nmatrix 0.0.6 → 0.0.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +2 -0
  3. data/Gemfile +5 -0
  4. data/History.txt +97 -0
  5. data/Manifest.txt +34 -7
  6. data/README.rdoc +13 -13
  7. data/Rakefile +36 -26
  8. data/ext/nmatrix/data/data.cpp +15 -2
  9. data/ext/nmatrix/data/data.h +4 -0
  10. data/ext/nmatrix/data/ruby_object.h +5 -14
  11. data/ext/nmatrix/extconf.rb +3 -2
  12. data/ext/nmatrix/{util/math.cpp → math.cpp} +296 -6
  13. data/ext/nmatrix/math/asum.h +143 -0
  14. data/ext/nmatrix/math/geev.h +82 -0
  15. data/ext/nmatrix/math/gemm.h +267 -0
  16. data/ext/nmatrix/math/gemv.h +208 -0
  17. data/ext/nmatrix/math/ger.h +96 -0
  18. data/ext/nmatrix/math/gesdd.h +80 -0
  19. data/ext/nmatrix/math/gesvd.h +78 -0
  20. data/ext/nmatrix/math/getf2.h +86 -0
  21. data/ext/nmatrix/math/getrf.h +240 -0
  22. data/ext/nmatrix/math/getri.h +107 -0
  23. data/ext/nmatrix/math/getrs.h +125 -0
  24. data/ext/nmatrix/math/idamax.h +86 -0
  25. data/ext/nmatrix/{util → math}/lapack.h +60 -356
  26. data/ext/nmatrix/math/laswp.h +165 -0
  27. data/ext/nmatrix/math/long_dtype.h +52 -0
  28. data/ext/nmatrix/math/math.h +1154 -0
  29. data/ext/nmatrix/math/nrm2.h +181 -0
  30. data/ext/nmatrix/math/potrs.h +125 -0
  31. data/ext/nmatrix/math/rot.h +141 -0
  32. data/ext/nmatrix/math/rotg.h +115 -0
  33. data/ext/nmatrix/math/scal.h +73 -0
  34. data/ext/nmatrix/math/swap.h +73 -0
  35. data/ext/nmatrix/math/trsm.h +383 -0
  36. data/ext/nmatrix/nmatrix.cpp +176 -152
  37. data/ext/nmatrix/nmatrix.h +1 -2
  38. data/ext/nmatrix/ruby_constants.cpp +9 -4
  39. data/ext/nmatrix/ruby_constants.h +1 -0
  40. data/ext/nmatrix/storage/dense.cpp +57 -41
  41. data/ext/nmatrix/storage/list.cpp +52 -50
  42. data/ext/nmatrix/storage/storage.cpp +59 -43
  43. data/ext/nmatrix/storage/yale.cpp +352 -333
  44. data/ext/nmatrix/storage/yale.h +4 -0
  45. data/lib/nmatrix.rb +2 -2
  46. data/lib/nmatrix/blas.rb +4 -4
  47. data/lib/nmatrix/enumerate.rb +241 -0
  48. data/lib/nmatrix/lapack.rb +54 -1
  49. data/lib/nmatrix/math.rb +462 -0
  50. data/lib/nmatrix/nmatrix.rb +210 -486
  51. data/lib/nmatrix/nvector.rb +0 -62
  52. data/lib/nmatrix/rspec.rb +75 -0
  53. data/lib/nmatrix/shortcuts.rb +136 -108
  54. data/lib/nmatrix/version.rb +1 -1
  55. data/spec/blas_spec.rb +20 -12
  56. data/spec/elementwise_spec.rb +22 -13
  57. data/spec/io_spec.rb +1 -0
  58. data/spec/lapack_spec.rb +197 -0
  59. data/spec/nmatrix_spec.rb +39 -38
  60. data/spec/nvector_spec.rb +3 -9
  61. data/spec/rspec_monkeys.rb +29 -0
  62. data/spec/rspec_spec.rb +34 -0
  63. data/spec/shortcuts_spec.rb +14 -16
  64. data/spec/slice_spec.rb +242 -186
  65. data/spec/spec_helper.rb +19 -0
  66. metadata +33 -5
  67. data/ext/nmatrix/util/math.h +0 -2612
@@ -105,7 +105,7 @@ $srcs = [
105
105
  'ruby_constants.cpp',
106
106
 
