nmatrix 0.0.6 → 0.0.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +2 -0
- data/Gemfile +5 -0
- data/History.txt +97 -0
- data/Manifest.txt +34 -7
- data/README.rdoc +13 -13
- data/Rakefile +36 -26
- data/ext/nmatrix/data/data.cpp +15 -2
- data/ext/nmatrix/data/data.h +4 -0
- data/ext/nmatrix/data/ruby_object.h +5 -14
- data/ext/nmatrix/extconf.rb +3 -2
- data/ext/nmatrix/{util/math.cpp → math.cpp} +296 -6
- data/ext/nmatrix/math/asum.h +143 -0
- data/ext/nmatrix/math/geev.h +82 -0
- data/ext/nmatrix/math/gemm.h +267 -0
- data/ext/nmatrix/math/gemv.h +208 -0
- data/ext/nmatrix/math/ger.h +96 -0
- data/ext/nmatrix/math/gesdd.h +80 -0
- data/ext/nmatrix/math/gesvd.h +78 -0
- data/ext/nmatrix/math/getf2.h +86 -0
- data/ext/nmatrix/math/getrf.h +240 -0
- data/ext/nmatrix/math/getri.h +107 -0
- data/ext/nmatrix/math/getrs.h +125 -0
- data/ext/nmatrix/math/idamax.h +86 -0
- data/ext/nmatrix/{util → math}/lapack.h +60 -356
- data/ext/nmatrix/math/laswp.h +165 -0
- data/ext/nmatrix/math/long_dtype.h +52 -0
- data/ext/nmatrix/math/math.h +1154 -0
- data/ext/nmatrix/math/nrm2.h +181 -0
- data/ext/nmatrix/math/potrs.h +125 -0
- data/ext/nmatrix/math/rot.h +141 -0
- data/ext/nmatrix/math/rotg.h +115 -0
- data/ext/nmatrix/math/scal.h +73 -0
- data/ext/nmatrix/math/swap.h +73 -0
- data/ext/nmatrix/math/trsm.h +383 -0
- data/ext/nmatrix/nmatrix.cpp +176 -152
- data/ext/nmatrix/nmatrix.h +1 -2
- data/ext/nmatrix/ruby_constants.cpp +9 -4
- data/ext/nmatrix/ruby_constants.h +1 -0
- data/ext/nmatrix/storage/dense.cpp +57 -41
- data/ext/nmatrix/storage/list.cpp +52 -50
- data/ext/nmatrix/storage/storage.cpp +59 -43
- data/ext/nmatrix/storage/yale.cpp +352 -333
- data/ext/nmatrix/storage/yale.h +4 -0
- data/lib/nmatrix.rb +2 -2
- data/lib/nmatrix/blas.rb +4 -4
- data/lib/nmatrix/enumerate.rb +241 -0
- data/lib/nmatrix/lapack.rb +54 -1
- data/lib/nmatrix/math.rb +462 -0
- data/lib/nmatrix/nmatrix.rb +210 -486
- data/lib/nmatrix/nvector.rb +0 -62
- data/lib/nmatrix/rspec.rb +75 -0
- data/lib/nmatrix/shortcuts.rb +136 -108
- data/lib/nmatrix/version.rb +1 -1
- data/spec/blas_spec.rb +20 -12
- data/spec/elementwise_spec.rb +22 -13
- data/spec/io_spec.rb +1 -0
- data/spec/lapack_spec.rb +197 -0
- data/spec/nmatrix_spec.rb +39 -38
- data/spec/nvector_spec.rb +3 -9
