minimap2 0.2.22.0 → 0.2.24.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +60 -76
- data/ext/Rakefile +55 -0
- data/ext/cmappy/cmappy.c +129 -0
- data/ext/cmappy/cmappy.h +44 -0
- data/ext/minimap2/FAQ.md +46 -0
- data/ext/minimap2/LICENSE.txt +24 -0
- data/ext/minimap2/MANIFEST.in +10 -0
- data/ext/minimap2/Makefile +132 -0
- data/ext/minimap2/Makefile.simde +97 -0
- data/ext/minimap2/NEWS.md +821 -0
- data/ext/minimap2/README.md +403 -0
- data/ext/minimap2/align.c +1020 -0
- data/ext/minimap2/bseq.c +169 -0
- data/ext/minimap2/bseq.h +64 -0
- data/ext/minimap2/code_of_conduct.md +30 -0
- data/ext/minimap2/cookbook.md +243 -0
- data/ext/minimap2/esterr.c +64 -0
- data/ext/minimap2/example.c +63 -0
- data/ext/minimap2/format.c +559 -0
- data/ext/minimap2/hit.c +466 -0
- data/ext/minimap2/index.c +775 -0
- data/ext/minimap2/kalloc.c +205 -0
- data/ext/minimap2/kalloc.h +76 -0
- data/ext/minimap2/kdq.h +132 -0
- data/ext/minimap2/ketopt.h +120 -0
- data/ext/minimap2/khash.h +615 -0
- data/ext/minimap2/krmq.h +474 -0
- data/ext/minimap2/kseq.h +256 -0
- data/ext/minimap2/ksort.h +153 -0
- data/ext/minimap2/ksw2.h +184 -0
- data/ext/minimap2/ksw2_dispatch.c +96 -0
- data/ext/minimap2/ksw2_extd2_sse.c +402 -0
- data/ext/minimap2/ksw2_exts2_sse.c +416 -0
- data/ext/minimap2/ksw2_extz2_sse.c +313 -0
- data/ext/minimap2/ksw2_ll_sse.c +152 -0
- data/ext/minimap2/kthread.c +159 -0
- data/ext/minimap2/kthread.h +15 -0
- data/ext/minimap2/kvec.h +105 -0
- data/ext/minimap2/lchain.c +369 -0
- data/ext/minimap2/main.c +459 -0
- data/ext/minimap2/map.c +714 -0
- data/ext/minimap2/minimap.h +410 -0
- data/ext/minimap2/minimap2.1 +725 -0
- data/ext/minimap2/misc/README.md +179 -0
- data/ext/minimap2/misc/mmphase.js +335 -0
- data/ext/minimap2/misc/paftools.js +3149 -0
- data/ext/minimap2/misc.c +162 -0
- data/ext/minimap2/mmpriv.h +132 -0
- data/ext/minimap2/options.c +234 -0
- data/ext/minimap2/pe.c +177 -0
- data/ext/minimap2/python/README.rst +196 -0
- data/ext/minimap2/python/cmappy.h +152 -0
- data/ext/minimap2/python/cmappy.pxd +153 -0
- data/ext/minimap2/python/mappy.pyx +273 -0
- data/ext/minimap2/python/minimap2.py +39 -0
- data/ext/minimap2/sdust.c +213 -0
- data/ext/minimap2/sdust.h +25 -0
- data/ext/minimap2/seed.c +131 -0
- data/ext/minimap2/setup.py +55 -0
- data/ext/minimap2/sketch.c +143 -0
- data/ext/minimap2/splitidx.c +84 -0
- data/ext/minimap2/sse2neon/emmintrin.h +1689 -0
- data/ext/minimap2/test/MT-human.fa +278 -0
- data/ext/minimap2/test/MT-orang.fa +276 -0
- data/ext/minimap2/test/q-inv.fa +4 -0
- data/ext/minimap2/test/q2.fa +2 -0
- data/ext/minimap2/test/t-inv.fa +127 -0
- data/ext/minimap2/test/t2.fa +2 -0
- data/ext/minimap2/tex/Makefile +21 -0
- data/ext/minimap2/tex/bioinfo.cls +930 -0
- data/ext/minimap2/tex/blasr-mc.eval +17 -0
- data/ext/minimap2/tex/bowtie2-s3.sam.eval +28 -0
- data/ext/minimap2/tex/bwa-s3.sam.eval +52 -0
- data/ext/minimap2/tex/bwa.eval +55 -0
- data/ext/minimap2/tex/eval2roc.pl +33 -0
- data/ext/minimap2/tex/graphmap.eval +4 -0
- data/ext/minimap2/tex/hs38-simu.sh +10 -0
- data/ext/minimap2/tex/minialign.eval +49 -0
