minimap2 0.2.22.0 → 0.2.24.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (101) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +60 -76
  3. data/ext/Rakefile +55 -0
  4. data/ext/cmappy/cmappy.c +129 -0
  5. data/ext/cmappy/cmappy.h +44 -0
  6. data/ext/minimap2/FAQ.md +46 -0
  7. data/ext/minimap2/LICENSE.txt +24 -0
  8. data/ext/minimap2/MANIFEST.in +10 -0
  9. data/ext/minimap2/Makefile +132 -0
  10. data/ext/minimap2/Makefile.simde +97 -0
  11. data/ext/minimap2/NEWS.md +821 -0
  12. data/ext/minimap2/README.md +403 -0
  13. data/ext/minimap2/align.c +1020 -0
  14. data/ext/minimap2/bseq.c +169 -0
  15. data/ext/minimap2/bseq.h +64 -0
  16. data/ext/minimap2/code_of_conduct.md +30 -0
  17. data/ext/minimap2/cookbook.md +243 -0
  18. data/ext/minimap2/esterr.c +64 -0
  19. data/ext/minimap2/example.c +63 -0
  20. data/ext/minimap2/format.c +559 -0
  21. data/ext/minimap2/hit.c +466 -0
  22. data/ext/minimap2/index.c +775 -0
  23. data/ext/minimap2/kalloc.c +205 -0
  24. data/ext/minimap2/kalloc.h +76 -0
  25. data/ext/minimap2/kdq.h +132 -0
  26. data/ext/minimap2/ketopt.h +120 -0
  27. data/ext/minimap2/khash.h +615 -0
  28. data/ext/minimap2/krmq.h +474 -0
  29. data/ext/minimap2/kseq.h +256 -0
  30. data/ext/minimap2/ksort.h +153 -0
  31. data/ext/minimap2/ksw2.h +184 -0
  32. data/ext/minimap2/ksw2_dispatch.c +96 -0
  33. data/ext/minimap2/ksw2_extd2_sse.c +402 -0
  34. data/ext/minimap2/ksw2_exts2_sse.c +416 -0
  35. data/ext/minimap2/ksw2_extz2_sse.c +313 -0
  36. data/ext/minimap2/ksw2_ll_sse.c +152 -0
  37. data/ext/minimap2/kthread.c +159 -0
  38. data/ext/minimap2/kthread.h +15 -0
  39. data/ext/minimap2/kvec.h +105 -0
  40. data/ext/minimap2/lchain.c +369 -0
  41. data/ext/minimap2/main.c +459 -0
  42. data/ext/minimap2/map.c +714 -0
  43. data/ext/minimap2/minimap.h +410 -0
  44. data/ext/minimap2/minimap2.1 +725 -0
  45. data/ext/minimap2/misc/README.md +179 -0
  46. data/ext/minimap2/misc/mmphase.js +335 -0
  47. data/ext/minimap2/misc/paftools.js +3149 -0
  48. data/ext/minimap2/misc.c +162 -0
  49. data/ext/minimap2/mmpriv.h +132 -0
  50. data/ext/minimap2/options.c +234 -0
  51. data/ext/minimap2/pe.c +177 -0
  52. data/ext/minimap2/python/README.rst +196 -0
  53. data/ext/minimap2/python/cmappy.h +152 -0
  54. data/ext/minimap2/python/cmappy.pxd +153 -0
  55. data/ext/minimap2/python/mappy.pyx +273 -0
  56. data/ext/minimap2/python/minimap2.py +39 -0
  57. data/ext/minimap2/sdust.c +213 -0
  58. data/ext/minimap2/sdust.h +25 -0
  59. data/ext/minimap2/seed.c +131 -0
  60. data/ext/minimap2/setup.py +55 -0
  61. data/ext/minimap2/sketch.c +143 -0
  62. data/ext/minimap2/splitidx.c +84 -0
  63. data/ext/minimap2/sse2neon/emmintrin.h +1689 -0
  64. data/ext/minimap2/test/MT-human.fa +278 -0
  65. data/ext/minimap2/test/MT-orang.fa +276 -0
  66. data/ext/minimap2/test/q-inv.fa +4 -0
  67. data/ext/minimap2/test/q2.fa +2 -0
  68. data/ext/minimap2/test/t-inv.fa +127 -0
  69. data/ext/minimap2/test/t2.fa +2 -0
  70. data/ext/minimap2/tex/Makefile +21 -0
  71. data/ext/minimap2/tex/bioinfo.cls +930 -0
  72. data/ext/minimap2/tex/blasr-mc.eval +17 -0
  73. data/ext/minimap2/tex/bowtie2-s3.sam.eval +28 -0
  74. data/ext/minimap2/tex/bwa-s3.sam.eval +52 -0
  75. data/ext/minimap2/tex/bwa.eval +55 -0
  76. data/ext/minimap2/tex/eval2roc.pl +33 -0
  77. data/ext/minimap2/tex/graphmap.eval +4 -0
  78. data/ext/minimap2/tex/hs38-simu.sh +10 -0
  79. data/ext/minimap2/tex/minialign.eval +49 -0
  80. data/ext/minimap2/tex/minimap2.bib +460 -0
  81. data/ext/minimap2/tex/minimap2.tex +724 -0
  82. data/ext/minimap2/tex/mm2-s3.sam.eval +62 -0
  83. data/ext/minimap2/tex/mm2-update.tex +240 -0
  84. data/ext/minimap2/tex/mm2.approx.eval +12 -0
  85. data/ext/minimap2/tex/mm2.eval +13 -0
  86. data/ext/minimap2/tex/natbib.bst +1288 -0
  87. data/ext/minimap2/tex/natbib.sty +803 -0
  88. data/ext/minimap2/tex/ngmlr.eval +38 -0
  89. data/ext/minimap2/tex/roc.gp +60 -0
  90. data/ext/minimap2/tex/snap-s3.sam.eval +62 -0
  91. data/ext/minimap2.patch +19 -0
  92. data/lib/minimap2/aligner.rb +4 -4
  93. data/lib/minimap2/alignment.rb +11 -11
  94. data/lib/minimap2/ffi/constants.rb +20 -16
  95. data/lib/minimap2/ffi/functions.rb +5 -0
  96. data/lib/minimap2/ffi.rb +4 -5
  97. data/lib/minimap2/version.rb +2 -2
  98. data/lib/minimap2.rb +51 -15
  99. metadata +97 -79
  100. data/lib/minimap2/ffi_helper.rb +0 -53
  101. data/vendor/libminimap2.so +0 -0
@@ -0,0 +1,724 @@
1
+ \documentclass{bioinfo}
2
+ \copyrightyear{2018}
3
+ \pubyear{2018}
4
+
5
+ \usepackage{graphicx}
6
+ \usepackage{hyperref}
7
+ \usepackage{url}
8
+ \usepackage{amsmath}
9
+ \usepackage[ruled,vlined]{algorithm2e}
10
+ \newcommand\mycommfont[1]{\footnotesize\rmfamily{\it #1}}
11
+ \SetCommentSty{mycommfont}
12
+ \SetKwComment{Comment}{$\triangleright$\ }{}
13
+
14
+ \usepackage{natbib}
15
+ \bibliographystyle{apalike}
16
+
17
+ \DeclareMathOperator*{\argmax}{argmax}
18
+
19
+ \begin{document}
20
+ \firstpage{1}
21
+
22
+ \title[Aligning nucleotide sequences with minimap2]{Minimap2: pairwise alignment for nucleotide sequences}
23
+ \author[Li]{Heng Li}
24
+ \address{Broad Institute, 415 Main Street, Cambridge, MA 02142, USA}
25
+
26
+ \maketitle
27
+
28
+ \begin{abstract}
29
+
30
+ \section{Motivation:} Recent advances in sequencing technologies promise
31
+ ultra-long reads of $\sim$100 kilo bases (kb) in average, full-length mRNA or
32
+ cDNA reads in high throughput and genomic contigs over 100 mega bases (Mb) in
33
+ length. Existing alignment programs are unable or inefficient to process such data
34
+ at scale, which presses for the development of new alignment algorithms.
