19:26 --> 00:19:32
1795
+ There is the mouse.
1796
+
1797
+ 393
1798
+ 00:19:27.200,0:19:33.200
1799
+ (students laugh )
1800
+
1801
+ 394
1802
+ 00:19:28 --> 00:19:34
1803
+ Isn't that beautiful?
1804
+
1805
+ 395
1806
+ 00:19:29 --> 00:19:35
1807
+ Teeny, weeny little mouse?
1808
+
1809
+ 396
1810
+ 00:19:31 --> 00:19:37
1811
+ That's only a teeny,
1812
+ weeny little femur.
1813
+
1814
+ 397
1815
+ 00:19:35 --> 00:19:41
1816
+ And there it is.
1817
+
1818
+ 398
1819
+ 00:19:38 --> 00:19:44
1820
+ And I made the plot.
1821
+
1822
+ 399
1823
+ 00:19:41 --> 00:19:47
1824
+ I was very curious
1825
+ what that plot would look like.
1826
+
1827
+ 400
1828
+ 00:19:44 --> 00:19:50
1829
+ And...
1830
+
1831
+ 401
1832
+ 00:19:51 --> 00:19:57
1833
+ here it is.
1834
+
1835
+ 402
1836
+ 00:19:53 --> 00:19:59
1837
+ Whew! I was shocked.
1838
+
1839
+ 403
1840
+ 00:19:57 --> 00:20:03
1841
+ I was really shocked.
1842
+
1843
+ 404
1844
+ 00:19:59 --> 00:20:05
1845
+ Because look-- the horse
1846
+ is 50 times larger in size
1847
+
1848
+ 405
1849
+ 00:20:03 --> 00:20:09
1850
+ than the mouse.
1851
+
1852
+ 406
1853
+ 00:20:05 --> 00:20:11
1854
+ The difference in d over l
1855
+ is only a factor of two.
1856
+
1857
+ 407
1858
+ 00:20:08 --> 00:20:14
1859
+ And I expected something more
1860
+ like a factor of seven.
1861
+
1862
+ 408
1863
+ 00:20:14.400,0:20:20.400
1864
+ And so, in d over l, where
1865
+ I expect a factor of seven
1866
+
1867
+ 409
1868
+ 00:20:17.700,0:20:23.700
1869
+ I only see a factor of two.
1870
+
1871
+ 410
1872
+ 00:20:19.700,0:20:25.700
1873
+ So I said to myself,
1874
+ "Oh, my goodness.
1875
+
1876
+ 411
1877
+ 00:28:27 --> 00:28:33
1878
+ Why didn't I ask them
1879
+ for an elephant?"
1880
+
1881
+ 412
1882
+ 00:20:24 --> 00:20:30
1883
+ The real clincher
1884
+ would be the elephant
1885
+
1886
+ 413
1887
+ 00:20:27 --> 00:20:33
1888
+ because if that goes
1889
+ way off scale
1890
+
1891
+ 414
1892
+ 00:20:29 --> 00:20:35
1893
+ maybe we can still rescue the
1894
+ statement by Galileo Galilei
1895
+
1896
+ 415
1897
+ 00:20:33 --> 00:20:39
1898
+ and so I went back
1899
+ and they said
1900
+
1901
+ 416
1902
+ 00:20:35 --> 00:20:41
1903
+ "Okay, we'll give you
1904
+ the femur of an elephant."
1905
+
1906
+ 417
1907
+ 00:20:38.500,0:20:44.500
1908
+ They also gave me one
1909
+ of a moose, believe it or not.
1910
+
1911
+ 418
1912
+ 00:20:40.900,0:20:46.900
1913
+ I think they wanted to get
1914
+ rid of me by that time
1915
+
1916
+ 419
1917
+ 00:20:43.200,0:20:49.200
1918
+ to be frank with you.
1919
+
1920
+ 420
1921
+ 00:20:44.200,0:20:50.200
1922
+ And here is the femur
1923
+ of an elephant.
1924
+
1925
+ 421
1926
+ 00:20:49 --> 00:20:55
1927
+ And I measured it.
1928
+
1929
+ 422
1930
+ 00:20:50 --> 00:20:56
1931
+ The length and the thickness.
1932
+
1933
+ 423
1934
+ 00:20:53.600,0:20:59.600
1935
+ And it is very heavy.
1936
+
1937
+ 424
1938
+ 00:20:56.500,0:21:02.500
1939
+ It weighs a ton.
1940
+
1941
+ 425
1942
+ 00:20:58 --> 00:21:04
1943
+ I plotted it, I was
1944
+ full of expectation.
1945
+
1946
+ 426
1947
+ 00:21:02.700,0:21:08.700
1948
+ I couldn't sleep all night.
1949
+
1950
+ 427
1951
+ 00:21:05 --> 00:21:11
1952
+ And there's the elephant.
1953
+
1954
+ 428
1955
+ 00:21:07.500,0:21:13.500
1956
+ There is no evidence whatsoever
1957
+ that d over l is really larger
1958
+
1959
+ 429
1960
+ 00:21:11.100,0:21:17.100
1961
+ for the elephant
1962
+ than for the mouse.
1963
+
1964
+ 430
1965
+ 00:21:13 --> 00:21:19
1966
+ These vertical bars indicate
1967
+ my uncertainty
1968
+
1969
+ 431
1970
+ 00:21:15 --> 00:21:21
1971
+ in measurements of thickness
1972
+
1973
+ 432
1974
+ 00:21:17 --> 00:21:23
1975
+ and the horizontal scale,
1976
+ which is a logarithmic scale...
1977
+
1978
+ 433
1979
+ 00:21:20.800,0:21:26.800
1980
+ the uncertainty
1981
+ of the length measurements
1982
+
1983
+ 434
1984
+ 00:21:23 --> 00:21:29
1985
+ is in the thickness
1986
+ of the red pen
1987
+
1988
+ 435
1989
+ 00:21:24 --> 00:21:30
1990
+ so there's no need for me
1991
+ to indicate that any further.
1992
+
1993
+ 436
1994
+ 00:21:28.500,0:21:34.500
1995
+ And here you have
1996
+ your measurements
1997
+
1998
+ 437
1999
+ 00:21:30 --> 00:21:36
2000
+ in case you want to check them.