107
107
  'data/data.cpp',
108
- 'util/math.cpp',
108
+ 'math.cpp',
109
109
  'util/sl_list.cpp',
110
110
  'util/io.cpp',
111
111
  'storage/common.cpp',
@@ -148,6 +148,7 @@ have_header("clapack.h")
148
148
  have_header("cblas.h")
149
149
 
150
150
  have_func("clapack_dgetrf", "clapack.h")
151
+ have_func("dgesvd_", "clapack.h")
151
152
 
152
153
 
153
154
  #find_library("cblas", "cblas_dgemm")
@@ -158,7 +159,7 @@ have_func("cblas_dgemm", "cblas.h")
158
159
  # Order matters here: ATLAS has to go after LAPACK: http://mail.scipy.org/pipermail/scipy-user/2007-January/010717.html
159
160
  $libs += " -llapack -lcblas -latlas "
160
161
 
161
- $objs = %w{nmatrix ruby_constants data/data util/io util/math util/sl_list storage/common storage/storage storage/dense storage/yale storage/list}.map { |i| i + ".o" }
162
+ $objs = %w{nmatrix ruby_constants data/data util/io math util/sl_list storage/common storage/storage storage/dense storage/yale storage/list}.map { |i| i + ".o" }
162
163
 
163
164
  #CONFIG['CXX'] = 'clang++'
164
165
  CONFIG['CXX'] = 'g++'
@@ -112,8 +112,33 @@
112
112
  * Project Includes
113
113
  */
114
114
 
115
- #include "math.h"
116
- #include "lapack.h"
115
+ #include <algorithm>
116
+ #include <limits>
117
+
118
+ #include "data/data.h"
119
+ #include "math/gesdd.h"
120
+ #include "math/gesvd.h"
121
+ #include "math/geev.h"
122
+ #include "math/swap.h"
123
+ #include "math/idamax.h"
124
+ #include "math/scal.h"
125
+ #include "math/ger.h"
126
+ #include "math/getf2.h"
127
+ #include "math/laswp.h"
128
+ #include "math/trsm.h"
129
+ #include "math/long_dtype.h" // for gemm.h
130
+ #include "math/gemm.h"
131
+ #include "math/gemv.h"
132
+ #include "math/asum.h"
133
+ #include "math/nrm2.h"
134
+ #include "math/getrf.h"
135
+ #include "math/getri.h"
136
+ #include "math/getrs.h"
137
+ #include "math/potrs.h"
138
+ #include "math/rot.h"
139
+ #include "math/rotg.h"
140
+ #include "math/math.h"
141
+ #include "storage/dense.h"
117
142
 
118
143
  #include "nmatrix.h"
119
144
  #include "ruby_constants.h"
@@ -155,6 +180,9 @@ extern "C" {
155
180
  static VALUE nm_clapack_scal(VALUE self, VALUE n, VALUE scale, VALUE vector, VALUE incx);
156
181
  static VALUE nm_clapack_lauum(VALUE self, VALUE order, VALUE uplo, VALUE n, VALUE a, VALUE lda);
157
182
 
183
+ static VALUE nm_lapack_gesvd(VALUE self, VALUE jobu, VALUE jobvt, VALUE m, VALUE n, VALUE a, VALUE lda, VALUE s, VALUE u, VALUE ldu, VALUE vt, VALUE ldvt, VALUE lworkspace_size);
184
+ static VALUE nm_lapack_gesdd(VALUE self, VALUE jobz, VALUE m, VALUE n, VALUE a, VALUE lda, VALUE s, VALUE u, VALUE ldu, VALUE vt, VALUE ldvt, VALUE lworkspace_size);
185
+ static VALUE nm_lapack_geev(VALUE self, VALUE compute_left, VALUE compute_right, VALUE n, VALUE a, VALUE lda, VALUE w, VALUE wi, VALUE vl, VALUE ldvl, VALUE vr, VALUE ldvr, VALUE lwork);
158
186
  } // end of extern "C" block
159
187
 
160
188
  ////////////////////
@@ -191,7 +219,21 @@ void det_exact(const int M, const void* A_elements, const int lda, void* result_
191
219
  }
192
220
 