35
+
36
+ \section{Results:} Minimap2 is a general-purpose alignment program to map DNA or long
37
+ mRNA sequences against a large reference database. It works with accurate short
38
+ reads of $\ge$100bp in length, $\ge$1kb genomic reads at error rate $\sim$15\%,
39
+ full-length noisy Direct RNA or cDNA reads, and assembly contigs or closely
40
+ related full chromosomes of hundreds of megabases in length. Minimap2 does
41
+ split-read alignment, employs concave gap cost for long insertions and
42
+ deletions (INDELs) and introduces new heuristics to reduce spurious alignments.
43
+ It is 3--4 times as fast as mainstream short-read mappers at comparable
44
+ accuracy, and is $\ge$30 times faster than long-read genomic or cDNA
45
+ mappers at higher accuracy, surpassing most aligners specialized in one type of
46
+ alignment.
47
+
48
+ \section{Availability and implementation:}
49
+ \href{https://github.com/lh3/minimap2}{https://github.com/lh3/minimap2}
50
+
51
+ \section{Contact:} hengli@broadinstitute.org
52
+ \end{abstract}
53
+
54
+ \section{Introduction}
55
+
56
+ Single Molecule Real-Time (SMRT) sequencing technology and Oxford Nanopore
57
+ technologies (ONT) produce reads over 10kbp in length at an error rate
58
+ $\sim$15\%. Several aligners have been developed for such
59
+ data~\citep{Chaisson:2012aa,Li:2013aa,Liu:2016ab,Sovic:2016aa,Liu:2017aa,Lin:2017aa,Sedlazeck169557}.
60
+ Most of them were five times as slow as mainstream short-read
61
+ aligners~\citep{Langmead:2012fk,Li:2013aa} in terms of the number of bases
62
+ mapped per second. We speculated there could be substantial room for speedup on
63
+ the thought that 10kb long sequences should be easier to map than 100bp reads
64
+ because we can more effectively skip repetitive regions, which are often the
65
+ bottleneck of short-read alignment. We confirmed our speculation by achieving
66
+ approximate mapping 50 times faster than BWA-MEM~\citep{Li:2016aa}.
67
+ \citet{Suzuki:2018aa} extended our work with a fast and novel algorithm on
68
+ generating base-level alignment, which in turn inspired us to develop minimap2
69
+ with added functionality.
70
+
71
+ Both SMRT and ONT have been applied to the sequencing of spliced mRNAs (RNA-seq). While
72
+ traditional mRNA aligners work~\citep{Wu:2005vn,Iwata:2012aa}, they are not
73
+ optimized for long noisy sequence reads and are tens of times slower than
74
+ dedicated long-read aligners. When developing minimap2 initially for aligning
75
+ genomic DNA only, we realized minor modifications could enable the base
76
+ algorithm to map mRNAs as well. Minimap2 becomes a first RNA-seq aligner
77
+ specifically designed for long noisy reads. We have also extended the original
78
+ algorithm to map short reads at a speed faster than several mainstream
79
+ short-read mappers.
80
+
81
+ In this article, we will describe the minimap2 algorithm and its applications
82
+ to different types of input sequences. We will evaluate the performance and
83
+ accuracy of minimap2 on several simulated and real data sets and demonstrate
84
+ the versatility of minimap2.
85
+
86
+ \begin{methods}
87
+ \section{Methods}
88
+
89
+ Minimap2 follows a typical seed-chain-align procedure as is used by most
90
+ full-genome aligners. It collects minimizers~\citep{Roberts:2004fv} of the
91
+ reference sequences and indexes them in a hash table, with the key being the
92
+ hash of a minimizer and the value being a list of locations of the minimizer
93
+ copies. Then for each query
94
+ sequence, minimap2 takes query minimizers as \emph{seeds}, finds exact matches
95
+ (i.e. \emph{anchors}) to the reference, and identifies sets of colinear anchors as
96
+ \emph{chains}. If base-level alignment is requested, minimap2 applies dynamic
97
+ programming (DP) to extend from the ends of chains and to close
98
+ regions between adjacent anchors in chains.
99
+
100
+ Minimap2 uses indexing and seeding algorithms similar to
101
+ minimap~\citep{Li:2016aa}, and furthers the predecessor with more accurate
102
+ chaining, the ability to produce base-level alignment and the support of
103
+ spliced alignment.
104
+
105
+ \subsection{Chaining}
106
+
107
+ \subsubsection{Chaining}
108
+ An \emph{anchor} is a 3-tuple $(x,y,w)$, indicating interval $[x-w+1,x]$ on the
109
+ reference matching interval $[y-w+1,y]$ on the query. Given a list of anchors
110
+ sorted by ending reference position $x$, let $f(i)$ be the maximal chaining
111
+ score up to the $i$-th anchor in the list. $f(i)$ can be calculated with
112
+ dynamic programming:
113
+ \begin{equation}\label{eq:chain}
114
+ f(i)=\max\big\{\max_{i>j\ge 1} \{ f(j)+\alpha(j,i)-\beta(j,i) \},w_i\big\}
115
+ \end{equation}
116
+ where $\alpha(j,i)=\min\big\{\min\{y_i-y_j,x_i-x_j\},w_i\big\}$ is the number of
117
+ matching bases between the two anchors. $\beta(j,i)>0$ is the gap cost. It
118
+ equals $\infty$ if $y_j\ge y_i$ or $\max\{y_i-y_j,x_i-x_j\}>G$ (i.e. the
119
+ distance between two anchors is too large); otherwise
120
+ \begin{equation}\label{eq:chain-gap}
121
+ \beta(j,i)=\gamma_c\big((y_i-y_j)-(x_i-x_j)\big)
122
+ \end{equation}
123
+ In implementation, a gap of length $l$ costs
124
+ \[
125
+ \gamma_c(l)=\left\{\begin{array}{ll}
126
+ 0.01\cdot \bar{w}\cdot|l|+0.5\log_2|l| & (l\not=0) \\
127
+ 0 & (l=0)
128
+ \end{array}\right.