2001
+
2002
+ 438
2003
+ 00:21:33 --> 00:21:39
2004
+ And look again at the mouse
2005
+ and look at the elephant.
2006
+
2007
+ 439
2008
+ 00:21:36 --> 00:21:42
2009
+ The mouse has indeed only one
2010
+ centimeter length of the femur
2011
+
2012
+ 440
2013
+ 00:21:43 --> 00:21:49
2014
+ and the elephant is, indeed,
2015
+ hundred times longer.
2016
+
2017
+ 441
2018
+ 00:21:45.500,0:21:51.500
2019
+ So the first scaling argument
2020
+ that S is proportional to l
2021
+
2022
+ 442
2023
+ 00:21:49 --> 00:21:55
2024
+ that is certainly
2025
+ what you would expect
2026
+
2027
+ 443
2028
+ 00:21:51.500,0:21:57.500
2029
+ because an elephant is about
2030
+ a hundred times larger in size.
2031
+
2032
+ 444
2033
+ 00:21:54.600,0:22:00.600
2034
+ But when you go to d over l,
2035
+ you see it's all over.
2036
+
2037
+ 445
2038
+ 00:21:58 --> 00:22:04
2039
+ The d over l for the mouse
2040
+
2041
+ 446
2042
+ 00:21:59.600,0:22:05.600
2043
+ is really not all that
2044
+ different from the elephant
2045
+
2046
+ 447
2047
+ 00:22:02 --> 00:22:08
2048
+ and you would have expected
2049
+ that number to be
2050
+
2051
+ 448
2052
+ 00:22:04 --> 00:22:10
2053
+ with the square root of 100
2054
+
2055
+ 449
2056
+ 00:22:09 --> 00:22:15
2057
+ so you expect it to be
2058
+ ten times larger
2059
+
2060
+ 450
2061
+ 00:22:11 --> 00:22:17
2062
+ instead of about the same.
2063
+
2064
+ 451
2065
+ 00:22:14 --> 00:22:20
2066
+ I now want to discuss with you
2067
+
2068
+ 452
2069
+ 00:22:17.400,0:22:23.400
2070
+ what we call in physics
2071
+ dimensional analysis.
2072
+
2073
+ 453
2074
+ 00:22:24.900,0:22:30.900
2075
+ I want to ask myself
2076
+ the question:
2077
+
2078
+ 454
2079
+ 00:22:27.400,0:22:33.400
2080
+ If I drop an apple
2081
+ from a certain height
2082
+
2083
+ 455
2084
+ 00:22:31.500,0:22:37.500
2085
+ and I change that height
2086
+
2087
+ 456
2088
+ 00:22:34 --> 00:22:40
2089
+ what will happen with the time
2090
+ for the apple to fall?
2091
+
2092
+ 457
2093
+ 00:22:40 --> 00:22:46
2094
+ Well, I drop the apple
2095
+ from a height h
2096
+
2097
+ 458
2098
+ 00:22:47 --> 00:22:53
2099
+ and I want to know what happened
2100
+ with the time when it falls.
2101
+
2102
+ 459
2103
+ 00:22:51.200,0:22:57.200
2104
+ And I change h.
2105
+
2106
+ 460
2107
+ 00:22:54 --> 00:23:00
2108
+ So I said to myself,
2109
+ "Well, the time that it takes
2110
+
2111
+ 461
2112
+ 00:31:02.666,0:31:08.666
2113
+ must be proportional to the
2114
+ height to some power alpha."
2115
+
2116
+ 462
2117
+ 00:23:00 --> 00:23:06
2118
+ Completely reasonable.
2119
+
2120
+ 463
2121
+ 00:23:01 --> 00:23:07
2122
+ If I make the height larger
2123
+
2124
+ 464
2125
+ 00:23:03.300,0:23:09.300
2126
+ we all know that it takes longer
2127
+ for the apple to fall.
2128
+
2129
+ 465
2130
+ 00:23:06 --> 00:23:12
2131
+ That's a safe thing.
2132
+
2133
+ 466
2134
+ 00:23:08 --> 00:23:14
2135
+ I said to myself, "Well,
2136
+ if the apple has a mass m
2137
+
2138
+ 467
2139
+ 00:23:12 --> 00:23:18
2140
+ "it probably is
2141
+ also proportional
2142
+
2143
+ 468
2144
+ 00:31:20.666,0:31:26.666
2145
+ to the mass of that apple
2146
+ to the power beta."
2147
+
2148
+ 469
2149
+ 00:23:17 --> 00:23:23
2150
+ I said to myself, "Gee, yeah,
2151
+ if something is more massive
2152
+
2153
+ 470
2154
+ 00:23:21 --> 00:23:27
2155
+ it will probably
2156
+ take less time."
2157
+
2158
+ 471
2159
+ 00:23:23 --> 00:23:29
2160
+ So maybe m to some power beta.
2161
+
2162
+ 472
2163
+ 00:23:26.100,0:23:32.100
2164
+ I don't know alpha,
2165
+ I don't know beta.
2166
+
2167
+ 473
2168
+ 00:23:28.900,0:23:34.900
2169
+ And then I said, "Gee, there's
2170
+ also something like gravity
2171
+
2172
+ 474
2173
+ 00:23:31 --> 00:23:37
2174
+ that is the Earth's
2175
+ gravitational pull--
2176
+
2177
+ 475
2178
+ 00:23:33 --> 00:23:39
2179
+ the gravitational acceleration
2180
+ of the Earth."
2181
+
2182
+ 476
2183
+ 00:23:36 --> 00:23:42
2184
+ So let's introduce that, too
2185
+
2186
+ 477
2187
+ 00:23:38 --> 00:23:44
2188
+ and let's assume that that time
2189
+ is also proportional
2190
+
2191
+ 478
2192
+ 00:23:41 --> 00:23:47
2193
+ to the gravitational
2194
+ acceleration--
2195
+
2196
+ 479
2197
+ 00:23:43 --> 00:23:49
2198
+ this is an acceleration; we will
2199
+ learn a lot more about that--
2200
+
2201
+ 480
2202
+ 00:23:46 --> 00:23:52
2203
+ to the power gamma.
