nmatrix 0.0.6 → 0.0.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +2 -0
- data/Gemfile +5 -0
- data/History.txt +97 -0
- data/Manifest.txt +34 -7
- data/README.rdoc +13 -13
- data/Rakefile +36 -26
- data/ext/nmatrix/data/data.cpp +15 -2
- data/ext/nmatrix/data/data.h +4 -0
- data/ext/nmatrix/data/ruby_object.h +5 -14
- data/ext/nmatrix/extconf.rb +3 -2
- data/ext/nmatrix/{util/math.cpp → math.cpp} +296 -6
- data/ext/nmatrix/math/asum.h +143 -0
- data/ext/nmatrix/math/geev.h +82 -0
- data/ext/nmatrix/math/gemm.h +267 -0
- data/ext/nmatrix/math/gemv.h +208 -0
- data/ext/nmatrix/math/ger.h +96 -0
- data/ext/nmatrix/math/gesdd.h +80 -0
- data/ext/nmatrix/math/gesvd.h +78 -0
- data/ext/nmatrix/math/getf2.h +86 -0
- data/ext/nmatrix/math/getrf.h +240 -0
- data/ext/nmatrix/math/getri.h +107 -0
- data/ext/nmatrix/math/getrs.h +125 -0
- data/ext/nmatrix/math/idamax.h +86 -0
- data/ext/nmatrix/{util → math}/lapack.h +60 -356
- data/ext/nmatrix/math/laswp.h +165 -0
- data/ext/nmatrix/math/long_dtype.h +52 -0
- data/ext/nmatrix/math/math.h +1154 -0
- data/ext/nmatrix/math/nrm2.h +181 -0
- data/ext/nmatrix/math/potrs.h +125 -0
- data/ext/nmatrix/math/rot.h +141 -0
- data/ext/nmatrix/math/rotg.h +115 -0
- data/ext/nmatrix/math/scal.h +73 -0
- data/ext/nmatrix/math/swap.h +73 -0
- data/ext/nmatrix/math/trsm.h +383 -0
- data/ext/nmatrix/nmatrix.cpp +176 -152
- data/ext/nmatrix/nmatrix.h +1 -2
- data/ext/nmatrix/ruby_constants.cpp +9 -4
- data/ext/nmatrix/ruby_constants.h +1 -0
- data/ext/nmatrix/storage/dense.cpp +57 -41
- data/ext/nmatrix/storage/list.cpp +52 -50
- data/ext/nmatrix/storage/storage.cpp +59 -43
- data/ext/nmatrix/storage/yale.cpp +352 -333
- data/ext/nmatrix/storage/yale.h +4 -0
- data/lib/nmatrix.rb +2 -2
- data/lib/nmatrix/blas.rb +4 -4
- data/lib/nmatrix/enumerate.rb +241 -0
- data/lib/nmatrix/lapack.rb +54 -1
- data/lib/nmatrix/math.rb +462 -0
- data/lib/nmatrix/nmatrix.rb +210 -486
- data/lib/nmatrix/nvector.rb +0 -62
- data/lib/nmatrix/rspec.rb +75 -0
- data/lib/nmatrix/shortcuts.rb +136 -108
- data/lib/nmatrix/version.rb +1 -1
- data/spec/blas_spec.rb +20 -12
- data/spec/elementwise_spec.rb +22 -13
- data/spec/io_spec.rb +1 -0
- data/spec/lapack_spec.rb +197 -0
- data/spec/nmatrix_spec.rb +39 -38
- data/spec/nvector_spec.rb +3 -9
- data/spec/rspec_monkeys.rb +29 -0
- data/spec/rspec_spec.rb +34 -0
- data/spec/shortcuts_spec.rb +14 -16
- data/spec/slice_spec.rb +242 -186
- data/spec/spec_helper.rb +19 -0
- metadata +33 -5
- data/ext/nmatrix/util/math.h +0 -2612
data/ext/nmatrix/storage/yale.h
CHANGED
@@ -90,6 +90,7 @@ extern "C" {
|
|
90
90
|
YALE_STORAGE* nm_yale_storage_create_from_old_yale(nm::dtype_t dtype, size_t* shape, void* ia, void* ja, void* a, nm::dtype_t from_dtype);
|
91
91
|
YALE_STORAGE* nm_yale_storage_create_merged(const YALE_STORAGE* merge_template, const YALE_STORAGE* other);
|
92
92
|
void nm_yale_storage_delete(STORAGE* s);
|
93
|
+
void nm_yale_storage_delete_ref(STORAGE* s);
|
93
94
|
void nm_yale_storage_init(YALE_STORAGE* s, void* default_val);
|
94
95
|
void nm_yale_storage_mark(void*);
|
95
96
|
|
@@ -221,6 +222,9 @@ namespace nm { namespace yale_storage {
|
|
221
222
|
|
222
223
|
template <typename IType>
|
223
224
|
size_t get_size(const YALE_STORAGE* storage);
|
225
|
+
|
226
|
+
template <typename IType>
|
227
|
+
IType binary_search_left_boundary(const YALE_STORAGE* s, IType left, IType right, IType bound);
|
224
228
|
}} // end of namespace nm::yale_storage
|
225
229
|
|
226
230
|
#endif // YALE_H
|
data/lib/nmatrix.rb
CHANGED
@@ -26,7 +26,7 @@
|
|
26
26
|
#
|
27
27
|
|
28
28
|
# For some reason nmatrix.so ends up in a different place during gem build.
|
29
|
-
if File.exist?