129
+ \]
130
+ where $\bar{w}$ is the average seed length. For $N$ anchors, directly computing all $f(\cdot)$ with
131
+ Eq.~(\ref{eq:chain}) takes $O(N^2)$ time. Although theoretically faster
132
+ chaining algorithms exist~\citep{Abouelhoda:2005aa}, they
133
+ are inapplicable to generic gap cost, complex to implement and usually
134
+ associated with a large constant. We introduced a simple heuristic to
135
+ accelerate chaining.
136
+
137
+ We note that if anchor $i$ is chained to $j$, chaining $i$ to a predecessor
138
+ of $j$ is likely to yield a lower score. When evaluating Eq.~(\ref{eq:chain}),
139
+ we start from anchor $i-1$ and stop the process if we cannot find a better
140
+ score after up to $h$ iterations. This approach reduces the average time to
141
+ $O(hN)$. In practice, we can almost always find the optimal chain with
142
+ $h=50$; even if the heuristic fails, the optimal chain is often close.
143
+
144
+ \subsubsection{Backtracking}
145
+ Let $P(i)$ be the index of the best predecessor of anchor $i$. It equals 0 if
146
+ $f(i)=w_i$ or $\argmax_j\{f(j)+\alpha(j,i)-\beta(j,i)\}$ otherwise. For each
147
+ anchor $i$ in the descending order of $f(i)$, we apply $P(\cdot)$ repeatedly to
148
+ find its predecessor and mark each visited $i$ as `used', until $P(i)=0$ or we
149
+ reach an already `used' $i$. This way we find all chains with no anchors used
150
+ in more than one chains.
151
+
152
+ \subsubsection{Identifying primary chains}\label{sec:primary}
153
+ In the absence of copy number changes, each query segment should not be mapped
154
+ to two places in the reference. However, chains found at the previous step may
155
+ have significant or complete overlaps due to repeats in the reference~\citep{Li:2010fk}.
156
+ Minimap2 used the following procedure to identify \emph{primary chains} that do
157
+ not greatly overlap on the query.
158
+
159
+ Let $Q$ be an empty set initially. For each
160
+ chain from the best to the worst according to their chaining scores: if on the
161
+ query, the chain overlaps with a chain in $Q$ by 50\% or higher percentage of
162
+ the shorter chain, mark the chain as secondary to the chain in $Q$; otherwise,
163
+ add the chain to $Q$. In the end, $Q$ contains all the primary chains. We did
164
+ not choose a more sophisticated data structure (e.g. range tree or k-d tree)
165
+ because this step is not the performance bottleneck.
166
+
167
+ For each primary chain, minimap2 estimates its mapping quality with an
168
+ empirical formula:
169
+ \[
170
+ {\rm mapQ}=40\cdot (1-f_2/f_1)\cdot\min\{1,m/10\}\cdot\log f_1
171
+ \]
172
+ where $\log$ denotes natural logarithm, $m$ is the number of anchors on the primary chain, $f_1$ is the chaining
173
+ score, and $f_2\le f_1$ is the score of the best chain that is secondary to the
174
+ primary chain. Intuitively, a chain is assigned to a higher mapping quality if
175
+ it is long and its best secondary chain is weak.
176
+
177
+ \subsubsection{Estimating per-base sequence divergence}
178
+ Suppose a query sequence harbors $n$ seeds of length $k$, $m$ of which are
179
+ present in a chain. We want to estimate the sequence divergence $\epsilon$
180
+ between the query and the reference sequences in the chain. This is useful
181
+ when base-level alignment is too expensive to perform.
182
+
183
+ If we model substitutions with a homogeneous Poisson process along the query
184
+ sequence, the probablity of seeing $k$ consecutive bases without substitutions
185
+ is $e^{-k\epsilon}$. On the assumption that all $k$-mers are independent of
186
+ each other, the likelihood function of $\epsilon$ is
187
+ \[
188
+ \mathcal{L}(\epsilon|n,m,k)=e^{-m\cdot k\epsilon}(1-e^{-k\epsilon})^{n-m}
189
+ \]
190
+ The maximum likelihood estimate of $\epsilon$ is
191
+ \[
192
+ \hat{\epsilon}=\frac{1}{k}\log\frac{n}{m}
193
+ \]
194
+ In reality, sequencing errors are sometimes clustered and $k$-mers are not
195
+ independent of each other, especially when we take minimizers as seeds. These
196
+ violate the assumptions in the derivation above. As a result, $\hat{\epsilon}$
197
+ is only approximate and can be biased. It also ignores long deletions from the
198
+ reference sequence. In practice, fortunately, $\hat{\epsilon}$ is often close
199
+ to and strongly correlated with the sequence divergence estimated from
200
+ base-level alignments. On the several datasets used in
201
+ Section~\ref{sec:long-genomic}, the Spearman correlation coefficient is around
202
+ $0.9$.
203
+
204
+ \subsubsection{Indexing with homopolymer compressed $k$-mers}
205
+ SmartDenovo
206
+ (\href{https://github.com/ruanjue/smartdenovo}{https://github.com/ruanjue/smartdenovo};
207
+ J. Ruan, personal communication) indexes reads with homopolymer-compressed (HPC)
208
+ $k$-mers and finds the strategy improves overlap sensitivity for SMRT reads.
209
+ Minimap2 adopts the same heuristic.
210
+
211
+ The HPC string of a string $s$, denoted by ${\rm HPC}(s)$, is constructed by
212
+ contracting homopolymers in $s$ to a single base. An HPC $k$-mer of $s$ is a
213
+ $k$-long substring of ${\rm HPC}(s)$. For example, suppose $s={\tt GGATTTTCCA}$,
214
+ ${\rm HPC}(s)={\tt GATCA}$ and the first HPC 4-mer is ${\tt GATC}$.
215
+
216
+ To demonstrate the effectiveness of HPC $k$-mers, we performed read overlapping
217
+ for the example {\it E. coli} SMRT reads from PBcR~\citep{Berlin:2015xy}, using
218
+ different types of $k$-mers. With normal 15bp minimizers per 5bp window,
219
+ minimap2 finds 90.9\% of $\ge$2kb overlaps inferred from the read-to-reference
220
+ alignment. With HPC 19-mers per 5bp window, minimap2 finds 97.4\% of overlaps. It achieves this
221
+ higher sensitivity by indexing 1/3 fewer minimizers, which further helps
222
+ performance. HPC-based indexing reduces the sensitivity for current ONT reads, though.
223
+
224
+ \subsection{Aligning genomic DNA}\label{sec:genomic}
225
+
226
+ \subsubsection{Alignment with 2-piece affine gap cost}
227
+
228
+ Minimap2 performs DP-based global alignment between adjacent anchors in a
229
+ chain. It uses a 2-piece affine gap cost~\citep{Gotoh:1990aa}:
230
+ \begin{equation}\label{eq:2-piece}
231
+ \gamma_a(l)=\min\{q+|l|\cdot e,\tilde{q}+|l|\cdot\tilde{e}\}
232
+ \end{equation}
233
+ Without losing generality, we always assume $q+e<\tilde{q}+\tilde{e}$.
