nmatrix 0.0.6 → 0.0.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +2 -0
- data/Gemfile +5 -0
- data/History.txt +97 -0
- data/Manifest.txt +34 -7
- data/README.rdoc +13 -13
- data/Rakefile +36 -26
- data/ext/nmatrix/data/data.cpp +15 -2
- data/ext/nmatrix/data/data.h +4 -0
- data/ext/nmatrix/data/ruby_object.h +5 -14
- data/ext/nmatrix/extconf.rb +3 -2
- data/ext/nmatrix/{util/math.cpp → math.cpp} +296 -6
- data/ext/nmatrix/math/asum.h +143 -0
- data/ext/nmatrix/math/geev.h +82 -0
- data/ext/nmatrix/math/gemm.h +267 -0
- data/ext/nmatrix/math/gemv.h +208 -0
- data/ext/nmatrix/math/ger.h +96 -0
- data/ext/nmatrix/math/gesdd.h +80 -0
- data/ext/nmatrix/math/gesvd.h +78 -0
- data/ext/nmatrix/math/getf2.h +86 -0
- data/ext/nmatrix/math/getrf.h +240 -0
- data/ext/nmatrix/math/getri.h +107 -0
- data/ext/nmatrix/math/getrs.h +125 -0
- data/ext/nmatrix/math/idamax.h +86 -0
- data/ext/nmatrix/{util → math}/lapack.h +60 -356
- data/ext/nmatrix/math/laswp.h +165 -0
- data/ext/nmatrix/math/long_dtype.h +52 -0
- data/ext/nmatrix/math/math.h +1154 -0
- data/ext/nmatrix/math/nrm2.h +181 -0
- data/ext/nmatrix/math/potrs.h +125 -0
- data/ext/nmatrix/math/rot.h +141 -0
- data/ext/nmatrix/math/rotg.h +115 -0
- data/ext/nmatrix/math/scal.h +73 -0
- data/ext/nmatrix/math/swap.h +73 -0
- data/ext/nmatrix/math/trsm.h +383 -0
- data/ext/nmatrix/nmatrix.cpp +176 -152
- data/ext/nmatrix/nmatrix.h +1 -2
- data/ext/nmatrix/ruby_constants.cpp +9 -4
- data/ext/nmatrix/ruby_constants.h +1 -0
- data/ext/nmatrix/storage/dense.cpp +57 -41
- data/ext/nmatrix/storage/list.cpp +52 -50
- data/ext/nmatrix/storage/storage.cpp +59 -43
- data/ext/nmatrix/storage/yale.cpp +352 -333
- data/ext/nmatrix/storage/yale.h +4 -0
- data/lib/nmatrix.rb +2 -2
- data/lib/nmatrix/blas.rb +4 -4
- data/lib/nmatrix/enumerate.rb +241 -0
- data/lib/nmatrix/lapack.rb +54 -1
- data/lib/nmatrix/math.rb +462 -0
- data/lib/nmatrix/nmatrix.rb +210 -486
- data/lib/nmatrix/nvector.rb +0 -62
- data/lib/nmatrix/rspec.rb +75 -0
- data/lib/nmatrix/shortcuts.rb +136 -108
- data/lib/nmatrix/version.rb +1 -1
- data/spec/blas_spec.rb +20 -12
- data/spec/elementwise_spec.rb +22 -13
- data/spec/io_spec.rb +1 -0
- data/spec/lapack_spec.rb +197 -0
- data/spec/nmatrix_spec.rb +39 -38
- data/spec/nvector_spec.rb +3 -9
- data/spec/rspec_monkeys.rb +29 -0
- data/spec/rspec_spec.rb +34 -0
- data/spec/shortcuts_spec.rb +14 -16
- data/spec/slice_spec.rb +242 -186
- data/spec/spec_helper.rb +19 -0
- metadata +33 -5
- data/ext/nmatrix/util/math.h +0 -2612
data/lib/nmatrix/nmatrix.rb
CHANGED
@@ -23,15 +23,16 @@
|
|
23
23
|
#
|
24
24
|
# == nmatrix.rb
|
25
25
|
#
|
26
|
-
# This file
|
27
|
-
#
|
26
|
+
# This file contains those core functionalities which can be
|
27
|
+
# implemented efficiently (or much more easily) in Ruby (e.g.,
|
28
|
+
# inspect, pretty_print, element-wise operations).
|
28
29
|
#++
|
29
30
|
|
30
|
-
require_relative './shortcuts.rb'
|
31
31
|
require_relative './lapack.rb'
|
32
32
|
require_relative './yale_functions.rb'
|
33
33
|
|
34
34
|
class NMatrix
|
35
|
+
|
35
36
|
# Read and write extensions for NMatrix. These are only loaded when needed.
|
36
37
|
#
|
37
38
|
module IO
|
@@ -51,36 +52,61 @@ class NMatrix
|
|
51
52
|
autoload :Market, 'nmatrix/io/market'