193
221
 
222
+ /*
223
+ * Function signature conversion for calling CBLAS' gesvd functions as directly as possible.
224
+ */
225
+ template <typename DType, typename CType>
226
+ inline static int lapack_gesvd(char jobu, char jobvt, int m, int n, void* a, int lda, void* s, void* u, int ldu, void* vt, int ldvt, void* work, int lwork, void* rwork) {
227
+ return gesvd<DType,CType>(jobu, jobvt, m, n, reinterpret_cast<DType*>(a), lda, reinterpret_cast<DType*>(s), reinterpret_cast<DType*>(u), ldu, reinterpret_cast<DType*>(vt), ldvt, reinterpret_cast<DType*>(work), lwork, reinterpret_cast<CType*>(rwork));
228
+ }
194
229
 
230
+ /*
231
+ * Function signature conversion for calling CBLAS' gesvd functions as directly as possible.
232
+ */
233
+ template <typename DType, typename CType>
234
+ inline static int lapack_gesdd(char jobz, int m, int n, void* a, int lda, void* s, void* u, int ldu, void* vt, int ldvt, void* work, int lwork, int* iwork, void* rwork) {
235
+ return gesdd<DType,CType>(jobz, m, n, reinterpret_cast<DType*>(a), lda, reinterpret_cast<DType*>(s), reinterpret_cast<DType*>(u), ldu, reinterpret_cast<DType*>(vt), ldvt, reinterpret_cast<DType*>(work), lwork, iwork, reinterpret_cast<CType*>(rwork));
236
+ }
195
237
 
196
238
  /*
197
239
  * Function signature conversion for calling CBLAS' gemm functions as directly as possible.
@@ -297,6 +339,7 @@ extern "C" {
297
339
  void nm_math_init_blas() {
298
340
  cNMatrix_LAPACK = rb_define_module_under(cNMatrix, "LAPACK");
299
341
 
342
+ /* ATLAS-CLAPACK Functions */
300
343
  rb_define_singleton_method(cNMatrix_LAPACK, "clapack_getrf", (METHOD)nm_clapack_getrf, 5);
301
344
  rb_define_singleton_method(cNMatrix_LAPACK, "clapack_potrf", (METHOD)nm_clapack_potrf, 5);
302
345
  rb_define_singleton_method(cNMatrix_LAPACK, "clapack_getrs", (METHOD)nm_clapack_getrs, 9);
@@ -307,6 +350,11 @@ void nm_math_init_blas() {
307
350
  rb_define_singleton_method(cNMatrix_LAPACK, "clapack_scal", (METHOD)nm_clapack_scal, 4);
308
351
  rb_define_singleton_method(cNMatrix_LAPACK, "clapack_lauum", (METHOD)nm_clapack_lauum, 5);
309
352
 
353
+ /* Non-ATLAS regular LAPACK Functions called via Fortran interface */
354
+ rb_define_singleton_method(cNMatrix_LAPACK, "lapack_gesvd", (METHOD)nm_lapack_gesvd, 12);
355
+ rb_define_singleton_method(cNMatrix_LAPACK, "lapack_gesdd", (METHOD)nm_lapack_gesdd, 11);
356
+ rb_define_singleton_method(cNMatrix_LAPACK, "lapack_geev", (METHOD)nm_lapack_geev, 12);
357
+
310
358
  cNMatrix_BLAS = rb_define_module_under(cNMatrix, "BLAS");
311
359
 
312
360
  rb_define_singleton_method(cNMatrix_BLAS, "cblas_nrm2", (METHOD)nm_cblas_nrm2, 3);
@@ -322,6 +370,31 @@ void nm_math_init_blas() {
322
370
  rb_define_singleton_method(cNMatrix_BLAS, "cblas_herk", (METHOD)nm_cblas_herk, 11);
323
371
  }
324
372
 
373
+ /*
374
+ * Interprets lapack jobu and jobvt arguments, for which LAPACK needs character values A, S, O, or N.
375
+ *
376
+ * Called by lapack_gesvd -- basically inline. svd stands for singular value decomposition.
377
+ */
378
+ static inline char lapack_svd_job_sym(VALUE op) {
379
+ if (rb_to_id(op) == rb_intern("all") || rb_to_id(op) == rb_intern("a")) return 'A';
380
+ else if (rb_to_id(op) == rb_intern("return") || rb_to_id(op) == rb_intern("s")) return 'S';
381
+ else if (rb_to_id(op) == rb_intern("overwrite") || rb_to_id(op) == rb_intern("o")) return 'O';
382
+ else if (rb_to_id(op) == rb_intern("none") || rb_to_id(op) == rb_intern("n")) return 'N';
383
+ else rb_raise(rb_eArgError, "Expected :all, :return, :overwrite, :none (or :a, :s, :o, :n, respectively)");
384
+ return 'a';
385
+ }
386
+
387
+
388
+ /*
389
+ * Interprets lapack jobvl and jobvr arguments, for which LAPACK needs character values N or V.
390
+ *
391
+ * Called by lapack_geev -- basically inline. evd stands for eigenvalue decomposition.
392
+ */
393
+ static inline char lapack_evd_job_sym(VALUE op) {
394
+ if (op == Qfalse || op == Qnil || rb_to_id(op) == rb_intern("n")) return 'N';
395
+ else return 'V';
396
+ }
397
+
325
398
 