234
+ On the condition that $e>\tilde{e}$, it applies cost $q+|l|\cdot e$ to gaps
235
+ shorter than $\lceil(\tilde{q}-q)/(e-\tilde{e})\rceil$ and applies
236
+ $\tilde{q}+|l|\cdot\tilde{e}$ to longer gaps. This scheme helps to recover
237
+ longer insertions and deletions~(INDELs).
238
+
239
+ The equation to compute the optimal alignment under $\gamma_a(\cdot)$ is
240
+ \begin{equation}\label{eq:ae86}
241
+ \left\{\begin{array}{l}
242
+ H_{ij} = \max\{H_{i-1,j-1}+s(i,j),E_{ij},F_{ij},\tilde{E}_{ij},\tilde{F}_{ij}\}\\
243
+ E_{i+1,j}= \max\{H_{ij}-q,E_{ij}\}-e\\
244
+ F_{i,j+1}= \max\{H_{ij}-q,F_{ij}\}-e\\
245
+ \tilde{E}_{i+1,j}= \max\{H_{ij}-\tilde{q},\tilde{E}_{ij}\}-\tilde{e}\\
246
+ \tilde{F}_{i,j+1}= \max\{H_{ij}-\tilde{q},\tilde{F}_{ij}\}-\tilde{e}
247
+ \end{array}\right.
248
+ \end{equation}
249
+ where $s(i,j)$ is the score between the $i$-th reference base and $j$-th query
250
+ base. Eq.~(\ref{eq:ae86}) is a natural extension to the equation under affine
251
+ gap cost~\citep{Gotoh:1982aa,Altschul:1986aa}.
252
+
253
+ \subsubsection{The Suzuki-Kasahara formulation}
254
+
255
+ When we allow gaps longer than several hundred base pairs, nucleotide-level
256
+ alignment is much slower than chaining. SSE acceleration is critical to the
257
+ performance of minimap2. Traditional SSE implementations~\citep{Farrar:2007hs}
258
+ based on Eq.~(\ref{eq:ae86}) can achieve 16-way parallelization for short
259
+ sequences, but only 4-way parallelization when the peak alignment score reaches
260
+ 32767. Long sequence alignment may exceed this threshold. Inspired by
261
+ \citet{Wu:1996aa} and the following work, \citet{Suzuki:2018aa} proposed a
262
+ difference-based formulation that lifted this limitation.
263
+ In case of 2-piece gap cost, define
264
+ \[
265
+ \left\{\begin{array}{ll}
266
+ u_{ij}\triangleq H_{ij}-H_{i-1,j} & v_{ij}\triangleq H_{ij}-H_{i,j-1} \\
267
+ x_{ij}\triangleq E_{i+1,j}-H_{ij} & \tilde{x}_{ij}\triangleq \tilde{E}_{i+1,j}-H_{ij} \\
268
+ y_{ij}\triangleq F_{i,j+1}-H_{ij} & \tilde{y}_{ij}\triangleq \tilde{F}_{i,j+1}-H_{ij}
269
+ \end{array}\right.
270
+ \]
271
+ We can transform Eq.~(\ref{eq:ae86}) to
272
+ \begin{equation}\label{eq:suzuki}
273
+ \left\{\begin{array}{lll}
274
+ z_{ij}&=&\max\{s(i,j),x_{i-1,j}+v_{i-1,j},y_{i,j-1}+u_{i,j-1},\\
275
+ &&\tilde{x}_{i-1,j}+v_{i-1,j},\tilde{y}_{i,j-1}+u_{i,j-1}\}\\
276
+ u_{ij}&=&z_{ij}-v_{i-1,j}\\
277
+ v_{ij}&=&z_{ij}-u_{i,j-1}\\
278
+ x_{ij}&=&\max\{0,x_{i-1,j}+v_{i-1,j}-z_{ij}+q\}-q-e\\
279
+ y_{ij}&=&\max\{0,y_{i,j-1}+u_{i,j-1}-z_{ij}+q\}-q-e\\
280
+ \tilde{x}_{ij}&=&\max\{0,\tilde{x}_{i-1,j}+v_{i-1,j}-z_{ij}+\tilde{q}\}-\tilde{q}-\tilde{e}\\
281
+ \tilde{y}_{ij}&=&\max\{0,\tilde{y}_{i,j-1}+u_{i,j-1}-z_{ij}+\tilde{q}\}-\tilde{q}-\tilde{e}
282
+ \end{array}\right.
283
+ \end{equation}
284
+ where $z_{ij}$ is a temporary variable that does not need to be stored.
285
+
286
+ An important property of Eq.~(\ref{eq:suzuki}) is that all values are bounded
287
+ by scoring parameters. To see that,
288
+ \[
289
+ x_{ij}=E_{i+1,j}-H_{ij}=\max\{-q,E_{ij}-H_{ij}\}-e
290
+ \]
291
+ With $E_{ij}\le H_{ij}$, we have
292
+ \[
293
+ -q-e\le x_{ij}\le\max\{-q,0\}-e=-e
294
+ \]
295
+ and similar inequations for $y_{ij}$, $\tilde{x}_{ij}$ and $\tilde{y}_{ij}$.
296
+ In addition,
297
+ \[
298
+ u_{ij}=z_{ij}-v_{i-1,j}\ge\max\{x_{i-1,j},\tilde{x}_{i-1,j}\}\ge-q-e
299
+ \]
300
+ As the maximum value of $z_{ij}=H_{ij}-H_{i-1,j-1}$ is $M$, the maximal
301
+ matching score, we can derive
302
+ \[
303
+ u_{ij}\le M-v_{i-1,j}\le M+q+e
304
+ \]
305
+ In conclusion, in Eq.~(\ref{eq:suzuki}), $x$ and $y$ are bounded by $[-q-e,-e]$,
306
+ $\tilde{x}$ and $\tilde{y}$ by $[-\tilde{q}-\tilde{e},-\tilde{e}]$, and $u$ and
307
+ $v$ by $[-q-e,M+q+e]$. When $-128\le-q-e<M+q+e\le127$, each of them can be stored as
308
+ a 8-bit integer. This enables 16-way SSE vectorization regardless of the peak
309
+ score of the alignment.
310
+
311
+ For a more efficient SSE implementation, we transform the row-column coordinate
312
+ to the diagonal-antidiagonal coordinate by letting $r\gets i+j$ and $t\gets i$.
313
+ Eq.~(\ref{eq:suzuki}) becomes:
314
+ \begin{equation*}
315
+ \left\{\begin{array}{lll}
316
+ z_{rt}&=&\max\{s(t,r-t),x_{r-1,t-1}+v_{r-1,t-1},y_{r-1,t}\\
317
+ &&+u_{r-1,t},\tilde{x}_{r-1,t-1}+v_{r-1,t-1},\tilde{y}_{r-1,t}+u_{r-1,t}\}\\
318
+ u_{rt}&=&z_{rt}-v_{r-1,t-1}\\
319
+ v_{rt}&=&z_{rt}-u_{r-1,t}\\
320
+ x_{rt}&=&\max\{0,x_{r-1,t-1}+v_{r-1,t-1}-z_{rt}+q\}-q-e\\
321
+ y_{rt}&=&\max\{0,y_{r-1,t}+u_{r-1,t}-z_{rt}+q\}-q-e\\
322
+ \tilde{x}_{rt}&=&\max\{0,\tilde{x}_{r-1,t-1}+v_{r-1,t-1}-z_{rt}+\tilde{q}\}-\tilde{q}-\tilde{e}\\
323
+ \tilde{y}_{rt}&=&\max\{0,\tilde{y}_{r-1,t}+u_{r-1,t}-z_{rt}+\tilde{q}\}-\tilde{q}-\tilde{e}
324
+ \end{array}\right.
