lemongraph 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (161) hide show
  1. checksums.yaml +7 -0
  2. data/.yardopts +8 -0
  3. data/LICENSE +674 -0
  4. data/README.md +6 -0
  5. data/ext/lemon-1.3.1/AUTHORS +26 -0
  6. data/ext/lemon-1.3.1/CMakeLists.txt +371 -0
  7. data/ext/lemon-1.3.1/INSTALL +167 -0
  8. data/ext/lemon-1.3.1/LICENSE +32 -0
  9. data/ext/lemon-1.3.1/NEWS +337 -0
  10. data/ext/lemon-1.3.1/README +50 -0
  11. data/ext/lemon-1.3.1/cmake/FindCOIN.cmake +110 -0
  12. data/ext/lemon-1.3.1/cmake/FindGLPK.cmake +55 -0
  13. data/ext/lemon-1.3.1/cmake/FindGhostscript.cmake +10 -0
  14. data/ext/lemon-1.3.1/cmake/FindILOG.cmake +102 -0
  15. data/ext/lemon-1.3.1/cmake/FindSOPLEX.cmake +23 -0
  16. data/ext/lemon-1.3.1/cmake/LEMONConfig.cmake.in +13 -0
  17. data/ext/lemon-1.3.1/cmake/nsis/lemon.ico +0 -0
  18. data/ext/lemon-1.3.1/cmake/nsis/uninstall.ico +0 -0
  19. data/ext/lemon-1.3.1/cmake/version.cmake +1 -0
  20. data/ext/lemon-1.3.1/cmake/version.cmake.in +1 -0
  21. data/ext/lemon-1.3.1/contrib/CMakeLists.txt +19 -0
  22. data/ext/lemon-1.3.1/lemon/CMakeLists.txt +91 -0
  23. data/ext/lemon-1.3.1/lemon/adaptors.h +3638 -0
  24. data/ext/lemon-1.3.1/lemon/arg_parser.cc +474 -0
  25. data/ext/lemon-1.3.1/lemon/arg_parser.h +440 -0
  26. data/ext/lemon-1.3.1/lemon/assert.h +214 -0
  27. data/ext/lemon-1.3.1/lemon/base.cc +37 -0
  28. data/ext/lemon-1.3.1/lemon/bellman_ford.h +1116 -0
  29. data/ext/lemon-1.3.1/lemon/bfs.h +1754 -0
  30. data/ext/lemon-1.3.1/lemon/bin_heap.h +347 -0
  31. data/ext/lemon-1.3.1/lemon/binomial_heap.h +445 -0
  32. data/ext/lemon-1.3.1/lemon/bits/alteration_notifier.h +472 -0
  33. data/ext/lemon-1.3.1/lemon/bits/array_map.h +351 -0
  34. data/ext/lemon-1.3.1/lemon/bits/bezier.h +174 -0
  35. data/ext/lemon-1.3.1/lemon/bits/default_map.h +182 -0
  36. data/ext/lemon-1.3.1/lemon/bits/edge_set_extender.h +627 -0
  37. data/ext/lemon-1.3.1/lemon/bits/enable_if.h +131 -0
  38. data/ext/lemon-1.3.1/lemon/bits/graph_adaptor_extender.h +401 -0
  39. data/ext/lemon-1.3.1/lemon/bits/graph_extender.h +1332 -0
  40. data/ext/lemon-1.3.1/lemon/bits/lock.h +65 -0
  41. data/ext/lemon-1.3.1/lemon/bits/map_extender.h +332 -0
  42. data/ext/lemon-1.3.1/lemon/bits/path_dump.h +177 -0
  43. data/ext/lemon-1.3.1/lemon/bits/solver_bits.h +194 -0
  44. data/ext/lemon-1.3.1/lemon/bits/traits.h +388 -0
  45. data/ext/lemon-1.3.1/lemon/bits/variant.h +494 -0
  46. data/ext/lemon-1.3.1/lemon/bits/vector_map.h +244 -0
  47. data/ext/lemon-1.3.1/lemon/bits/windows.cc +166 -0
  48. data/ext/lemon-1.3.1/lemon/bits/windows.h +44 -0
  49. data/ext/lemon-1.3.1/lemon/bucket_heap.h +594 -0
  50. data/ext/lemon-1.3.1/lemon/capacity_scaling.h +1014 -0
  51. data/ext/lemon-1.3.1/lemon/cbc.cc +460 -0
  52. data/ext/lemon-1.3.1/lemon/cbc.h +129 -0
  53. data/ext/lemon-1.3.1/lemon/christofides_tsp.h +254 -0
  54. data/ext/lemon-1.3.1/lemon/circulation.h +807 -0
  55. data/ext/lemon-1.3.1/lemon/clp.cc +464 -0
  56. data/ext/lemon-1.3.1/lemon/clp.h +164 -0
  57. data/ext/lemon-1.3.1/lemon/color.cc +44 -0
  58. data/ext/lemon-1.3.1/lemon/color.h +204 -0
  59. data/ext/lemon-1.3.1/lemon/concept_check.h +77 -0
  60. data/ext/lemon-1.3.1/lemon/concepts/bpgraph.h +1029 -0
  61. data/ext/lemon-1.3.1/lemon/concepts/digraph.h +491 -0
  62. data/ext/lemon-1.3.1/lemon/concepts/graph.h +788 -0
  63. data/ext/lemon-1.3.1/lemon/concepts/graph_components.h +2134 -0
  64. data/ext/lemon-1.3.1/lemon/concepts/heap.h +324 -0
  65. data/ext/lemon-1.3.1/lemon/concepts/maps.h +223 -0
  66. data/ext/lemon-1.3.1/lemon/concepts/path.h +312 -0