|
29
|
+
if File.exist?("lib/nmatrix/nmatrix.so") #|| File.exist?("lib/nmatrix/nmatrix.bundle")
|
30
30
|
# Development
|
31
31
|
require "nmatrix/nmatrix.so"
|
32
32
|
else
|
@@ -36,7 +36,7 @@ end
|
|
36
36
|
|
37
37
|
require 'nmatrix/nmatrix.rb'
|
38
38
|
require 'nmatrix/version.rb'
|
39
|
-
require 'nmatrix/nvector.rb'
|
39
|
+
#require 'nmatrix/nvector.rb'
|
40
40
|
require 'nmatrix/blas.rb'
|
41
41
|
require 'nmatrix/monkeys'
|
42
42
|
require "nmatrix/shortcuts.rb"
|
data/lib/nmatrix/blas.rb
CHANGED
@@ -180,7 +180,7 @@ module NMatrix::BLAS
|
|
180
180
|
# - +ArgumentError+ -> Need to supply n for non-standard incx, incy values.
|
181
181
|
#
|
182
182
|
def rot(x, y, c, s, incx = 1, incy = 1, n = nil, in_place=false)
|
183
|
-
raise(ArgumentError, 'Expected dense
|
183
|
+
raise(ArgumentError, 'Expected dense NMatrices as first two arguments.') unless x.is_a?(NMatrix) and y.is_a?(NMatrix) and x.stype == :dense and y.stype == :dense
|
184
184
|
raise(ArgumentError, 'NMatrix dtype mismatch.') unless x.dtype == y.dtype
|
185
185
|
raise(ArgumentError, 'Need to supply n for non-standard incx, incy values') if n.nil? && incx != 1 && incx != -1 && incy != 1 && incy != -1
|
186
186
|
|
@@ -228,7 +228,7 @@ module NMatrix::BLAS
|
|
228
228
|
# - +ArgumentError+ -> Expected dense NVector of size 2
|
229
229
|
#
|
230
230
|
def rotg(ab)
|
231
|
-
raise(ArgumentError, "Expected dense
|
231
|
+
raise(ArgumentError, "Expected dense NMatrix of shape [2,1] or [1,2]") unless ab.is_a?(NMatrix) && ab.stype == :dense && ab.size == 2
|
232
232
|
|
233
233
|
::NMatrix::BLAS.cblas_rotg(ab)
|
234
234
|
end
|
@@ -252,7 +252,7 @@ module NMatrix::BLAS
|
|
252
252
|
#
|
253
253
|
def asum(x, incx = 1, n = nil)
|
254
254
|
n ||= x.size / incx
|
255
|
-
raise(ArgumentError, "Expected dense
|
255
|
+
raise(ArgumentError, "Expected dense NMatrix for arg 0") unless x.is_a?(NMatrix)
|
256
256
|
raise(RangeError, "n out of range") if n*incx > x.size || n*incx <= 0 || n <= 0
|
257
257
|
::NMatrix::BLAS.cblas_asum(n, x, incx)
|
258
258
|
end
|
@@ -275,7 +275,7 @@ module NMatrix::BLAS
|
|
275
275
|
#
|
276
276
|
def nrm2(x, incx = 1, n = nil)
|
277
277
|
n ||= x.size / incx
|
278
|
-
raise(ArgumentError, "Expected dense
|
278
|
+
raise(ArgumentError, "Expected dense NMatrix for arg 0") unless x.is_a?(NMatrix)
|
279
279
|
raise(RangeError, "n out of range") if n*incx > x.size || n*incx <= 0 || n <= 0
|
280
280
|
::NMatrix::BLAS.cblas_nrm2(n, x, incx)
|
281
281
|
end
|
@@ -0,0 +1,241 @@
|
|
1
|
+
#--
|
2
|
+
# = NMatrix
|
3
|
+
#
|
4
|
+
# A linear algebra library for scientific computation in Ruby.
|
5
|
+
# NMatrix is part of SciRuby.
|
6
|
+
#
|
7
|
+
# NMatrix was originally inspired by and derived from NArray, by
|
8
|
+
# Masahiro Tanaka: http://narray.rubyforge.org
|
9
|
+
#
|
10
|
+
# == Copyright Information
|
11
|
+
#
|
12
|
+
# SciRuby is Copyright (c) 2010 - 2013, Ruby Science Foundation
|
13
|
+
# NMatrix is Copyright (c) 2013, Ruby Science Foundation
|
14
|
+
#
|
15
|
+
# Please see LICENSE.txt for additional copyright notices.
|
16
|
+
#
|
17
|
+
# == Contributing
|
18
|
+
#
|
19
|
+
# By contributing source code to SciRuby, you agree to be bound by
|
20
|
+
# our Contributor Agreement:
|
21
|
+
#
|
22
|
+
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
23
|
+
#
|
24
|
+
# == enumerate.rb
|
25
|
+
#
|
26
|
+
# Enumeration methods for NMatrix
|
27
|
+
#++
|
28
|
+
|
29
|
+
class NMatrix
|
30
|
+
include Enumerable
|
31
|
+
|
32
|
+
##
|
33
|
+
# call-seq:
|
34
|
+
# each -> Enumerator
|
35
|
+
#
|
36
|
+
# Enumerate through the matrix. @see Enumerable#each
|
37
|
+
#
|
38
|
+
# For dense, this actually calls a specialized each iterator (in C). For yale and list, it relies upon
|
39
|
+
# #each_with_indices (which is about as fast as reasonably possible for C code).
|
40
|
+
def each &bl
|
41
|
+
if self.stype == :dense
|
42
|
+
self.__dense_each__(&bl)
|
43
|
+
elsif block_given?
|
44
|
+
self.each_with_indices(&bl)
|
45
|
+
else # Handle case where no block is given
|
46
|
+
Enumerator.new do |yielder|
|
47
|
+
self.each_with_indices do |params|
|
48
|
+
yielder.yield params
|
49
|
+
end
|
50
|
+
end
|
51
|
+
end
|
52
|
+
end
|
53
|
+
|
54
|
+
#
|
55
|
+
# call-seq:
|
56
|
+
# flat_map -> Enumerator
|
57
|
+
# flat_map { |elem| block } -> Array
|
58
|
+
#
|
59
|
+
# Maps using Enumerator (returns an Array or an Enumerator)
|
60
|
+
alias_method :flat_map, :map
|
61
|
+
|
62
|
+
##
|
63
|
+
# call-seq:
|
64
|
+
# map -> Enumerator
|
65
|
+
# map { |elem| block } -> NMatrix
|
66
|
+
#
|
67
|
+
# Returns an NMatrix if a block is given. For an Array, use #flat_map
|
68
|
+
#
|
69
|
+
def map(&bl)
|
70
|
+
return enum_for(:map) unless block_given?