325
+ \end{equation*}
326
+ In this formulation, cells with the same diagonal index $r$ are independent of
327
+ each other. This allows us to fully vectorize the computation of all cells on
328
+ the same anti-diagonal in one inner loop. It also simplifies banded alignment (500bp band width by default),
329
+ which would be difficult with striped vectorization~\citep{Farrar:2007hs}.
330
+
331
+ On the condition that $q+e<\tilde{q}+\tilde{e}$ and $e>\tilde{e}$, the initial
332
+ values in the diagonal-antidiagonal formuation are
333
+ \[
334
+ \left\{\begin{array}{l}
335
+ x_{r-1,-1}=y_{r-1,r}=-q-e\\
336
+ \tilde{x}_{r-1,-1}=\tilde{y}_{r-1,r}=-\tilde{q}-\tilde{e}\\
337
+ u_{r-1,r}=v_{r-1,-1}=\eta(r)\\
338
+ \end{array}\right.
339
+ \]
340
+ where
341
+ \[
342
+ \eta(r)=\left\{\begin{array}{ll}
343
+ -q-e & (r=0) \\
344
+ -e & (r<\lceil\frac{\tilde{q}-q}{e-\tilde{e}}-1\rceil) \\
345
+ r\cdot(e-\tilde{e})-(\tilde{q}-q)-\tilde{e} & (r=\lceil\frac{\tilde{q}-q}{e-\tilde{e}}-1\rceil) \\
346
+ -\tilde{e} & (r>\lceil\frac{\tilde{q}-q}{e-\tilde{e}}-1\rceil)
347
+ \end{array}\right.
348
+ \]
349
+ These can be derived from the initial values for Eq.~(\ref{eq:ae86}).
350
+
351
+ When performing global alignment, we do not need to compute $H_{rt}$ in each cell.
352
+ We use 16-way vectorization throughout the alignment process. When extending
353
+ alignments from ends of chains, we need to find the cell $(r,t)$ where $H_{rt}$
354
+ reaches the maximum. We resort to 4-way vectorization to compute
355
+ $H_{rt}=H_{r-1,t}+u_{rt}$. Because this computation is simple,
356
+ Eq.~(\ref{eq:suzuki}) is still the dominant performance bottleneck.
357
+
358
+ In practice, our 16-way vectorized implementation of global alignment is three
359
+ times as fast as Parasail's 4-way vectorization~\citep{Daily:2016aa}. Without
360
+ banding, our implementation is slower than Edlib~\citep{Sosic:2017aa}, but with
361
+ a 1000bp band, it is considerably faster. When performing global alignment
362
+ between anchors, we expect the alignment to stay close to the diagonal of the
363
+ DP matrix. Banding is applicable most of the time.
364
+
365
+ \subsubsection{The Z-drop heuristic}
366
+
367
+ With global alignment, minimap2 may force to align unrelated sequences between
368
+ two adjacent anchors. To avoid such an artifact, we compute accumulative
369
+ alignment score along the alignment path and break the alignment where the
370
+ score drops too fast in the diagonal direction. More precisely, let $S(i,j)$ be
371
+ the alignment score along the alignment path ending at cell $(i,j)$ in the DP
372
+ matrix. We break the alignment if there exist $(i',j')$ and $(i,j)$, $i'<i$ and
373
+ $j'<j$, such that
374
+ \[
375
+ S(i',j')-S(i,j)>Z+e\cdot|(i-i')-(j-j')|
376
+ \]
377
+ where $e$ is the gap extension cost and $Z$ is an arbitrary threshold.
378
+ This strategy is first used in BWA-MEM. It is similar to X-drop employed in
379
+ BLAST~\citep{Altschul:1997vn}, but unlike X-drop, it would not break the
380
+ alignment in the presence of a single long gap.
381
+
382
+ When minimap2 breaks a global alignment between two anchors, it performs local
383
+ alignment between the two subsequences involved in the global alignment, but
384
+ this time with the one subsequence reverse complemented. This additional
385
+ alignment step may identify short inversions that are missed during chaining.
386
+
387
+ \subsubsection{Filtering out misplaced anchors}
388
+ Due to sequencing errors and local homology, some anchors in a chain may be
389
+ wrong. If we blindly align regions between two misplaced anchors, we will
390
+ produce a suboptimal alignment. To reduce this artifact, we filter out
391
+ anchors that lead to a $>$10bp insertion and a $>$10bp deletion at the same
392
+ time, and filter out terminal anchors that lead to a long gap towards the ends
393
+ of a chain. These heuristics greatly alleviate the issues with misplaced
394
+ anchors, but they are unable to fix all such errors. Local misalignment is a
395
+ limitation of minimap2 which we hope to address in future.
396
+
397
+ \subsection{Aligning spliced sequences}
398
+
399
+ The algorithm described above can be adapted to spliced alignment. In this
400
+ mode, the chaining gap cost distinguishes insertions to and deletions from the
401
+ reference: $\gamma_c(l)$ in Eq.~(\ref{eq:chain-gap}) takes the form of
402
+ \[
403
+ \gamma_c(l)=\left\{\begin{array}{ll}
404
+ 0.01\cdot\bar{w}\cdot l+0.5\log_2 l & (l>0) \\
405
+ \min\{0.01\cdot\bar{w}\cdot|l|,\log_2|l|\} & (l<0)
406
+ \end{array}\right.
407
+ \]
408
+ Similarly, the gap cost function used for DP-based alignment is changed to
409
+ \[
410
+ \gamma_a(l)=\left\{\begin{array}{ll}
411
+ q+l\cdot e & (l>0) \\
412
+ \min\{q+|l|\cdot e,\tilde{q}\} & (l<0)
413
+ \end{array}\right.
414
+ \]
415
+ In alignment, a deletion no shorter than $\lceil(\tilde{q}-q)/e\rceil$ is
416
+ regarded as an intron, which pays no cost to gap extensions.
417
+
418
+ To pinpoint precise splicing junctions, minimap2 introduces reference-dependent
419
+ cost to penalize non-canonical splicing:
420
+ \begin{equation}\label{eq:splice}
421
+ \left\{\begin{array}{l}
422
+ H_{ij} = \max\{H_{i-1,j-1}+s(i,j),E_{ij},F_{ij},\tilde{E}_{ij}-a(i)\}\\
423
+ E_{i+1,j}= \max\{H_{ij}-q,E_{ij}\}-e\\
424
+ F_{i,j+1}= \max\{H_{ij}-q,F_{ij}\}-e\\
425
+ \tilde{E}_{i+1,j}= \max\{H_{ij}-d(i)-\tilde{q},\tilde{E}_{ij}\}\\
426
+ \end{array}\right.