- data/ext/minimap2/tex/minimap2.bib +460 -0
- data/ext/minimap2/tex/minimap2.tex +724 -0
- data/ext/minimap2/tex/mm2-s3.sam.eval +62 -0
- data/ext/minimap2/tex/mm2-update.tex +240 -0
- data/ext/minimap2/tex/mm2.approx.eval +12 -0
- data/ext/minimap2/tex/mm2.eval +13 -0
- data/ext/minimap2/tex/natbib.bst +1288 -0
- data/ext/minimap2/tex/natbib.sty +803 -0
- data/ext/minimap2/tex/ngmlr.eval +38 -0
- data/ext/minimap2/tex/roc.gp +60 -0
- data/ext/minimap2/tex/snap-s3.sam.eval +62 -0
- data/ext/minimap2.patch +19 -0
- data/lib/minimap2/aligner.rb +4 -4
- data/lib/minimap2/alignment.rb +11 -11
- data/lib/minimap2/ffi/constants.rb +20 -16
- data/lib/minimap2/ffi/functions.rb +5 -0
- data/lib/minimap2/ffi.rb +4 -5
- data/lib/minimap2/version.rb +2 -2
- data/lib/minimap2.rb +51 -15
- metadata +97 -79
- data/lib/minimap2/ffi_helper.rb +0 -53
- data/vendor/libminimap2.so +0 -0
@@ -0,0 +1,62 @@
|
|
1
|
+
Q 60 18579866 27 0.000001453 18579866
|
2
|
+
Q 59 27087 4 0.000001666 18606953
|
3
|
+
Q 58 21435 1 0.000001718 18628388
|
4
|
+
Q 57 45663 3 0.000001874 18674051
|
5
|
+
Q 56 36031 2 0.000001978 18710082
|
6
|
+
Q 55 18499 2 0.000002082 18728581
|
7
|
+
Q 54 14754 2 0.000002187 18743335
|
8
|
+
Q 53 25541 2 0.000002291 18768876
|
9
|
+
Q 52 26397 5 0.000002554 18795273
|
10
|
+
Q 51 15090 3 0.000002711 18810363
|
11
|
+
Q 50 13425 11 0.000003294 18823788
|
12
|
+
Q 49 15175 2 0.000003397 18838963
|
13
|
+
Q 48 19407 4 0.000003606 18858370
|
14
|
+
Q 47 11538 16 0.000004452 18869908
|
15
|
+
Q 46 12558 17 0.000005349 18882466
|
16
|
+
Q 45 40362 28 0.000006817 18922828
|
17
|
+
Q 44 10465 13 0.000007500 18933293
|
18
|
+
Q 43 10098 20 0.000008552 18943391
|
19
|
+
Q 42 10682 19 0.000009549 18954073
|
20
|
+
Q 41 9823 11 0.000010125 18963896
|
21
|
+
Q 40 9685 16 0.000010963 18973581
|
22
|
+
Q 39 10273 18 0.000011905 18983854
|
23
|
+
Q 38 9515 18 0.000012847 18993369
|
24
|
+
Q 37 9474 27 0.000014261 19002843
|
25
|
+
Q 36 10430 25 0.000015568 19013273
|
26
|
+
Q 35 9241 34 0.000017348 19022514
|
27
|
+
Q 34 9162 31 0.000018968 19031676
|
28
|
+
Q 33 10164 49 0.000021532 19041840
|
29
|
+
Q 32 9152 55 0.000024408 19050992
|
30
|
+
Q 31 9252 35 0.000026233 19060244
|
31
|
+
Q 30 9872 55 0.000029103 19070116
|
32
|
+
Q 29 8938 65 0.000032496 19079054
|
33
|
+
Q 28 8951 73 0.000036306 19088005
|
34
|
+
Q 27 9949 95 0.000041261 19097954
|
35
|
+
Q 26 9784 97 0.000046316 19107738
|
36
|
+
Q 25 10126 97 0.000051366 19117864
|
37
|
+
Q 24 11260 123 0.000057765 19129124
|
38
|
+
Q 23 10047 114 0.000063691 19139171
|
39
|
+
Q 22 9661 123 0.000070083 19148832
|
40
|
+
Q 21 10339 168 0.000078813 19159171
|
41
|
+
Q 20 17928 193 0.000088804 19177099
|
42
|
+
Q 19 9842 193 0.000098817 19186941
|
43
|
+
Q 18 14737 247 0.000111605 19201678
|
44
|
+
Q 17 10218 238 0.000123934 19211896
|
45
|
+
Q 16 10271 242 0.000136457 19222167
|
46
|
+
Q 15 12241 333 0.000153683 19234408
|
47
|
+
Q 14 9189 336 0.000171070 19243597
|
48
|
+
Q 13 9493 515 0.000197734 19253090
|
49
|
+
Q 12 11502 743 0.000236185 19264592
|
50
|
+
Q 11 8211 507 0.000262390 19272803
|
51
|
+