  67. data/ext/lemon-1.3.1/lemon/config.h.in +22 -0
  68. data/ext/lemon-1.3.1/lemon/connectivity.h +1688 -0
  69. data/ext/lemon-1.3.1/lemon/core.h +2506 -0
  70. data/ext/lemon-1.3.1/lemon/cost_scaling.h +1607 -0
  71. data/ext/lemon-1.3.1/lemon/counter.h +249 -0
  72. data/ext/lemon-1.3.1/lemon/cplex.cc +994 -0
  73. data/ext/lemon-1.3.1/lemon/cplex.h +292 -0
  74. data/ext/lemon-1.3.1/lemon/cycle_canceling.h +1230 -0
  75. data/ext/lemon-1.3.1/lemon/dfs.h +1637 -0
  76. data/ext/lemon-1.3.1/lemon/dheap.h +352 -0
  77. data/ext/lemon-1.3.1/lemon/dijkstra.h +1303 -0
  78. data/ext/lemon-1.3.1/lemon/dim2.h +726 -0
  79. data/ext/lemon-1.3.1/lemon/dimacs.h +448 -0
  80. data/ext/lemon-1.3.1/lemon/edge_set.h +1420 -0
  81. data/ext/lemon-1.3.1/lemon/edmonds_karp.h +556 -0
  82. data/ext/lemon-1.3.1/lemon/elevator.h +982 -0
  83. data/ext/lemon-1.3.1/lemon/error.h +276 -0
  84. data/ext/lemon-1.3.1/lemon/euler.h +287 -0
  85. data/ext/lemon-1.3.1/lemon/fib_heap.h +475 -0
  86. data/ext/lemon-1.3.1/lemon/fractional_matching.h +2139 -0
  87. data/ext/lemon-1.3.1/lemon/full_graph.h +1082 -0
  88. data/ext/lemon-1.3.1/lemon/glpk.cc +1012 -0
  89. data/ext/lemon-1.3.1/lemon/glpk.h +263 -0
  90. data/ext/lemon-1.3.1/lemon/gomory_hu.h +568 -0
  91. data/ext/lemon-1.3.1/lemon/graph_to_eps.h +1186 -0
  92. data/ext/lemon-1.3.1/lemon/greedy_tsp.h +251 -0
  93. data/ext/lemon-1.3.1/lemon/grid_graph.h +699 -0
  94. data/ext/lemon-1.3.1/lemon/grosso_locatelli_pullan_mc.h +840 -0
  95. data/ext/lemon-1.3.1/lemon/hao_orlin.h +1015 -0
  96. data/ext/lemon-1.3.1/lemon/hartmann_orlin_mmc.h +654 -0
  97. data/ext/lemon-1.3.1/lemon/howard_mmc.h +651 -0
  98. data/ext/lemon-1.3.1/lemon/hypercube_graph.h +459 -0
  99. data/ext/lemon-1.3.1/lemon/insertion_tsp.h +533 -0
  100. data/ext/lemon-1.3.1/lemon/karp_mmc.h +590 -0
  101. data/ext/lemon-1.3.1/lemon/kruskal.h +324 -0
  102. data/ext/lemon-1.3.1/lemon/lemon.pc.in +10 -0
  103. data/ext/lemon-1.3.1/lemon/lgf_reader.h +3854 -0
  104. data/ext/lemon-1.3.1/lemon/lgf_writer.h +2687 -0
  105. data/ext/lemon-1.3.1/lemon/list_graph.h +2510 -0
  106. data/ext/lemon-1.3.1/lemon/lp.h +95 -0
  107. data/ext/lemon-1.3.1/lemon/lp_base.cc +30 -0
  108. data/ext/lemon-1.3.1/lemon/lp_base.h +2147 -0
  109. data/ext/lemon-1.3.1/lemon/lp_skeleton.cc +143 -0
  110. data/ext/lemon-1.3.1/lemon/lp_skeleton.h +234 -0
  111. data/ext/lemon-1.3.1/lemon/maps.h +4057 -0
  112. data/ext/lemon-1.3.1/lemon/matching.h +3505 -0
  113. data/ext/lemon-1.3.1/lemon/math.h +77 -0
  114. data/ext/lemon-1.3.1/lemon/max_cardinality_search.h +794 -0
  115. data/ext/lemon-1.3.1/lemon/min_cost_arborescence.h +808 -0
  116. data/ext/lemon-1.3.1/lemon/nagamochi_ibaraki.h +702 -0
  117. data/ext/lemon-1.3.1/lemon/nauty_reader.h +113 -0
  118. data/ext/lemon-1.3.1/lemon/nearest_neighbor_tsp.h +238 -0
  119. data/ext/lemon-1.3.1/lemon/network_simplex.h +1659 -0
  120. data/ext/lemon-1.3.1/lemon/opt2_tsp.h +367 -0
  121. data/ext/lemon-1.3.1/lemon/pairing_heap.h +474 -0
  122. data/ext/lemon-1.3.1/lemon/path.h +1164 -0
  123. data/ext/lemon-1.3.1/lemon/planarity.h +2754 -0
  124. data/ext/lemon-1.3.1/lemon/preflow.h +985 -0
  125. data/ext/lemon-1.3.1/lemon/quad_heap.h +343 -0
  126. data/ext/lemon-1.3.1/lemon/radix_heap.h +438 -0
  127. data/ext/lemon-1.3.1/lemon/radix_sort.h +487 -0
  128. data/ext/lemon-1.3.1/lemon/random.cc +29 -0
  129. data/ext/lemon-1.3.1/lemon/random.h +1005 -0
  130. data/ext/lemon-1.3.1/lemon/smart_graph.h +1344 -0
  131. data/ext/lemon-1.3.1/lemon/soplex.cc +465 -0
  132. data/ext/lemon-1.3.1/lemon/soplex.h +158 -0