427
+ \end{equation}
428
+ Let $T$ be the reference sequence. $d(i)$ is computed as
429
+ \[d(i)=\left\{\begin{array}{ll}
430
+ 0 & \mbox{if $T[i+1,i+3]$ is ${\tt GTA}$ or ${\tt GTG}$} \\
431
+ p/2 & \mbox{if $T[i+1,i+3]$ is ${\tt GTC}$ or ${\tt GTT}$} \\
432
+ p & \mbox{otherwise}
433
+ \end{array}\right.\]
434
+ where $T[i,j]$ extracts a substring of $T$ between $i$ and $j$ inclusively.
435
+ $d(i)$ penalizes non-canonical donor sites with $p$ and less frequent Eukaryotic
436
+ splicing signal ${\tt GT[C/T]}$ with $p/2$~\citep{Irimia:2008aa}. Similarly,
437
+ \[a(i)=\left\{\begin{array}{ll}
438
+ 0 & \mbox{if $T[i-2,i]$ is ${\tt CAG}$ or ${\tt TAG}$} \\
439
+ p/2 & \mbox{if $T[i-2,i]$ is ${\tt AAG}$ or ${\tt GAG}$} \\
440
+ p & \mbox{otherwise}
441
+ \end{array}\right.\]
442
+ models the acceptor signal. Eq.~(\ref{eq:splice}) is close to an equation in
443
+ \citet{Zhang:2006aa} except that we allow insertions immediately followed by
444
+ deletions and vice versa; in addition, we use the Suzuki-Kasahara diagonal
445
+ formulation in actual implementation.
446
+
447
+ If RNA-seq reads are not sequenced from stranded libraries, the read strand
448
+ relative to the underlying transcript is unknown. By default, minimap2 aligns
449
+ each chain twice, first assuming ${\tt GT}$--${\tt AG}$ as the splicing signal
450
+ and then assuming ${\tt CT}$--${\tt AC}$, the reverse complement of ${\tt
451
+ GT}$--${\tt AG}$, as the splicing signal. The alignment with a higher score is
452
+ taken as the final alignment. This procedure also infers the relative strand of
453
+ reads that span canonical splicing sites.
454
+
455
+ In the spliced alignment mode, minimap2 further increases the density of
456
+ minimizers and disables banded alignment. Together with the two-round DP-based
457
+ alignment, spliced alignment is several times slower than genomic DNA
458
+ alignment.
459
+
460
+ \subsection{Aligning short paired-end reads}
461
+
462
+ During chaining, minimap2 takes a pair of reads as one fragment with a gap of
463
+ unknown length in the middle. It applies a normal gap cost between seeds on the
464
+ same read but is a more permissive gap cost between seeds on different reads.
465
+ More precisely, the gap cost during chaining is ($l\not=0$):
466
+ \[
467
+ \gamma_c(l)=\left\{\begin{array}{ll}
468
+ 0.01\cdot\bar{w}\cdot |l|+0.5\log_2 |l| & \mbox{if two seeds on the same read} \\
469
+ \min\{0.01\cdot\bar{w}\cdot|l|,\log_2|l|\} & \mbox{otherwise}
470
+ \end{array}\right.
471
+ \]
472
+ After identifying primary chains (Section~\ref{sec:primary}), we split each
473
+ fragment chain into two read chains and perform alignment for each read as in
474
+ Section~\ref{sec:genomic}. Finally, we pair hits of each read end to find
475
+ consistent paired-end alignments.
476
+
477
+ \end{methods}
478
+
479
+ \section{Results}
480
+
481
+ Minimap2 is implemented in the C programming language and comes with APIs in
482
+ both C and Python. It is distributed under the MIT license, free to both
483
+ commercial and academic uses. Minimap2 uses the same base algorithm for all
484
+ applications, but it has to apply different sets of parameters depending on
485
+ input data types. Similar to BWA-MEM, minimap2 introduces `presets' that
486
+ modify multiple parameters with a simple invocation. Detailed settings
487
+ and command-line options can be found in the minimap2 manpage. In addition to
488
+ the applications evaluated in the following sections, minimap2 also retains
489
+ minimap's functionality to find overlaps between long reads and to search
490
+ against large multi-species databases such as \emph{nt} from NCBI.
491
+
492
+ \subsection{Aligning long genomic reads}\label{sec:long-genomic}
493
+
494
+ \begin{figure}[!tb]
495
+ \centering
496
+ \includegraphics[width=.5\textwidth]{roc-color.pdf}
497
+ \caption{Evaluation on aligning simulated reads. Simulated reads were mapped
498
+ to the primary assembly of human genome GRCh38. A read is considered correctly
499
+ mapped if its longest alignment overlaps with the true interval, and the
500
+ overlap length is $\ge$10\% of the true interval length. Read alignments are
501
+ sorted by mapping quality in the descending order. For each mapping quality
502
+ threshold, the fraction of alignments (out of the number of input reads) with
503
+ mapping quality above the threshold and their error rate are
504
+ plotted along the curve. (a) long-read alignment evaluation. 33,088 $\ge$1000bp
505
+ reads were simulated using pbsim~\citep{Ono:2013aa} with error profile sampled
506
+ from file `m131017\_060208\_42213\_*.1.*' downloaded at
507
+ \href{http://bit.ly/chm1p5c3}{http://bit.ly/chm1p5c3}. The N50 read length is
508
+ 11,628. Aligners were run under the default setting for SMRT reads.
509
+ Kart outputted all alignments at mapping quality 60, so is not shown in the
510
+ figure. It mapped nearly all reads with 4.1\% of alignments being wrong, less
511
+ accurate than others. (b) short-read alignment evaluation. 10 million pairs of
512
+ 150bp reads were simulated using mason2~\citep{Holtgrewe:2010aa} with option
513
+ `\mbox{--illumina-prob-mismatch-scale 2.5}'. Short-read aligners were run under
514
+ the default setting except for changing the maximum fragment length to
515
+ 800bp.}\label{fig:eval}
516
+ \end{figure}
517
+
518
+ As a sanity check, we evaluated minimap2 on simulated human reads along with
519
+ BLASR~(v1.MC.rc64; \citealp{Chaisson:2012aa}),
520
+ BWA-MEM~(v0.7.15; \citealp{Li:2013aa}),
521
+ GraphMap~(v0.5.2; \citealp{Sovic:2016aa}),
522
+ Kart~(v2.2.5; \citealp{Lin:2017aa}),
523
+ minialign~(v0.5.3; \href{https://github.com/ocxtal/minialign}{https://github.com/ocxtal/minialign}) and
524
+ NGMLR~(v0.2.5; \citealp{Sedlazeck169557}). We excluded rHAT~\citep{Liu:2016ab}
525
+ and LAMSA~\citep{Liu:2017aa} because they either
526
+ crashed or produced malformatted output. In this evaluation, minimap2 has
527
+ higher power to distinguish unique and repetitive hits, and achieves overall
528
+ higher mapping accuracy (Fig.~\ref{fig:eval}a). Minimap2 and
529
+ NGMLR provide better mapping quality estimate: they rarely give repetitive hits
530
+ high mapping quality. Apparently, other aligners may
531
+ occasionally miss close suboptimal hits and be overconfident in wrong mappings.
