nmatrix 0.0.6 → 0.0.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +2 -0
  3. data/Gemfile +5 -0
  4. data/History.txt +97 -0
  5. data/Manifest.txt +34 -7
  6. data/README.rdoc +13 -13
  7. data/Rakefile +36 -26
  8. data/ext/nmatrix/data/data.cpp +15 -2
  9. data/ext/nmatrix/data/data.h +4 -0
  10. data/ext/nmatrix/data/ruby_object.h +5 -14
  11. data/ext/nmatrix/extconf.rb +3 -2
  12. data/ext/nmatrix/{util/math.cpp → math.cpp} +296 -6
  13. data/ext/nmatrix/math/asum.h +143 -0
  14. data/ext/nmatrix/math/geev.h +82 -0
  15. data/ext/nmatrix/math/gemm.h +267 -0
  16. data/ext/nmatrix/math/gemv.h +208 -0
  17. data/ext/nmatrix/math/ger.h +96 -0
  18. data/ext/nmatrix/math/gesdd.h +80 -0
  19. data/ext/nmatrix/math/gesvd.h +78 -0
  20. data/ext/nmatrix/math/getf2.h +86 -0
  21. data/ext/nmatrix/math/getrf.h +240 -0
  22. data/ext/nmatrix/math/getri.h +107 -0
  23. data/ext/nmatrix/math/getrs.h +125 -0
  24. data/ext/nmatrix/math/idamax.h +86 -0
  25. data/ext/nmatrix/{util → math}/lapack.h +60 -356
  26. data/ext/nmatrix/math/laswp.h +165 -0
  27. data/ext/nmatrix/math/long_dtype.h +52 -0
  28. data/ext/nmatrix/math/math.h +1154 -0
  29. data/ext/nmatrix/math/nrm2.h +181 -0
  30. data/ext/nmatrix/math/potrs.h +125 -0
  31. data/ext/nmatrix/math/rot.h +141 -0
  32. data/ext/nmatrix/math/rotg.h +115 -0
  33. data/ext/nmatrix/math/scal.h +73 -0
  34. data/ext/nmatrix/math/swap.h +73 -0
  35. data/ext/nmatrix/math/trsm.h +383 -0
  36. data/ext/nmatrix/nmatrix.cpp +176 -152
  37. data/ext/nmatrix/nmatrix.h +1 -2
  38. data/ext/nmatrix/ruby_constants.cpp +9 -4
  39. data/ext/nmatrix/ruby_constants.h +1 -0
  40. data/ext/nmatrix/storage/dense.cpp +57 -41
  41. data/ext/nmatrix/storage/list.cpp +52 -50
  42. data/ext/nmatrix/storage/storage.cpp +59 -43
  43. data/ext/nmatrix/storage/yale.cpp +352 -333
  44. data/ext/nmatrix/storage/yale.h +4 -0
  45. data/lib/nmatrix.rb +2 -2
  46. data/lib/nmatrix/blas.rb +4 -4
  47. data/lib/nmatrix/enumerate.rb +241 -0
  48. data/lib/nmatrix/lapack.rb +54 -1
  49. data/lib/nmatrix/math.rb +462 -0
  50. data/lib/nmatrix/nmatrix.rb +210 -486
  51. data/lib/nmatrix/nvector.rb +0 -62
  52. data/lib/nmatrix/rspec.rb +75 -0
  53. data/lib/nmatrix/shortcuts.rb +136 -108
  54. data/lib/nmatrix/version.rb +1 -1
  55. data/spec/blas_spec.rb +20 -12
  56. data/spec/elementwise_spec.rb +22 -13
  57. data/spec/io_spec.rb +1 -0
  58. data/spec/lapack_spec.rb +197 -0
  59. data/spec/nmatrix_spec.rb +39 -38
  60. data/spec/nvector_spec.rb +3 -9
  61. data/spec/rspec_monkeys.rb +29 -0
  62. data/spec/rspec_spec.rb +34 -0
  63. data/spec/shortcuts_spec.rb +14 -16
  64. data/spec/slice_spec.rb +242 -186
  65. data/spec/spec_helper.rb +19 -0
  66. metadata +33 -5
  67. data/ext/nmatrix/util/math.h +0 -2612
@@ -47,7 +47,7 @@ extern "C" {
47
47
 
48
48
  #include "types.h"
49
49
  #include "data/data.h"
50
- #include "util/math.h"
50
+ #include "math/math.h"
51
51
  #include "util/io.h"
52
52
  #include "storage/storage.h"
53
53
  #include "storage/list.h"
@@ -340,13 +340,17 @@ static VALUE nm_dtype(VALUE self);
340
340
  static VALUE nm_itype(VALUE self);
341
341
  static VALUE nm_stype(VALUE self);
342
342
  static VALUE nm_default_value(VALUE self);
343
+ static size_t effective_dim(STORAGE* s);
344
+ static VALUE nm_effective_dim(VALUE self);
343
345
  static VALUE nm_dim(VALUE self);
346
+ static VALUE nm_offset(VALUE self);
344
347
  static VALUE nm_shape(VALUE self);
348
+ static VALUE nm_supershape(int argc, VALUE* argv, VALUE self);
345
349
  static VALUE nm_capacity(VALUE self);
346
350
  static VALUE nm_each_with_indices(VALUE nmatrix);
347
351
  static VALUE nm_each_stored_with_indices(VALUE nmatrix);
348
352
 