|
71
|
+
cp = self.dup
|
72
|
+
cp.map! &bl
|
73
|
+
cp
|
74
|
+
end
|
75
|
+
|
76
|
+
##
|
77
|
+
# call-seq:
|
78
|
+
# map! -> Enumerator
|
79
|
+
# map! { |elem| block } -> NMatrix
|
80
|
+
#
|
81
|
+
# Maps in place.
|
82
|
+
# @see #map
|
83
|
+
#
|
84
|
+
def map!
|
85
|
+
return enum_for(:map!) unless block_given?
|
86
|
+
self.each_stored_with_indices do |e, *i|
|
87
|
+
self[*i] = (yield e)
|
88
|
+
end
|
89
|
+
self
|
90
|
+
end
|
91
|
+
|
92
|
+
|
93
|
+
#
|
94
|
+
# call-seq:
|
95
|
+
# each_rank() -> NMatrix
|
96
|
+
# each_rank() { |rank| block } -> NMatrix
|
97
|
+
# each_rank(dimen) -> Enumerator
|
98
|
+
# each_rank(dimen) { |rank| block } -> NMatrix
|
99
|
+
#
|
100
|
+
# Generic for @each_row, @each_col
|
101
|
+
#
|
102
|
+
# Iterate through each rank by reference.
|
103
|
+
#
|
104
|
+
# @param [Fixnum] dimen the rank being iterated over.
|
105
|
+
#
|
106
|
+
def each_rank(dimen=0, get_by=:reference)
|
107
|
+
return enum_for(:each_rank, dimen, get_by) unless block_given?
|
108
|
+
(0...self.shape[dimen]).each do |idx|
|
109
|
+
yield self.rank(dimen, idx, get_by)
|
110
|
+
end
|
111
|
+
self
|
112
|
+
end
|
113
|
+
alias :each_along_dim :each_rank
|
114
|
+
|
115
|
+
#
|
116
|
+
# call-seq:
|
117
|
+
# each_row { |row| block } -> NMatrix
|
118
|
+
#
|
119
|
+
# Iterate through each row, referencing it as an NMatrix slice.
|
120
|
+
def each_row(get_by=:reference)
|
121
|
+
return enum_for(:each_row, get_by) unless block_given?
|
122
|
+
(0...self.shape[0]).each do |i|
|
123
|
+
yield self.row(i, get_by)
|
124
|
+
end
|
125
|
+
self
|
126
|
+
end
|
127
|
+
|
128
|
+
#
|
129
|
+
# call-seq:
|
130
|
+
# each_column { |column| block } -> NMatrix
|
131
|
+
#
|
132
|
+
# Iterate through each column, referencing it as an NMatrix slice.
|
133
|
+
def each_column(get_by=:reference)
|
134
|
+
return enum_for(:each_column, get_by) unless block_given?
|
135
|
+
(0...self.shape[1]).each do |j|
|
136
|
+
yield self.column(j, get_by)
|
137
|
+
end
|
138
|
+
self
|
139
|
+
end
|
140
|
+
|
141
|
+
#
|
142
|
+
# call-seq:
|
143
|
+
# each_layer -> { |column| block } -> ...
|
144
|
+
#
|
145
|
+
# Iterate through each layer, referencing it as an NMatrix slice.
|
146
|
+
#
|
147
|
+
# Note: If you have a 3-dimensional matrix, the first dimension contains rows,
|
148
|
+
# the second contains columns, and the third contains layers.
|
149
|
+
def each_layer(get_by=:reference)
|
150
|
+
return enum_for(:each_layer, get_by) unless block_given?
|
151
|
+
(0...self.shape[2]).each do |k|
|
152
|
+
yield self.layer(k, get_by)
|
153
|
+
end
|
154
|
+
self
|
155
|
+
end
|
156
|
+
|
157
|
+
|
158
|
+
#
|
159
|
+
# call-seq:
|
160
|
+
# each_stored_with_index -> Enumerator
|
161
|
+
#
|
162
|
+
# Allow iteration across a vector NMatrix's stored values. See also @each_stored_with_indices
|
163
|
+
#
|
164
|
+
def each_stored_with_index(&block)
|
165
|
+
raise(NotImplementedError, "only works for dim 2 vectors") unless self.dim <= 2
|
166
|
+
return enum_for(:each_stored_with_index) unless block_given?
|
167
|
+
|
168
|
+
self.each_stored_with_indices do |v, i, j|
|
169
|
+
if shape[0] == 1
|
170
|
+
yield(v,j)
|
171
|
+
elsif shape[1] == 1
|
172
|
+
yield(v,i)
|
173
|
+
else
|
174
|
+
method_missing(:each_stored_with_index, &block)