532
+ On run time, minimap2 took 200 CPU seconds, comparable to minialign and Kart, and is over
533
+ 30 times faster than the rest. Minimap2 consumed 6.8GB memory at the peak,
534
+ more than BWA-MEM (5.4GB), similar to NGMLR and less than others.
535
+
536
+ On real human SMRT reads, the relative performance and fraction of mapped reads reported by
537
+ these aligners are broadly similar to the metrics on simulated data. We are
538
+ unable to provide a good estimate of mapping error rate due to the lack of the
539
+ truth. On ONT $\sim$100kb human reads~\citep{Jain128835}, BWA-MEM failed.
540
+ Kart, minialign and minimap2 are over 70 times faster than others. We have also
541
+ examined tens of $\ge$100bp INDELs in IGV~\citep{Robinson:2011aa} and can
542
+ confirm the observation by~\citet{Sedlazeck169557} that BWA-MEM often breaks
543
+ them into shorter gaps. The issue is much alleviated with minimap2, thanks
544
+ to the 2-piece affine gap cost.
545
+
546
+ \subsection{Aligning long spliced reads}
547
+
548
+ We evaluated minimap2 on SIRV control data~(AC:SRR5286959;
549
+ \citealp{Byrne:2017aa}) where the truth is known. Minimap2 predicted 59\,918
550
+ introns from 11\,018 reads. 93.8\% of splice juctions are precise. We examined
551
+ wrongly predicted junctions and found the majority were caused by clustered
552
+ splicing signals (e.g. two adjacent ${\tt GT}$ sites). When INDEL sequencing
553
+ errors are frequent, it is difficult to find precise splicing sites in this
554
+ case. If we allow up to 10bp distance from true splicing sites, 98.4\% of
555
+ aligned introns are approximately correct. It is worth noting that for SIRV, we
556
+ asked minimap2 to model the ${\tt GT..AG}$ splicing signal only without extra
557
+ bases. This is because SIRV does not honor the evolutionarily prevalent signal
558
+ ${\tt GT[A/G]..[C/T]AG}$~\citep{Irimia:2008aa}.
559
+
560
+ \begin{table}[!tb]
561
+ \processtable{Evaluation of junction accuracy on 2D ONT reads}
562
+ {\footnotesize\label{tab:intron}
563
+ \begin{tabular}{p{3.1cm}rrrr}
564
+ \toprule
565
+ & GMAP & minimap2 & SpAln & STAR\\
566
+ \midrule
567
+ Run time (CPU min) & 631 & 15.9 & 2\,076 & 33.9 \\
568
+ Peak RAM (GByte) & 8.9 & 14.5 & 3.2 & 29.2\vspace{1em}\\
569
+ \# aligned reads & 103\,669 & 104\,199 & 103\,711 & 26\,479 \\
570
+ \# chimeric alignments & 1\,904 & 1\,488 & 0 & 0 \\
571
+ \# non-spliced alignments & 15\,854 & 14\,798 & 17\,033 & 10\,545\vspace{1em}\\
572
+ \# aligned introns & 692\,275 & 693\,553 & 692\,945 & 78\,603 \\
573
+ \# novel introns & 11\,239 & 3\,113 & 8\,550 & 1\,214 \\
574
+ \% exact introns & 83.8\% & 94.0\% & 87.9\% & 55.2\% \\
575
+ \% approx. introns & 91.8\% & 96.9\% & 92.5\% & 82.4\% \\
576
+ \botrule
577
+ \end{tabular}
578
+ }{Mouse cDNA reads (AC:SRR5286960; R9.4 chemistry) were mapped to the primary assembly of mouse
579
+ genome GRCm38 with the following tools and command options: minimap2 (`-ax
580
+ splice'); GMAP (`-n 0 --min-intronlength 30 --cross-species'); SpAln (`-Q7 -LS
581
+ -S3'); STARlong (according to
582
+ \href{http://bit.ly/star-pb}{http://bit.ly/star-pb}). The alignments were
583
+ compared to the EnsEMBL gene annotation, release 89. A predicted intron
584
+ is \emph{novel} if it has no overlaps with any annotated introns. An intron
585
+ is \emph{exact} if it is identical to an annotated intron. An intron is
586
+ \emph{approximate} if both its 5'- and 3'-end are within 10bp around the ends
587
+ of an annotated intron. Chimeric alignments are defined in the SAM spec~\citep{Li:2009ys}.}
588
+ \end{table}
589
+
590
+ We next aligned real mouse reads~\citep{Byrne:2017aa} with GMAP~(v2017-06-20;
591
+ \citealp{Wu:2005vn}), minimap2, SpAln~(v2.3.1; \citealp{Iwata:2012aa}) and
592
+ STAR~(v2.5.3a; \citealp{Dobin:2013kx}). In general, minimap2 is more
593
+ consistent with existing annotations (Table~\ref{tab:intron}): it finds
594
+ more junctions with a higher percentage being exactly or approximately correct.
595
+ Minimap2 is over 40 times faster than GMAP and SpAln. While STAR is close to
596
+ minimap2 in speed, it does not work well with noisy reads.
597
+
598
+ We have also evaluated spliced aligners on a human Nanopore Direct RNA-seq
599
+ dataset (\href{http://bit.ly/na12878ont}{http://bit.ly/na12878ont}). Minimap2
600
+ aligned 10 million reads in $<$1 wall-clock hour using 16 CPU cores. 94.2\% of
601
+ aligned splice junctions consistent with gene annotations. In comparison,
602
+ GMAP under option `-k 14 -n 0 --min-intronlength 30 --cross-species' is 160
603
+ times slower; 68.7\% of GMAP junctions are found in known gene annotations. The
604
+ percentage increases to 84.1\% if an aligned junction within 10bp from an
605
+ annotated junction is considered to be correct. On a public Iso-Seq dataset
606
+ (human Alzheimer brain from
607
+ \href{http://bit.ly/isoseqpub}{http://bit.ly/isoseqpub}), minimap2 is also
608
+ faster at higher junction accuracy in comparison to other aligners in
609
+ Table~\ref{tab:intron}.
610
+
611
+ We noted that GMAP and SpAln have not been optimized for noisy reads. We are
612
+ showing the best setting we have experimented, but their developers should be
613
+ able to improve their accuracy further.