349
- static SLICE* get_slice(size_t dim, VALUE* c, VALUE self);
353
+ static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape);
350
354
  static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(STORAGE*, SLICE*), void (*delete_func)(NMATRIX*), VALUE self);
351
355
  static VALUE nm_mset(int argc, VALUE* argv, VALUE self);
352
356
  static VALUE nm_mget(int argc, VALUE* argv, VALUE self);
@@ -396,7 +400,6 @@ static VALUE nm_eqeq(VALUE left, VALUE right);
396
400
  static VALUE matrix_multiply_scalar(NMATRIX* left, VALUE scalar);
397
401
  static VALUE matrix_multiply(NMATRIX* left, NMATRIX* right);
398
402
  static VALUE nm_multiply(VALUE left_v, VALUE right_v);
399
- static VALUE nm_factorize_lu(VALUE self);
400
403
  static VALUE nm_det_exact(VALUE self);
401
404
  static VALUE nm_complex_conjugate_bang(VALUE self);
402
405
 
@@ -419,12 +422,14 @@ static double get_time(void);
419
422
  ///////////////////
420
423
 
421
424
  void Init_nmatrix() {
425
+
426
+
422
427
  ///////////////////////
423
428
  // Class Definitions //
424
429
  ///////////////////////
425
430
 
426
431
  cNMatrix = rb_define_class("NMatrix", rb_cObject);
427
- cNVector = rb_define_class("NVector", cNMatrix);
432
+ //cNVector = rb_define_class("NVector", cNMatrix);
428
433
 
429
434
  // Special exceptions
430
435
 
@@ -479,12 +484,14 @@ void Init_nmatrix() {
479
484
  rb_define_method(cNMatrix, "[]=", (METHOD)nm_mset, -1);
480
485
  rb_define_method(cNMatrix, "is_ref?", (METHOD)nm_is_ref, 0);
481
486
  rb_define_method(cNMatrix, "dimensions", (METHOD)nm_dim, 0);
487
+ rb_define_method(cNMatrix, "effective_dimensions", (METHOD)nm_effective_dim, 0);
482
488
 
483
489
  rb_define_protected_method(cNMatrix, "__list_to_hash__", (METHOD)nm_to_hash, 0); // handles list and dense, which are n-dimensional
484
490
 
485
491
  rb_define_method(cNMatrix, "shape", (METHOD)nm_shape, 0);
492
+ rb_define_method(cNMatrix, "supershape", (METHOD)nm_supershape, -1);
493
+ rb_define_method(cNMatrix, "offset", (METHOD)nm_offset, 0);
486
494
  rb_define_method(cNMatrix, "det_exact", (METHOD)nm_det_exact, 0);
487
- //rb_define_method(cNMatrix, "transpose!", (METHOD)nm_transpose_self, 0);
488
495
  rb_define_method(cNMatrix, "complex_conjugate!", (METHOD)nm_complex_conjugate_bang, 0);
489
496
 
490
497
  rb_define_protected_method(cNMatrix, "__dense_each__", (METHOD)nm_dense_each, 0);
@@ -521,8 +528,6 @@ void Init_nmatrix() {
521
528
  // Matrix Math Methods //
522
529
  /////////////////////////
523
530
  rb_define_method(cNMatrix, "dot", (METHOD)nm_multiply, 1);
524
- rb_define_method(cNMatrix, "factorize_lu", (METHOD)nm_factorize_lu, 0);
525
-
526
531
 
527
532
  rb_define_method(cNMatrix, "symmetric?", (METHOD)nm_symmetric, 0);
528
533
  rb_define_method(cNMatrix, "hermitian?", (METHOD)nm_hermitian, 0);
@@ -534,6 +539,7 @@ void Init_nmatrix() {
534
539
  /////////////
535
540
 
536
541
  rb_define_alias(cNMatrix, "dim", "dimensions");
542
+ rb_define_alias(cNMatrix, "effective_dim", "effective_dimensions");
537
543
  rb_define_alias(cNMatrix, "equal?", "eql?");
538
544
 
539
545
  ///////////////////////
@@ -558,6 +564,11 @@ void Init_nmatrix() {
558
564
  // IO module //
559
565
  ///////////////
560
566
  nm_init_io();
567
+
568
+ /////////////////////////////////////////////////
569
+ // Force compilation of necessary constructors //
570
+ /////////////////////////////////////////////////
571
+ nm_init_data();
561
572
  }
562
573
 