326
399
  /* Interprets cblas argument which could be any of false/:no_transpose, :transpose, or :complex_conjugate,
327
400
  * into an enum recognized by cblas.
@@ -337,6 +410,7 @@ static inline enum CBLAS_TRANSPOSE blas_transpose_sym(VALUE op) {
337
410
  return CblasNoTrans;
338
411
  }
339
412
 
413
+
340
414
  /*
341
415
  * Interprets cblas argument which could be :left or :right
342
416
  *
@@ -417,7 +491,7 @@ static VALUE nm_cblas_rotg(VALUE self, VALUE ab) {
417
491
  nm::math::cblas_rotg<nm::Complex64>,
418
492
  nm::math::cblas_rotg<nm::Complex128>,
419
493
  NULL, NULL, NULL, // no rationals
420
- nm::math::cblas_rotg<nm::RubyObject>
494
+ NULL //nm::math::cblas_rotg<nm::RubyObject>
421
495
  };
422
496
 
423
497
  nm::dtype_t dtype = NM_DTYPE(ab);
@@ -438,8 +512,14 @@ static VALUE nm_cblas_rotg(VALUE self, VALUE ab) {
438
512
  ttable[dtype](pA, pB, pC, pS);
439
513
 
440
514
  VALUE result = rb_ary_new2(2);
441
- rb_ary_store(result, 0, rubyobj_from_cval(pC, dtype).rval);
442
- rb_ary_store(result, 1, rubyobj_from_cval(pS, dtype).rval);
515
+
516
+ if (dtype == nm::RUBYOBJ) {
517
+ rb_ary_store(result, 0, *reinterpret_cast<VALUE*>(pC));
518
+ rb_ary_store(result, 1, *reinterpret_cast<VALUE*>(pS));
519
+ } else {
520
+ rb_ary_store(result, 0, rubyobj_from_cval(pC, dtype).rval);
521
+ rb_ary_store(result, 1, rubyobj_from_cval(pS, dtype).rval);
522
+ }
443
523
 
444
524
  return result;
445
525
  }
@@ -852,9 +932,219 @@ static VALUE nm_cblas_herk(VALUE self,
852
932
  cblas_zherk(blas_order_sym(order), blas_uplo_sym(uplo), blas_transpose_sym(trans), FIX2INT(n), FIX2INT(k), NUM2DBL(alpha), NM_STORAGE_DENSE(a)->elements, FIX2INT(lda), NUM2DBL(beta), NM_STORAGE_DENSE(c)->elements, FIX2INT(ldc));
853
933
  } else
854
934
  rb_raise(rb_eNotImpError, "this matrix operation undefined for non-complex dtypes");
935
+ return Qtrue;
936
+ }
855
937
 