- data/spec/rspec_monkeys.rb +29 -0
- data/spec/rspec_spec.rb +34 -0
- data/spec/shortcuts_spec.rb +14 -16
- data/spec/slice_spec.rb +242 -186
- data/spec/spec_helper.rb +19 -0
- metadata +33 -5
- data/ext/nmatrix/util/math.h +0 -2612
data/lib/nmatrix/nvector.rb
CHANGED
@@ -185,68 +185,6 @@ class NVector < NMatrix
|
|
185
185
|
end
|
186
186
|
alias :norm2 :nrm2
|
187
187
|
|
188
|
-
#
|
189
|
-
# call-seq:
|
190
|
-
# to_a -> Array
|
191
|
-
#
|
192
|
-
# Converts the NVector to a regular Ruby Array.
|
193
|
-
def to_a
|
194
|
-
if self.stype == :dense
|
195
|
-
ary = Array.new(size)
|
196
|
-
self.each.with_index { |v,idx| ary[idx] = v }
|
197
|
-
else
|
198
|
-
begin
|
199
|
-
ary = Array.new(size, self[0] - self[0]) # Fill the Array with 0s of the appropriate class
|
200
|
-
rescue NoMethodError # handle Ruby Object arrays that might have nils instead of 0s
|
201
|
-
ary = Array.new(size)
|
202
|
-
end
|
203
|
-
self.each_stored_with_index { |v,idx| ary[idx] = v }
|
204
|
-
end
|
205
|
-
ary
|
206
|
-
end
|
207
|
-
|
208
|
-
#
|
209
|
-
# call-seq:
|
210
|
-
# each_stored_with_index -> Enumerator
|
211
|
-
#
|
212
|
-
# Allow iteration across an NVector's stored values. See also NMatrix#each_stored_with_indices
|
213
|
-
#
|
214
|
-
def each_stored_with_index(&block)
|
215
|
-
return enum_for(:each_stored_with_index) unless block_given?
|
216
|
-
self.each_stored_with_indices do |v, i, j|
|
217
|
-
shape[0] == 1 ? yield(v,j) : yield(v,i)
|
218
|
-
end
|
219
|
-
self
|
220
|
-
end
|
221
|
-
|
222
|
-
#
|
223
|
-
# call-seq:
|
224
|
-
# shuffle! -> ...
|
225
|
-
# shuffle!(random: rng) -> ...
|
226
|
-
#
|
227
|
-
# Re-arranges the contents of an NVector.
|
228
|
-
#
|
229
|
-
# TODO: Write more efficient version for Yale, list.
|
230
|
-
def shuffle!(*args)
|
231
|
-
ary = self.to_a
|
232
|
-
ary.shuffle!(*args)
|
233
|
-
ary.each.with_index { |v,idx| self[idx] = v }
|
234
|
-
self
|
235
|
-
end
|
236
|
-
|
237
|
-
|
238
|
-
#
|
239
|
-
# call-seq:
|
240
|
-
# shuffle -> ...
|
241
|
-
# shuffle(rng) -> ...
|
242
|
-
#
|
243
|
-
# Re-arranges the contents of an NVector.
|
244
|
-
#
|
245
|
-
# TODO: Write more efficient version for Yale, list.
|
246
|
-
def shuffle(*args)
|
247
|
-
t = self.clone
|
248
|
-
t.shuffle!(*args)