563
574
 
@@ -581,9 +592,9 @@ static SLICE* alloc_slice(size_t dim) {
581
592
  * Slice destructor.
582
593
  */
583
594
  static void free_slice(SLICE* slice) {
584
- free(slice->coords);
585
- free(slice->lengths);
586
- free(slice);
595
+ xfree(slice->coords);
596
+ xfree(slice->lengths);
597
+ xfree(slice);
587
598
  }
588
599
 
589
600
 
@@ -605,13 +616,16 @@ static VALUE nm_alloc(VALUE klass) {
605
616
  * Find the capacity of an NMatrix. The capacity only differs from the size for
606
617
  * Yale matrices, which occasionally allocate more space than they need. For
607
618
  * list and dense, capacity gives the number of elements in the matrix.
619
+ *
620
+ * If you call this on a slice, it may behave unpredictably. Most likely it'll
621
+ * just return the original matrix's capacity.
608
622
  */
609
623
  static VALUE nm_capacity(VALUE self) {
610
624
  VALUE cap;
611
625
 
612
626
  switch(NM_STYPE(self)) {
613
627
  case nm::YALE_STORE:
614
- cap = UINT2NUM(((YALE_STORAGE*)(NM_STORAGE(self)))->capacity);
628
+ cap = UINT2NUM(reinterpret_cast<YALE_STORAGE*>(NM_STORAGE_YALE(self)->src)->capacity);
615
629
  break;
616
630
 
617
631
  case nm::DENSE_STORE:
@@ -640,7 +654,7 @@ void nm_delete(NMATRIX* mat) {
640
654
  };
641
655
  ttable[mat->stype](mat->storage);
642
656
 
643
- free(mat);
657
+ xfree(mat);
644
658
  }
645
659
 
646
660
  /*
@@ -650,11 +664,11 @@ void nm_delete_ref(NMATRIX* mat) {
650
664
  static void (*ttable[nm::NUM_STYPES])(STORAGE*) = {
651
665
  nm_dense_storage_delete_ref,
652
666
  nm_list_storage_delete_ref,
653
- nm_yale_storage_delete
667
+ nm_yale_storage_delete_ref
654
668
  };
655
669
  ttable[mat->stype](mat->storage);
656
670
 
657
- free(mat);
671
+ xfree(mat);
658
672
  }
659
673
 
660
674
  /*
@@ -844,9 +858,11 @@ static VALUE nm_hermitian(VALUE self) {
844
858
  return is_symmetric(self, true);
845
859
  }
846
860
 
861
+
862
+
847
863
  /*
848
864
  * call-seq:
849
- * complex_conjugate -> NMatrix
865
+ * complex_conjugate -> NMatrix
850
866
  *
851
867
  * Transform the matrix (in-place) to its complex conjugate. Only works on complex matrices.
852
868
  *
@@ -1381,8 +1397,6 @@ static VALUE nm_read(int argc, VALUE* argv, VALUE self) {
1381
1397
  size_t* shape = ALLOC_N(size_t, dim);
1382
1398
  read_padded_shape(f, dim, shape, itype);
1383
1399
 
1384
- VALUE klass = dim == 1 ? cNVector : cNMatrix;
1385
-
1386
1400
  STORAGE* s;
1387
1401
  if (stype == nm::DENSE_STORE) {
1388
1402
  s = nm_dense_storage_create(dtype, shape, dim, NULL, 0);
@@ -1406,11 +1420,13 @@ static VALUE nm_read(int argc, VALUE* argv, VALUE self) {
1406
1420
  NMATRIX* nm = nm_create(stype, s);
1407
1421
 
1408
1422
  // Return the appropriate matrix object (Ruby VALUE)
1423
+ // FIXME: This should probably return CLASS_OF(self) instead of cNMatrix, but I don't know how that works for
1424
+ // FIXME: class methods.
1409
1425
  switch(stype) {
1410
1426
  case nm::DENSE_STORE:
1411
- return Data_Wrap_Struct(klass, nm_dense_storage_mark, nm_delete, nm);
1427
+ return Data_Wrap_Struct(cNMatrix, nm_dense_storage_mark, nm_delete, nm);
1412
1428
  case nm::YALE_STORE:
1413
- return Data_Wrap_Struct(klass, nm_yale_storage_mark, nm_delete, nm);
1429
+ return Data_Wrap_Struct(cNMatrix, nm_yale_storage_mark, nm_delete, nm);
1414
1430
  default:
1415
1431
  return Qnil;
1416
1432
  }
@@ -1447,16 +1463,8 @@ static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALU
1447
1463
  * Check to determine whether matrix is a reference to another matrix.
1448
1464
  */
1449
1465
  static VALUE nm_is_ref(VALUE self) {
1450
- // Refs only allowed for dense and list matrices.
1451
- if (NM_STYPE(self) == nm::DENSE_STORE) {
1452
- return (NM_DENSE_SRC(self) == NM_STORAGE(self)) ? Qfalse : Qtrue;
1453
- }
1454
-
1455
- if (NM_STYPE(self) == nm::LIST_STORE) {
1456
- return (NM_LIST_SRC(self) == NM_STORAGE(self)) ? Qfalse : Qtrue;
1457
- }
1458
-
1459
- return Qfalse;
1466
+ if (NM_SRC(self) == NM_STORAGE(self)) return Qfalse;
1467
+ else return Qtrue;
1460
1468
  }
1461
1469
 