856
938
 
857
- return Qtrue;
939
+ /*
940
+ * Function signature conversion for calling CBLAS' gesvd functions as directly as possible.
941
+ *
942
+ * xGESVD computes the singular value decomposition (SVD) of a real
943
+ * M-by-N matrix A, optionally computing the left and/or right singular
944
+ * vectors. The SVD is written
945
+ *
946
+ * A = U * SIGMA * transpose(V)
947
+ *
948
+ * where SIGMA is an M-by-N matrix which is zero except for its
949
+ * min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
950
+ * V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
951
+ * are the singular values of A; they are real and non-negative, and
952
+ * are returned in descending order. The first min(m,n) columns of
953
+ * U and V are the left and right singular vectors of A.
954
+ *
955
+ * Note that the routine returns V**T, not V.
956
+ */
957
+ static VALUE nm_lapack_gesvd(VALUE self, VALUE jobu, VALUE jobvt, VALUE m, VALUE n, VALUE a, VALUE lda, VALUE s, VALUE u, VALUE ldu, VALUE vt, VALUE ldvt, VALUE lwork) {
958
+ static int (*gesvd_table[nm::NUM_DTYPES])(char, char, int, int, void* a, int, void* s, void* u, int, void* vt, int, void* work, int, void* rwork) = {
959
+ NULL, NULL, NULL, NULL, NULL, // no integer ops
960
+ nm::math::lapack_gesvd<float,float>,
961
+ nm::math::lapack_gesvd<double,double>,
962
+ nm::math::lapack_gesvd<nm::Complex64,float>,
963
+ nm::math::lapack_gesvd<nm::Complex128,double>,
964
+ NULL, NULL, NULL, NULL // no rationals or Ruby objects
965
+ };
966
+
967
+ nm::dtype_t dtype = NM_DTYPE(a);
968
+
969
+
970
+ if (!gesvd_table[dtype]) {
971
+ rb_raise(rb_eNotImpError, "this operation not yet implemented for non-BLAS dtypes");
972
+ return Qfalse;
973
+ } else {
974
+ int M = FIX2INT(m),
975
+ N = FIX2INT(n);
976
+
977
+ int min_mn = NM_MIN(M,N);
978
+ int max_mn = NM_MAX(M,N);
979
+
980
+ char JOBU = lapack_svd_job_sym(jobu),
981
+ JOBVT = lapack_svd_job_sym(jobvt);
982
+
983
+ // only need rwork for complex matrices
984
+ int rwork_size = (dtype == nm::COMPLEX64 || dtype == nm::COMPLEX128) ? 5 * min_mn : 0;
985
+ void* rwork = rwork_size > 0 ? ALLOCA_N(char, DTYPE_SIZES[dtype] * rwork_size) : NULL;
986
+ int work_size = FIX2INT(lwork);
987
+
988
+ // ignore user argument for lwork if it's too small.
989
+ work_size = NM_MAX((dtype == nm::COMPLEX64 || dtype == nm::COMPLEX128 ? 2 * min_mn + max_mn : NM_MAX(3*min_mn + max_mn, 5*min_mn)), work_size);
990
+ void* work = ALLOCA_N(char, DTYPE_SIZES[dtype] * work_size);
991
+
992
+ int info = gesvd_table[dtype](JOBU, JOBVT, M, N, NM_STORAGE_DENSE(a)->elements, FIX2INT(lda),
993
+ NM_STORAGE_DENSE(s)->elements, NM_STORAGE_DENSE(u)->elements, FIX2INT(ldu), NM_STORAGE_DENSE(vt)->elements, FIX2INT(ldvt),
994
+ work, work_size, rwork);
995
+ return INT2FIX(info);
996
+ }
997
+ }
998
+
999
+ /*
1000
+ * Function signature conversion for calling CBLAS' gesdd functions as directly as possible.
1001
+ *
1002
+ * xGESDD uses a divide-and-conquer strategy to compute the singular value decomposition (SVD) of a real
1003
+ * M-by-N matrix A, optionally computing the left and/or right singular
1004
+ * vectors. The SVD is written
1005
+ *
1006
+ * A = U * SIGMA * transpose(V)
1007
+ *
1008
+ * where SIGMA is an M-by-N matrix which is zero except for its
1009
+ * min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
1010