|
249
|
-
end
|
250
188
|
|
251
189
|
#
|
252
190
|
# call-seq:
|
@@ -0,0 +1,75 @@
|
|
1
|
+
# = NMatrix
|
2
|
+
#
|
3
|
+
# A linear algebra library for scientific computation in Ruby.
|
4
|
+
# NMatrix is part of SciRuby.
|
5
|
+
#
|
6
|
+
# NMatrix was originally inspired by and derived from NArray, by
|
7
|
+
# Masahiro Tanaka: http://narray.rubyforge.org
|
8
|
+
#
|
9
|
+
# == Copyright Information
|
10
|
+
#
|
11
|
+
# SciRuby is Copyright (c) 2010 - 2012, Ruby Science Foundation
|
12
|
+
# NMatrix is Copyright (c) 2012, Ruby Science Foundation
|
13
|
+
#
|
14
|
+
# Please see LICENSE.txt for additional copyright notices.
|
15
|
+
#
|
16
|
+
# == Contributing
|
17
|
+
#
|
18
|
+
# By contributing source code to SciRuby, you agree to be bound by
|
19
|
+
# our Contributor Agreement:
|
20
|
+
#
|
21
|
+
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
22
|
+
#
|
23
|
+
# == rspec.rb
|
24
|
+
#
|
25
|
+
# Monkey patches for RSpec improving its ability to work well with
|
26
|
+
# NMatrix (particularly #be_within).
|
27
|
+
#
|
28
|
+
|
29
|
+
require 'rspec'
|
30
|
+
|
31
|
+
# Amend RSpec to allow #be_within for matrices.
|
32
|
+
module RSpec::Matchers::BuiltIn #:nodoc:
|
33
|
+
class BeWithin
|
34
|
+
|
35
|
+
def of(expected)
|
36
|
+
@expected = expected
|
37
|
+
@unit = ''
|
38
|
+
if expected.is_a?(NMatrix)
|
39
|
+
@tolerance = if @delta.is_a?(NMatrix)
|
40
|
+
@delta.abs
|
41
|
+
elsif @delta.is_a?(Array)
|
42
|
+
NMatrix.new(:dense, expected.shape, @delta, :object).abs.cast(:dtype => expected.abs_dtype)
|
43
|
+
else
|
44
|
+
(NMatrix.ones_like(expected) * @delta).abs
|
45
|
+
end
|
46
|
+
else
|
47
|
+
@tolerance = @delta
|
48
|
+
end
|
49
|
+
|
50
|
+
self
|
51
|
+
end
|
52
|
+
|
53
|
+
def percent_of(expected)
|
54
|
+
@expected = expected
|
55
|
+
@unit = '%'
|
56
|
+
@tolerance = @expected.abs * @delta / 100.0 # <- only change is to reverse abs and @delta
|
57
|
+
self
|
58
|
+
end
|
59
|
+
|
60
|
+
def matches?(actual)
|
61
|
+
@actual = actual
|
62
|
+
raise needs_expected unless defined? @expected
|
63
|
+
raise needs_subtractable unless @actual.respond_to? :-
|
64
|
+
res = (@actual - @expected).abs <= @tolerance
|
65
|
+
|
66
|
+
#if res.is_a?(NMatrix)