  133. data/ext/lemon-1.3.1/lemon/static_graph.h +476 -0
  134. data/ext/lemon-1.3.1/lemon/suurballe.h +776 -0
  135. data/ext/lemon-1.3.1/lemon/time_measure.h +610 -0
  136. data/ext/lemon-1.3.1/lemon/tolerance.h +242 -0
  137. data/ext/lemon-1.3.1/lemon/unionfind.h +1824 -0
  138. data/ext/lemon-1.3.1/scripts/unify-sources.sh +390 -0
  139. data/ext/lemon-1.3.1/scripts/valgrind-wrapper.sh +22 -0
  140. data/ext/lemongraph/arc_map.cc +1007 -0
  141. data/ext/lemongraph/digraph.cc +282 -0
  142. data/ext/lemongraph/digraph_arc.cc +153 -0
  143. data/ext/lemongraph/digraph_node.cc +277 -0
  144. data/ext/lemongraph/edge_map.cc +770 -0
  145. data/ext/lemongraph/extconf.rb +53 -0
  146. data/ext/lemongraph/graph.cc +351 -0
  147. data/ext/lemongraph/graph_arc.cc +95 -0
  148. data/ext/lemongraph/graph_edge.cc +153 -0
  149. data/ext/lemongraph/graph_item.cc +76 -0
  150. data/ext/lemongraph/graph_node.cc +321 -0
  151. data/ext/lemongraph/lemongraph.cc +260 -0
  152. data/ext/lemongraph/lemongraph.hh +295 -0
  153. data/ext/lemongraph/lemongraph.map +6 -0
  154. data/ext/lemongraph/lemongraph_export.hh +31 -0
  155. data/ext/lemongraph/node_map.cc +1011 -0
  156. data/lemongraph.gemspec +176 -0
  157. data/lib/lemongraph/graphviz.rb +240 -0
  158. data/lib/lemongraph/version.rb +4 -0
  159. data/lib/lemongraph.rb +21 -0
  160. data/samples/lemondeps.rb +38 -0
  161. metadata +202 -0
@@ -0,0 +1,1607 @@
1
+ /* -*- mode: C++; indent-tabs-mode: nil; -*-
2
+ *
3
+ * This file is a part of LEMON, a generic C++ optimization library.
4
+ *
5
+ * Copyright (C) 2003-2013
6
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
+ *
9
+ * Permission to use, modify and distribute this software is granted
10
+ * provided that this copyright notice appears in all copies. For
11
+ * precise terms see the accompanying LICENSE file.
12
+ *
13
+ * This software is provided "AS IS" with no warranty of any kind,
14
+ * express or implied, and with no claim as to its suitability for any
15
+ * purpose.
16
+ *
17
+ */
18
+
19
+ #ifndef LEMON_COST_SCALING_H
20
+ #define LEMON_COST_SCALING_H
21
+
22
+ /// \ingroup min_cost_flow_algs
23
+ /// \file
24
+ /// \brief Cost scaling algorithm for finding a minimum cost flow.
25
+
26
+ #include <vector>
27
+ #include <deque>
28
+ #include <limits>
29
+
30
+ #include <lemon/core.h>
31
+ #include <lemon/maps.h>
32
+ #include <lemon/math.h>
33
+ #include <lemon/static_graph.h>
34
+ #include <lemon/circulation.h>
35
+ #include <lemon/bellman_ford.h>
36
+
37
+ namespace lemon {
38
+
39
+ /// \brief Default traits class of CostScaling algorithm.
40
+ ///
41
+ /// Default traits class of CostScaling algorithm.
42
+ /// \tparam GR Digraph type.
43
+ /// \tparam V The number type used for flow amounts, capacity bounds
44
+ /// and supply values. By default it is \c int.
45
+ /// \tparam C The number type used for costs and potentials.
46
+ /// By default it is the same as \c V.
47
+ #ifdef DOXYGEN
48
+ template <typename GR, typename V = int, typename C = V>
49
+ #else
50
+ template < typename GR, typename V = int, typename C = V,
51
+ bool integer = std::numeric_limits<C>::is_integer >
52
+ #endif
53
+ struct CostScalingDefaultTraits
54
+ {
55
+ /// The type of the digraph
56
+ typedef GR Digraph;
57
+ /// The type of the flow amounts, capacity bounds and supply values
58
+ typedef V Value;
59
+ /// The type of the arc costs
60
+ typedef C Cost;
61
+
62
+ /// \brief The large cost type used for internal computations
63
+ ///
64
+ /// The large cost type used for internal computations.