2204
+
2205
+ 481
2206
+ 00:23:49.100,0:23:55.100
2207
+ Having said this, we can now do
2208
+ what's called in physics
2209
+
2210
+ 482
2211
+ 00:23:53 --> 00:23:59
2212
+ a dimensional analysis.
2213
+
2214
+ 483
2215
+ 00:23:57 --> 00:24:03
2216
+
2217
+ 484
2218
+ 00:23:59.900,0:24:05.900
2219
+ On the left we have a time
2220
+
2221
+ 485
2222
+ 00:24:03.300,0:24:09.300
2223
+ and if we have a left...
2224
+ on the left side a time
2225
+
2226
+ 486
2227
+ 00:24:05 --> 00:24:11
2228
+ on the right side
2229
+ we must also have time.
2230
+
2231
+ 487
2232
+ 00:24:08 --> 00:24:14
2233
+ You cannot have coconuts on one
2234
+ side and oranges on the other.
2235
+
2236
+ 488
2237
+ 00:24:12.600,0:24:18.600
2238
+ You cannot have seconds
2239
+ on one side
2240
+
2241
+ 489
2242
+ 00:24:14 --> 00:24:20
2243
+ and meters per second
2244
+ on the other.
2245
+
2246
+ 490
2247
+ 00:24:17 --> 00:24:23
2248
+ So the dimensions left and right
2249
+ have to be the same.
2250
+
2251
+ 491
2252
+ 00:24:20.500,0:24:26.500
2253
+ What is the dimension here?
2254
+
2255
+ 492
2256
+ 00:24:22.700,0:24:28.700
2257
+ That is [T] to the power one.
2258
+
2259
+ 493
2260
+ 00:24:25.200,0:24:31.200
2261
+ That T... that must be the same
2262
+ as length to the power alpha
2263
+
2264
+ 494
2265
+ 00:24:33 --> 00:24:39
2266
+ times mass to the power beta,
2267
+ times acceleration--
2268
+
2269
+ 495
2270
+ 00:24:42 --> 00:24:48
2271
+ remember, it is still there
2272
+ on the blackboard--
2273
+
2274
+ 496
2275
+ 00:24:44 --> 00:24:50
2276
+ that's dimension [L]
2277
+ divided by time squared
2278
+
2279
+ 497
2280
+ 00:24:49 --> 00:24:55
2281
+ and the whole thing
2282
+ to the power gamma
2283
+
2284
+ 498
2285
+ 00:24:51.900,0:24:57.900
2286
+ so I have a gamma here
2287
+ and I have a gamma there.
2288
+
2289
+ 499
2290
+ 00:24:54 --> 00:25:00
2291
+ This side must have the same
2292
+ dimension as that side.
2293
+
2294
+ 500
2295
+ 00:24:57.200,0:25:03.200
2296
+ That is nonnegotiable
2297
+ in physics.
2298
+
2299
+ 501
2300
+ 00:25:00 --> 00:25:06
2301
+ Okay, there we go.
2302
+
2303
+ 502
2304
+ 00:25:01 --> 00:25:07
2305
+ There is no M here,
2306
+ there is only one M here
2307
+
2308
+ 503
2309
+ 00:25:04 --> 00:25:10
2310
+ so beta must be zero.
2311
+
2312
+ 504
2313
+ 00:25:08 --> 00:25:14
2314
+ There is here [L] to the power
2315
+ alpha, [L] to the power gamma
2316
+
2317
+ 505
2318
+ 00:25:12 --> 00:25:18
2319
+ there is no [L] here.
2320
+
2321
+ 506
2322
+ 00:25:13 --> 00:25:19
2323
+ So [L] must disappear.
2324
+
2325
+ 507
2326
+ 00:25:15 --> 00:25:21
2327
+ So alpha plus gamma
2328
+ must be zero.
2329
+
2330
+ 508
2331
+ 00:25:19 --> 00:25:25
2332
+ There is [T]
2333
+ to the power one here
2334
+
2335
+ 509
2336
+ 00:25:22.300,0:25:28.300
2337
+ and there is here
2338
+ [T] to the power -2 gamma.
2339
+
2340
+ 510
2341
+ 00:25:25 --> 00:25:31
2342
+ It's minus because
2343
+ it's downstairs.
2344
+
2345
+ 511
2346
+ 00:25:27 --> 00:25:33
2347
+ So one must be equal
2348
+ to -2 gamma.
2349
+
2350
+ 512
2351
+ 00:25:31.900,0:25:37.900
2352
+ That means gamma must be
2353
+ minus one half.
2354
+
2355
+ 513
2356
+ 00:25:35.600,0:25:41.600
2357
+ That if gamma is minus one half,
2358
+ then alpha equals plus one half.
2359
+
2360
+ 514
2361
+ 00:25:43 --> 00:25:49
2362
+ End of my dimensional analysis.
2363
+
2364
+ 515
2365
+ 00:25:45 --> 00:25:51
2366
+ I therefore conclude that
2367
+ the time that it takes
2368
+
2369
+ 516
2370
+ 00:25:49 --> 00:25:55
2371
+ for an object to fall
2372
+
2373
+ 517
2374
+ 00:25:51 --> 00:25:57
2375
+ equals some constant,
2376
+ which I do not know
2377
+
2378
+ 518
2379
+ 00:25:55.400,0:26:01.400
2380
+ but that constant
2381
+ has no dimension--
2382
+
2383
+ 519
2384
+ 00:25:57.200,0:26:03.200
2385
+ I don't know what it is--
2386
+
2387
+ 520
2388
+ 00:25:59 --> 00:26:05
2389
+ times the square root
2390
+ of h divided by g.
2391
+
2392
+ 521
2393
+ 00:26:07.500,0:26:13.500
2394
+ Beta is zero,
2395
+ there is no mass
2396
+
2397
+ 522
2398
+ 00:26:10 --> 00:26:16
2399
+ h to the power one half--
2400
+ you see that here--
2401
+
2402
+ 523
2403
+ 00:26:13 --> 00:26:19
2404
+ and g to the power
2405
+ minus one half.