|
52
53
|
end
|
53
54
|
|
55
|
+
class << self
|
56
|
+
#
|
57
|
+
# call-seq:
|
58
|
+
# load_file(path) -> Mat5Reader
|
59
|
+
#
|
60
|
+
# * *Arguments* :
|
61
|
+
# - +path+ -> The path to a version 5 .mat file.
|
62
|
+
# * *Returns* :
|
63
|
+
# - A Mat5Reader object.
|
64
|
+
#
|
65
|
+
def load_file(file_path)
|
66
|
+
NMatrix::IO::Mat5Reader.new(File.open(file_path, 'rb')).to_ruby
|
67
|
+
end
|
68
|
+
end
|
69
|
+
|
54
70
|
# TODO: Make this actually pretty.
|
55
|
-
def pretty_print(q
|
56
|
-
if dim
|
57
|
-
|
71
|
+
def pretty_print(q) #:nodoc:
|
72
|
+
if self.dim > 3 || self.dim == 1
|
73
|
+
self.to_a.pretty_print(q)
|
58
74
|
else
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
rescue ArgumentError
|
66
|
-
nil
|
67
|
-
end
|
68
|
-
ary << (o.nil? ? 'nil' : o)
|
75
|
+
# iterate through the whole matrix and find the longest number
|
76
|
+
longest = Array.new(self.shape[1], 0)
|
77
|
+
self.each_column.with_index do |col, j|
|
78
|
+
col.each do |elem|
|
79
|
+
elem_len = elem.to_s.size
|
80
|
+
longest[j] = elem_len if longest[j] < elem_len
|
69
81
|
end
|
70
|
-
ary.inspect
|
71
82
|
end
|
72
83
|
|
73
|
-
if
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
84
|
+
if self.dim == 3
|
85
|
+
q.group(0, "\n{ layers:", "}") do
|
86
|
+
self.each_layer.with_index do |layer,k|
|
87
|
+
q.group(0, "\n [\n", " ]\n") do
|
88
|
+
layer.each_row.with_index do |row,i|
|
89
|
+
q.group(0, " [", "]\n") do
|
90
|
+
q.seplist(self[i,0...self.shape[1],k].to_flat_array, lambda { q.text ", "}, :each_with_index) { |v,j| q.text v.to_s.rjust(longest[j]) }
|
91
|
+
end
|
92
|
+
end
|
93
|
+
end
|
94
|
+
end
|
95
|
+
end
|
96
|
+
else # dim 2
|
97
|
+
q.group(0, "\n[\n", "]") do
|
98
|
+
self.each_row.with_index do |row,i|
|
99
|
+
q.group(1, " [", "]") do
|
100
|
+
q.seplist(self.dim > 2 ? row.to_a[0] : row.to_a, lambda { q.text ", " }, :each_with_index) { |v,j| q.text v.to_s.rjust(longest[j]) }
|
101
|
+
end
|
102
|
+
q.breakable
|
103
|
+
end
|
78
104
|
end
|
79
105
|
end
|
80
|
-
|
81
106
|
end
|
82
107
|
end
|
83
|
-
alias :pp :pretty_print
|
108
|
+
#alias :pp :pretty_print
|
109
|
+
|
84
110
|
|
85
111
|
|
86
112
|
#
|
@@ -172,514 +198,234 @@ class NMatrix
|
|
172
198
|
end
|
173
199
|
alias :to_h :to_hash
|
174
200
|
|
175
|
-
#
|
176
|
-
# call-seq:
|
177
|
-
# invert! -> NMatrix
|
178
|
-
#
|
179
|
-
# Use LAPACK to calculate the inverse of the matrix (in-place). Only works on
|
180
|
-
# dense matrices.
|
181
|
-
#
|
182
|
-
# Note: If you don't have LAPACK, e.g., on a Mac, this may not work yet.
|
183
|
-
#
|
184
|
-
def invert!
|
185
|
-
# Get the pivot array; factor the matrix
|
186
|
-
pivot = self.getrf!
|
187
201
|
|
188
|
-
|
189
|
-
|
202
|
+
def inspect #:nodoc:
|
203
|
+
original_inspect = super()
|
204
|
+
original_inspect = original_inspect[0...original_inspect.size-1]
|
205
|
+
original_inspect + " " + inspect_helper.join(" ") + ">"
|
206
|
+
end
|
207
|
+
|
208
|
+
def __yale_ary__to_s(sym) #:nodoc:
|
209
|
+
ary = self.send("__yale_#{sym.to_s}__".to_sym)
|
190
210
|
|
191
|
-
|
211
|
+
'[' + ary.collect { |a| a ? a : 'nil'}.join(',') + ']'
|
192
212
|
end
|
193
213
|
|
214
|
+
|
215
|
+
##
|
216
|
+
# call-seq:
|
217
|
+
# integer_dtype?() -> Boolean
|
194
218
|
#
|
195
|
-
#
|
196
|
-
# invert -> NMatrix
|
197
|
-
#
|
198
|
-
# Make a copy of the matrix, then invert it (requires LAPACK).
|
199
|
-
#
|
200
|
-
# * *Returns* :
|
201
|
-
# - A dense NMatrix.
|
219
|
+
# Checks if dtype is an integer type
|
202
220
|
#
|
203
|
-
def
|
204
|
-
|
221
|
+
def integer_dtype?