65
+ /// It is \c long \c long if the \c Cost type is integer,
66
+ /// otherwise it is \c double.
67
+ /// \c Cost must be convertible to \c LargeCost.
68
+ typedef double LargeCost;
69
+ };
70
+
71
+ // Default traits class for integer cost types
72
+ template <typename GR, typename V, typename C>
73
+ struct CostScalingDefaultTraits<GR, V, C, true>
74
+ {
75
+ typedef GR Digraph;
76
+ typedef V Value;
77
+ typedef C Cost;
78
+ #ifdef LEMON_HAVE_LONG_LONG
79
+ typedef long long LargeCost;
80
+ #else
81
+ typedef long LargeCost;
82
+ #endif
83
+ };
84
+
85
+
86
+ /// \addtogroup min_cost_flow_algs
87
+ /// @{
88
+
89
+ /// \brief Implementation of the Cost Scaling algorithm for
90
+ /// finding a \ref min_cost_flow "minimum cost flow".
91
+ ///
92
+ /// \ref CostScaling implements a cost scaling algorithm that performs
93
+ /// push/augment and relabel operations for finding a \ref min_cost_flow
94
+ /// "minimum cost flow" \cite amo93networkflows,
95
+ /// \cite goldberg90approximation,
96
+ /// \cite goldberg97efficient, \cite bunnagel98efficient.
97
+ /// It is a highly efficient primal-dual solution method, which
98
+ /// can be viewed as the generalization of the \ref Preflow
99
+ /// "preflow push-relabel" algorithm for the maximum flow problem.
100
+ /// It is a polynomial algorithm, its running time complexity is
101
+ /// \f$O(n^2m\log(nK))\f$, where <i>K</i> denotes the maximum arc cost.
102
+ ///
103
+ /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
104
+ /// implementations available in LEMON for solving this problem.
105
+ /// (For more information, see \ref min_cost_flow_algs "the module page".)
106
+ ///
107
+ /// Most of the parameters of the problem (except for the digraph)
108
+ /// can be given using separate functions, and the algorithm can be
109
+ /// executed using the \ref run() function. If some parameters are not
110
+ /// specified, then default values will be used.
111
+ ///
112
+ /// \tparam GR The digraph type the algorithm runs on.
113
+ /// \tparam V The number type used for flow amounts, capacity bounds
114
+ /// and supply values in the algorithm. By default, it is \c int.
115
+ /// \tparam C The number type used for costs and potentials in the
116
+ /// algorithm. By default, it is the same as \c V.
117
+ /// \tparam TR The traits class that defines various types used by the
118
+ /// algorithm. By default, it is \ref CostScalingDefaultTraits
119
+ /// "CostScalingDefaultTraits<GR, V, C>".
120
+ /// In most cases, this parameter should not be set directly,
121
+ /// consider to use the named template parameters instead.
122
+ ///
123
+ /// \warning Both \c V and \c C must be signed number types.
124
+ /// \warning All input data (capacities, supply values, and costs) must
125
+ /// be integer.
126
+ /// \warning This algorithm does not support negative costs for
127
+ /// arcs having infinite upper bound.
128
+ ///
129
+ /// \note %CostScaling provides three different internal methods,
130
+ /// from which the most efficient one is used by default.
131
+ /// For more information, see \ref Method.
132
+ #ifdef DOXYGEN
133
+ template <typename GR, typename V, typename C, typename TR>
134
+ #else
135
+ template < typename GR, typename V = int, typename C = V,
136
+ typename TR = CostScalingDefaultTraits<GR, V, C> >
137
+ #endif
138
+ class CostScaling
139
+ {
140
+ public:
141
+
142
+ /// The type of the digraph
143
+ typedef typename TR::Digraph Digraph;
144
+ /// The type of the flow amounts, capacity bounds and supply values
145
+ typedef typename TR::Value Value;
146
+ /// The type of the arc costs
147
+ typedef typename TR::Cost Cost;
148
+
149
+ /// \brief The large cost type
150
+ ///
151
+ /// The large cost type used for internal computations.
152
+ /// By default, it is \c long \c long if the \c Cost type is integer,
153
+ /// otherwise it is \c double.
154
+ typedef typename TR::LargeCost LargeCost;
155
+
156
+ /// \brief The \ref lemon::CostScalingDefaultTraits "traits class"
157
+ /// of the algorithm
158
+ typedef TR Traits;
159
+
160
+ public:
161
+
162
+ /// \brief Problem type constants for the \c run() function.
163
+ ///
164
+ /// Enum type containing the problem type constants that can be
165
+ /// returned by the \ref run() function of the algorithm.
166
+ enum ProblemType {
167
+ /// The problem has no feasible solution (flow).
168
+ INFEASIBLE,
169
+ /// The problem has optimal solution (i.e. it is feasible and
170
+ /// bounded), and the algorithm has found optimal flow and node
171
+ /// potentials (primal and dual solutions).