1462
1470
  /*
@@ -1475,7 +1483,6 @@ static VALUE nm_mget(int argc, VALUE* argv, VALUE self) {
1475
1483
  nm_list_storage_get,
1476
1484
  nm_yale_storage_get
1477
1485
  };
1478
-
1479
1486
  return nm_xslice(argc, argv, ttable[NM_STYPE(self)], nm_delete, self);
1480
1487
  }
1481
1488
 
@@ -1508,30 +1515,28 @@ static VALUE nm_mref(int argc, VALUE* argv, VALUE self) {
1508
1515
  * n[3,3] = n[2,3] = 5.0
1509
1516
  */
1510
1517
  static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
1511
- size_t dim = argc - 1; // last arg is the value
1518
+ size_t dim = NM_DIM(self); // last arg is the value
1512
1519
 
1513
- if (argc <= 1) {
1514
- rb_raise(rb_eArgError, "Expected coordinates and r-value");
1515
-
1516
- } else if (NM_DIM(self) == dim) {
1517
-
1518
- SLICE* slice = get_slice(dim, argv, self);
1520
+ if ((size_t)(argc) > NM_DIM(self)+1) {
1521
+ rb_raise(rb_eArgError, "wrong number of arguments (%d for %u)", argc, effective_dim(NM_STORAGE(self))+1);
1522
+ } else {
1523
+ SLICE* slice = get_slice(dim, argc-1, argv, NM_STORAGE(self)->shape);
1519
1524
 
1520
- void* value = rubyobj_to_cval(argv[dim], NM_DTYPE(self));
1525
+ void* value = rubyobj_to_cval(argv[argc-1], NM_DTYPE(self));
1521
1526
 
1522
1527
  // FIXME: Can't use a function pointer table here currently because these functions have different
1523
1528
  // signatures (namely the return type).
1524
1529
  switch(NM_STYPE(self)) {
1525
1530
  case nm::DENSE_STORE:
1526
1531
  nm_dense_storage_set(NM_STORAGE(self), slice, value);
1527
- free(value);
1532
+ xfree(value);
1528
1533
  break;
1529
1534
  case nm::LIST_STORE:
1530
1535
  // Remove if it's a zero, insert otherwise
1531
1536
  if (!std::memcmp(value, NM_STORAGE_LIST(self)->default_val, DTYPE_SIZES[NM_DTYPE(self)])) {
1532
- free(value);
1537
+ xfree(value);
1533
1538
  value = nm_list_storage_remove(NM_STORAGE(self), slice);
1534
- free(value);
1539
+ xfree(value);
1535
1540
  } else {
1536
1541
  nm_list_storage_insert(NM_STORAGE(self), slice, value);
1537
1542
  // no need to free value here since it was inserted directly into the list.
@@ -1539,17 +1544,12 @@ static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
1539
1544
  break;
1540
1545
  case nm::YALE_STORE:
1541
1546
  nm_yale_storage_set(NM_STORAGE(self), slice, value);
1542
- free(value);
1547
+ xfree(value);
1543
1548
  break;
1544
1549
  }
1545
1550
  free_slice(slice);
1546
1551
 
1547
- return argv[dim];
1548
-
1549
- } else if (NM_DIM(self) < dim) {
1550
- rb_raise(rb_eArgError, "Coordinates given exceed number of matrix dimensions");
1551
- } else {
1552
- rb_raise(rb_eNotImpError, "Slicing not supported yet");
1552
+ return argv[argc-1];
1553
1553
  }
1554
1554
  return Qnil;
1555
1555
  }
@@ -1564,19 +1564,15 @@ static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
1564
1564
  static VALUE nm_multiply(VALUE left_v, VALUE right_v) {
1565
1565
  NMATRIX *left, *right;
1566
1566
 
1567
- // left has to be of type NMatrix.
1568
- CheckNMatrixType(left_v);
1569
-
1570
1567
  UnwrapNMatrix( left_v, left );
1571
1568
 
1572
1569
  if (NM_RUBYVAL_IS_NUMERIC(right_v))
1573
1570
  return matrix_multiply_scalar(left, right_v);
1574
1571
 