2406
+
2407
+ 524
2408
+ 00:26:15 --> 00:26:21
2409
+ This is proportional
2410
+ to the square root of h
2411
+
2412
+ 525
2413
+ 00:26:19.300,0:26:25.300
2414
+ because g is a given
2415
+ and c is a given
2416
+
2417
+ 526
2418
+ 00:26:21 --> 00:26:27
2419
+ even though I don't know c.
2420
+
2421
+ 527
2422
+ 00:26:22 --> 00:26:28
2423
+ I make no pretense that I can
2424
+ predict how long it will take
2425
+
2426
+ 528
2427
+ 00:26:26 --> 00:26:32
2428
+ for the apple to fall.
2429
+
2430
+ 529
2431
+ 00:26:27 --> 00:26:33
2432
+ All I'm saying is, I can compare
2433
+ two different heights.
2434
+
2435
+ 530
2436
+ 00:26:31 --> 00:26:37
2437
+ I can drop an apple
2438
+ from eight meters
2439
+
2440
+ 531
2441
+ 00:26:33 --> 00:26:39
2442
+ and another one from two meters
2443
+
2444
+ 532
2445
+ 00:26:35 --> 00:26:41
2446
+ and the one from eight meters
2447
+ will take two times longer
2448
+
2449
+ 533
2450
+ 00:26:39.400,0:26:45.400
2451
+ than the one from two meters.
2452
+
2453
+ 534
2454
+ 00:26:41 --> 00:26:47
2455
+ The square root of h to two,
2456
+ four over two
2457
+
2458
+ 535
2459
+ 00:26:45 --> 00:26:51
2460
+ will take two times longer,
2461
+ right?
2462
+
2463
+ 536
2464
+ 00:26:47 --> 00:26:53
2465
+ If I drop one from eight meters
2466
+
2467
+ 537
2468
+ 00:26:49 --> 00:26:55
2469
+ and I drop another one
2470
+ from two meters
2471
+
2472
+ 538
2473
+ 00:26:52 --> 00:26:58
2474
+ then the difference in time will
2475
+ be the square root of the ratio.
2476
+
2477
+ 539
2478
+ 00:26:56.300,0:27:02.300
2479
+ It will be twice as long.
2480
+
2481
+ 540
2482
+ 00:26:57 --> 00:27:03
2483
+ And that I want to bring
2484
+ to a test today.
2485
+
2486
+ 541
2487
+ 00:27:03 --> 00:27:09
2488
+ We have a setup here.
2489
+
2490
+ 542
2491
+ 00:27:05 --> 00:27:11
2492
+ We have an apple there
2493
+ at a height of three meters
2494
+
2495
+ 543
2496
+ 00:27:08 --> 00:27:14
2497
+ and we know the length to an
2498
+ accuracy... the height
2499
+
2500
+ 544
2501
+ 00:27:11 --> 00:27:17
2502
+ of about three millimeters,
2503
+ no better.
2504
+
2505
+ 545
2506
+ 00:27:14 --> 00:27:20
2507
+ And here we have a setup
2508
+ whereby the apple
2509
+
2510
+ 546
2511
+ 00:27:16.400,0:27:22.400
2512
+ is about one and a half meters
2513
+ above the ground.
2514
+
2515
+ 547
2516
+ 00:27:18.900,0:27:24.900
2517
+ And we know that to about
2518
+ also an accuracy
2519
+
2520
+ 548
2521
+ 00:27:21 --> 00:27:27
2522
+ of no better than
2523
+ about three millimeters.
2524
+
2525
+ 549
2526
+ 00:27:26 --> 00:27:32
2527
+ So, let's set it up.
2528
+
2529
+ 550
2530
+ 00:27:29 --> 00:27:35
2531
+ I have here...
2532
+
2533
+ 551
2534
+ 00:27:34 --> 00:27:40
2535
+ something that's going
2536
+ to be a prediction--
2537
+
2538
+ 552
2539
+ 00:27:37 --> 00:27:43
2540
+ a prediction of the time that
2541
+ it takes for one apple to fall
2542
+
2543
+ 553
2544
+ 00:27:43 --> 00:27:49
2545
+ divided by the time
2546
+ that it takes
2547
+
2548
+ 554
2549
+ 00:27:44 --> 00:27:50
2550
+ for the other apple to fall.
2551
+
2552
+ 555
2553
+ 00:27:47.900,0:27:53.900
2554
+ H one is three meters
2555
+
2556
+ 556
2557
+ 00:27:51.900,0:27:57.900
2558
+ but I claim there is
2559
+ an uncertainty
2560
+
2561
+ 557
2562
+ 00:27:54.300,0:28:00.300
2563
+ of about three millimeters.
2564
+
2565
+ 558
2566
+ 00:27:56 --> 00:28:02
2567
+ Can't do any better.
2568
+
2569
+ 559
2570
+ 00:27:57 --> 00:28:03
2571
+ And h 2 equals 1.5 meters
2572
+
2573
+ 560
2574
+ 00:28:02 --> 00:28:08
2575
+ again with an uncertainty
2576
+ of about three millimeters.
2577
+
2578
+ 561
2579
+ 00:28:09 --> 00:28:15
2580
+ So the ratio h one over h two...
2581
+
2582
+ 562
2583
+ 00:28:14.700,0:28:20.700
2584
+ is 2
2585
+
2586
+ 563
2587
+ 00:28:15 --> 00:28:21
2588
+ and now I have to come up
2589
+ with an uncertainty
2590
+
2591
+ 564
2592
+ 00:28:20 --> 00:28:26
2593
+ which physicists sometimes call
2594
+ an error in their measurements
2595
+
2596
+ 565
2597
+ 00:28:23 --> 00:28:29
2598
+ but it's really an uncertainty.
2599
+
2600
+ 566
2601
+ 00:28:25.100,0:28:31.100
2602
+ And the way you find
2603
+ your uncertainty is
2604
+
2605
+ 567
2606
+ 00:28:27.700,0:28:33.700
2607
+ that you add the three here
2608
+ and you subtract the three here
2609
+
2610
+ 568
2611
+ 00:28:31.600,0:28:37.600
2612
+ and you get the largest value
2613
+ possible.