172
+ OPTIMAL,
173
+ /// The digraph contains an arc of negative cost and infinite
174
+ /// upper bound. It means that the objective function is unbounded
175
+ /// on that arc, however, note that it could actually be bounded
176
+ /// over the feasible flows, but this algroithm cannot handle
177
+ /// these cases.
178
+ UNBOUNDED
179
+ };
180
+
181
+ /// \brief Constants for selecting the internal method.
182
+ ///
183
+ /// Enum type containing constants for selecting the internal method
184
+ /// for the \ref run() function.
185
+ ///
186
+ /// \ref CostScaling provides three internal methods that differ mainly
187
+ /// in their base operations, which are used in conjunction with the
188
+ /// relabel operation.
189
+ /// By default, the so called \ref PARTIAL_AUGMENT
190
+ /// "Partial Augment-Relabel" method is used, which turned out to be
191
+ /// the most efficient and the most robust on various test inputs.
192
+ /// However, the other methods can be selected using the \ref run()
193
+ /// function with the proper parameter.
194
+ enum Method {
195
+ /// Local push operations are used, i.e. flow is moved only on one
196
+ /// admissible arc at once.
197
+ PUSH,
198
+ /// Augment operations are used, i.e. flow is moved on admissible
199
+ /// paths from a node with excess to a node with deficit.
200
+ AUGMENT,
201
+ /// Partial augment operations are used, i.e. flow is moved on
202
+ /// admissible paths started from a node with excess, but the
203
+ /// lengths of these paths are limited. This method can be viewed
204
+ /// as a combined version of the previous two operations.
205
+ PARTIAL_AUGMENT
206
+ };
207
+
208
+ private:
209
+
210
+ TEMPLATE_DIGRAPH_TYPEDEFS(GR);
211
+
212
+ typedef std::vector<int> IntVector;
213
+ typedef std::vector<Value> ValueVector;
214
+ typedef std::vector<Cost> CostVector;
215
+ typedef std::vector<LargeCost> LargeCostVector;
216
+ typedef std::vector<char> BoolVector;
217
+ // Note: vector<char> is used instead of vector<bool>
218
+ // for efficiency reasons
219
+
220
+ private:
221
+
222
+ template <typename KT, typename VT>
223
+ class StaticVectorMap {
224
+ public:
225
+ typedef KT Key;
226
+ typedef VT Value;
227
+
228
+ StaticVectorMap(std::vector<Value>& v) : _v(v) {}
229
+
230
+ const Value& operator[](const Key& key) const {
231
+ return _v[StaticDigraph::id(key)];
232
+ }
233
+
234
+ Value& operator[](const Key& key) {
235
+ return _v[StaticDigraph::id(key)];
236
+ }
237
+
238
+ void set(const Key& key, const Value& val) {
239
+ _v[StaticDigraph::id(key)] = val;
240
+ }
241
+
242
+ private:
243
+ std::vector<Value>& _v;
244
+ };
245
+
246
+ typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
247
+
248
+ private:
249
+
250
+ // Data related to the underlying digraph
251
+ const GR &_graph;
252
+ int _node_num;
253
+ int _arc_num;
254
+ int _res_node_num;
255
+ int _res_arc_num;
256
+ int _root;
257
+
258
+ // Parameters of the problem
259
+ bool _has_lower;
260
+ Value _sum_supply;
261
+ int _sup_node_num;
262
+
263
+ // Data structures for storing the digraph
264
+ IntNodeMap _node_id;
265
+ IntArcMap _arc_idf;
266
+ IntArcMap _arc_idb;
267
+ IntVector _first_out;
268
+ BoolVector _forward;
269
+ IntVector _source;
270
+ IntVector _target;
271
+ IntVector _reverse;
272
+
273
+ // Node and arc data
274
+ ValueVector _lower;
275
+ ValueVector _upper;
276
+ CostVector _scost;
277
+ ValueVector _supply;
278
+
279
+ ValueVector _res_cap;
280
+ LargeCostVector _cost;
281
+ LargeCostVector _pi;
282
+ ValueVector _excess;
283
+ IntVector _next_out;
284
+ std::deque<int> _active_nodes;
285
+
286
+ // Data for scaling
287
+ LargeCost _epsilon;
288
+ int _alpha;
289
+
290
+ IntVector _buckets;
291
+ IntVector _bucket_next;
292
+ IntVector _bucket_prev;
293
+ IntVector _rank;
294
+ int _max_rank;
295
+
296
+ public:
297
+
298
+ /// \brief Constant for infinite upper bounds (capacities).
299
+ ///
300
+ /// Constant for infinite upper bounds (capacities).
301
+ /// It is \c std::numeric_limits<Value>::infinity() if available,
302
+ /// \c std::numeric_limits<Value>::max() otherwise.
303
+ const Value INF;
304
+
305
+ public:
306
+
307
+ /// \name Named Template Parameters
308
+ /// @{
309
+
310
+ template <typename T>
311
+ struct SetLargeCostTraits : public Traits {
312
+ typedef T LargeCost;
313
+ };
314
+
315
+ /// \brief \ref named-templ-param "Named parameter" for setting
316
+ /// \c LargeCost type.
317
+ ///
318
+ /// \ref named-templ-param "Named parameter" for setting \c LargeCost
319
+ /// type, which is used for internal computations in the algorithm.