1575
1572
  else if (TYPE(right_v) == T_ARRAY)
1576
- rb_raise(rb_eNotImpError, "for matrix-vector multiplication, please use an NVector instead of an Array for now");
1573
+ rb_raise(rb_eNotImpError, "please convert array to nx1 or 1xn NMatrix first");
1577
1574
 
1578
- //if (RDATA(right_v)->dfree != (RUBY_DATA_FUNC)nm_delete) {
1579
- else { // both are matrices
1575
+ else { // both are matrices (probably)
1580
1576
  CheckNMatrixType(right_v);
1581
1577
  UnwrapNMatrix( right_v, right );
1582
1578
 
@@ -1593,50 +1589,6 @@ static VALUE nm_multiply(VALUE left_v, VALUE right_v) {
1593
1589
  return Qnil;
1594
1590
  }
1595
1591
 
1596
- /*
1597
- * call-seq:
1598
- * matrix.factorize_lu -> ...
1599
- *
1600
- * LU factorization of a matrix.
1601
- *
1602
- * FIXME: For some reason, getrf seems to require that the matrix be transposed first -- and then you have to transpose the
1603
- * FIXME: result again. Ideally, this would be an in-place factorize instead, and would be called nm_factorize_lu_bang.
1604
- */
1605
- static VALUE nm_factorize_lu(VALUE self) {
1606
- if (NM_STYPE(self) != nm::DENSE_STORE) {
1607
- rb_raise(rb_eNotImpError, "only implemented for dense storage");
1608
- }
1609
-
1610
- if (NM_DIM(self) != 2) {
1611
- rb_raise(rb_eNotImpError, "matrix is not 2-dimensional");
1612
- }
1613
-
1614
- VALUE copy = nm_init_transposed(self);
1615
-
1616
- static int (*ttable[nm::NUM_DTYPES])(const enum CBLAS_ORDER, const int m, const int n, void* a, const int lda, int* ipiv) = {
1617
- NULL, NULL, NULL, NULL, NULL, // integers not allowed due to division
1618
- nm::math::clapack_getrf<float>,
1619
- nm::math::clapack_getrf<double>,
1620
- #ifdef HAVE_CLAPACK_H
1621
- clapack_cgetrf, clapack_zgetrf, // call directly, same function signature!
1622
- #else
1623
- nm::math::clapack_getrf<nm::Complex64>,
1624
- nm::math::clapack_getrf<nm::Complex128>,
1625
- #endif
1626
- nm::math::clapack_getrf<nm::Rational32>,
1627
- nm::math::clapack_getrf<nm::Rational64>,
1628
- nm::math::clapack_getrf<nm::Rational128>,
1629
- nm::math::clapack_getrf<nm::RubyObject>
1630
- };
1631
-
1632
- int* ipiv = ALLOCA_N(int, std::min(NM_SHAPE0(copy), NM_SHAPE1(copy)));
1633
-
1634
- // In-place factorize
1635
- ttable[NM_DTYPE(copy)](CblasRowMajor, NM_SHAPE0(copy), NM_SHAPE1(copy), NM_STORAGE_DENSE(copy)->elements, NM_SHAPE1(copy), ipiv);
1636
-
1637
- // Transpose the result
1638
- return nm_init_transposed(copy);
1639
- }
1640
1592
 
1641
1593
  /*
1642
1594
  * call-seq:
@@ -1647,8 +1599,7 @@ static VALUE nm_factorize_lu(VALUE self) {
1647
1599
  * In other words, if you set your matrix to be 3x4, the dim is 2. If the
1648
1600
  * matrix was initialized as 3x4x3, the dim is 3.
1649
1601
  *
1650
- * This function may lie slightly for NVectors, which are internally stored as
1651
- * dim 2 (and have an orientation), but act as if they're dim 1.
1602
+ * Use #effective_dim to get the dimension of an NMatrix which acts as a vector (e.g., a column or row).
1652
1603
  */
1653
1604
  static VALUE nm_dim(VALUE self) {
1654
1605
  return INT2FIX(NM_STORAGE(self)->dim);
@@ -1662,11 +1613,57 @@ static VALUE nm_dim(VALUE self) {
1662
1613
  */
1663
1614
  static VALUE nm_shape(VALUE self) {
1664
1615
  STORAGE* s = NM_STORAGE(self);
1665
- size_t index;
1666
1616
 