|
222
|
+
[:byte, :int8, :int16, :int32, :int64].include?(self.dtype)
|
205
223
|
end
|
206
|
-
|
224
|
+
|
207
225
|
|
208
226
|
#
|
209
227
|
# call-seq:
|
210
|
-
#
|
228
|
+
# to_f -> Float
|
211
229
|
#
|
212
|
-
#
|
213
|
-
#
|
230
|
+
# Converts an nmatrix with a single element (but any number of dimensions)
|
231
|
+
# to a float.
|
214
232
|
#
|
215
|
-
#
|
216
|
-
# - The IPIV vector. The L and U matrices are stored in A.
|
217
|
-
# * *Raises* :
|
218
|
-
# - +StorageTypeError+ -> ATLAS functions only work on dense matrices.
|
233
|
+
# Raises an IndexError if the matrix does not have just a single element.
|
219
234
|
#
|
220
|
-
def
|
221
|
-
raise
|
222
|
-
|
235
|
+
def to_f
|
236
|
+
raise IndexError, 'to_f only valid for matrices with a single element' unless shape.all? { |e| e == 1 }
|
237
|
+
self[*Array.new(shape.size, 0)]
|
223
238
|
end
|
224
239
|
|
225
240
|
#
|
226
241
|
# call-seq:
|
227
|
-
#
|
228
|
-
#
|
229
|
-
# Calculate the determinant by way of LU decomposition. This is accomplished
|
230
|
-
# using clapack_getrf, and then by summing the diagonal elements. There is a
|
231
|
-
# risk of underflow/overflow.
|
232
|
-
#
|
233
|
-
# There are probably also more efficient ways to calculate the determinant.
|
234
|
-
# This method requires making a copy of the matrix, since clapack_getrf
|
235
|
-
# modifies its input.
|
242
|
+
# to_flat_array -> Array
|
243
|
+
# to_flat_a -> Array
|
236
244
|
#
|
237
|
-
#
|
245
|
+
# Converts an NMatrix to a one-dimensional Ruby Array.
|
238
246
|
#
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
247
|
+
def to_flat_array
|
248
|
+
ary = Array.new(self.size)
|
249
|
+
self.each.with_index { |v,i| ary[i] = v }
|
250
|
+
ary
|
251
|
+
end
|
252
|
+
alias :to_flat_a :to_flat_array
|
253
|
+
|
243
254
|
#
|
244
|
-
#
|
245
|
-
#
|
255
|
+
# call-seq:
|
256
|
+
# size -> Fixnum
|
246
257
|
#
|
247
|
-
#
|
248
|
-
# - The determinant of the matrix. It's the same type as the matrix's dtype.
|
249
|
-
# * *Raises* :
|
250
|
-
# - +NotImplementedError+ -> Must be used in 2D matrices.
|
258
|
+
# Returns the total size of the NMatrix based on its shape.
|
251
259
|
#
|
252
|
-
def
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
new_dtype = [:byte,:int8,:int16,:int32,:int64].include?(self.dtype) ? :rational128 : self.dtype
|
257
|
-
copy = self.cast(:dense, new_dtype)
|
258
|
-
|
259
|
-
# Need to know the number of permutations. We'll add up the diagonals of
|
260
|
-
# the factorized matrix.
|
261
|
-
pivot = copy.getrf!
|
260
|
+
def size
|
261
|
+
s = self.shape
|
262
|
+
(0...self.dimensions).inject(1) { |x,i| x * s[i] }
|
263
|
+
end
|
262
264
|
|
263
|
-
prod = pivot.size % 2 == 1 ? -1 : 1 # odd permutations => negative
|
264
|
-
[shape[0],shape[1]].min.times do |i|
|
265
|
-
prod *= copy[i,i]
|
266
|
-
end
|
267
265
|
|
268
|
-
|
269
|
-
|
266
|
+
def to_s #:nodoc:
|
267
|
+
self.to_flat_array.to_s
|
270
268
|
end
|
271
269
|
|
272
270
|
#
|
273
271
|
# call-seq:
|
274
|
-
#
|
275
|
-
# complex_conjugate(new_stype) -> NMatrix
|
276
|
-
#
|
277
|
-
# Get the complex conjugate of this matrix. See also complex_conjugate! for
|
278
|
-
# an in-place operation (provided the dtype is already +:complex64+ or
|
279
|
-
# +:complex128+).
|
280
|
-
#
|
281
|
-
# Doesn't work on list matrices, but you can optionally pass in the stype you
|
282
|
-
# want to cast to if you're dealing with a list matrix.
|
272
|
+
# nvector? -> true or false
|
283
273
|
#
|
284
|
-
#
|
285
|
-
#
|
286
|
-
# * *Returns* :
|
287
|
-
# - If the original NMatrix isn't complex, the result is a +:complex128+ NMatrix. Otherwise, it's the original dtype.
|
274
|
+
# Shortcut function for determining whether the effective dimension is less than the dimension.
|
275
|
+
# Useful when we take slices of n-dimensional matrices where n > 2.
|
288
276
|
#
|
289
|
-
def
|
290
|
-
self.
|
277
|
+
def nvector?