2614
+
2615
+ 569
2616
+ 00:28:33.900,0:28:39.900
2617
+ You can never get
2618
+ a larger value.
2619
+
2620
+ 570
2621
+ 00:28:35 --> 00:28:41
2622
+ And you'll find
2623
+ that you get 2.006.
2624
+
2625
+ 571
2626
+ 00:28:38 --> 00:28:44
2627
+ And so I would say
2628
+ the uncertainty is then .006.
2629
+
2630
+ 572
2631
+ 00:28:44 --> 00:28:50
2632
+ This is a dimensionless number
2633
+
2634
+ 573
2635
+ 00:28:46 --> 00:28:52
2636
+ because it's length
2637
+ divided by length.
2638
+
2639
+ 574
2640
+ 00:28:50.200,0:28:56.200
2641
+ And so the time t1
2642
+ divided by t2
2643
+
2644
+ 575
2645
+ 00:28:56 --> 00:29:02
2646
+ would be the square root
2647
+ of h1 divided by h2.
2648
+
2649
+ 576
2650
+ 00:28:59 --> 00:29:05
2651
+ That is the dimensional
2652
+ analysis argument
2653
+
2654
+ 577
2655
+ 00:29:02.700,0:29:08.700
2656
+ that we have there.
2657
+
2658
+ 578
2659
+ 00:29:04.200,0:29:10.200
2660
+ And we find if we take
2661
+ the square root of this number
2662
+
2663
+ 579
2664
+ 00:29:07 --> 00:29:13
2665
+ we find 1.414,
2666
+ plus or minus 0.0
2667
+
2668
+ 580
2669
+ 00:29:12 --> 00:29:18
2670
+ and I think that is a two.
2671
+
2672
+ 581
2673
+ 00:29:15 --> 00:29:21
2674
+ That is correct.
2675
+
2676
+ 582
2677
+ 00:29:16 --> 00:29:22
2678
+ So here is a firm prediction.
2679
+
2680
+ 583
2681
+ 00:29:22.800,0:29:28.800
2682
+ This is a prediction.
2683
+
2684
+ 584
2685
+ 00:29:25 --> 00:29:31
2686
+ And now we're going to make
2687
+ an observation.
2688
+
2689
+ 585
2690
+ 00:29:31 --> 00:29:37
2691
+ So we're going to measure t1
2692
+ and there's going to be a number
2693
+
2694
+ 586
2695
+ 00:29:37.500,0:29:43.500
2696
+ and then we're going
2697
+ to measure t2
2698
+
2699
+ 587
2700
+ 00:29:40 --> 00:29:46
2701
+ and there's going
2702
+ to be a number.
2703
+
2704
+ 588
2705
+ 00:29:42.300,0:29:48.300
2706
+ I have done this experiment
2707
+ ten times
2708
+
2709
+ 589
2710
+ 00:29:44 --> 00:29:50
2711
+ and the numbers always reproduce
2712
+ within about one millisecond.
2713
+
2714
+ 590
2715
+ 00:29:49 --> 00:29:55
2716
+ So I could just adopt an
2717
+ uncertainty of one millisecond.
2718
+
2719
+ 591
2720
+ 00:29:51 --> 00:29:57
2721
+ I want to be a little bit
2722
+ on the safe side.
2723
+
2724
+ 592
2725
+ 00:29:54 --> 00:30:00
2726
+ Occasionally it differs
2727
+ by two milliseconds.
2728
+
2729
+ 593
2730
+ 00:29:56.500,0:30:02.500
2731
+ So let us be conservative
2732
+
2733
+ 594
2734
+ 00:29:59 --> 00:30:05
2735
+ and let's assume that I can
2736
+ measure this to an accuracy
2737
+
2738
+ 595
2739
+ 00:30:02.800,0:30:08.800
2740
+ of about two milliseconds.
2741
+
2742
+ 596
2743
+ 00:30:06 --> 00:30:12
2744
+ That is pretty safe.
2745
+
2746
+ 597
2747
+ 00:30:08 --> 00:30:14
2748
+ So now we can measure
2749
+ these times
2750
+
2751
+ 598
2752
+ 00:30:12.300,0:30:18.300
2753
+ and then we can take
2754
+ the ratio
2755
+
2756
+ 599
2757
+ 00:30:15 --> 00:30:21
2758
+ and then we can see whether
2759
+ we actually confirm
2760
+
2761
+ 600
2762
+ 00:30:19 --> 00:30:25
2763
+ that the time that it takes
2764
+ is proportional to the height
2765
+
2766
+ 601
2767
+ 00:30:24 --> 00:30:30
2768
+ to the square root
2769
+ of the height.
2770
+
2771
+ 602
2772
+ 00:30:26.700,0:30:32.700
2773
+ So I will make it a little more
2774
+ comfortable for you
2775
+
2776
+ 603
2777
+ 00:30:33 --> 00:30:39
2778
+ in the lecture hall.
2779
+
2780
+ 604
2781
+ 00:30:35 --> 00:30:41
2782
+ That's all right.
2783
+
2784
+ 605
2785
+ 00:30:37.400,0:30:43.400
2786
+ We have the setup here.
2787
+
2788
+ 606
2789
+ 00:30:39.500,0:30:45.500
2790
+ We first do the experiment
2791
+ with the... three meters.
2792
+
2793
+ 607
2794
+ 00:30:47 --> 00:30:53
2795
+ There you see the three meters.
2796
+
2797
+ 608
2798
+ 00:30:50 --> 00:30:56
2799
+ And the time... the moment
2800
+ that I pull this string
2801
+
2802
+ 609
2803
+ 00:30:53 --> 00:30:59
2804
+ the apple will fall, the contact
2805
+ will open, the clock will start.
2806
+
2807
+ 610
2808
+ 00:30:57.900,0:31:03.900
2809
+ The moment that it hits the
2810
+ floor, the time will stop.
2811
+
2812
+ 611
2813
+ 00:31:02 --> 00:31:08
2814
+ I have to stand on that side.
2815
+
2816
+ 612
2817
+ 00:31:04 --> 00:31:10
2818
+ Otherwise the apple
2819
+ will fall on my hand.
2820
+
2821
+ 613
2822
+ 00:31:06 --> 00:31:12
2823
+ That's not the idea.