|
175
|
+
end
|
176
|
+
end
|
177
|
+
self
|
178
|
+
end
|
179
|
+
|
180
|
+
|
181
|
+
##
|
182
|
+
# call-seq:
|
183
|
+
# inject_rank() -> Enumerator
|
184
|
+
# inject_rank(dimen) -> Enumerator
|
185
|
+
# inject_rank(dimen, initial) -> Enumerator
|
186
|
+
# inject_rank(dimen, initial, dtype) -> Enumerator
|
187
|
+
# inject_rank() { |elem| block } -> NMatrix
|
188
|
+
# inject_rank(dimen) { |elem| block } -> NMatrix
|
189
|
+
# inject_rank(dimen, initial) { |elem| block } -> NMatrix
|
190
|
+
# inject_rank(dimen, initial, dtype) { |elem| block } -> NMatrix
|
191
|
+
#
|
192
|
+
# Reduces an NMatrix using a supplied block over a specified dimension.
|
193
|
+
# The block should behave the same way as for Enumerable#reduce.
|
194
|
+
#
|
195
|
+
# @param [Integer] dimen the dimension being reduced
|
196
|
+
# @param [Numeric] initial the initial value for the reduction
|
197
|
+
# (i.e. the usual parameter to Enumerable#reduce). Supply nil or do not
|
198
|
+
# supply this argument to have it follow the usual Enumerable#reduce
|
199
|
+
# behavior of using the first element as the initial value.
|
200
|
+
# @param [Symbol] dtype if non-nil/false, forces the accumulated result to have this dtype
|
201
|
+
# @return [NMatrix] an NMatrix with the same number of dimensions as the
|
202
|
+
# input, but with the input dimension now having size 1. Each element
|
203
|
+
# is the result of the reduction at that position along the specified
|
204
|
+
# dimension.
|
205
|
+
#
|
206
|
+
def inject_rank(dimen=0, initial=nil, dtype=nil)
|
207
|
+
|
208
|
+
raise(RangeError, "requested dimension (#{dimen}) does not exist (shape: #{shape})") if dimen > self.dim
|
209
|
+
|
210
|
+
return enum_for(:inject_rank, dimen, initial, dtype) unless block_given?
|
211
|
+
|
212
|
+
new_shape = shape
|
213
|
+
new_shape[dimen] = 1
|
214
|
+
|
215
|
+
first_as_acc = false
|
216
|
+
|
217
|
+
if initial then
|
218
|
+
acc = NMatrix.new(new_shape, initial, dtype || self.dtype)
|
219
|
+
else
|
220
|
+
each_rank(dimen) do |sub_mat|
|
221
|
+
acc = (sub_mat.is_a?(NMatrix) and !dtype.nil? and dtype != self.dtype) ? sub_mat.cast(self.stype, dtype) : sub_mat
|
222
|
+
break
|
223
|
+
end
|
224
|
+
first_as_acc = true
|
225
|
+
end
|
226
|
+
|
227
|
+
each_rank(dimen) do |sub_mat|
|
228
|
+
if first_as_acc
|
229
|
+
first_as_acc = false
|
230
|
+
next
|
231
|
+
end
|
232
|
+
acc = yield(acc, sub_mat)
|
233
|
+
end
|
234
|
+
|
235
|
+
acc
|
236
|
+
end
|
237
|
+
|
238
|
+
alias :reduce_along_dim :inject_rank
|
239
|
+
alias :inject_along_dim :inject_rank
|
240
|
+
|
241
|
+
end
|
data/lib/nmatrix/lapack.rb
CHANGED
@@ -120,6 +120,59 @@ class NMatrix
|
|
120
120
|
clapack_potrs(order, uplo, n, nrhs, a, lda, b, ldb)
|
121
121
|
end
|
122
122
|
|
123
|
+
#
|
124
|
+
# call-seq:
|
125
|
+
# gesvd(matrix, type)
|
126
|
+
#
|
127
|
+
#
|
128
|
+
# * *Arguments* :
|
129
|
+
# - +matrix+ -> matrix for which to compute the singular values ##TODO make this a self
|
130
|
+
# - +type+ -> :all_values, :both, :left, :right, :left_matrix, :right_matrix, :overwrite_right, :overwrite_left, :none , or signifying what combination of singular values and matrices are desired in your output.
|
131
|
+
# * *Returns* :
|
132
|
+
# - Array with the result values in an array
|
133
|
+
# * *Raises* :
|
134
|
+
# - +ArgumentError+ -> Expected dense NMatrix as first argument.
|
135
|
+
#
|
136
|
+
def gesvd(matrix, type = :both)
|
137
|
+
raise ArgumentError, 'Expected dense NMatrix as first argument.' unless matrix.is_a?(NMatrix) and matrix.stype == :dense
|
138
|
+
#define jobu, jobvt
|
139
|
+
jobu, jobvt = :none, :none
|
140
|
+
case type
|
141
|
+
when :both
|
142
|
+
jobu, jobvt = :all, :all
|
143
|
+
when :arrays
|
144
|
+
jobu, jobvt = :return, :return
|
145
|
+
when :left
|
146
|
+
jobu = :return
|
147
|
+
when :right
|
148
|
+
jobvt = :return
|
149
|
+
end
|
150
|
+
|
151
|
+
# Build up the u and vt matrices
|
152
|
+
m, n = matrix.shape
|
153
|
+
dtype = matrix.dtype
|
154
|
+
s_matrix = NMatrix.new([1,matrix.shape.min], dtype)
|
155
|
+
u_matrix = NMatrix.new([m,m], dtype)
|
156
|
+
v_matrix = NMatrix.new([n,n], dtype)
|
157
|
+
# test this
|
158
|
+
s = gesvd(type, matrix, s_matrix, u_matrix, v_matrix)
|
159
|
+
|
160
|
+
# what should this return?
|
161
|
+
[s_matrix, u_matrix, v_matrix]
|
162
|
+
end # #svd
|
163
|
+
|
164
|
+
# laswp(matrix, ipiv) -> NMatrix
|
165
|
+
#
|
166
|
+
# Permute the columns of a matrix (in-place) according to the Array +ipiv+.
|
167
|
+
#
|
168
|
+
def laswp(matrix, ipiv)
|
169
|
+
raise(ArgumentError, "expected NMatrix for argument 0") unless matrix.is_a?(NMatrix)
|
170
|
+
raise(StorageTypeError, "LAPACK functions only work on :dense NMatrix instances") unless matrix.stype == :dense
|
171
|
+
raise(ArgumentError, "expected Array ipiv to have no more entries than NMatrix a has columns") if ipiv.size > matrix.shape[1]
|
172
|
+
|
173
|
+
clapack_laswp(matrix.shape[0], matrix, matrix.shape[1], 0, ipiv.size-1, ipiv, 1)