|
278
|
+
self.effective_dim < self.dim
|
291
279
|
end
|
292
280
|
|
293
281
|
#
|
294
282
|
# call-seq:
|
295
|
-
#
|
283
|
+
# vector? -> true or false
|
296
284
|
#
|
297
|
-
#
|
298
|
-
# complex, this should only require one copy (for the transpose).
|
299
|
-
#
|
300
|
-
# * *Returns* :
|
301
|
-
# - The conjugate transpose of the matrix as a copy.
|
285
|
+
# Shortcut function for determining whether the effective dimension is 1. See also #nvector?
|
302
286
|
#
|
303
|
-
def
|
304
|
-
self.
|
287
|
+
def vector?
|
288
|
+
self.effective_dim == 1
|
305
289
|
end
|
306
290
|
|
291
|
+
|
307
292
|
#
|
308
293
|
# call-seq:
|
309
|
-
#
|
310
|
-
#
|
311
|
-
# A hermitian matrix is a complex square matrix that is equal to its
|
312
|
-
# conjugate transpose. (http://en.wikipedia.org/wiki/Hermitian_matrix)
|
294
|
+
# to_a -> Array
|
313
295
|
#
|
314
|
-
#
|
315
|
-
# - True if +self+ is a hermitian matrix, nil otherwise.
|
296
|
+
# Converts an NMatrix to an array of arrays, or an NMatrix of effective dimension 1 to an array.
|
316
297
|
#
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
if [:complex64, :complex128].include?(self.dtype)
|
321
|
-
# TODO: Write much faster Hermitian test in C
|
322
|
-
self.eql?(self.conjugate_transpose)
|
323
|
-
else
|
324
|
-
symmetric?
|
325
|
-
end
|
326
|
-
end
|
327
|
-
|
328
|
-
def inspect #:nodoc:
|
329
|
-
original_inspect = super()
|
330
|
-
original_inspect = original_inspect[0...original_inspect.size-1]
|
331
|
-
original_inspect + " " + inspect_helper.join(" ") + ">"
|
332
|
-
end
|
333
|
-
|
334
|
-
def __yale_ary__to_s(sym) #:nodoc:
|
335
|
-
ary = self.send("__yale_#{sym.to_s}__".to_sym)
|
336
|
-
|
337
|
-
'[' + ary.collect { |a| a ? a : 'nil'}.join(',') + ']'
|
338
|
-
end
|
298
|
+
# Does not yet work for dimensions > 2
|
299
|
+
def to_a(dimen=nil)
|
300
|
+
if self.dim == 2
|
339
301
|
|
302
|
+
return self.to_flat_a if self.shape[0] == 1
|
340
303
|
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
# each_along_dim() { |elem| block } -> NMatrix
|
346
|
-
# each_along_dim(dimen) { |elem| block } -> NMatrix
|
347
|
-
#
|
348
|
-
# Successively yields submatrices at each coordinate along a specified
|
349
|
-
# dimension. Each submatrix will have the same number of dimensions as
|
350
|
-
# the matrix being iterated, but with the specified dimension's size
|
351
|
-
# equal to 1.
|
352
|
-
#
|
353
|
-
# @param [Integer] dimen the dimension being iterated over.
|
354
|
-
#
|
355
|
-
def each_along_dim(dimen=0)
|
356
|
-
return enum_for(:each_along_dim, dimen) unless block_given?
|
357
|
-
dims = shape
|
358
|
-
shape.each_index { |i| dims[i] = 0...(shape[i]) unless i == dimen }
|
359
|
-
0.upto(shape[dimen]-1) do |i|
|
360
|
-
dims[dimen] = i
|
361
|
-
yield self[*dims]
|
362
|
-
end
|
363
|
-
end
|
364
|
-
|
365
|
-
|
366
|
-
##
|
367
|
-
# call-seq:
|
368
|
-
# reduce_along_dim() -> Enumerator
|
369
|
-
# reduce_along_dim(dimen) -> Enumerator
|
370
|
-
# reduce_along_dim(dimen, initial) -> Enumerator
|
371
|
-
# reduce_along_dim(dimen, initial, dtype) -> Enumerator
|
372
|
-
# reduce_along_dim() { |elem| block } -> NMatrix
|
373
|
-
# reduce_along_dim(dimen) { |elem| block } -> NMatrix
|
374
|
-
# reduce_along_dim(dimen, initial) { |elem| block } -> NMatrix
|
375
|
-
# reduce_along_dim(dimen, initial, dtype) { |elem| block } -> NMatrix
|
376
|
-
#
|
377
|
-
# Reduces an NMatrix using a supplied block over a specified dimension.
|
378
|
-
# The block should behave the same way as for Enumerable#reduce.
|
379
|
-
#
|
380
|
-
# @param [Integer] dimen the dimension being reduced
|
381
|
-
# @param [Numeric] initial the initial value for the reduction
|
382
|
-
# (i.e. the usual parameter to Enumerable#reduce). Supply nil or do not
|
383
|
-
# supply this argument to have it follow the usual Enumerable#reduce
|
384
|
-
# behavior of using the first element as the initial value.
|
385
|
-
# @param [Symbol] dtype if non-nil/false, forces the accumulated result to have this dtype
|
386
|
-
# @return [NMatrix] an NMatrix with the same number of dimensions as the
|
387
|
-
# input, but with the input dimension now having size 1. Each element
|
388
|
-
# is the result of the reduction at that position along the specified
|
389
|
-
# dimension.
|
390
|
-
#
|
391
|
-
def reduce_along_dim(dimen=0, initial=nil, dtype=nil)
|
392
|
-
|
393
|
-
if dimen > shape.size then
|
394
|
-
raise ArgumentError, "Requested dimension does not exist. Requested: #{dimen}, shape: #{shape}"
|
395
|
-
end
|
396
|
-
|
397
|
-
return enum_for(:reduce_along_dim, dimen, initial) unless block_given?