2824
+
2825
+ 614
2826
+ 00:31:08 --> 00:31:14
2827
+ I'll stand here.
2828
+
2829
+ 615
2830
+ 00:31:10 --> 00:31:16
2831
+ You ready?
2832
+
2833
+ 616
2834
+ 00:31:12.600,0:31:18.600
2835
+ Okay, then I'm ready.
2836
+
2837
+ 617
2838
+ 00:31:15 --> 00:31:21
2839
+ Everything set?
2840
+
2841
+ 618
2842
+ 00:31:17 --> 00:31:23
2843
+ Make sure that I've
2844
+ zeroed that properly.
2845
+
2846
+ 619
2847
+ 00:31:19.100,0:31:25.100
2848
+ Yes, I have.
2849
+
2850
+ 620
2851
+ 00:31:20 --> 00:31:26
2852
+ Okay.
2853
+
2854
+ 621
2855
+ 00:31:21 --> 00:31:27
2856
+ Three, two, one, zero.
2857
+
2858
+ 622
2859
+ 00:31:23 --> 00:31:29
2860
+
2861
+ 623
2862
+ 00:31:27.100,0:31:33.100
2863
+ 781 milliseconds.
2864
+
2865
+ 624
2866
+ 00:31:30 --> 00:31:36
2867
+ So this number...
2868
+ you should write it down
2869
+
2870
+ 625
2871
+ 00:31:34 --> 00:31:40
2872
+ because you will need it
2873
+ for your second assignment.
2874
+
2875
+ 626
2876
+ 00:31:37 --> 00:31:43
2877
+ 781 milliseconds, with an
2878
+ uncertainty of two milliseconds.
2879
+
2880
+ 627
2881
+ 00:31:41 --> 00:31:47
2882
+ You ready for the second one?
2883
+
2884
+ 628
2885
+ 00:31:47 --> 00:31:53
2886
+ You ready?
2887
+
2888
+ 629
2889
+ 00:31:50 --> 00:31:56
2890
+ You ready?
2891
+
2892
+ 630
2893
+ 00:31:52.100,0:31:58.100
2894
+ Okay, nothing wrong.
2895
+
2896
+ 631
2897
+ 00:31:54.200,0:32:00.200
2898
+ Ready.
2899
+
2900
+ 632
2901
+ 00:31:58 --> 00:32:04
2902
+ Zero, zero, right?
2903
+
2904
+ 633
2905
+ 00:32:01 --> 00:32:07
2906
+ Thank you.
2907
+
2908
+ 634
2909
+ 00:32:02 --> 00:32:08
2910
+ Okay.
2911
+
2912
+ 635
2913
+ 00:32:04 --> 00:32:10
2914
+ Three, two, one, zero.
2915
+
2916
+ 636
2917
+ 00:32:06 --> 00:32:12
2918
+
2919
+ 637
2920
+ 00:32:08 --> 00:32:14
2921
+ 551 milliseconds.
2922
+
2923
+ 638
2924
+ 00:32:14 --> 00:32:20
2925
+ Boy, I'm nervous because
2926
+ I hope that physics works.
2927
+
2928
+ 639
2929
+ 00:32:21 --> 00:32:27
2930
+ So I take my calculator
2931
+
2932
+ 640
2933
+ 00:32:25 --> 00:32:31
2934
+ and I'm now going to take
2935
+ the ratio t1 over t2.
2936
+
2937
+ 641
2938
+ 00:32:32 --> 00:32:38
2939
+ The uncertainty you can find
2940
+ by adding the two here
2941
+
2942
+ 642
2943
+ 00:32:35 --> 00:32:41
2944
+ and subtracting the two there
2945
+
2946
+ 643
2947
+ 00:32:38 --> 00:32:44
2948
+ and that will
2949
+ then give you an uncertainty
2950
+
2951
+ 644
2952
+ 00:32:40 --> 00:32:46
2953
+ of, I think, .0... mmm, .08.
2954
+
2955
+ 645
2956
+ 00:32:46 --> 00:32:52
2957
+ Yeah, .08.
2958
+
2959
+ 646
2960
+ 00:32:48 --> 00:32:54
2961
+ You should do that
2962
+ for yourself-- .008.
2963
+
2964
+ 647
2965
+ 00:32:51 --> 00:32:57
2966
+ Dimensionless number.
2967
+
2968
+ 648
2969
+ 00:32:52 --> 00:32:58
2970
+ This would be the uncertainty.
2971
+
2972
+ 649
2973
+ 00:32:55 --> 00:33:01
2974
+ This is the observation.
2975
+
2976
+ 650
2977
+ 00:32:58 --> 00:33:04
2978
+ 781 divided by 551.
2979
+
2980
+ 651
2981
+ 00:33:04.500,0:33:10.500
2982
+ One point...
2983
+
2984
+ 652
2985
+ 00:33:05.500,0:33:11.500
2986
+ Let me do that once more.
2987
+
2988
+ 653
2989
+ 00:33:07.700,0:33:13.700
2990
+ Seven eight one,
2991
+ divided by five five one...
2992
+
2993
+ 654
2994
+ 00:33:11 --> 00:33:17
2995
+ One four one seven.
2996
+
2997
+ 655
2998
+ 00:33:16.300,0:33:22.300
2999
+ Perfect agreement.
3000
+
3001
+ 656
3002
+ 00:33:19 --> 00:33:25
3003
+ Look, the prediction says
3004
+ 1.414
3005
+
3006
+ 657
3007
+ 00:33:24 --> 00:33:30
3008
+ but it could be 1 point...
3009
+ it could be two higher.
3010
+
3011
+ 658
3012
+ 00:33:27.600,0:33:33.600
3013
+ That's the uncertainty
3014
+ in my height.
3015
+
3016
+ 659
3017
+ 00:33:29 --> 00:33:35
3018
+ I don't know any better.
3019
+
3020
+ 660
3021
+ 00:33:31 --> 00:33:37
3022
+ And here I could even
3023
+ be off by an eight
3024
+
3025
+ 661
3026
+ 00:33:34.500,0:33:40.500
3027
+ because that's the uncertainty
3028
+ in my timing.