|
174
|
+
end
|
175
|
+
|
123
176
|
end
|
124
177
|
end
|
125
|
-
end
|
178
|
+
end
|
data/lib/nmatrix/math.rb
ADDED
@@ -0,0 +1,462 @@
|
|
1
|
+
#--
|
2
|
+
# = NMatrix
|
3
|
+
#
|
4
|
+
# A linear algebra library for scientific computation in Ruby.
|
5
|
+
# NMatrix is part of SciRuby.
|
6
|
+
#
|
7
|
+
# NMatrix was originally inspired by and derived from NArray, by
|
8
|
+
# Masahiro Tanaka: http://narray.rubyforge.org
|
9
|
+
#
|
10
|
+
# == Copyright Information
|
11
|
+
#
|
12
|
+
# SciRuby is Copyright (c) 2010 - 2013, Ruby Science Foundation
|
13
|
+
# NMatrix is Copyright (c) 2013, Ruby Science Foundation
|
14
|
+
#
|
15
|
+
# Please see LICENSE.txt for additional copyright notices.
|
16
|
+
#
|
17
|
+
# == Contributing
|
18
|
+
#
|
19
|
+
# By contributing source code to SciRuby, you agree to be bound by
|
20
|
+
# our Contributor Agreement:
|
21
|
+
#
|
22
|
+
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
23
|
+
#
|
24
|
+
# == math.rb
|
25
|
+
#
|
26
|
+
# Math functionality for NMatrix, along with any NMatrix instance
|
27
|
+
# methods that correspond to ATLAS/BLAS/LAPACK functions (e.g.,
|
28
|
+
# laswp).
|
29
|
+
#++
|
30
|
+
|
31
|
+
class NMatrix
|
32
|
+
#
|
33
|
+
# call-seq:
|
34
|
+
# invert! -> NMatrix
|
35
|
+
#
|
36
|
+
# Use LAPACK to calculate the inverse of the matrix (in-place). Only works on
|
37
|
+
# dense matrices.
|
38
|
+
#
|
39
|
+
# Note: If you don't have LAPACK, e.g., on a Mac, this may not work yet.
|
40
|
+
#
|
41
|
+
def invert!
|
42
|
+
# Get the pivot array; factor the matrix
|
43
|
+
pivot = self.getrf!
|
44
|
+
|
45
|
+
# Now calculate the inverse using the pivot array
|
46
|
+
NMatrix::LAPACK::clapack_getri(:row, self.shape[1], self, self.shape[1], pivot)
|
47
|
+
|
48
|
+
self
|
49
|
+
end
|
50
|
+
|
51
|
+
#
|
52
|
+
# call-seq:
|
53
|
+
# invert -> NMatrix
|
54
|
+
#
|
55
|
+
# Make a copy of the matrix, then invert it (requires LAPACK).
|
56
|
+
#
|
57
|
+
# * *Returns* :
|
58
|
+
# - A dense NMatrix.
|
59
|
+
#
|
60
|
+
def invert
|
61
|
+
self.cast(:dense, self.dtype).invert!
|
62
|
+
end
|
63
|
+
alias :inverse :invert
|
64
|
+
|
65
|
+
#
|
66
|
+
# call-seq:
|
67
|
+
# getrf! -> NMatrix
|
68
|
+
#
|
69
|
+
# LU factorization of a general M-by-N matrix +A+ using partial pivoting with
|
70
|
+
# row interchanges. Only works in dense matrices.
|
71
|
+
#
|
72
|
+
# * *Returns* :
|
73
|
+
# - The IPIV vector. The L and U matrices are stored in A.
|
74
|
+
# * *Raises* :
|
75
|
+
# - +StorageTypeError+ -> ATLAS functions only work on dense matrices.
|
76
|
+
#
|
77
|
+
def getrf!
|
78
|
+
raise(StorageTypeError, "ATLAS functions only work on dense matrices") unless self.stype == :dense
|
79
|
+
NMatrix::LAPACK::clapack_getrf(:row, self.shape[0], self.shape[1], self, self.shape[1])
|
80
|
+
end
|
81
|
+
|
82
|
+
#
|
83
|
+
# call-seq:
|
84
|
+
# factorize_lu -> ...
|
85
|
+
#
|
86
|
+
# LU factorization of a matrix.
|
87
|
+
#
|
88
|
+
# FIXME: For some reason, getrf seems to require that the matrix be transposed first -- and then you have to transpose the
|
89
|
+
# FIXME: result again. Ideally, this would be an in-place factorize instead, and would be called nm_factorize_lu_bang.
|
90
|
+
#
|
91
|
+
def factorize_lu
|
92
|
+
raise(NotImplementedError, "only implemented for dense storage") unless self.stype == :dense
|
93
|
+
raise(NotImplementedError, "matrix is not 2-dimensional") unless self.dimensions == 2
|
94
|
+
|
95
|
+
t = self.transpose
|
96
|
+
NMatrix::LAPACK::clapack_getrf(:row, t.shape[0], t.shape[1], t, t.shape[1])
|
97
|
+
t.transpose
|
98
|
+
end
|
99
|
+
|
100
|
+
def alloc_svd_result
|
101
|
+
[
|
102
|
+
NMatrix.new(:dense, self.shape[0], self.dtype),
|
103
|
+
NMatrix.new(:dense, [self.shape[0],1], self.dtype),
|
104
|
+
NMatrix.new(:dense, self.shape[1], self.dtype)
|
105
|
+
]