+ * V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
1011
+ * are the singular values of A; they are real and non-negative, and
1012
+ * are returned in descending order. The first min(m,n) columns of
1013
+ * U and V are the left and right singular vectors of A.
1014
+ *
1015
+ * Note that the routine returns V**T, not V.
1016
+ */
1017
+ static VALUE nm_lapack_gesdd(VALUE self, VALUE jobz, VALUE m, VALUE n, VALUE a, VALUE lda, VALUE s, VALUE u, VALUE ldu, VALUE vt, VALUE ldvt, VALUE lwork) {
1018
+ static int (*gesdd_table[nm::NUM_DTYPES])(char, int, int, void* a, int, void* s, void* u, int, void* vt, int, void* work, int, int* iwork, void* rwork) = {
1019
+ NULL, NULL, NULL, NULL, NULL, // no integer ops
1020
+ nm::math::lapack_gesdd<float,float>,
1021
+ nm::math::lapack_gesdd<double,double>,
1022
+ nm::math::lapack_gesdd<nm::Complex64,float>,
1023
+ nm::math::lapack_gesdd<nm::Complex128,double>,
1024
+ NULL, NULL, NULL, NULL // no rationals or Ruby objects
1025
+ };
1026
+
1027
+ nm::dtype_t dtype = NM_DTYPE(a);
1028
+
1029
+ if (!gesdd_table[dtype]) {
1030
+ rb_raise(rb_eNotImpError, "this operation not yet implemented for non-BLAS dtypes");
1031
+ return Qfalse;
1032
+ } else {
1033
+ int M = FIX2INT(m),
1034
+ N = FIX2INT(n);
1035
+
1036
+ int min_mn = NM_MIN(M,N);
1037
+ int max_mn = NM_MAX(M,N);
1038
+
1039
+ char JOBZ = lapack_svd_job_sym(jobz);
1040
+
1041
+ // only need rwork for complex matrices
1042
+ void* rwork = NULL;
1043
+
1044
+ int work_size = FIX2INT(lwork); // Make sure we allocate enough work, regardless of the user request.
1045
+ if (dtype == nm::COMPLEX64 || dtype == nm::COMPLEX128) {
1046
+ int rwork_size = min_mn * (JOBZ == 'N' ? 5 : NM_MAX(5*min_mn + 7, 2*max_mn + 2*min_mn + 1));
1047
+ rwork = ALLOCA_N(char, DTYPE_SIZES[dtype] * rwork_size);
1048
+
1049
+ if (JOBZ == 'N') work_size = NM_MAX(work_size, 3*min_mn + NM_MAX(max_mn, 6*min_mn));
1050
+ else if (JOBZ == 'O') work_size = NM_MAX(work_size, 3*min_mn*min_mn + NM_MAX(max_mn, 5*min_mn*min_mn + 4*min_mn));
1051
+ else work_size = NM_MAX(work_size, 3*min_mn*min_mn + NM_MAX(max_mn, 4*min_mn*min_mn + 4*min_mn));
1052
+ } else {
1053
+ if (JOBZ == 'N') work_size = NM_MAX(work_size, 2*min_mn + max_mn);
1054
+ else if (JOBZ == 'O') work_size = NM_MAX(work_size, 2*min_mn*min_mn + max_mn + 2*min_mn);
1055
+ else work_size = NM_MAX(work_size, min_mn*min_mn + max_mn + 2*min_mn);
1056
+ }
1057
+ void* work = ALLOCA_N(char, DTYPE_SIZES[dtype] * work_size);
1058
+ int* iwork = ALLOCA_N(int, 8*min_mn);
1059
+
1060
+ int info = gesdd_table[dtype](JOBZ, M, N, NM_STORAGE_DENSE(a)->elements, FIX2INT(lda),
1061
+ NM_STORAGE_DENSE(s)->elements, NM_STORAGE_DENSE(u)->elements, FIX2INT(ldu), NM_STORAGE_DENSE(vt)->elements, FIX2INT(ldvt),
1062
+ work, work_size, iwork, rwork);
1063
+ return INT2FIX(info);
1064
+ }
1065
+ }
1066
+
1067
+
1068
+ /*
1069
+ * Function signature conversion for calling CBLAS' geev functions as directly as possible.
1070
+ *
1071
+ * GEEV computes for an N-by-N real nonsymmetric matrix A, the
1072
+ * eigenvalues and, optionally, the left and/or right eigenvectors.
1073
+ *
1074
+ * The right eigenvector v(j) of A satisfies
1075
+ * A * v(j) = lambda(j) * v(j)
1076
+ * where lambda(j) is its eigenvalue.
1077
+ *
1078
+ * The left eigenvector u(j) of A satisfies
1079
+ * u(j)**H * A = lambda(j) * u(j)**H