3029
+
3030
+ 662
3031
+ 00:33:36 --> 00:33:42
3032
+ So these two measurements
3033
+ confirm.
3034
+
3035
+ 663
3036
+ 00:33:38 --> 00:33:44
3037
+ They are in agreement
3038
+ with each other.
3039
+
3040
+ 664
3041
+ 00:33:40 --> 00:33:46
3042
+ You see, uncertainties in
3043
+ measurements are essential.
3044
+
3045
+ 665
3046
+ 00:33:45.900,0:33:51.900
3047
+ Now look at our results.
3048
+
3049
+ 666
3050
+ 00:33:53 --> 00:33:59
3051
+ We have here a result
3052
+ which is striking.
3053
+
3054
+ 667
3055
+ 00:33:59 --> 00:34:05
3056
+ We have demonstrated that
3057
+ the time that it takes
3058
+
3059
+ 668
3060
+ 00:34:01 --> 00:34:07
3061
+ for an object to fall
3062
+ is independent of its mass.
3063
+
3064
+ 669
3065
+ 00:34:07 --> 00:34:13
3066
+ That is an amazing
3067
+ accomplishment.
3068
+
3069
+ 670
3070
+ 00:34:11 --> 00:34:17
3071
+ Our great-grandfathers must
3072
+ have worried about this
3073
+
3074
+ 671
3075
+ 00:34:17 --> 00:34:23
3076
+ and argued about this
3077
+ for more than 300 years.
3078
+
3079
+ 672
3080
+ 00:34:22 --> 00:34:28
3081
+ Were they so dumb
3082
+
3083
+ 673
3084
+ 00:34:24 --> 00:34:30
3085
+ to overlook this simple
3086
+ dimensional analysis?
3087
+
3088
+ 674
3089
+ 00:34:31 --> 00:34:37
3090
+ Inconceivable.
3091
+
3092
+ 675
3093
+ 00:34:34.300,0:34:40.300
3094
+ Is this dimensional analysis
3095
+ perhaps not quite kosher?
3096
+
3097
+ 676
3098
+ 00:34:39.300,0:34:45.300
3099
+ Maybe.
3100
+
3101
+ 677
3102
+ 00:34:42 --> 00:34:48
3103
+ Is this dimensional analysis
3104
+
3105
+ 678
3106
+ 00:34:45.600,0:34:51.600
3107
+ perhaps one that could have
3108
+ been done differently?
3109
+
3110
+ 679
3111
+ 00:34:50 --> 00:34:56
3112
+ Yeah, oh, yeah.
3113
+
3114
+ 680
3115
+ 00:34:52.400,0:34:58.400
3116
+ You could have done it
3117
+ very differently.
3118
+
3119
+ 681
3120
+ 00:34:55.800,0:35:01.800
3121
+ You could have said
3122
+ the following.
3123
+
3124
+ 682
3125
+ 00:34:59 --> 00:35:05
3126
+ You could have said,
3127
+ "The time for an apple to fall
3128
+
3129
+ 683
3130
+ 00:43:09.433,0:43:15.433
3131
+ "is proportional to the height
3132
+ that it falls from
3133
+
3134
+ 684
3135
+ 00:43:14.133,0:43:20.133
3136
+ to a power alpha."
3137
+
3138
+ 685
3139
+ 00:35:09.900,0:35:15.900
3140
+ Very reasonable.
3141
+
3142
+ 686
3143
+ 00:35:11 --> 00:35:17
3144
+ We all know, the higher it is,
3145
+ the more it will take--
3146
+
3147
+ 687
3148
+ 00:35:13 --> 00:35:19
3149
+ the more time it will take.
3150
+
3151
+ 688
3152
+ 00:35:15 --> 00:35:21
3153
+ And we could have said,
3154
+
3155
+ 689
3156
+ 00:35:16 --> 00:35:22
3157
+ "Yeah, it's probably
3158
+ proportional
3159
+
3160
+ 690
3161
+ 00:43:24.533,0:43:30.533
3162
+ "to the mass somehow.
3163
+
3164
+ 691
3165
+ 00:43:25.733,0:43:31.733
3166
+ If the mass is more, it will
3167
+ take a little bit less time."
3168
+
3169
+ 692
3170
+ 00:35:23.300,0:35:29.300
3171
+ Turns out to be not so,
3172
+ but you could think that.
3173
+
3174
+ 693
3175
+ 00:35:26.100,0:35:32.100
3176
+ But you could have said
3177
+
3178
+ 694
3179
+ 00:35:27.200,0:35:33.200
3180
+ "Well, let's not take the
3181
+ acceleration of the Earth
3182
+
3183
+ 695
3184
+ 00:43:35.800,0:43:41.800
3185
+ but let's take the mass
3186
+ of the Earth itself."
3187
+
3188
+ 696
3189
+ 00:35:32.100,0:35:38.100
3190
+ Very reasonable, right?
3191
+
3192
+ 697
3193
+ 00:35:33.300,0:35:39.300
3194
+ I would think if I increased
3195
+ the mass of the Earth
3196
+
3197
+ 698
3198
+ 00:35:36 --> 00:35:42
3199
+ that the apple will fall faster.
3200
+
3201
+ 699
3202
+ 00:35:39 --> 00:35:45
3203
+ So now I will put in the math
3204
+ of the Earth here.
3205
+
3206
+ 700
3207
+ 00:35:43.600,0:35:49.600
3208
+ And I start
3209
+ my dimensional analysis
3210
+
3211
+ 701
3212
+ 00:35:46 --> 00:35:52
3213
+ and I end up dead in the waters.
3214
+
3215
+ 702
3216
+ 00:35:49.400,0:35:55.400
3217
+ Because, you see,
3218
+ there is no mass here.
3219
+
3220
+ 703
3221
+ 00:35:54 --> 00:36:00
3222
+ There is a mass
3223
+ to the power beta here
3224
+
3225
+ 704
3226
+ 00:35:56.600,0:36:02.600
3227
+ and one to the power gamma
3228
+
3229
+ 705
3230
+ 00:35:58 --> 00:36:04
3231
+ so what you would have found
3232
+ is beta plus gamma equals zero
3233
+
3234
+ 706
3235
+ 00:36:02.400,0:36:08.400
3236
+ and that would be end of story.