Q 10 9133 606 0.000293695 19281936
|
52
|
+
Q 9 10014 931 0.000341801 19291950
|
53
|
+
Q 8 8436 698 0.000377816 19300386
|
54
|
+
Q 7 8443 705 0.000414163 19308829
|
55
|
+
Q 6 10203 944 0.000462808 19319032
|
56
|
+
Q 5 6936 756 0.000501760 19325968
|
57
|
+
Q 4 6732 843 0.000545190 19332700
|
58
|
+
Q 3 8215 1104 0.000602040 19340915
|
59
|
+
Q 2 21201 5440 0.000882342 19362116
|
60
|
+
Q 1 82328 22186 0.002019600 19444444
|
61
|
+
Q 0 553853 371953 0.020562901 19998297
|
62
|
+
U 1703
|
@@ -0,0 +1,240 @@
|
|
1
|
+
\documentclass{bioinfo}
|
2
|
+
\copyrightyear{2021}
|
3
|
+
\pubyear{2021}
|
4
|
+
|
5
|
+
\usepackage{graphicx}
|
6
|
+
\usepackage{hyperref}
|
7
|
+
\usepackage{url}
|
8
|
+
\usepackage{amsmath}
|
9
|
+
\usepackage[ruled,vlined]{algorithm2e}
|
10
|
+
\newcommand\mycommfont[1]{\footnotesize\rmfamily{\it #1}}
|
11
|
+
\SetCommentSty{mycommfont}
|
12
|
+
\SetKwComment{Comment}{$\triangleright$\ }{}
|
13
|
+
|
14
|
+
\usepackage{natbib}
|
15
|
+
\bibliographystyle{apalike}
|
16
|
+
|
17
|
+
\DeclareMathOperator*{\argmax}{argmax}
|
18
|
+
|
19
|
+
\begin{document}
|
20
|
+
\firstpage{1}
|
21
|
+
|
22
|
+
\title[Improvements to minimap2]{New strategies to improve minimap2 alignment accuracy}
|
23
|
+
\author[Li]{Heng Li$^{1,2}$}
|
24
|
+
\address{$^1$Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA,
|
25
|
+
$^2$Harvard Medical School, 10 Shattuck St, Boston, MA 02215, USA}
|
26
|
+
|
27
|
+
\maketitle
|
28
|
+
|
29
|
+
\begin{abstract}
|
30
|
+
|
31
|
+
\section{Summary:} We present several recent improvements to minimap2, a
|
32
|
+
versatile pairwise aligner for nucleotide sequences. Now minimap2 v2.22 can
|
33
|
+
more accurately map long reads to highly repetitive regions and align through
|
34
|
+
insertions or deletions up to 100kb by default, addressing major weakness in
|
35
|
+
minimap2 v2.18 or earlier.
|
36
|
+
|
37
|
+
\section{Availability and implementation:}
|
38
|
+
\href{https://github.com/lh3/minimap2}{https://github.com/lh3/minimap2}
|
39
|
+
|
40
|
+
\section{Contact:} hli@ds.dfci.harvard.edu
|
41
|
+
\end{abstract}
|
42
|
+
|
43
|
+
\section{Introduction}
|
44
|
+
Minimap2~\citep{Li:2018ab} is widely used for maping long sequence
|
45
|
+
reads and assembly contigs. \citet{Jain:2020aa} found minimap2 v2.18 or earlier occasionally
|
46
|
+
misaligned reads from highly repetitive regions as minimap2 ignored seeds of
|
47
|
+
high occurrence. They also noticed minimap2 may misplace reads with structural
|
48
|
+
variations (SVs) in such regions~\citep{Jain2020.11.01.363887}. These
|
49
|
+
misalignments have become a pressing issue in the advent of
|
50
|
+
temolere-to-telomore human assembly~\citep{Miga:2020aa}. Meanwhile, old minimap2
|
51
|
+
was unable to efficiently align long insertions/deletions (INDELs) and often
|
52
|
+
breaks an alignment around variable-number tandem repeats (VNTRs). This has
|
53
|
+
inspired new chaining algorithms~\citep{Li:2020aa,Ren:2021aa} which are not
|
54
|
+
integrated into minimap2. Here we will describe recent efforts implemented
|
55
|
+
in v2.19 through v2.22 to improve mapping results.