|
398
|
-
|
399
|
-
new_shape = shape
|
400
|
-
new_shape[dimen] = 1
|
401
|
-
|
402
|
-
first_as_acc = false
|
403
|
-
|
404
|
-
if initial then
|
405
|
-
acc = NMatrix.new(new_shape, initial, dtype || self.dtype)
|
406
|
-
else
|
407
|
-
each_along_dim(dimen) do |sub_mat|
|
408
|
-
if sub_mat.is_a?(NMatrix) and dtype and dtype != self.dtype then
|
409
|
-
acc = sub_mat.cast(self.stype, dtype)
|
410
|
-
else
|
411
|
-
acc = sub_mat
|
304
|
+
ary = []
|
305
|
+
begin
|
306
|
+
self.each_row do |row|
|
307
|
+
ary << row.to_flat_a
|
412
308
|
end
|
413
|
-
|
309
|
+
#rescue NotImplementedError # Oops. Try copying instead
|
310
|
+
# self.each_row(:copy) do |row|
|
311
|
+
# ary << row.to_a.flatten
|
312
|
+
# end
|
414
313
|
end
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
each_along_dim(dimen) do |sub_mat|
|
419
|
-
if first_as_acc then
|
420
|
-
first_as_acc = false
|
421
|
-
next
|
422
|
-
end
|
423
|
-
acc = (yield acc, sub_mat)
|
314
|
+
ary
|
315
|
+
else
|
316
|
+
to_a_rec(0)
|
424
317
|
end
|
425
|
-
|
426
|
-
acc
|
427
|
-
|
428
318
|
end
|
429
319
|
|
430
|
-
alias_method :inject_along_dim, :reduce_along_dim
|
431
320
|
|
432
|
-
##
|
433
|
-
# call-seq:
|
434
|
-
# integer_dtype?() -> Boolean
|
435
321
|
#
|
436
|
-
# Checks if dtype is an integer type
|
437
|
-
#
|
438
|
-
def integer_dtype?
|
439
|
-
[:byte, :int8, :int16, :int32, :int64].include?(self.dtype)
|
440
|
-
end
|
441
|
-
|
442
|
-
##
|
443
322
|
# call-seq:
|
444
|
-
#
|
445
|
-
#
|
323
|
+
# rank(dimension, row_or_column_number) -> NMatrix
|
324
|
+
# rank(dimension, row_or_column_number, :reference) -> NMatrix reference slice
|
446
325
|
#
|
447
|
-
#
|
326
|
+
# Returns the rank (e.g., row, column, or layer) specified, using slicing by copy as default.
|
448
327
|
#
|
449
|
-
#
|
450
|
-
|
451
|
-
# @see #reduce_along_dim
|
452
|
-
#
|
453
|
-
def mean(dimen=0)
|
454
|
-
reduce_dtype = nil
|
455
|
-
if integer_dtype? then
|
456
|
-
reduce_dtype = :float64
|
457
|
-
end
|
458
|
-
reduce_along_dim(dimen, 0.0, reduce_dtype) do |mean, sub_mat|
|
459
|
-
mean + sub_mat/shape[dimen]
|
460
|
-
end
|
461
|
-
end
|
328
|
+
# See @row (dimension = 0), @column (dimension = 1)
|
329
|
+
def rank(shape_idx, rank_idx, meth = :copy)
|
462
330
|
|
463
|
-
|
464
|
-
|
465
|
-
|
466
|
-
# sum(dimen) -> NMatrix
|
467
|
-
#
|
468
|
-
# Calculates the sum along the specified dimension.
|
469
|
-
#
|
470
|
-
# @see #reduce_along_dim
|
471
|
-
def sum(dimen=0)
|
472
|
-
reduce_along_dim(dimen, 0.0) do |sum, sub_mat|
|
473
|
-
sum + sub_mat
|
331
|
+
params = Array.new(self.dim)
|
332
|
+
params.each.with_index do |v,d|
|
333
|
+
params[d] = d == shape_idx ? rank_idx : 0...self.shape[d]