320
+ /// \c Cost must be convertible to \c LargeCost.
321
+ template <typename T>
322
+ struct SetLargeCost
323
+ : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
324
+ typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
325
+ };
326
+
327
+ /// @}
328
+
329
+ protected:
330
+
331
+ CostScaling() {}
332
+
333
+ public:
334
+
335
+ /// \brief Constructor.
336
+ ///
337
+ /// The constructor of the class.
338
+ ///
339
+ /// \param graph The digraph the algorithm runs on.
340
+ CostScaling(const GR& graph) :
341
+ _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
342
+ INF(std::numeric_limits<Value>::has_infinity ?
343
+ std::numeric_limits<Value>::infinity() :
344
+ std::numeric_limits<Value>::max())
345
+ {
346
+ // Check the number types
347
+ LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
348
+ "The flow type of CostScaling must be signed");
349
+ LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
350
+ "The cost type of CostScaling must be signed");
351
+
352
+ // Reset data structures
353
+ reset();
354
+ }
355
+
356
+ /// \name Parameters
357
+ /// The parameters of the algorithm can be specified using these
358
+ /// functions.
359
+
360
+ /// @{
361
+
362
+ /// \brief Set the lower bounds on the arcs.
363
+ ///
364
+ /// This function sets the lower bounds on the arcs.
365
+ /// If it is not used before calling \ref run(), the lower bounds
366
+ /// will be set to zero on all arcs.
367
+ ///
368
+ /// \param map An arc map storing the lower bounds.
369
+ /// Its \c Value type must be convertible to the \c Value type
370
+ /// of the algorithm.
371
+ ///
372
+ /// \return <tt>(*this)</tt>
373
+ template <typename LowerMap>
374
+ CostScaling& lowerMap(const LowerMap& map) {
375
+ _has_lower = true;
376
+ for (ArcIt a(_graph); a != INVALID; ++a) {
377
+ _lower[_arc_idf[a]] = map[a];
378
+ }
379
+ return *this;
380
+ }
381
+
382
+ /// \brief Set the upper bounds (capacities) on the arcs.
383
+ ///
384
+ /// This function sets the upper bounds (capacities) on the arcs.
385
+ /// If it is not used before calling \ref run(), the upper bounds
386
+ /// will be set to \ref INF on all arcs (i.e. the flow value will be
387
+ /// unbounded from above).
388
+ ///
389
+ /// \param map An arc map storing the upper bounds.
390
+ /// Its \c Value type must be convertible to the \c Value type
391
+ /// of the algorithm.
392
+ ///
393
+ /// \return <tt>(*this)</tt>
394
+ template<typename UpperMap>
395
+ CostScaling& upperMap(const UpperMap& map) {
396
+ for (ArcIt a(_graph); a != INVALID; ++a) {
397
+ _upper[_arc_idf[a]] = map[a];
398
+ }
399
+ return *this;
400
+ }
401
+
402
+ /// \brief Set the costs of the arcs.
403
+ ///
404
+ /// This function sets the costs of the arcs.
405
+ /// If it is not used before calling \ref run(), the costs
406
+ /// will be set to \c 1 on all arcs.
407
+ ///
408
+ /// \param map An arc map storing the costs.
409
+ /// Its \c Value type must be convertible to the \c Cost type
410
+ /// of the algorithm.
411
+ ///
412
+ /// \return <tt>(*this)</tt>
413
+ template<typename CostMap>
414
+ CostScaling& costMap(const CostMap& map) {
415
+ for (ArcIt a(_graph); a != INVALID; ++a) {
416
+ _scost[_arc_idf[a]] = map[a];
417
+ _scost[_arc_idb[a]] = -map[a];
418
+ }
419
+ return *this;
420
+ }
421
+
422
+ /// \brief Set the supply values of the nodes.
423
+ ///
424
+ /// This function sets the supply values of the nodes.
425
+ /// If neither this function nor \ref stSupply() is used before
426
+ /// calling \ref run(), the supply of each node will be set to zero.
427
+ ///
428
+ /// \param map A node map storing the supply values.
429
+ /// Its \c Value type must be convertible to the \c Value type
430
+ /// of the algorithm.
431
+ ///
432
+ /// \return <tt>(*this)</tt>
433
+ template<typename SupplyMap>
434
+ CostScaling& supplyMap(const SupplyMap& map) {
435
+ for (NodeIt n(_graph); n != INVALID; ++n) {
436
+ _supply[_node_id[n]] = map[n];
437
+ }
438
+ return *this;
439
+ }
440
+
441
+ /// \brief Set single source and target nodes and a supply value.
442
+ ///
443
+ /// This function sets a single source node and a single target node
444
+ /// and the required flow value.
445
+ /// If neither this function nor \ref supplyMap() is used before
446
+ /// calling \ref run(), the supply of each node will be set to zero.
447
+ ///
448
+ /// Using this function has the same effect as using \ref supplyMap()
449
+ /// with a map in which \c k is assigned to \c s, \c -k is
450
+ /// assigned to \c t and all other nodes have zero supply value.
451
+ ///
452
+ /// \param s The source node.
453
+ /// \param t The target node.