|
56
|
+
|
57
|
+
\begin{methods}
|
58
|
+
\section{Methods}
|
59
|
+
|
60
|
+
\subsection{Rescuing high-occurrence $k$-mers}\label{sec:high-occ}
|
61
|
+
Minimap2 keeps all $k$-mer minimizers~\citep{Roberts:2004fv} during indexing. Its original
|
62
|
+
implementation only selected low-occurrence minimizers during mapping. The
|
63
|
+
cutoff is a few hundred for mapping long reads against a human genome. If a
|
64
|
+
read habors only a few or even no low-occurrence minimizers, it will fail
|
65
|
+
chaining due to insufficient anchors.
|
66
|
+
|
67
|
+
To resolve this issue, we implemented a new heuristic to add additional
|
68
|
+
minimizers. Suppose we are looking at two adjacent low-occurence $k$-mers
|
69
|
+
located at position $x_1$ and $x_2$, respectively. If $|x_1-x_2|\ge L$,
|
70
|
+
minimap2 v2.22 additionally selects $\lfloor|x_1-x_2|/L\rfloor$ minimizers
|
71
|
+
of the lowest occurrence among minimizers between $x_1$ and $x_2$. Here
|
72
|
+
parameter $L$ controls the frequency of sampling. It defaults to 500.
|
73
|
+
This strategy adds necessary anchors at the cost of increasing total alignment
|
74
|
+
time by a few percent on real data.
|
75
|
+
|
76
|
+
\subsection{Aligning through longer INDELs}
|
77
|
+
The original minimap2 may fail to align long INDELs due to its chaining
|
78
|
+
heuristics. Briefly, minimap2 applies dynamic programming (DP) to chain
|
79
|
+
minimizer anchors. This is a quadratic algorithm, slow for chaining
|
80
|
+
contigs. For acceptable performance, the original minimap2 uses a 500bp band by
|
81
|
+
default, which means a gap longer than 500bp will stop chaining.
|
82
|
+
To align through longer gaps, older minimap2 implemented a long-join heurstic as follows.
|
83
|
+
If there is an INDEL longer than 500bp and the two chains around the INDEL
|
84
|
+
have no overlaps on either the query or the reference sequence, minimap2 may
|
85
|
+
join the two short chains later.
|
86
|
+
This heuristic may fail around VNTRs because short chains
|
87
|
+
often have overlaps in VNTRs. More subtly, minimap2 may escape the inner DP
|
88
|
+
loop early, again for performance, if the chaining result is not improved for
|
89
|
+
50 iterations. When there is a copy number change in a long segmental
|
90
|
+
duplication, the early escape may break around the event even if users
|
91
|
+
specify a large band.
|
92
|
+
|
93
|
+
In minigraph~\citep{Li:2020aa}, we developed a new chaining algorithm that
|
94
|
+
finds up to 1kb INDELs with DP-based chaining and goes through longer INDELs with a
|
95
|
+
subquadratic algorithm~\citep{DBLP:conf/wabi/AbouelhodaO03}. We ported the same
|
96
|
+
algorithm to minimap2 for contig mapping. For long-read mapping, the minigraph
|
97
|
+
algorithm is slower. Minimap2 v2.22 still uses the DP-based algorithm to
|
98
|
+
find short chains and then invokes the minigraph algorithm to rechain anchors in
|
99
|
+
these short chains. The rechaining step achieves the same goal as long-join
|
100
|
+
but is more reliable because it can resolve overlaps between short chains. The old
|
101
|
+
long-join heuristic has since been removed.