|
474
334
|
end
|
475
|
-
end
|
476
335
|
|
477
|
-
|
478
|
-
##
|
479
|
-
# call-seq:
|
480
|
-
# min() -> NMatrix
|
481
|
-
# min(dimen) -> NMatrix
|
482
|
-
#
|
483
|
-
# Calculates the minimum along the specified dimension.
|
484
|
-
#
|
485
|
-
# @see #reduce_along_dim
|
486
|
-
#
|
487
|
-
def min(dimen=0)
|
488
|
-
reduce_along_dim(dimen) do |min, sub_mat|
|
489
|
-
if min.is_a? NMatrix then
|
490
|
-
min * (min <= sub_mat).cast(self.stype, self.dtype) + ((min)*0.0 + (min > sub_mat).cast(self.stype, self.dtype)) * sub_mat
|
491
|
-
else
|
492
|
-
min <= sub_mat ? min : sub_mat
|
493
|
-
end
|
494
|
-
end
|
336
|
+
meth == :reference ? self[*params] : self.slice(*params)
|
495
337
|
end
|
496
338
|
|
497
|
-
##
|
498
|
-
# call-seq:
|
499
|
-
# max() -> NMatrix
|
500
|
-
# max(dimen) -> NMatrix
|
501
339
|
#
|
502
|
-
# Calculates the maximum along the specified dimension.
|
503
|
-
#
|
504
|
-
# @see #reduce_along_dim
|
505
|
-
#
|
506
|
-
def max(dimen=0)
|
507
|
-
reduce_along_dim(dimen) do |max, sub_mat|
|
508
|
-
if max.is_a? NMatrix then
|
509
|
-
max * (max >= sub_mat).cast(self.stype, self.dtype) + ((max)*0.0 + (max < sub_mat).cast(self.stype, self.dtype)) * sub_mat
|
510
|
-
else
|
511
|
-
max >= sub_mat ? max : sub_mat
|
512
|
-
end
|
513
|
-
end
|
514
|
-
end
|
515
|
-
|
516
|
-
|
517
|
-
##
|
518
340
|
# call-seq:
|
519
|
-
#
|
520
|
-
#
|
521
|
-
#
|
522
|
-
# Calculates the sample variance along the specified dimension.
|
523
|
-
#
|
524
|
-
# This will force integer types to float64 dtype.
|
525
|
-
#
|
526
|
-
# @see #reduce_along_dim
|
341
|
+
# column(column_number) -> NMatrix
|
342
|
+
# column(column_number, get_by) -> NMatrix
|
527
343
|
#
|
528
|
-
|
529
|
-
reduce_dtype = nil
|
530
|
-
if integer_dtype? then
|
531
|
-
reduce_dtype = :float64
|
532
|
-
end
|
533
|
-
m = mean(dimen)
|
534
|
-
reduce_along_dim(dimen, 0.0, reduce_dtype) do |var, sub_mat|
|
535
|
-
var + (m - sub_mat)*(m - sub_mat)/(shape[dimen]-1)
|
536
|
-
end
|
537
|
-
end
|
538
|
-
|
539
|
-
##
|
540
|
-
# call-seq:
|
541
|
-
# std() -> NMatrix
|
542
|
-
# std(dimen) -> NMatrix
|
344
|
+
# Returns the column specified. Uses slicing by copy as default.
|
543
345
|
#
|
346
|
+
# * *Arguments* :
|
347
|
+
# - +column_number+ -> Integer.
|
348
|
+
# - +get_by+ -> Type of slicing to use, +:copy+ or +:reference+.
|
349
|
+
# * *Returns* :
|
350
|
+
# - A NMatrix representing the requested column as a column vector.
|
544
351
|
#
|
545
|
-
#
|
352
|
+
# Examples:
|
546
353
|
#
|
547
|
-
#
|
354
|
+
# m = NMatrix.new(2, [1, 4, 9, 14], :int32) # => 1 4
|
355
|
+
# 9 14
|
548
356
|
#
|
549
|
-
#
|
357
|
+
# m.column(1) # => 4
|
358
|
+
# 14
|
550
359
|
#
|
551
|
-
def
|
552
|
-
|
360
|
+
def column(column_number, get_by = :copy)
|
361
|
+
rank(1, column_number, get_by)
|
553
362
|
end
|
554
363
|
|
555
|
-
|
556
|
-
# call-seq:
|
557
|
-
# to_f -> Float
|
558
|
-
#
|
559
|
-
# Converts an nmatrix with a single element (but any number of dimensions)
|
560
|
-
# to a float.
|
561
|
-
#
|
562
|
-
# Raises an IndexError if the matrix does not have just a single element.
|
563
|
-
#
|
564
|
-
# FIXME: Does this actually happen? Matrices should not have just one element.
|
565
|
-
def to_f
|
566
|
-
raise IndexError, 'to_f only valid for matrices with a single element' unless shape.all? { |e| e == 1 }
|
567
|
-
self[*Array.new(shape.size, 0)]