|
106
|
+
end
|
107
|
+
|
108
|
+
#
|
109
|
+
# call-seq:
|
110
|
+
# gesvd -> [u, sigma, v_transpose]
|
111
|
+
# gesvd -> [u, sigma, v_conjugate_transpose] # complex
|
112
|
+
#
|
113
|
+
# Compute the singular value decomposition of a matrix using LAPACK's GESVD function.
|
114
|
+
#
|
115
|
+
# Optionally accepts a +workspace_size+ parameter, which will be honored only if it is larger than what LAPACK
|
116
|
+
# requires.
|
117
|
+
#
|
118
|
+
def gesvd(workspace_size=1)
|
119
|
+
result = alloc_svd_result
|
120
|
+
NMatrix::LAPACK::lapack_gesvd(:a, :a, self.shape[0], self.shape[1], self, self.shape[0], result[1], result[0], self.shape[0], result[2], self.shape[1], workspace_size)
|
121
|
+
result
|
122
|
+
end
|
123
|
+
|
124
|
+
|
125
|
+
#
|
126
|
+
# call-seq:
|
127
|
+
# gesdd -> [u, sigma, v_transpose]
|
128
|
+
# gesdd -> [u, sigma, v_conjugate_transpose] # complex
|
129
|
+
#
|
130
|
+
# Compute the singular value decomposition of a matrix using LAPACK's GESDD function. This uses a divide-and-conquer
|
131
|
+
# strategy. See also #gesvd.
|
132
|
+
#
|
133
|
+
# Optionally accepts a +workspace_size+ parameter, which will be honored only if it is larger than what LAPACK
|
134
|
+
# requires.
|
135
|
+
#
|
136
|
+
def gesdd(workspace_size=1)
|
137
|
+
result = alloc_svd_result
|
138
|
+
NMatrix::LAPACK::lapack_gesvd(:a, :a, self.shape[0], self.shape[1], self, self.shape[0], result[1], result[0], self.shape[0], result[2], self.shape[1], workspace_size)
|
139
|
+
result
|
140
|
+
end
|
141
|
+
|
142
|
+
#
|
143
|
+
# call-seq:
|
144
|
+
# laswp!(ary) -> NMatrix
|
145
|
+
#
|
146
|
+
# In-place permute the columns of a dense matrix using LASWP according to the order given in an Array +ary+.
|
147
|
+
# Not yet implemented for yale or list.
|
148
|
+
def laswp!(ary)
|
149
|
+
NMatrix::LAPACK::laswp(self, ary)
|
150
|
+
end
|
151
|
+
|
152
|
+
#
|
153
|
+
# call-seq:
|
154
|
+
# laswp(ary) -> NMatrix
|
155
|
+
#
|
156
|
+
# Permute the columns of a dense matrix using LASWP according to the order given in an Array +ary+.
|
157
|
+
# Not yet implemented for yale or list.
|
158
|
+
def laswp(ary)
|
159
|
+
self.clone.laswp!(ary)
|
160
|
+
end
|
161
|
+
|
162
|
+
#
|
163
|
+
# call-seq:
|
164
|
+
# det -> determinant
|
165
|
+
#
|
166
|
+
# Calculate the determinant by way of LU decomposition. This is accomplished
|
167
|
+
# using clapack_getrf, and then by summing the diagonal elements. There is a
|
168
|
+
# risk of underflow/overflow.
|
169
|
+
#
|
170
|
+
# There are probably also more efficient ways to calculate the determinant.
|
171
|
+
# This method requires making a copy of the matrix, since clapack_getrf
|
172
|
+
# modifies its input.
|
173
|
+
#
|
174
|
+
# For smaller matrices, you may be able to use +#det_exact+.
|
175
|
+
#
|
176
|
+
# This function is guaranteed to return the same type of data in the matrix
|
177
|
+
# upon which it is called.
|
178
|
+
# In other words, if you call it on a rational matrix, you'll get a rational
|
179
|
+
# number back.
|
180
|
+
#
|
181
|
+
# Integer matrices are converted to rational matrices for the purposes of
|
182
|
+
# performing the calculation, as xGETRF can't work on integer matrices.
|
183
|
+
#
|
184
|
+
# * *Returns* :
|
185
|
+
# - The determinant of the matrix. It's the same type as the matrix's dtype.
|
186
|
+
# * *Raises* :
|
187
|
+
# - +NotImplementedError+ -> Must be used in 2D matrices.
|
188
|
+
#
|
189
|
+
def det
|
190
|
+
raise(NotImplementedError, "determinant can be calculated only for 2D matrices") unless self.dim == 2
|
191
|
+
|
192
|
+
# Cast to a dtype for which getrf is implemented
|
193
|
+
new_dtype = [:byte,:int8,:int16,:int32,:int64].include?(self.dtype) ? :rational128 : self.dtype
|
194
|
+
copy = self.cast(:dense, new_dtype)
|
195
|
+
|
196
|
+
# Need to know the number of permutations. We'll add up the diagonals of
|
197
|
+
# the factorized matrix.
|
198
|
+
pivot = copy.getrf!
|
199
|
+
|
200
|
+
prod = pivot.size % 2 == 1 ? -1 : 1 # odd permutations => negative
|
201
|
+
[shape[0],shape[1]].min.times do |i|
|
202
|
+
prod *= copy[i,i]
|
203
|
+
end
|
204
|
+
|
205
|
+
# Convert back to an integer if necessary
|
206
|
+
new_dtype != self.dtype ? prod.to_i : prod
|
207
|
+
end
|
208
|
+
|
209
|
+
#
|
210
|
+
# call-seq:
|
211
|
+
# complex_conjugate -> NMatrix
|
212
|
+
# complex_conjugate(new_stype) -> NMatrix
|
213
|
+
#
|
214
|
+
# Get the complex conjugate of this matrix. See also complex_conjugate! for
|
215
|
+
# an in-place operation (provided the dtype is already +:complex64+ or
|
216
|
+
# +:complex128+).
|
217
|
+
#
|
218
|
+
# Doesn't work on list matrices, but you can optionally pass in the stype you
|
219
|
+
# want to cast to if you're dealing with a list matrix.
|
220
|
+
#
|
221
|
+
# * *Arguments* :
|
222
|
+
# - +new_stype+ -> stype for the new matrix.
|
223
|
+
# * *Returns* :
|
224
|
+
# - If the original NMatrix isn't complex, the result is a +:complex128+ NMatrix. Otherwise, it's the original dtype.
|
225
|
+
#
|
226
|
+
def complex_conjugate(new_stype = self.stype)
|
227
|
+
self.cast(new_stype, NMatrix::upcast(dtype, :complex64)).complex_conjugate!