1667
1617
  // Copy elements into a VALUE array and then use those to create a Ruby array with rb_ary_new4.
1668
1618
  VALUE* shape = ALLOCA_N(VALUE, s->dim);
1669
- for (index = 0; index < s->dim; ++index)
1619
+ for (size_t index = 0; index < s->dim; ++index)
1620
+ shape[index] = INT2FIX(s->shape[index]);
1621
+
1622
+ return rb_ary_new4(s->dim, shape);
1623
+ }
1624
+
1625
+
1626
+ /*
1627
+ * call-seq:
1628
+ * offset -> Array
1629
+ *
1630
+ * Get the offset (slice position) of a matrix. Typically all zeros, unless you have a reference slice.
1631
+ */
1632
+ static VALUE nm_offset(VALUE self) {
1633
+ STORAGE* s = NM_STORAGE(self);
1634
+
1635
+ // Copy elements into a VALUE array and then use those to create a Ruby array with rb_ary_new4.
1636
+ VALUE* offset = ALLOCA_N(VALUE, s->dim);
1637
+ for (size_t index = 0; index < s->dim; ++index)
1638
+ offset[index] = INT2FIX(s->offset[index]);
1639
+
1640
+ return rb_ary_new4(s->dim, offset);
1641
+ }
1642
+
1643
+
1644
+ /*
1645
+ * call-seq:
1646
+ * supershape(n) -> Array
1647
+ * supershape -> Array
1648
+ *
1649
+ * Get the shape of a slice's nth-order parent. If the slice doesn't have n orders, returns the shape
1650
+ * of the original ancestor.
1651
+ */
1652
+ static VALUE nm_supershape(int argc, VALUE* argv, VALUE self) {
1653
+ VALUE n; rb_scan_args(argc, argv, "01", &n);
1654
+
1655
+ STORAGE* s = NM_STORAGE(self);
1656
+ if (s->src == s) return nm_shape(self); // easy case (not a slice)
1657
+ int order = n == Qnil ? 1 : FIX2INT(n);
1658
+
1659
+ if (order <= 0) rb_raise(rb_eRangeError, "expected argument to be positive");
1660
+
1661
+ for (; order > 0; --order) {
1662
+ s = s->src; // proceed to next parent
1663
+ }
1664
+
1665
+ VALUE* shape = ALLOCA_N(VALUE, s->dim);
1666
+ for (size_t index = 0; index < s->dim; ++index)
1670
1667
  shape[index] = INT2FIX(s->shape[index]);
1671
1668
 
1672
1669
  return rb_ary_new4(s->dim, shape);
@@ -1693,14 +1690,41 @@ static VALUE nm_symmetric(VALUE self) {
1693
1690
  return is_symmetric(self, false);
1694
1691
  }
1695
1692
 
1693
+
1694
+ /*
1695
+ * Gets the dimension of a matrix which might be a vector (have one or more shape components of size 1).
1696
+ */
1697
+ static size_t effective_dim(STORAGE* s) {
1698
+ size_t d = 0;
1699
+ for (size_t i = 0; i < s->dim; ++i) {
1700
+ if (s->shape[i] != 1) d++;
1701
+ }
1702
+ return d;
1703
+ }
1704
+
1705
+
1706
+ /*
1707
+ * call-seq:
1708
+ * effective_dim -> Fixnum
1709
+ *
1710
+ * Returns the number of dimensions that don't have length 1. Guaranteed to be less than or equal to #dim.
1711
+ */
1712
+ static VALUE nm_effective_dim(VALUE self) {
1713
+ return INT2FIX(effective_dim(NM_STORAGE(self)));
1714
+ }
1715
+
1716
+
1696
1717
  /*
1697
1718
  * Get a slice of an NMatrix.
1698
1719
  */
1699
1720
  static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(STORAGE*, SLICE*), void (*delete_func)(NMATRIX*), VALUE self) {
1700
1721
  VALUE result = Qnil;
1722
+ STORAGE* s = NM_STORAGE(self);
1701
1723
 
1702
- if (NM_DIM(self) == (size_t)(argc)) {
1703
- SLICE* slice = get_slice((size_t)(argc), argv, self);
1724
+ if (NM_DIM(self) < (size_t)(argc)) {
1725
+ rb_raise(rb_eArgError, "wrong number of arguments (%d for %u)", argc, effective_dim(s));
1726
+ } else {
1727
+ SLICE* slice = get_slice(NM_DIM(self), argc, argv, s->shape);
1704
1728
 
1705
1729
  if (slice->single) {
1706
1730
  static void* (*ttable[nm::NUM_STYPES])(STORAGE*, SLICE*) = {
@@ -1709,30 +1733,20 @@ static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(STORAGE*, SLIC
1709
1733
  nm_yale_storage_ref
1710
1734
  };
1711
1735
 
1712
- if (NM_DTYPE(self) == nm::RUBYOBJ) result = *reinterpret_cast<VALUE*>( ttable[NM_STYPE(self)](NM_STORAGE(self), slice) );
1713
- else result = rubyobj_from_cval( ttable[NM_STYPE(self)](NM_STORAGE(self), slice), NM_DTYPE(self) ).rval;
1736
+ if (NM_DTYPE(self) == nm::RUBYOBJ) result = *reinterpret_cast<VALUE*>( ttable[NM_STYPE(self)](s, slice) );
1737
+ else result = rubyobj_from_cval( ttable[NM_STYPE(self)](s, slice), NM_DTYPE(self) ).rval;
1714
1738
 