|
568
|
-
end
|
364
|
+
alias :col :column
|
569
365
|
|
570
|
-
##
|
571
|
-
# call-seq:
|
572
|
-
# each -> Enumerator
|
573
366
|
#
|
574
|
-
# Enumerate through the matrix. @see Enumerable#each
|
575
|
-
#
|
576
|
-
# For dense, this actually calls a specialized each iterator (in C). For yale and list, it relies upon
|
577
|
-
# #each_with_indices (which is about as fast as reasonably possible for C code).
|
578
|
-
def each &block
|
579
|
-
if self.stype == :dense
|
580
|
-
self.__dense_each__(&block)
|
581
|
-
else
|
582
|
-
self.each_with_indices(&block)
|
583
|
-
end
|
584
|
-
end
|
585
|
-
|
586
|
-
##
|
587
367
|
# call-seq:
|
588
|
-
#
|
589
|
-
#
|
368
|
+
# row(row_number) -> NMatrix
|
369
|
+
# row(row_number, get_by) -> NMatrix
|
590
370
|
#
|
591
|
-
#
|
371
|
+
# * *Arguments* :
|
372
|
+
# - +row_number+ -> Integer.
|
373
|
+
# - +get_by+ -> Type of slicing to use, +:copy+ or +:reference+.
|
374
|
+
# * *Returns* :
|
375
|
+
# - A NMatrix representing the requested row as a row vector.
|
592
376
|
#
|
593
|
-
def
|
594
|
-
|
595
|
-
cp = self.dup
|
596
|
-
cp.map! &bl
|
597
|
-
cp
|
377
|
+
def row(row_number, get_by = :copy)
|
378
|
+
rank(0, row_number, get_by)
|
598
379
|
end
|
599
380
|
|
600
|
-
|
381
|
+
#
|
601
382
|
# call-seq:
|
602
|
-
#
|
603
|
-
#
|
383
|
+
# layer(layer_number) -> NMatrix
|
384
|
+
# row(layer_number, get_by) -> NMatrix
|
604
385
|
#
|
605
|
-
#
|
606
|
-
#
|
386
|
+
# * *Arguments* :
|
387
|
+
# - +layer_number+ -> Integer.
|
388
|
+
# - +get_by+ -> Type of slicing to use, +:copy+ or +:reference+.
|
389
|
+
# * *Returns* :
|
390
|
+
# - A NMatrix representing the requested layer as a layer vector.
|
607
391
|
#
|
608
|
-
def
|
609
|
-
|
610
|
-
self.each_stored_with_indices do |e, *i|
|
611
|
-
self[*i] = (yield e)
|
612
|
-
end
|
613
|
-
self
|
392
|
+
def layer(layer_number, get_by = :copy)
|
393
|
+
rank(2, layer_number, get_by)
|
614
394
|
end
|
615
395
|
|
616
396
|
|
397
|
+
|
617
398
|
#
|
618
399
|
# call-seq:
|
619
|
-
#
|
620
|
-
#
|
621
|
-
#
|
622
|
-
|
623
|
-
|
624
|
-
|
625
|
-
|
400
|
+
# shuffle! -> ...
|
401
|
+
# shuffle!(random: rng) -> ...
|
402
|
+
#
|
403
|
+
# Re-arranges the contents of an NVector.
|
404
|
+
#
|
405
|
+
# TODO: Write more efficient version for Yale, list.
|
406
|
+
# TODO: Generalize for more dimensions.
|
407
|
+
def shuffle!(*args)
|
408
|
+
method_missing(:shuffle!, *args) if self.effective_dim > 1
|
409
|
+
ary = self.to_flat_a
|
410
|
+
ary.shuffle!(*args)
|
411
|
+
ary.each.with_index { |v,idx| self[idx] = v }
|
626
412
|
self
|
627
413
|
end
|
628
414
|
|
415
|
+
|
629
416
|
#
|
630
417
|
# call-seq:
|
631
|
-
#
|
418
|
+
# shuffle -> ...
|
419
|
+
# shuffle(rng) -> ...
|
632
420
|
#
|
633
|
-
#
|
634
|
-
|
635
|
-
|
636
|
-
|
637
|
-
|
638
|
-
self
|
639
|
-
|
640
|
-
|
641
|
-
|
642
|
-
class << self
|
643
|
-
#
|
644
|
-
# call-seq:
|
645
|
-
# load_file(path) -> Mat5Reader
|
646
|
-
#
|
647
|
-
# * *Arguments* :
|
648
|
-
# - +path+ -> The path to a version 5 .mat file.
|
649
|
-
# * *Returns* :
|
650
|
-
# - A Mat5Reader object.
|
651
|
-
#
|
652
|
-
def load_file(file_path)
|
653
|
-
NMatrix::IO::Mat5Reader.new(File.open(file_path, 'rb')).to_ruby
|
654
|
-
end
|
655
|
-
|
656
|
-
##
|
657
|
-
# call-seq:
|
658
|
-
# ones_like(nm) -> NMatrix
|
659
|
-
#
|
660
|
-
# Creates a new matrix of ones with the same dtype and shape as the
|
661
|
-
# provided matrix.
|
662
|
-
#
|
663
|
-
# @param [NMatrix] nm the nmatrix whose dtype and shape will be used
|
664
|
-
# @return [NMatrix] a new nmatrix filled with ones.
|
665
|
-
#
|
666
|
-
def ones_like(nm)
|
667
|
-
NMatrix.ones(nm.shape, nm.dtype)