|
228
|
+
end
|
229
|
+
|
230
|
+
#
|
231
|
+
# call-seq:
|
232
|
+
# conjugate_transpose -> NMatrix
|
233
|
+
#
|
234
|
+
# Calculate the conjugate transpose of a matrix. If your dtype is already
|
235
|
+
# complex, this should only require one copy (for the transpose).
|
236
|
+
#
|
237
|
+
# * *Returns* :
|
238
|
+
# - The conjugate transpose of the matrix as a copy.
|
239
|
+
#
|
240
|
+
def conjugate_transpose
|
241
|
+
self.transpose.complex_conjugate!
|
242
|
+
end
|
243
|
+
|
244
|
+
#
|
245
|
+
# call-seq:
|
246
|
+
# hermitian? -> Boolean
|
247
|
+
#
|
248
|
+
# A hermitian matrix is a complex square matrix that is equal to its
|
249
|
+
# conjugate transpose. (http://en.wikipedia.org/wiki/Hermitian_matrix)
|
250
|
+
#
|
251
|
+
# * *Returns* :
|
252
|
+
# - True if +self+ is a hermitian matrix, nil otherwise.
|
253
|
+
#
|
254
|
+
def hermitian?
|
255
|
+
return false if self.dim != 2 or self.shape[0] != self.shape[1]
|
256
|
+
|
257
|
+
if [:complex64, :complex128].include?(self.dtype)
|
258
|
+
# TODO: Write much faster Hermitian test in C
|
259
|
+
self.eql?(self.conjugate_transpose)
|
260
|
+
else
|
261
|
+
symmetric?
|
262
|
+
end
|
263
|
+
end
|
264
|
+
|
265
|
+
##
|
266
|
+
# call-seq:
|
267
|
+
# mean() -> NMatrix
|
268
|
+
# mean(dimen) -> NMatrix
|
269
|
+
#
|
270
|
+
# Calculates the mean along the specified dimension.
|
271
|
+
#
|
272
|
+
# This will force integer types to float64 dtype.
|
273
|
+
#
|
274
|
+
# @see #inject_rank
|
275
|
+
#
|
276
|
+
def mean(dimen=0)
|
277
|
+
reduce_dtype = nil
|
278
|
+
if integer_dtype? then
|
279
|
+
reduce_dtype = :float64
|
280
|
+
end
|
281
|
+
inject_rank(dimen, 0.0, reduce_dtype) do |mean, sub_mat|
|
282
|
+
mean + sub_mat/shape[dimen]
|
283
|
+
end
|
284
|
+
end
|
285
|
+
|
286
|
+
##
|
287
|
+
# call-seq:
|
288
|
+
# sum() -> NMatrix
|
289
|
+
# sum(dimen) -> NMatrix
|
290
|
+
#
|
291
|
+
# Calculates the sum along the specified dimension.
|
292
|
+
#
|
293
|
+
# @see #inject_rank
|
294
|
+
def sum(dimen=0)
|
295
|
+
inject_rank(dimen, 0.0) do |sum, sub_mat|
|
296
|
+
sum + sub_mat
|
297
|
+
end
|
298
|
+
end
|
299
|
+
|
300
|
+
|
301
|
+
##
|
302
|
+
# call-seq:
|
303
|
+
# min() -> NMatrix
|
304
|
+
# min(dimen) -> NMatrix
|
305
|
+
#
|
306
|
+
# Calculates the minimum along the specified dimension.
|
307
|
+
#
|
308
|
+
# @see #inject_rank
|
309
|
+
#
|
310
|
+
def min(dimen=0)
|
311
|
+
inject_rank(dimen) do |min, sub_mat|
|
312
|
+
if min.is_a? NMatrix then
|
313
|
+
min * (min <= sub_mat).cast(self.stype, self.dtype) + ((min)*0.0 + (min > sub_mat).cast(self.stype, self.dtype)) * sub_mat
|
314
|
+
else
|
315
|
+
min <= sub_mat ? min : sub_mat
|
316
|
+
end
|
317
|
+
end
|
318
|
+
end
|
319
|
+
|
320
|
+
##
|
321
|
+
# call-seq:
|
322
|
+
# max() -> NMatrix
|
323
|
+
# max(dimen) -> NMatrix
|
324
|
+
#
|
325
|
+
# Calculates the maximum along the specified dimension.
|
326
|
+
#
|
327
|
+
# @see #inject_rank
|
328
|
+
#
|
329
|
+
def max(dimen=0)
|
330
|
+
inject_rank(dimen) do |max, sub_mat|
|
331
|
+
if max.is_a? NMatrix then
|
332
|
+
max * (max >= sub_mat).cast(self.stype, self.dtype) + ((max)*0.0 + (max < sub_mat).cast(self.stype, self.dtype)) * sub_mat