|
67
|
+
# require 'pry'
|
68
|
+
# binding.pry
|
69
|
+
#end
|
70
|
+
|
71
|
+
res.is_a?(NMatrix) ? !res.any? { |x| !x } : res
|
72
|
+
end
|
73
|
+
|
74
|
+
end
|
75
|
+
end
|
data/lib/nmatrix/shortcuts.rb
CHANGED
@@ -34,7 +34,76 @@
|
|
34
34
|
|
35
35
|
class NMatrix
|
36
36
|
|
37
|
+
|
38
|
+
|
39
|
+
#
|
40
|
+
# call-seq:
|
41
|
+
# dense? -> true or false
|
42
|
+
# list? -> true or false
|
43
|
+
# yale? -> true or false
|
44
|
+
#
|
45
|
+
# Shortcut functions for quickly determining a matrix's stype.
|
46
|
+
#
|
47
|
+
def dense?; return stype == :dense; end
|
48
|
+
def yale?; return stype == :yale; end
|
49
|
+
def list?; return stype == :list; end
|
50
|
+
|
51
|
+
|
37
52
|
class << self
|
53
|
+
#
|
54
|
+
# call-seq:
|
55
|
+
# NMatrix[array-of-arrays, dtype = nil]
|
56
|
+
#
|
57
|
+
# You can use the old +N+ constant in this way:
|
58
|
+
# N = NMatrix
|
59
|
+
# N[1, 2, 3]
|
60
|
+
# NMatrix needs to have a succinct way to create a matrix by specifying the
|
61
|
+
# components directly. This is very useful for using it as an advanced
|
62
|
+
# calculator, it is useful for learning how to use, for testing language
|
63
|
+
# features and for developing algorithms.
|
64
|
+
#
|
65
|
+
# The NMatrix::[] method provides a way to create a matrix in a way that is compact and
|
66
|
+
# natural. The components are specified using Ruby array syntax. Optionally,
|
67
|
+
# one can specify a dtype as the last parameter (default is :float64).
|
68
|
+
#
|
69
|
+
# Examples:
|
70
|
+
#
|
71
|
+
# a = NMatrix[ 1,2,3,4 ] => 1.0 2.0 3.0 4.0
|
72
|
+
#
|
73
|
+
# a = NMatrix[ 1,2,3,4, :int32 ] => 1 2 3 4
|
74
|
+
#
|
75
|
+
# a = NMatrix[ [1,2,3], [3,4,5] ] => 1.0 2.0 3.0
|
76
|
+
# 3.0 4.0 5.0
|
77
|
+
#
|
78
|
+
# SYNTAX COMPARISON:
|
79
|
+
#
|
80
|
+
# MATLAB: a = [ [1 2 3] ; [4 5 6] ] or [ 1 2 3 ; 4 5 6 ]
|
81
|
+
# IDL: a = [ [1,2,3] , [4,5,6] ]
|
82
|
+
# NumPy: a = array( [1,2,3], [4,5,6] )
|
83
|
+
#
|
84
|
+
# SciRuby: a = NMatrix[ [1,2,3], [4,5,6] ]
|
85
|
+
# Ruby array: a = [ [1,2,3], [4,5,6] ]
|
86
|
+
#
|
87
|
+
def [](*params)
|
88
|
+
dtype = params.last.is_a?(Symbol) ? params.pop : nil
|
89
|
+
|
90
|
+
# First find the dimensions of the array.
|
91
|
+
i = 0
|
92
|
+
shape = []
|
93
|
+
row = params
|
94
|
+
while row.is_a?(Array)
|
95
|
+
shape[i] = row.length
|
96
|
+
row = row[0]
|
97
|
+
i += 1
|
98
|
+
end
|
99
|
+
|
100
|
+
# A row vector should be stored as 1xN, not N
|
101
|
+
#shape.unshift(1) if shape.size == 1
|
102
|
+
|
103
|
+
# Then flatten the array.
|
104
|
+
NMatrix.new(shape, params.flatten, dtype)
|
105
|
+
end
|
106
|
+
|
38
107
|
#
|
39
108
|
# call-seq:
|
40
109
|
# zeros(size) -> NMatrix
|
@@ -97,6 +166,34 @@ class NMatrix
|
|
97
166
|
NMatrix.new(dim, 1, dtype)
|
98
167
|
end
|
99
168
|
|
169
|
+
##
|
170
|
+
# call-seq:
|
171
|
+
# ones_like(nm) -> NMatrix
|
172
|
+
#
|
173
|
+
# Creates a new matrix of ones with the same dtype and shape as the
|
174
|
+
# provided matrix.
|
175
|
+
#
|
176
|
+
# @param [NMatrix] nm the nmatrix whose dtype and shape will be used
|
177
|
+
# @return [NMatrix] a new nmatrix filled with ones.
|
178
|
+
#
|
179
|
+
def ones_like(nm)
|
180
|
+
NMatrix.ones(nm.shape, nm.dtype)
|
181
|
+
end
|
182
|
+
|
183
|
+
##
|
184
|
+
# call-seq:
|
185
|
+
# zeros_like(nm) -> NMatrix
|
186
|
+
#
|
187
|
+
# Creates a new matrix of zeros with the same stype, dtype, and shape
|
188
|
+
# as the provided matrix.
|
189
|
+
#
|
190
|
+
# @param [NMatrix] nm the nmatrix whose stype, dtype, and shape will be used
|
191
|
+
# @return [NMatrix] a new nmatrix filled with zeros.
|
192
|
+
#
|
193
|
+
def zeros_like(nm)
|
194
|
+
NMatrix.zeros(nm.stype, nm.shape, nm.dtype)
|
195
|
+
end
|
196
|
+
|
100
197
|
#
|
101
198
|
# call-seq:
|
102
199
|
# eye(size) -> NMatrix
|
@@ -140,7 +237,6 @@ class NMatrix
|
|
140
237
|
m
|
141
238
|
end
|
142
239
|
alias :identity :eye
|
143
|
-
|
144
240
|
#
|
145
241
|
# call-seq:
|
146
242
|
# diagonals(array) -> NMatrix
|
@@ -324,75 +420,50 @@ as dimension."