|
102
|
+
|
103
|
+
\subsection{Properly mapping long reads with SVs}
|
104
|
+
The original minimap2 ranks an alignment by its Smith-Waterman score and
|
105
|
+
outputs the best scoring alignment. However, when there are SVs on the read,
|
106
|
+
the best scoring alignment is sometimes not the correct alignment.
|
107
|
+
\citet{Jain2020.11.01.363887} resolved this dilemma by altering the mapping
|
108
|
+
algorithm.
|
109
|
+
|
110
|
+
In our view, this problem is rooted in inapropriate scoring: affine-gap penalty
|
111
|
+
over-penalizes a long INDEL that was often evolutionarily created in one event.
|
112
|
+
We should not penalize a SV by a function linear in the SV length. Minimap2 v2.22 instead rescores
|
113
|
+
an alignment with the following scoring function. Suppose an alignment consists
|
114
|
+
of $M$ matching bases, $N$ substitutions and $G$ gap opens, we empirically
|
115
|
+
score the alignment with
|
116
|
+
$$
|
117
|
+
S=M-\frac{N+G}{2d}-\sum_{i=1}^G\log_2(1+g_i)
|
118
|
+
$$
|
119
|
+
where $g_i\ge1$ is the length of the $i$-th gap and
|
120
|
+
$$
|
121
|
+
d=\max\left\{\frac{N+G}{M+N+G},0.02\right\}
|
122
|
+
$$
|
123
|
+
It approximates per-base sequence divergence except with the smallest value set
|
124
|
+
to 2\%. As an analogy to affine-gap scoring, the matching score in our scheme
|
125
|
+
is 1, the mismatch and gap open penalties are both $1/2d$ and the gap extension
|
126
|
+
penalty is a logarithm function of the gap length~\citep{Gu:1995wt}. Our scoring gives a long SV
|
127
|
+
a much milder penalty. In terms of time complexity, scoring an alignment is
|
128
|
+
linear in the length of the alignment. The time spent on rescoring is negligible in
|
129
|
+
practice.
|
130
|
+
|
131
|
+
%If we assume sequences evolve under a duplication-mutation model, we may have a
|
132
|
+
%better way to choose the best alignment. If a long read can be mapped to $n$
|
133
|
+
%loci, we can take the read as the template and build a
|
134
|
+
%pseudo-multi-sequence-alignment (pMSA) of $n+1$ sequences. In this pMSA, we say
|
135
|
+
%a site on the read is informative if the $n$ reference subsequences differ at
|
136
|
+
%the position.
|
137
|
+
|
138
|
+
\end{methods}
|
139
|
+
|
140
|
+
\section{Results}
|
141
|
+
|
142
|
+
\begin{table}
|
143
|
+
\processtable{Evaluation of minimap2 v2.22}
|
144
|
+
{\footnotesize\label{tab:1}\begin{tabular}{p{4.2cm}rrrr}
|
145
|
+
\toprule
|
146
|
+
$[$Benchmark$]$ Metric & v2.22 & v2.18 & Winno & lra \\
|
147
|
+
\midrule
|
148
|
+
$[$sim-map$]$ \% mapped reads at Q10 & 97.9 & 97.6 & {\bf 99.0}& 97.3 \\
|
149
|
+
$[$sim-map$]$ err. rate at Q10 (phredQ) & {\bf 52} & {\bf 52} & 38 & 24 \\
|
150
|
+
$[$winno-cmp$]$ rate of diff. (phredQ) & {\bf 41} & 37 & truth & 18 \\
|
151
|
+
$[$winno-cmp$]$ CPU time (hour) & {\bf 5.0} & 5.3 & 71.8 & 13.1 \\
|
152
|
+
$[$winno-cmp$]$ peak RAM (Gb) & 17.1 & 14.4 & {\bf 9.6} & 12.4 \\
|
153
|
+
$[$sim-sv$]$ \% false negative rate & {\bf 0.5} & 2.0 & {\bf 0.5} & 1.4 \\
|
154
|
+
$[$sim-sv$]$ \% false discovery rate & {\bf 0.0} & 0.1 & {\bf 0.0} & 0.1 \\
|
155
|
+
$[$real-sv-1k$]$ \% false negative rate & {\bf 7.3} & 20.0 & 13.0 & N/A \\
|
156
|
+
$[$real-sv-1k$]$ \% false discovery rate & 2.7 & {\bf 2.4} & 2.7 & N/A \\
|
157
|
+
\botrule
|
158
|
+
\end{tabular}}
|
159
|
+
{In $[$sim-map$]$, 152,713 reads were simulated from the CHM13 telomere-to-telomere assembly v1.1
|
160
|
+
(AC: GCA\_009914755.3) with pbsim2~\citep{Ono:2021aa}: ``pbsim2 -{}-hmm\_model R94.model -{}-length-min