1715
1739
  } else {
1716
1740
  STYPE_MARK_TABLE(mark_table);
1717
1741
 
1718
- NMATRIX* mat = ALLOC(NMATRIX);
1719
- mat->stype = NM_STYPE(self);
1720
- mat->storage = (STORAGE*)((*slice_func)( NM_STORAGE(self), slice ));
1721
-
1722
- // Do we want an NVector instead of an NMatrix?
1723
- VALUE klass = cNMatrix, orient = Qnil;
1724
- // FIXME: Generalize for n dimensional slicing somehow
1725
- if (mat->storage->shape[0] == 1 || mat->storage->shape[1] == 1) klass = cNVector;
1742
+ NMATRIX* mat = ALLOC(NMATRIX);
1743
+ mat->stype = NM_STYPE(self);
1744
+ mat->storage = (STORAGE*)((*slice_func)( s, slice ));
1726
1745
 
1727
- result = Data_Wrap_Struct(klass, mark_table[mat->stype], delete_func, mat);
1746
+ result = Data_Wrap_Struct(CLASS_OF(self), mark_table[mat->stype], delete_func, mat);
1728
1747
  }
1729
1748
 
1730
1749
  free_slice(slice);
1731
-
1732
- } else if (NM_DIM(self) < (size_t)(argc)) {
1733
- rb_raise(rb_eArgError, "Coordinates given exceed number of matrix dimensions");
1734
- } else {
1735
- rb_raise(rb_eNotImpError, "This type of slicing not supported yet");
1736
1750
  }
1737
1751
 
1738
1752
  return result;
@@ -1814,12 +1828,7 @@ static VALUE elementwise_op(nm::ewop_t op, VALUE left_val, VALUE right_val) {
1814
1828
  * Check to determine whether matrix is a reference to another matrix.
1815
1829
  */
1816
1830
  bool is_ref(const NMATRIX* matrix) {
1817
- // FIXME: Needs to work for other types
1818
- if (matrix->stype != nm::DENSE_STORE) {
1819
- return false;
1820
- }
1821
-
1822
- return ((DENSE_STORAGE*)(matrix->storage))->src != matrix->storage;
1831
+ return matrix->storage->src != matrix->storage;
1823
1832
  }
1824
1833
 
1825
1834
  /*
@@ -2005,40 +2014,57 @@ nm::dtype_t nm_dtype_guess(VALUE v) {
2005
2014
 
2006
2015
 
2007
2016
  /*
2008
- * Documentation goes here.
2017
+ * Allocate and return a SLICE object, which will contain the appropriate coordinate and length information for
2018
+ * accessing some part of a matrix.
2009
2019
  */
2010
- static SLICE* get_slice(size_t dim, VALUE* c, VALUE self) {
2011
- size_t r;
2020
+ static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape) {
2012
2021
  VALUE beg, end;
2013
- int exl;
2022
+ int excl;
2014
2023
 
2015
2024
  SLICE* slice = alloc_slice(dim);
2016
2025
  slice->single = true;
2017
2026
 
2018
- for (r = 0; r < dim; ++r) {
2027
+ // r is the shape position; t is the slice position. They may differ when we're dealing with a
2028
+ // matrix where the effective dimension is less than the dimension (e.g., a vector).
2029
+ for (size_t r = 0, t = 0; r < dim; ++r) {
2030
+ VALUE v = t == argc ? Qnil : arg[t];
2031
+
2032
+ // if the current shape indicates a vector and fewer args were supplied than necessary, just use 0
2033
+ if (argc - t + r < dim && shape[r] == 1) {
2034
+ slice->coords[r] = 0;
2035
+ slice->lengths[r] = 1;
2019
2036
 
2020
- if (FIXNUM_P(c[r])) { // this used CLASS_OF before, which is inefficient for fixnum
2037
+ } else if (FIXNUM_P(v)) { // this used CLASS_OF before, which is inefficient for fixnum
2021
2038
 
2022
- slice->coords[r] = FIX2UINT(c[r]);
2039
+ slice->coords[r] = FIX2UINT(v);
2023
2040
  slice->lengths[r] = 1;
2041
+ t++;
2024
2042
 
2025
- } else if (CLASS_OF(c[r]) == rb_cRange) {
2026
- rb_range_values(c[r], &beg, &end, &exl);
2027
- slice->coords[r] = FIX2UINT(beg);
2028
- slice->lengths[r] = FIX2UINT(end) - slice->coords[r] + 1;
2043
+ } else if (TYPE(arg[t]) == T_HASH) { // 3:5 notation (inclusive)
2044
+ VALUE begin_end = rb_funcall(v, rb_intern("shift"), 0); // rb_hash_shift
2045
+ slice->coords[r] = FIX2UINT(rb_ary_entry(begin_end, 0));
2046
+ slice->lengths[r] = FIX2UINT(rb_ary_entry(begin_end, 1)) - slice->coords[r];
2029
2047
 