|
|
324
420
|
end
|
325
421
|
|
326
422
|
end
|
423
|
+
end
|
327
424
|
|
328
|
-
|
329
|
-
# call-seq:
|
330
|
-
# column(column_number) -> NMatrix
|
331
|
-
# column(column_number, get_by) -> NMatrix
|
332
|
-
#
|
333
|
-
# Returns the column specified. Uses slicing by copy as default.
|
334
|
-
#
|
335
|
-
# * *Arguments* :
|
336
|
-
# - +column_number+ -> Integer.
|
337
|
-
# - +get_by+ -> Type of slicing to use, +:copy+ or +:reference+.
|
338
|
-
# * *Returns* :
|
339
|
-
# - A NMatrix representing the requested column as a column vector.
|
340
|
-
#
|
341
|
-
# Examples:
|
342
|
-
#
|
343
|
-
# m = NMatrix.new(2, [1, 4, 9, 14], :int32) # => 1 4
|
344
|
-
# 9 14
|
345
|
-
#
|
346
|
-
# m.column(1) # => 4
|
347
|
-
# 14
|
348
|
-
#
|
349
|
-
def column(column_number, get_by = :copy)
|
350
|
-
unless [:copy, :reference].include?(get_by)
|
351
|
-
raise ArgumentError, "column() 2nd parameter must be :copy or :reference"
|
352
|
-
end
|
353
|
-
|
354
|
-
if get_by == :copy
|
355
|
-
self.slice(0 ... self.shape[0], column_number)
|
356
|
-
else # by reference
|
357
|
-
self[0 ... self.shape[0], column_number]
|
358
|
-
end
|
359
|
-
end
|
425
|
+
module NVector
|
360
426
|
|
361
|
-
|
427
|
+
class << self
|
428
|
+
#
|
429
|
+
# call-seq:
|
430
|
+
# new(shape) -> NVector
|
431
|
+
# new(stype, shape) -> NVector
|
432
|
+
# new(shape, init) -> NVector
|
433
|
+
# new(:dense, shape, init) -> NVector
|
434
|
+
# new(:list, shape, init) -> NVector
|
435
|
+
# new(shape, init, dtype) -> NVector
|
436
|
+
# new(stype, shape, init, dtype) -> NVector
|
437
|
+
# new(stype, shape, dtype) -> NVector
|
438
|
+
#
|
439
|
+
# Creates a new NVector. See also NMatrix#initialize for a more detailed explanation of
|
440
|
+
# the arguments.
|
441
|
+
#
|
442
|
+
# * *Arguments* :
|
443
|
+
# - +stype+ -> (optional) Storage type of the vector (:list, :dense, :yale). Defaults to :dense.
|
444
|
+
# - +shape+ -> Shape of the vector. Accepts [n,1], [1,n], or n, where n is a Fixnum.
|
445
|
+
# - +init+ -> (optional) Yale: capacity; List: default value (0); Dense: initial value or values (uninitialized by default).
|
446
|
+
# - +dtype+ -> (optional if +init+ provided) Data type stored in the vector. For :dense and :list, can be inferred from +init+.
|
447
|
+
# * *Returns* :
|
448
|
+
# -
|
449
|
+
#
|
450
|
+
def new(*args)
|
451
|
+
stype = args[0].is_a?(Symbol) ? args.shift : :dense
|
452
|
+
shape = args[0].is_a?(Array) ? args.shift : [1,args.shift]
|
362
453
|
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
# row(row_number, get_by) -> NMatrix
|
367
|
-
#
|
368
|
-
# * *Arguments* :
|
369
|
-
# - +row_number+ -> Integer.
|
370
|
-
# - +get_by+ -> Type of slicing to use, +:copy+ or +:reference+.
|
371
|
-
# * *Returns* :
|
372
|
-
# - A NMatrix representing the requested row .
|
373
|
-
#
|
374
|
-
def row(row_number, get_by = :copy)
|
375
|
-
unless [:copy, :reference].include?(get_by)
|
376
|
-
raise ArgumentError, "row() 2nd parameter must be :copy or :reference"
|
377
|
-
end
|
454
|
+
if shape.size != 2 || !shape.include?(1) || shape == [1,1]
|
455
|
+
raise(ArgumentError, "shape must be a Fixnum or an Array of positive Fixnums where exactly one value is 1")
|
456
|
+
end
|
378
457
|
|
379
|
-
|
380
|
-
self.slice(row_number, 0 ... self.shape[1])
|
381
|
-
else # by reference
|
382
|
-
self[row_number, 0 ... self.shape[1]]
|
458
|
+
NMatrix.new(stype, shape, *args)