3237
+
3238
+ 707
3239
+ 00:36:05.600,0:36:11.600
3240
+ Now you can ask yourself
3241
+ the question
3242
+
3243
+ 708
3244
+ 00:36:08 --> 00:36:14
3245
+ well, is there something wrong
3246
+ with the analysis that we did?
3247
+
3248
+ 709
3249
+ 00:36:12.500,0:36:18.500
3250
+ Is ours perhaps better
3251
+ than this one?
3252
+
3253
+ 710
3254
+ 00:36:15 --> 00:36:21
3255
+ Well, it's a different one.
3256
+
3257
+ 711
3258
+ 00:36:17 --> 00:36:23
3259
+ We came to the conclusion
3260
+
3261
+ 712
3262
+ 00:36:18 --> 00:36:24
3263
+ that the time that it takes
3264
+ for the apple to fall
3265
+
3266
+ 713
3267
+ 00:36:20 --> 00:36:26
3268
+ is independent of the mass.
3269
+
3270
+ 714
3271
+ 00:36:22 --> 00:36:28
3272
+ Do we believe that?
3273
+
3274
+ 715
3275
+ 00:36:25 --> 00:36:31
3276
+ Yes, we do.
3277
+
3278
+ 716
3279
+ 00:36:27.800,0:36:33.800
3280
+ On the other hand, there are
3281
+ very prestigious physicists
3282
+
3283
+ 717
3284
+ 00:36:32 --> 00:36:38
3285
+ who even nowadays do
3286
+ very fancy experiments
3287
+
3288
+ 718
3289
+ 00:36:36 --> 00:36:42
3290
+ and they try to demonstrate that
3291
+ the time for an apple to fall
3292
+
3293
+ 719
3294
+ 00:36:39 --> 00:36:45
3295
+ does depend on its mass
3296
+
3297
+ 720
3298
+ 00:36:41.900,0:36:47.900
3299
+ even though it probably is
3300
+ only very small, if it's true
3301
+
3302
+ 721
3303
+ 00:36:45 --> 00:36:51
3304
+ but they try to prove that.
3305
+
3306
+ 722
3307
+ 00:36:46.600,0:36:52.600
3308
+ And if any of them succeeds
3309
+ or any one of you succeeds
3310
+
3311
+ 723
3312
+ 00:36:49.400,0:36:55.400
3313
+ that's certainly worth
3314
+ a Nobel Prize.
3315
+
3316
+ 724
3317
+ 00:36:52 --> 00:36:58
3318
+ So we do believe that it's
3319
+ independent of the mass.
3320
+
3321
+ 725
3322
+ 00:36:55 --> 00:37:01
3323
+ However, this, what I did
3324
+ with you, was not a proof
3325
+
3326
+ 726
3327
+ 00:37:00 --> 00:37:06
3328
+ because if you do it this way,
3329
+ you get stuck.
3330
+
3331
+ 727
3332
+ 00:37:04.300,0:37:10.300
3333
+ On the other hand, I'm
3334
+ quite pleased with the fact
3335
+
3336
+ 728
3337
+ 00:37:06.600,0:37:12.600
3338
+ that we found that the time
3339
+ is proportional
3340
+
3341
+ 729
3342
+ 00:37:08.200,0:37:14.200
3343
+ with the square root of h.
3344
+
3345
+ 730
3346
+ 00:37:10 --> 00:37:16
3347
+ I think that's very useful.
3348
+
3349
+ 731
3350
+ 00:37:11 --> 00:37:17
3351
+ We confirmed that
3352
+ with experiment
3353
+
3354
+ 732
3355
+ 00:37:13 --> 00:37:19
3356
+ and indeed it came out that way.
3357
+
3358
+ 733
3359
+ 00:37:16 --> 00:37:22
3360
+ So it was not a complete
3361
+ waste of time.
3362
+
3363
+ 734
3364
+ 00:37:18.100,0:37:24.100
3365
+ But when you do a dimensional
3366
+ analysis, you better be careful.
3367
+
3368
+ 735
3369
+ 00:37:25 --> 00:37:31
3370
+ I'd like you to think this over,
3371
+ the comparison between the two
3372
+
3373
+ 736
3374
+ 00:37:31.500,0:37:37.500
3375
+ at dinner and maybe at breakfast
3376
+
3377
+ 737
3378
+ 00:37:34.100,0:37:40.100
3379
+ and maybe even while
3380
+ you are taking a shower
3381
+
3382
+ 738
3383
+ 00:37:37 --> 00:37:43
3384
+ whether it's needed or not.
3385
+
3386
+ 739
3387
+ 00:37:39.800,0:37:45.800
3388
+ It is important that you
3389
+ digest and appreciate
3390
+
3391
+ 740
3392
+ 00:37:43 --> 00:37:49
3393
+ the difference between
3394
+ these two approaches.
3395
+
3396
+ 741
3397
+ 00:37:46 --> 00:37:52
3398
+ It will give you an insight
3399
+ in the power
3400
+
3401
+ 742
3402
+ 00:37:49.800,0:37:55.800
3403
+ and also into the limitations
3404
+ of dimensional analysis.
3405
+
3406
+ 743
3407
+ 00:37:53 --> 00:37:59
3408
+ This goes to the very heart
3409
+
3410
+ 744
3411
+ 00:37:55 --> 00:38:01
3412
+ of our understanding
3413
+ and appreciation of physics.
3414
+
3415
+ 745
3416
+ 00:37:59 --> 00:38:05
3417
+ It's important that
3418
+ you get a feel for this.
3419
+
3420
+ 746
3421
+ 00:38:02 --> 00:38:08
3422
+ You're now at MIT.
3423
+
3424
+ 747
3425
+ 00:38:04 --> 00:38:10
3426
+ This is the time.
3427
+
3428
+ 748
3429
+ 00:38:05.800,0:38:11.800
3430
+ Thank you.
3431
+
3432
+ 749
3433
+ 00:38:06 --> 00:38:12
3434
+ See you Friday.
3435
+
3436
+ 750
3437
+ 00:38:08 --> 00:38:14.000