|
668
|
-
end
|
669
|
-
|
670
|
-
##
|
671
|
-
# call-seq:
|
672
|
-
# zeros_like(nm) -> NMatrix
|
673
|
-
#
|
674
|
-
# Creates a new matrix of zeros with the same stype, dtype, and shape
|
675
|
-
# as the provided matrix.
|
676
|
-
#
|
677
|
-
# @param [NMatrix] nm the nmatrix whose stype, dtype, and shape will be used
|
678
|
-
# @return [NMatrix] a new nmatrix filled with zeros.
|
679
|
-
#
|
680
|
-
def zeros_like(nm)
|
681
|
-
NMatrix.zeros(nm.stype, nm.shape, nm.dtype)
|
682
|
-
end
|
421
|
+
# Re-arranges the contents of an NVector.
|
422
|
+
#
|
423
|
+
# TODO: Write more efficient version for Yale, list.
|
424
|
+
# TODO: Generalize for more dimensions.
|
425
|
+
def shuffle(*args)
|
426
|
+
method_missing(:shuffle!, *args) if self.effective_dim > 1
|
427
|
+
t = self.clone
|
428
|
+
t.shuffle!(*args)
|
683
429
|
end
|
684
430
|
|
685
431
|
|
@@ -693,54 +439,18 @@ class NMatrix
|
|
693
439
|
end
|
694
440
|
end
|
695
441
|
|
696
|
-
protected
|
697
|
-
# Define the element-wise operations for lists. Note that the __list_map_merged_stored__ iterator returns a Ruby Object
|
698
|
-
# matrix, which we then cast back to the appropriate type. If you don't want that, you can redefine these functions in
|
699
|
-
# your own code.
|
700
|
-
{add: :+, sub: :-, mul: :*, div: :/, pow: :**, mod: :%}.each_pair do |ewop, op|
|
701
|
-
define_method("__list_elementwise_#{ewop}__") do |rhs|
|
702
|
-
self.__list_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, rhs.dtype))
|
703
|
-
end
|
704
|
-
define_method("__dense_elementwise_#{ewop}__") do |rhs|
|
705
|
-
self.__dense_map_pair__(rhs) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, rhs.dtype))
|
706
|
-
end
|
707
|
-
define_method("__yale_elementwise_#{ewop}__") do |rhs|
|
708
|
-
self.__yale_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, rhs.dtype))
|
709
|
-
end
|
710
|
-
define_method("__list_scalar_#{ewop}__") do |rhs|
|
711
|
-
self.__list_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, NMatrix.min_dtype(rhs)))
|
712
|
-
end
|
713
|
-
define_method("__yale_scalar_#{ewop}__") do |rhs|
|
714
|
-
self.__yale_map_stored__ { |l| l.send(op,rhs) }.cast(stype, NMatrix.upcast(dtype, NMatrix.min_dtype(rhs)))
|
715
|
-
end
|
716
|
-
define_method("__dense_scalar_#{ewop}__") do |rhs|
|
717
|
-
self.__dense_map__ { |l| l.send(op,rhs) }.cast(stype, NMatrix.upcast(dtype, NMatrix.min_dtype(rhs)))
|
718
|
-
end
|
719
|
-
end
|
720
442
|
|
721
|
-
|
722
|
-
|
723
|
-
|
724
|
-
|
725
|
-
|
726
|
-
|
727
|
-
|
728
|
-
end
|
729
|
-
define_method("__yale_elementwise_#{ewop}__") do |rhs|
|
730
|
-
self.__yale_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }
|
731
|
-
end
|
732
|
-
|
733
|
-
define_method("__list_scalar_#{ewop}__") do |rhs|
|
734
|
-
self.__list_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }
|
735
|
-
end
|
736
|
-
define_method("__yale_scalar_#{ewop}__") do |rhs|
|
737
|
-
self.__yale_map_stored__ { |l| l.send(op,rhs) }
|
738
|
-
end
|
739
|
-
define_method("__dense_scalar_#{ewop}__") do |rhs|
|
740
|
-
self.__dense_map__ { |l| l.send(op,rhs) }
|
443
|
+
def respond_to?(method) #:nodoc:
|
444
|
+
if [:shuffle, :shuffle!, :each_with_index].include?(method.intern) # vector-only methods
|
445
|
+
return vector?
|
446
|
+
elsif [:each_layer, :layer].include?(method.intern) # 3-or-more dimensions only
|
447
|
+
return dim > 2
|
448
|
+
else
|
449
|
+
super(method)
|
741
450
|
end
|
742
451
|
end
|
743
452
|
|
453
|
+
|
744
454
|
# This is how you write an individual element-wise operation function:
|
745
455
|
#def __list_elementwise_add__ rhs
|
746
456
|
# self.__list_map_merged_stored__(rhs){ |l,r| l+r }.cast(self.stype, NMatrix.upcast(self.dtype, rhs.dtype))
|
@@ -766,4 +476,18 @@ protected
|
|
766
476
|
end
|
767
477
|
|
768
478
|
|
479
|
+
# Helper for converting a matrix into an array of arrays recursively
|
480
|
+
def to_a_rec(dimen = 0) #:nodoc:
|
481
|
+
return self.flat_map { |v| v } if dimen == self.dim-1
|
482
|
+
|
483
|
+
ary = []
|
484
|
+
self.each_rank(dimen) do |sect|
|
485
|
+
ary << sect.to_a_rec(dimen+1)
|
486
|
+
end
|
487
|
+
ary
|
488
|
+
end
|
769
489
|
end
|
490
|
+
|
491
|
+
require_relative './shortcuts.rb'
|
492
|
+
require_relative './math.rb'
|
493
|
+
require_relative './enumerate.rb'
|