2030
- // Exclude last element for a...b range
2031
- if (exl)
2032
- slice->lengths[r] -= 1;
2048
+ if (RHASH_EMPTY_P(v)) t++; // go on to the next
2033
2049
 
2034
- slice->single = false;
2050
+ slice->single = false;
2051
+
2052
+ } else if (CLASS_OF(v) == rb_cRange) {
2053
+ rb_range_values(arg[t], &beg, &end, &excl);
2054
+ slice->coords[r] = FIX2UINT(beg);
2055
+ // Exclude last element for a...b range
2056
+ slice->lengths[r] = FIX2UINT(end) - slice->coords[r] + (excl ? 0 : 1);
2057
+
2058
+ slice->single = false;
2059
+
2060
+ t++;
2035
2061
 
2036
2062
  } else {
2037
- rb_raise(rb_eArgError, "cannot slice using class %s, needs a number or range or something", rb_obj_classname(c[r]));
2063
+ rb_raise(rb_eArgError, "expected Fixnum, Range, or Hash for slice component instead of %s", rb_obj_classname(v));
2038
2064
  }
2039
2065
 
2040
- if (slice->coords[r] + slice->lengths[r] > NM_SHAPE(self,r))
2041
- rb_raise(rb_eArgError, "out of range");
2066
+ if (slice->coords[r] > shape[r] || slice->coords[r] + slice->lengths[r] > shape[r])
2067
+ rb_raise(rb_eRangeError, "slice is larger than matrix in dimension %u (slice component %u)", r, t);
2042
2068
  }
2043
2069
 
2044
2070
  return slice;
@@ -2264,24 +2290,23 @@ static VALUE nm_det_exact(VALUE self) {
2264
2290
  *
2265
2291
  * Returns a properly-wrapped Ruby object as a VALUE.
2266
2292
  *
2293
+ * *** Note that this function is for API only. Please do not use it internally.
2294
+ *
2267
2295
  * TODO: Add a column-major option for libraries that use column-major matrices.
2268
2296
  */
2269
2297
  VALUE rb_nmatrix_dense_create(nm::dtype_t dtype, size_t* shape, size_t dim, void* elements, size_t length) {
2270
2298
  NMATRIX* nm;
2271
- VALUE klass;
2272
2299
  size_t nm_dim;
2273
2300
  size_t* shape_copy;
2274
2301
 
2275
- // Do not allow a dim of 1; if dim == 1, this should probably be an NVector instead, but that still has dim 2.
2302
+ // Do not allow a dim of 1. Treat it as a column or row matrix.
2276
2303
  if (dim == 1) {
2277
- klass = cNVector;
2278
2304
  nm_dim = 2;
2279
2305
  shape_copy = ALLOC_N(size_t, nm_dim);
2280
2306
  shape_copy[0] = shape[0];
2281
2307
  shape_copy[1] = 1;
2282
2308
 
2283
2309
  } else {
2284
- klass = cNMatrix;
2285
2310
  nm_dim = dim;
2286
2311
  shape_copy = ALLOC_N(size_t, nm_dim);
2287
2312
  memcpy(shape_copy, shape, sizeof(size_t)*nm_dim);
@@ -2295,7 +2320,7 @@ VALUE rb_nmatrix_dense_create(nm::dtype_t dtype, size_t* shape, size_t dim, void
2295
2320
  nm = nm_create(nm::DENSE_STORE, nm_dense_storage_create(dtype, shape_copy, dim, elements_copy, length));
2296
2321
 
2297
2322
  // tell Ruby about the matrix and its storage, particularly how to garbage collect it.
2298
- return Data_Wrap_Struct(klass, nm_dense_storage_mark, nm_dense_storage_delete, nm);
2323
+ return Data_Wrap_Struct(cNMatrix, nm_dense_storage_mark, nm_dense_storage_delete, nm);
2299
2324
  }
2300
2325
 
2301
2326
  /*
@@ -2303,9 +2328,8 @@ VALUE rb_nmatrix_dense_create(nm::dtype_t dtype, size_t* shape, size_t dim, void
2303
2328
  *
2304
2329
  * Basically just a convenience wrapper for rb_nmatrix_dense_create().
2305
2330
  *
2306
- * Returns a properly-wrapped Ruby NVector object as a VALUE.
2307
- *
2308
- * TODO: Add a transpose option for setting the orientation of the vector?
2331
+ * Returns a properly-wrapped Ruby NMatrix object as a VALUE. Included for backwards compatibility
2332
+ * for when NMatrix had an NVector class.
2309
2333
  */
2310
2334
  VALUE rb_nvector_dense_create(nm::dtype_t dtype, void* elements, size_t length) {
2311
2335
  size_t dim = 1, shape = length;