1080
+ * where u(j)**H denotes the conjugate transpose of u(j).
1081
+ *
1082
+ * The computed eigenvectors are normalized to have Euclidean norm
1083
+ * equal to 1 and largest component real.
1084
+ */
1085
+ static VALUE nm_lapack_geev(VALUE self, VALUE compute_left, VALUE compute_right, VALUE n, VALUE a, VALUE lda, VALUE w, VALUE wi, VALUE vl, VALUE ldvl, VALUE vr, VALUE ldvr, VALUE lwork) {
1086
+ static int (*geev_table[nm::NUM_DTYPES])(char, char, int, void* a, int, void* w, void* wi, void* vl, int, void* vr, int, void* work, int, void* rwork) = {
1087
+ NULL, NULL, NULL, NULL, NULL, // no integer ops
1088
+ nm::math::lapack_geev<float,float>,
1089
+ nm::math::lapack_geev<double,double>,
1090
+ nm::math::lapack_geev<nm::Complex64,float>,
1091
+ nm::math::lapack_geev<nm::Complex128,double>,
1092
+ NULL, NULL, NULL, NULL // no rationals or Ruby objects
1093
+ };
1094
+
1095
+ nm::dtype_t dtype = NM_DTYPE(a);
1096
+
1097
+
1098
+ if (!geev_table[dtype]) {
1099
+ rb_raise(rb_eNotImpError, "this operation not yet implemented for non-BLAS dtypes");
1100
+ return Qfalse;
1101
+ } else {
1102
+ int N = FIX2INT(n);
1103
+
1104
+ char JOBVL = lapack_evd_job_sym(compute_left),
1105
+ JOBVR = lapack_evd_job_sym(compute_right);
1106
+
1107
+ void* A = NM_STORAGE_DENSE(a)->elements;
1108
+ void* WR = NM_STORAGE_DENSE(w)->elements;
1109
+ void* WI = wi == Qnil ? NULL : NM_STORAGE_DENSE(wi)->elements;
1110
+ void* VL = NM_STORAGE_DENSE(vl)->elements;
1111
+ void* VR = NM_STORAGE_DENSE(vr)->elements;
1112
+
1113
+ // only need rwork for complex matrices (wi == Qnil for complex)
1114
+ int rwork_size = dtype == nm::COMPLEX64 || dtype == nm::COMPLEX128 ? N * DTYPE_SIZES[dtype] : 0; // 2*N*floattype for complex only, otherwise 0
1115
+ void* rwork = rwork_size > 0 ? ALLOCA_N(char, rwork_size) : NULL;
1116
+ int work_size = FIX2INT(lwork);
1117
+ void* work;
1118
+
1119
+ int info;
1120
+
1121
+ // if work size is 0 or -1, query.
1122
+ if (work_size <= 0) {
1123
+ work_size = -1;
1124
+ work = ALLOC_N(char, DTYPE_SIZES[dtype]); //2*N * DTYPE_SIZES[dtype]);
1125
+ info = geev_table[dtype](JOBVL, JOBVR, N, A, FIX2INT(lda), WR, WI, VL, FIX2INT(ldvl), VR, FIX2INT(ldvr), work, work_size, rwork);
1126
+ work_size = (int)(dtype == nm::COMPLEX64 || dtype == nm::FLOAT32 ? reinterpret_cast<float*>(work)[0] : reinterpret_cast<double*>(work)[0]);
1127
+ // line above is basically: work_size = (int)(work[0]); // now have new work_size
1128
+ xfree(work);
1129
+ if (info == 0)
1130
+ rb_warn("geev: calculated optimal lwork of %d; to eliminate this message, use a positive value for lwork (at least 2*shape[i])", work_size);
1131
+ else return INT2FIX(info); // error of some kind on query!
1132
+ }
1133
+
1134
+ // if work size is < 2*N, just set it to 2*N
1135
+ if (work_size < 2*N) work_size = 2*N;
1136
+ if (work_size < 3*N && (dtype == nm::FLOAT32 || dtype == nm::FLOAT64)) {
1137
+ work_size = JOBVL == 'V' || JOBVR == 'V' ? 4*N : 3*N;
1138
+ }
1139
+
1140
+ // Allocate work array for actual run
1141
+ work = ALLOCA_N(char, work_size * DTYPE_SIZES[dtype]);
1142
+
1143
+ // Perform the actual calculation.
1144
+ info = geev_table[dtype](JOBVL, JOBVR, N, A, FIX2INT(lda), WR, WI, VL, FIX2INT(ldvl), VR, FIX2INT(ldvr), work, work_size, rwork);
1145
+
1146
+ return INT2FIX(info);
1147
+ }
858
1148
  }
859
1149
 