|
161
|
+
5000 -{}-length-mean 20000 -{}-accuracy-mean 0.95''. Alignments of mapping quality
|
162
|
+
10 or higher were evaluated by ``paftools.js mapeval''. The mapping error rate
|
163
|
+
is measured in the phred scale: if the error rate is $e$, $-10\log_{10}e$ is
|
164
|
+
reported in the table. In $[$winno-cmp$]$, 1.39 million CHM13 HiFi reads from
|
165
|
+
SRR11292121 were mapped against the same CHM13 assembly. 99.3\% of them were mapped by Winnowmap2
|
166
|
+
at mapping quality 10 or higher and were taken as ground truth to evaluate
|
167
|
+
minimap2 and lra with ``paftools.js pafcmp''. $[$sim-sv$]$ simulated 1,000
|
168
|
+
50bp to 1000bp INDELs from chr8 in CHM13 using SURVIVOR~\citep{Jeffares:2017aa} and simulated Nanopore
|
169
|
+
reads at 30-fold coverage with the same pbsim2 command line. SVs were called with
|
170
|
+
``sniffles -q 10''~\citep{Sedlazeck:2018ab} and compared to the simulated truth with ``SURVIVOR eval
|
171
|
+
call.vcf truth.bed 50''. In $[$real-sv-1k$]$, small and long variants were
|
172
|
+
called by dipcall-0.3~\citep{Li:2018aa} for HG002 assemblies (AC: GCA\_018852605.1 and
|
173
|
+
GCA\_018852615.1) and compared to the GIAB truth~\citep{Zook:2020aa} using ``truvari -r 2000 -s
|
174
|
+
1000 -S 400 -{}-multimatch -{}-passonly'' which sets the minimum INDEL size to 1kb in evaluation. }
|
175
|
+
\end{table}
|
176
|
+
|
177
|
+
We evaluated minimap2 v2.22 along with v2.18, Winnowmap2 v2.03 and lra v1.3.2
|
178
|
+
(Table~\ref{tab:1}), using the default setting of each mapper according to the input data types.
|
179
|
+
Both versions of minimap2 achieved high mapping accuracy on
|
180
|
+
simulated Nanopore reads (sim-map). Winnowmap2 aligned more reads at mapping
|
181
|
+
quality 10 or higher (mapQ10). However, it may occasionally assign a high mapping
|
182
|
+
quality to a read with multiple identical best alignments. This reduced its
|
183
|
+
mapping accuracy.
|
184
|
+
|
185
|
+
In lack of groud truth for real data, we took Winnowmap2 mapping as ground
|
186
|
+
truth to evaluate other mappers (winno-cmp in Table~\ref{tab:1}). Out of 1,378,092 reads with mapQ10
|
187
|
+
alignments by Winnowmap2, minimap2 v2.22 could map all of them. 118 reads, less
|
188
|
+
than 0.01\% of all reads, were mapped differently by v2.22. 51 of them have
|
189
|
+
multiple identical best alignments. We believe these are more likely to be
|
190
|
+
Winnowmap2 errors. Most of the remaining 67 (=118-51) reads have multiple
|
191
|
+
highly similar but not identical alignments.
|
192
|
+
Minimap2 v2.18 is less consistent with 275 differences including 30 unmapped
|
193
|
+
reads mappable by both Winnowmap2 and v2.22.
|
194
|
+
|
195
|
+
For the minimizer rescuing parameter $L$ in Section~\ref{sec:high-occ},
|
196
|
+
we set its default to 500 such that v2.22 has comparable performance to v2.18 given simulated PacBio and Nanopore human reads.
|
197
|
+
To see the effect of this parameter on real data, we tried several different $L$ values.
|
198
|
+
v2.22 gave 99 mapping differences at $L=200$,
|
199
|
+
118 at $L=500$ (default), 167 at $L=750$ and 224 differences at $L=1000$ in comparison to Winnowmap2.
|
200
|
+
$L=200$ is 28\% slower than the default while $L=1000$ is 9\% faster.
|
201
|
+
Changing the default minimizer window size (option ``-w'')
|
202
|
+
and the initial minimizer occurrence cutoff (option ``-f'')
|
203
|
+
also affects performance and accuracy to a similar magnitude.