|
333
|
+
else
|
334
|
+
max >= sub_mat ? max : sub_mat
|
335
|
+
end
|
336
|
+
end
|
337
|
+
end
|
338
|
+
|
339
|
+
|
340
|
+
##
|
341
|
+
# call-seq:
|
342
|
+
# variance() -> NMatrix
|
343
|
+
# variance(dimen) -> NMatrix
|
344
|
+
#
|
345
|
+
# Calculates the sample variance along the specified dimension.
|
346
|
+
#
|
347
|
+
# This will force integer types to float64 dtype.
|
348
|
+
#
|
349
|
+
# @see #inject_rank
|
350
|
+
#
|
351
|
+
def variance(dimen=0)
|
352
|
+
reduce_dtype = nil
|
353
|
+
if integer_dtype? then
|
354
|
+
reduce_dtype = :float64
|
355
|
+
end
|
356
|
+
m = mean(dimen)
|
357
|
+
inject_rank(dimen, 0.0, reduce_dtype) do |var, sub_mat|
|
358
|
+
var + (m - sub_mat)*(m - sub_mat)/(shape[dimen]-1)
|
359
|
+
end
|
360
|
+
end
|
361
|
+
|
362
|
+
##
|
363
|
+
# call-seq:
|
364
|
+
# std() -> NMatrix
|
365
|
+
# std(dimen) -> NMatrix
|
366
|
+
#
|
367
|
+
#
|
368
|
+
# Calculates the sample standard deviation along the specified dimension.
|
369
|
+
#
|
370
|
+
# This will force integer types to float64 dtype.
|
371
|
+
#
|
372
|
+
# @see #inject_rank
|
373
|
+
#
|
374
|
+
def std(dimen=0)
|
375
|
+
variance(dimen).map! { |e| Math.sqrt(e) }
|
376
|
+
end
|
377
|
+
|
378
|
+
|
379
|
+
#
|
380
|
+
# call-seq:
|
381
|
+
# abs_dtype -> Symbol
|
382
|
+
#
|
383
|
+
# Returns the dtype of the result of a call to #abs. In most cases, this is the same as dtype; it should only differ
|
384
|
+
# for :complex64 (where it's :float32) and :complex128 (:float64).
|
385
|
+
def abs_dtype
|
386
|
+
if self.dtype == :complex64
|
387
|
+
:float32
|
388
|
+
elsif self.dtype == :complex128
|
389
|
+
:float64
|
390
|
+
else
|
391
|
+
self.dtype
|
392
|
+
end
|
393
|
+
end
|
394
|
+
|
395
|
+
|
396
|
+
#
|
397
|
+
# call-seq:
|
398
|
+
# abs -> NMatrix
|
399
|
+
#
|
400
|
+
# Maps all values in a matrix to their absolute values.
|
401
|
+
def abs
|
402
|
+
if stype == :dense
|
403
|
+
self.__dense_map__ { |v| v.abs }
|
404
|
+
elsif stype == :list
|
405
|
+
# FIXME: Need __list_map_stored__, but this will do for now.
|
406
|
+
self.__list_map_merged_stored__(nil, nil) { |v,dummy| v.abs }
|
407
|
+
else
|
408
|
+
self.__yale_map_stored__ { |v| v.abs }
|
409
|
+
end.cast(self.stype, abs_dtype)
|
410
|
+
end
|
411
|
+
|
412
|
+
alias :permute_columns :laswp
|
413
|
+
alias :permute_columns! :laswp!
|
414
|
+
|
415
|
+
protected
|
416
|
+
# Define the element-wise operations for lists. Note that the __list_map_merged_stored__ iterator returns a Ruby Object
|
417
|
+
# matrix, which we then cast back to the appropriate type. If you don't want that, you can redefine these functions in
|
418
|
+
# your own code.
|
419
|
+
{add: :+, sub: :-, mul: :*, div: :/, pow: :**, mod: :%}.each_pair do |ewop, op|
|
420
|
+
define_method("__list_elementwise_#{ewop}__") do |rhs|
|
421
|
+
self.__list_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, rhs.dtype))
|
422
|
+
end
|
423
|
+
define_method("__dense_elementwise_#{ewop}__") do |rhs|
|
424
|
+
self.__dense_map_pair__(rhs) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, rhs.dtype))
|
425
|
+
end
|
426
|
+
define_method("__yale_elementwise_#{ewop}__") do |rhs|
|
427
|
+
self.__yale_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, rhs.dtype))
|
428
|
+
end
|
429
|
+
define_method("__list_scalar_#{ewop}__") do |rhs|
|
430
|
+
self.__list_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, NMatrix.min_dtype(rhs)))
|
431
|
+
end
|
432
|
+
define_method("__yale_scalar_#{ewop}__") do |rhs|
|
433
|
+
self.__yale_map_stored__ { |l| l.send(op,rhs) }.cast(stype, NMatrix.upcast(dtype, NMatrix.min_dtype(rhs)))
|
434
|
+
end
|
435
|
+
define_method("__dense_scalar_#{ewop}__") do |rhs|
|
436
|
+
self.__dense_map__ { |l| l.send(op,rhs) }.cast(stype, NMatrix.upcast(dtype, NMatrix.min_dtype(rhs)))
|
437
|
+
end
|
438
|
+
end
|
439
|
+
|
440
|
+
# Equality operators do not involve a cast. We want to get back matrices of TrueClass and FalseClass.
|
441
|
+
{eqeq: :==, neq: :!=, lt: :<, gt: :>, leq: :<=, geq: :>=}.each_pair do |ewop, op|
|
442
|
+
define_method("__list_elementwise_#{ewop}__") do |rhs|
|
443
|
+
self.__list_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }
|
444
|
+
end
|
445
|
+
define_method("__dense_elementwise_#{ewop}__") do |rhs|
|
446
|
+
self.__dense_map_pair__(rhs) { |l,r| l.send(op,r) }
|
447
|
+
end
|
448
|
+
define_method("__yale_elementwise_#{ewop}__") do |rhs|
|
449
|
+
self.__yale_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }
|
450
|
+
end
|
451
|
+
|
452
|
+
define_method("__list_scalar_#{ewop}__") do |rhs|
|
453
|
+
self.__list_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }
|
454
|
+
end
|
455
|
+
define_method("__yale_scalar_#{ewop}__") do |rhs|
|
456
|
+
self.__yale_map_stored__ { |l| l.send(op,rhs) }
|
457
|
+
end
|
458
|
+
define_method("__dense_scalar_#{ewop}__") do |rhs|
|
459
|
+
self.__dense_map__ { |l| l.send(op,rhs) }
|
460
|
+
end
|
461
|
+
end
|
462
|
+
end
|