860
1150
 
@@ -0,0 +1,143 @@
1
+ /////////////////////////////////////////////////////////////////////
2
+ // = NMatrix
3
+ //
4
+ // A linear algebra library for scientific computation in Ruby.
5
+ // NMatrix is part of SciRuby.
6
+ //
7
+ // NMatrix was originally inspired by and derived from NArray, by
8
+ // Masahiro Tanaka: http://narray.rubyforge.org
9
+ //
10
+ // == Copyright Information
11
+ //
12
+ // SciRuby is Copyright (c) 2010 - 2013, Ruby Science Foundation
13
+ // NMatrix is Copyright (c) 2013, Ruby Science Foundation
14
+ //
15
+ // Please see LICENSE.txt for additional copyright notices.
16
+ //
17
+ // == Contributing
18
+ //
19
+ // By contributing source code to SciRuby, you agree to be bound by
20
+ // our Contributor Agreement:
21
+ //
22
+ // * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
23
+ //
24
+ // == asum.h
25
+ //
26
+ // CBLAS asum function
27
+ //
28
+
29
+ /*
30
+ * Automatically Tuned Linear Algebra Software v3.8.4
31
+ * (C) Copyright 1999 R. Clint Whaley
32
+ *
33
+ * Redistribution and use in source and binary forms, with or without
34
+ * modification, are permitted provided that the following conditions
35
+ * are met:
36
+ * 1. Redistributions of source code must retain the above copyright
37
+ * notice, this list of conditions and the following disclaimer.
38
+ * 2. Redistributions in binary form must reproduce the above copyright
39
+ * notice, this list of conditions, and the following disclaimer in the
40
+ * documentation and/or other materials provided with the distribution.
41
+ * 3. The name of the ATLAS group or the names of its contributers may
42
+ * not be used to endorse or promote products derived from this
43
+ * software without specific written permission.
44
+ *
45
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
46
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
47
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
48
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ATLAS GROUP OR ITS CONTRIBUTORS
49
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
50
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
51
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
52
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
53
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
54
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
55
+ * POSSIBILITY OF SUCH DAMAGE.
56
+ *
57
+ */
58
+
59
+ #ifndef ASUM_H
60
+ # define ASUM_H
61
+
62
+
63
+ namespace nm { namespace math {
64
+
65
+ /*
66
+ * Level 1 BLAS routine which sums the absolute values of a vector's contents. If the vector consists of complex values,
67
+ * the routine sums the absolute values of the real and imaginary components as well.
68
+ *
69
+ * So, based on input types, these are the valid return types:
70
+ * int -> int
71
+ * float -> float or double
72
+ * double -> double
73
+ * complex64 -> float or double
74
+ * complex128 -> double
75
+ * rational -> rational
76
+ */
77
+ template <typename ReturnDType, typename DType>
78
+ inline ReturnDType asum(const int N, const DType* X, const int incX) {
79
+ ReturnDType sum = 0;
80
+ if ((N > 0) && (incX > 0)) {
81
+ for (int i = 0; i < N; ++i) {
82
+ sum += std::abs(X[i*incX]);
83
+ }
84
+ }
85
+ return sum;
86
+ }
87
+
88
+
89
+ #ifdef HAVE_CBLAS_H
90
+ template <>
91
+ inline float asum(const int N, const float* X, const int incX) {
92
+ return cblas_sasum(N, X, incX);
93
+ }
94
+
95
+ template <>
96
+ inline double asum(const int N, const double* X, const int incX) {
97
+ return cblas_dasum(N, X, incX);
98
+ }
99
+
100
+ template <>
101
+ inline float asum(const int N, const Complex64* X, const int incX) {
102
+ return cblas_scasum(N, X, incX);
103
+ }
104
+
105
+ template <>
106
+ inline double asum(const int N, const Complex128* X, const int incX) {
107
+ return cblas_dzasum(N, X, incX);
108
+ }
109
+ #else
110
+ template <>
111
+ inline float asum(const int N, const Complex64* X, const int incX) {
112
+ float sum = 0;
113
+ if ((N > 0) && (incX > 0)) {
114
+ for (int i = 0; i < N; ++i) {
115
+ sum += std::abs(X[i*incX].r) + std::abs(X[i*incX].i);
116
+ }
117
+ }
118
+ return sum;
119
+ }
120
+
121
+ template <>
122
+ inline double asum(const int N, const Complex128* X, const int incX) {
123
+ double sum = 0;
124
+ if ((N > 0) && (incX > 0)) {
125
+ for (int i = 0; i < N; ++i) {
126
+ sum += std::abs(X[i*incX].r) + std::abs(X[i*incX].i);
127
+ }
128
+ }
129
+ return sum;
130
+ }
131
+ #endif
132
+
133
+
134
+ template <typename ReturnDType, typename DType>
135
+ inline void cblas_asum(const int N, const void* X, const int incX, void* sum) {
136
+ *reinterpret_cast<ReturnDType*>( sum ) = asum<ReturnDType, DType>( N, reinterpret_cast<const DType*>(X), incX );
137
+ }
138
+
139
+
140
+
141
+ }} // end of namespace nm::math
142
+
143
+ #endif // NRM2_H