|
383
459
|
end
|
384
|
-
end
|
385
|
-
end
|
386
|
-
|
387
|
-
class NVector < NMatrix
|
388
460
|
|
389
|
-
class << self
|
390
461
|
#
|
391
462
|
# call-seq:
|
392
463
|
# zeros(size) -> NMatrix
|
393
464
|
# zeros(size, dtype) -> NMatrix
|
394
465
|
#
|
395
|
-
# Creates a new
|
466
|
+
# Creates a new vector of zeros with the dimensions supplied as
|
396
467
|
# parameters.
|
397
468
|
#
|
398
469
|
# * *Arguments* :
|
@@ -492,14 +563,10 @@ class NVector < NMatrix
|
|
492
563
|
# 1.0
|
493
564
|
# 2.0
|
494
565
|
#
|
495
|
-
def seq(
|
496
|
-
|
497
|
-
raise ArgumentError, "NVector::seq() only accepts integers as size."
|
498
|
-
end
|
566
|
+
def seq(size, dtype = :int64)
|
567
|
+
values = (0 ... size).to_a
|
499
568
|
|
500
|
-
|
501
|
-
|
502
|
-
NVector.new(n, values, dtype)
|
569
|
+
NVector.new(size, values, dtype)
|
503
570
|
end
|
504
571
|
|
505
572
|
#
|
@@ -645,15 +712,8 @@ class NVector < NMatrix
|
|
645
712
|
end
|
646
713
|
end
|
647
714
|
|
648
|
-
|
649
|
-
#
|
650
|
-
# calculator, it is useful for learning how to use, for testing language
|
651
|
-
# features and for developing algorithms.
|
652
|
-
#
|
653
|
-
# The N class provides a way to create a matrix in a way that is compact and
|
654
|
-
# natural. The components are specified using Ruby array syntax. Optionally,
|
655
|
-
# one can specify a dtype as the last parameter (default is :float64).
|
656
|
-
#
|
715
|
+
|
716
|
+
# Use this constant as you would use NMatrix[].
|
657
717
|
# Examples:
|
658
718
|
#
|
659
719
|
# a = N[ 1,2,3,4 ] => 1.0 2.0 3.0 4.0
|
@@ -663,36 +723,4 @@ end
|
|
663
723
|
# a = N[ [1,2,3], [3,4,5] ] => 1.0 2.0 3.0
|
664
724
|
# 3.0 4.0 5.0
|
665
725
|
#
|
666
|
-
|
667
|
-
#
|
668
|
-
# MATLAB: a = [ [1 2 3] ; [4 5 6] ] or [ 1 2 3 ; 4 5 6 ]
|
669
|
-
# IDL: a = [ [1,2,3] , [4,5,6] ]
|
670
|
-
# NumPy: a = array( [1,2,3], [4,5,6] )
|
671
|
-
#
|
672
|
-
# SciRuby: a = N[ [1,2,3], [4,5,6] ]
|
673
|
-
# Ruby array: a = [ [1,2,3], [4,5,6] ]
|
674
|
-
#
|
675
|
-
class N
|
676
|
-
class << self
|
677
|
-
#
|
678
|
-
# call-seq:
|
679
|
-
# N[array-of-arrays, dtype = nil]
|
680
|
-
#
|
681
|
-
def [](*params)
|
682
|
-
dtype = params.last.is_a?(Symbol) ? params.pop : nil
|
683
|
-
|
684
|
-
# First find the dimensions of the array.
|
685
|
-
i = 0
|
686
|
-
dim = []
|
687
|
-
foo = params
|
688
|
-
while foo.is_a?(Array)
|
689
|
-
dim[i] = foo.length
|
690
|
-
foo = foo[0]
|
691
|
-
i += 1
|
692
|
-
end
|
693
|
-
|
694
|
-
# Then flatten the array.
|
695
|
-
NMatrix.new(dim, params.flatten, dtype)
|
696
|
-
end
|
697
|
-
end
|
698
|
-
end
|
726
|
+
N = NMatrix
|
data/lib/nmatrix/version.rb
CHANGED