|
204
|
+
|
205
|
+
The two benchmarks above only evaluate read mappings when there are no variations between the reads and the reference.
|
206
|
+
To measure the mapping accuracy in the presence of SVs (sim-sv), we reproduced
|
207
|
+
the results by~\citep{Jain2020.11.01.363887}. Minimap2 v2.22 is as good as
|
208
|
+
Winnowmap2 now. Note that we were setting the Sniffles mapping quality
|
209
|
+
threshold to 10 in consistent with the benchmarks above. If we used the
|
210
|
+
default threshold 20, v2.22 would miss additional five SVs (accounting for
|
211
|
+
0.5\% of simulated SVs). For four out of these five missing SVs, minimap2 v2.22
|
212
|
+
mapped more variant reads than Winnowmap2. Sniffles did not call these SVs
|
213
|
+
because minimap2 tended to give them conservative mapping quality. It is worth
|
214
|
+
noting that the simulation here only considers a simple scenario in evolution.
|
215
|
+
Non-allelic gene conversions, which happen often in segmental
|
216
|
+
duplications~\citep{Harpak:2017aa}, would obscure the optimal mapping
|
217
|
+
strategies. How much such simple SV simulation informs real-world SV calling
|
218
|
+
remains a question.
|
219
|
+
|
220
|
+
To see if minimap2 v2.22 could improve long INDEL alignment, we ran dipcall on
|
221
|
+
contig-to-reference alignments and focused on INDELs longer than 1kb
|
222
|
+
(real-sv-1k). v2.22 is more sensitive at comparable specificity, confirming its
|
223
|
+
advantage in more contiguous alignment. We could not get dipcall to work well with lra,
|
224
|
+
so did not report the numbers.
|
225
|
+
|
226
|
+
Minimap2 spends most computing time on base alignment. As recent improvements
|
227
|
+
in v2.22 incur little additional computing and do not change the base alignment
|
228
|
+
algorithm, the new version has similar performance to older versions. It is
|
229
|
+
consistently faster than Winnowmap2 by several times. Sometimes simple
|
230
|
+
heuristics can be as effective as more sophisticated yet slower solutions.
|
231
|
+
|
232
|
+
\section*{Acknowledgements}
|
233
|
+
We thank Arang Rhie and Chirag Jain for providing motivating examples for which
|
234
|
+
older minimap2 underperforms.
|
235
|
+
|
236
|
+
\paragraph{Funding\textcolon} This work is funded by NHGRI grant R01HG010040.
|
237
|
+
|
238
|
+
\bibliography{minimap2}
|
239
|
+
|
240
|
+
\end{document}
|
@@ -0,0 +1,12 @@
|
|
1
|
+
Q 60 32084 0 0.000000000 32084
|
2
|
+
Q 24 318 2 0.000061725 32402
|
3
|
+
Q 11 98 2 0.000123077 32500
|
4
|
+
Q 8 37 2 0.000184405 32537
|
5
|
+
Q 7 37 3 0.000276294 32574
|
6
|
+
Q 6 40 3 0.000367940 32614
|
7
|
+
Q 5 34 2 0.000428816 32648
|
8
|
+
Q 4 37 5 0.000581306 32685
|
9
|
+
Q 3 28 6 0.000764222 32713
|
10
|
+
Q 2 38 6 0.000946536 32751
|
11
|
+
Q 1 50 21 0.001585318 32801
|
12
|
+
Q 0 286 150 0.006105117 33087
|
@@ -0,0 +1,13 @@
|
|
1
|
+
Q 60 32477 0 0.000000000 32477
|
2
|
+
Q 22 16 1 0.000030776 32493
|
3
|
+
Q 21 44 1 0.000061468 32537
|
4
|
+
Q 19 73 1 0.000091996 32610
|
5
|
+
Q 14 66 1 0.000122414 32676
|
6
|
+
Q 10 26 3 0.000214054 32702
|
7
|
+
Q 8 14 1 0.000244529 32716
|
8
|
+
Q 7 13 2 0.000305539 32729
|
9
|
+
Q 6 47 1 0.000335611 32776
|
10
|
+
Q 3 10 1 0.000366010 32786
|
11
|
+
Q 2 20 2 0.000426751 32806
|
12
|
+
Q 1 248 94 0.003267381 33054
|
13
|
+
Q 0 31 17 0.003778147 33085
|