614
+
615
+ %\begin{table}[!tb]
616
+ %\processtable{Evaluation of junction accuracy on SMRT Iso-Seq reads}
617
+ %{\footnotesize
618
+ %\begin{tabular}{lrrrr}
619
+ %\toprule
620
+ % & GMAP & minimap2 & SpAln & STAR \\ % one GMAP thread took 14 days to align a tiny fraction of reads
621
+ %\midrule
622
+ %Run time (CPU min) & - & 243 & 2,352 & 1,647 \\
623
+ %\# aligned reads & 1,113,502 & 1,123,025 & 1,094,092 & 682,452 \\
624
+ %\# chimeric alignments & 48,927 & 33,091 & 0 & 0 \\
625
+ %\# non-spliced alignments & 334,097 & 339,081 & 291,447 & 272,536 \vspace{1em}\\
626
+ %\# aligned introns & 8,922,221 & 9,071,755 & 9,208,564 & 3,029,121 \\
627
+ %\# novel introns & 48,927 & 42,773 & 82,230 & 17,791 \\
628
+ %\% exact introns & 90.6\% & 94.9\% & 91.7\% & 84.7\% \\
629
+ %\% approx. introns & 94.0\% & 96.9\% & 93.4\% & 93.8\% \\
630
+ %\botrule
631
+ %\end{tabular}
632
+ %}{}
633
+ %\end{table}
634
+
635
+ \subsection{Aligning short genomic reads}
636
+
637
+ We evaluated minimap2 along with Bowtie2~(v2.3.3; \citealt{Langmead:2012fk}), BWA-MEM and
638
+ SNAP (v1.0beta23; \citealt{Zaharia:2011aa}). Minimap2 is 3--4 times as fast as Bowtie2 and
639
+ BWA-MEM, but is 1.3 times slower than SNAP. Minimap2 is more accurate on this
640
+ simulated data set than Bowtie2 and SNAP but less accurate than BWA-MEM
641
+ (Fig.~\ref{fig:eval}b). Closer investigation reveals that BWA-MEM achieves
642
+ a higher accuracy partly because it tries to locally align a read in a small
643
+ region close to its mate. If we disable this feature, BWA-MEM becomes slightly
644
+ less accurate than minimap2. We might implement a similar heuristic
645
+ in minimap2 in future.
646
+
647
+ To evaluate the accuracy of minimap2 on real data, we aligned human reads
648
+ (AC:ERR1341796) with BWA-MEM and minimap2, and called SNPs and small INDELs
649
+ with GATK HaplotypeCaller v3.5~\citep{Depristo:2011vn}. This run was sequenced
650
+ from experimentally mixed CHM1 and CHM13 cell lines. Both of them are homozygous
651
+ across the whole genome and have been \emph{de novo} assembled with SMRT reads
652
+ to high quality. This allowed us to construct an independent truth variant
653
+ dataset~\citep{Li223297} for
654
+ ERR1341796. In this evaluation, minimap2 has higher SNP false negative rate
655
+ (FNR; 2.6\% of minimap2 vs 2.3\% of BWA-MEM), but fewer false positive SNPs per
656
+ million bases (FPPM; 7.0 vs 8.8), similar INDEL FNR (11.2\% vs 11.3\%) and
657
+ similar INDEL FPPM (6.4 vs 6.5). Minimap2 is broadly comparable to BWA-MEM in the
658
+ context of small variant calling.
659
+
660
+ \subsection{Aligning long-read assemblies}
661
+
662
+ Minimap2 can align a SMRT assembly (AC:GCA\_001297185.1) against GRCh38 in 7
663
+ minutes using 8 CPU cores, over 20 times faster than nucmer from
664
+ MUMmer4~\citep{Marcais:2018aa}. With the paftools.js script from the minimap2
665
+ package, we called 2.67 million single-base substitutions out of 2.78Gbp
666
+ genomic regions. The transition-to-transversion ratio (ts/tv) is 2.01. In
667
+ comparison, using MUMmer4's dnadiff pipeline, we called 2.86 million
668
+ substitutions in 2.83Gbp at ts/tv=1.87. Given that ts/tv averaged across the
669
+ human genome is about 2 but ts/tv averaged over random errors is 0.5, the
670
+ minimap2 callset arguably has higher precision at lower sensitivity.
671
+
672
+ The sample being assembled is a female. Minimap2 still called 201 substitutions
673
+ on the Y chromosome. These substitutions all come from one contig aligned at
674
+ 96.8\% sequence identity. The contig could be a segmental duplication
675
+ absent from GRCh38. In constrast, dnadiff called 9070 substitutions on the Y
676
+ chromosome across 73 SMRT contigs. This again implies our minimap2-based
677
+ pipeline has higher precision.
678
+
679
+ \section{Discussions}
680
+
681
+ Minimap2 is a versatile mapper and pairwise aligner for nucleotide sequences.
682
+ It works with short reads, assembly contigs and long noisy genomic and RNA-seq
683
+ reads, and can be used as a read mapper, long-read overlapper or a full-genome
684
+ aligner. Minimap2 is also accurate and efficient, often outperforming other
685
+ domain-specific alignment tools in terms of both speed and accuracy.
686
+
687
+ The capability of minimap2 comes from a fast base-level alignment algorithm and
688
+ an accurate chaining algorithm. When aligning long query sequences, base-level
689
+ alignment is often the performance bottleneck. The Suzuki-Kasahara algorithm
690
+ greatly alleviates the bottleneck and enables DP-based splice alignment
691
+ involving $>$100kb introns, which was impractically slow ten years ago. The
692
+ minimap2 chaining algorithm is fast and highly accurate by itself. In fact,
693
+ chaining alone is more accurate than all the other long-read mappers in
694
+ Fig.~\ref{fig:eval}a (data not shown). This accuracy helps to reduce downstream
695
+ base-level alignment of candidate chains, which is still several times slower than
696
+ chaining even with the Suzuki-Kasahara improvement. In addition, taking a
697
+ general form, minimap2 chaining can be adapted to non-typical data types such as
698
+ spliced reads and multiple reads per fragment. This gives us the opportunity to
699
+ extend the same base algorithm to a variety of use cases.
700
+
701
+ Modern mainstream aligners often use a full-text index, such as suffix array or
702
+ FM-index, to index reference sequences. An advantage of this approach is that
703
+ we can use exact seeds of arbitrary lengths, which helps to increase seed
704
+ uniqueness and reduce unsuccessful extensions. Minimap2 indexes reference
705
+ k-mers with a hash table instead. Such fixed-length seeds are inferior to
706
+ variable-length seeds in theory, but can be computed much more efficiently in
707
+ practice. When a query sequence has multiple seed hits, we can afford to skip
708
+ highly repetitive seeds without affecting the final accuracy. This further
709
+ alleviates the concern with the seeding uniqueness. At the same time, at low
710
+ sequence identity, it is rare to see long seeds anyway. Hash table is the ideal
711
+ data structure for mapping long noisy sequences.
712
+
713
+ \section*{Acknowledgements}
714
+ We owe a debt of gratitude to H. Suzuki and M. Kasahara for releasing their
715
+ masterpiece and insightful notes before formal publication. We thank M.
716
+ Schatz, P. Rescheneder and F. Sedlazeck for pointing out the limitation of
717
+ BWA-MEM. We are also grateful to minimap2 users who have greatly helped to
718
+ suggest features and to fix various issues.
719
+
720
+ \paragraph{Funding\textcolon} NHGRI 1R01HG010040-01
721
+
722
+ \bibliography{minimap2}
723
+
724
+ \end{document}