454
+ /// \param k The required amount of flow from node \c s to node \c t
455
+ /// (i.e. the supply of \c s and the demand of \c t).
456
+ ///
457
+ /// \return <tt>(*this)</tt>
458
+ CostScaling& stSupply(const Node& s, const Node& t, Value k) {
459
+ for (int i = 0; i != _res_node_num; ++i) {
460
+ _supply[i] = 0;
461
+ }
462
+ _supply[_node_id[s]] = k;
463
+ _supply[_node_id[t]] = -k;
464
+ return *this;
465
+ }
466
+
467
+ /// @}
468
+
469
+ /// \name Execution control
470
+ /// The algorithm can be executed using \ref run().
471
+
472
+ /// @{
473
+
474
+ /// \brief Run the algorithm.
475
+ ///
476
+ /// This function runs the algorithm.
477
+ /// The paramters can be specified using functions \ref lowerMap(),
478
+ /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
479
+ /// For example,
480
+ /// \code
481
+ /// CostScaling<ListDigraph> cs(graph);
482
+ /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
483
+ /// .supplyMap(sup).run();
484
+ /// \endcode
485
+ ///
486
+ /// This function can be called more than once. All the given parameters
487
+ /// are kept for the next call, unless \ref resetParams() or \ref reset()
488
+ /// is used, thus only the modified parameters have to be set again.
489
+ /// If the underlying digraph was also modified after the construction
490
+ /// of the class (or the last \ref reset() call), then the \ref reset()
491
+ /// function must be called.
492
+ ///
493
+ /// \param method The internal method that will be used in the
494
+ /// algorithm. For more information, see \ref Method.
495
+ /// \param factor The cost scaling factor. It must be at least two.
496
+ ///
497
+ /// \return \c INFEASIBLE if no feasible flow exists,
498
+ /// \n \c OPTIMAL if the problem has optimal solution
499
+ /// (i.e. it is feasible and bounded), and the algorithm has found
500
+ /// optimal flow and node potentials (primal and dual solutions),
501
+ /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
502
+ /// and infinite upper bound. It means that the objective function
503
+ /// is unbounded on that arc, however, note that it could actually be
504
+ /// bounded over the feasible flows, but this algroithm cannot handle
505
+ /// these cases.
506
+ ///
507
+ /// \see ProblemType, Method
508
+ /// \see resetParams(), reset()
509
+ ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 16) {
510
+ LEMON_ASSERT(factor >= 2, "The scaling factor must be at least 2");
511
+ _alpha = factor;
512
+ ProblemType pt = init();
513
+ if (pt != OPTIMAL) return pt;
514
+ start(method);
515
+ return OPTIMAL;
516
+ }
517
+
518
+ /// \brief Reset all the parameters that have been given before.
519
+ ///
520
+ /// This function resets all the paramaters that have been given
521
+ /// before using functions \ref lowerMap(), \ref upperMap(),
522
+ /// \ref costMap(), \ref supplyMap(), \ref stSupply().
523
+ ///
524
+ /// It is useful for multiple \ref run() calls. Basically, all the given
525
+ /// parameters are kept for the next \ref run() call, unless
526
+ /// \ref resetParams() or \ref reset() is used.
527
+ /// If the underlying digraph was also modified after the construction
528
+ /// of the class or the last \ref reset() call, then the \ref reset()
529
+ /// function must be used, otherwise \ref resetParams() is sufficient.
530
+ ///
531
+ /// For example,
532
+ /// \code
533
+ /// CostScaling<ListDigraph> cs(graph);
534
+ ///
535
+ /// // First run
536
+ /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
537
+ /// .supplyMap(sup).run();
538
+ ///
539
+ /// // Run again with modified cost map (resetParams() is not called,
540
+ /// // so only the cost map have to be set again)
541
+ /// cost[e] += 100;
542
+ /// cs.costMap(cost).run();
543
+ ///
544
+ /// // Run again from scratch using resetParams()
545
+ /// // (the lower bounds will be set to zero on all arcs)
546
+ /// cs.resetParams();
547
+ /// cs.upperMap(capacity).costMap(cost)
548
+ /// .supplyMap(sup).run();
549
+ /// \endcode
550
+ ///
551
+ /// \return <tt>(*this)</tt>
552
+ ///
553
+ /// \see reset(), run()
554
+ CostScaling& resetParams() {
555
+ for (int i = 0; i != _res_node_num; ++i) {
556
+ _supply[i] = 0;
557
+ }
558
+ int limit = _first_out[_root];
559
+ for (int j = 0; j != limit; ++j) {
560
+ _lower[j] = 0;
561
+ _upper[j] = INF;
562
+ _scost[j] = _forward[j] ? 1 : -1;
563
+ }
564
+ for (int j = limit; j != _res_arc_num; ++j) {
565
+ _lower[j] = 0;
566
+ _upper[j] = INF;
567
+ _scost[j] = 0;
568
+ _scost[_reverse[j]] = 0;
569
+ }
570
+ _has_lower = false;
571
+ return *this;
572
+ }
573
+
574
+ /// \brief Reset the internal data structures and all the parameters
575
+ /// that have been given before.
576
+ ///
577
+ /// This function resets the internal data structures and all the
578
+ /// paramaters that have been given before using functions \ref lowerMap(),
579
+ /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
580
+ ///
581
+ /// It is useful for multiple \ref run() calls. By default, all the given
582
+ /// parameters are kept for the next \ref run() call, unless
583
+ /// \ref resetParams() or \ref reset() is used.
584
+ /// If the underlying digraph was also modified after the construction
585
+ /// of the class or the last \ref reset() call, then the \ref reset()
586
+ /// function must be used, otherwise \ref resetParams() is sufficient.
587
+ ///
588
+ /// See \ref resetParams() for examples.
589
+ ///
590
+ /// \return <tt>(*this)</tt>
591
+ ///
592
+ /// \see resetParams(), run()
593
+ CostScaling& reset() {
594
+ // Resize vectors
595
+ _node_num = countNodes(_graph);
596
+ _arc_num = countArcs(_graph);
597
+ _res_node_num = _node_num + 1;
598
+ _res_arc_num = 2 * (_arc_num + _node_num);
599
+ _root = _node_num;
600
+
601
+ _first_out.resize(_res_node_num + 1);
602
+ _forward.resize(_res_arc_num);
603
+ _source.resize(_res_arc_num);
604
+ _target.resize(_res_arc_num);
605
+ _reverse.resize(_res_arc_num);
606
+
607
+ _lower.resize(_res_arc_num);
608
+ _upper.resize(_res_arc_num);
609
+ _scost.resize(_res_arc_num);
610
+ _supply.resize(_res_node_num);
611
+
612
+ _res_cap.resize(_res_arc_num);
613
+ _cost.resize(_res_arc_num);
614
+ _pi.resize(_res_node_num);
615
+ _excess.resize(_res_node_num);
616
+ _next_out.resize(_res_node_num);
617
+
618
+ // Copy the graph
619
+ int i = 0, j = 0, k = 2 * _arc_num + _node_num;
620
+ for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
621
+ _node_id[n] = i;
622
+ }
623
+ i = 0;
624
+ for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
625
+ _first_out[i] = j;
626
+ for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
627
+ _arc_idf[a] = j;
628
+ _forward[j] = true;
629
+ _source[j] = i;
630
+ _target[j] = _node_id[_graph.runningNode(a)];
631
+ }
632
+ for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
633
+ _arc_idb[a] = j;
634
+ _forward[j] = false;
635
+ _source[j] = i;
636
+ _target[j] = _node_id[_graph.runningNode(a)];
637
+ }
638
+ _forward[j] = false;
639
+ _source[j] = i;
640
+ _target[j] = _root;
641
+ _reverse[j] = k;
642
+ _forward[k] = true;
643
+ _source[k] = _root;
644
+ _target[k] = i;
645
+ _reverse[k] = j;
646
+ ++j; ++k;
647
+ }
648
+ _first_out[i] = j;
649
+ _first_out[_res_node_num] = k;
650
+ for (ArcIt a(_graph); a != INVALID; ++a) {
651
+ int fi = _arc_idf[a];
652
+ int bi = _arc_idb[a];
653
+ _reverse[fi] = bi;
654
+ _reverse[bi] = fi;
655
+ }
656
+
657
+ // Reset parameters
658
+ resetParams();
659
+ return *this;
660
+ }
661
+
662
+ /// @}
663
+
664
+ /// \name Query Functions
665
+ /// The results of the algorithm can be obtained using these
666
+ /// functions.\n
667
+ /// The \ref run() function must be called before using them.
668
+
669
+ /// @{
670
+
671
+ /// \brief Return the total cost of the found flow.
672
+ ///
673
+ /// This function returns the total cost of the found flow.
674
+ /// Its complexity is O(m).
675
+ ///
676
+ /// \note The return type of the function can be specified as a
677
+ /// template parameter. For example,
678
+ /// \code
679
+ /// cs.totalCost<double>();
680
+ /// \endcode
681
+ /// It is useful if the total cost cannot be stored in the \c Cost
682
+ /// type of the algorithm, which is the default return type of the
683
+ /// function.
684
+ ///
685
+ /// \pre \ref run() must be called before using this function.
686
+ template <typename Number>
687
+ Number totalCost() const {
688
+ Number c = 0;
689
+ for (ArcIt a(_graph); a != INVALID; ++a) {
690
+ int i = _arc_idb[a];
691
+ c += static_cast<Number>(_res_cap[i]) *
692
+ (-static_cast<Number>(_scost[i]));
693
+ }
694
+ return c;
695
+ }
696
+
697
+ #ifndef DOXYGEN
698
+ Cost totalCost() const {
699
+ return totalCost<Cost>();
700
+ }
701
+ #endif
702
+
703
+ /// \brief Return the flow on the given arc.
704
+ ///
705
+ /// This function returns the flow on the given arc.
706
+ ///
707
+ /// \pre \ref run() must be called before using this function.
708
+ Value flow(const Arc& a) const {
709
+ return _res_cap[_arc_idb[a]];
710
+ }
711
+
712
+ /// \brief Copy the flow values (the primal solution) into the
713
+ /// given map.
714
+ ///
715
+ /// This function copies the flow value on each arc into the given
716
+ /// map. The \c Value type of the algorithm must be convertible to
717
+ /// the \c Value type of the map.
718
+ ///
719
+ /// \pre \ref run() must be called before using this function.
720
+ template <typename FlowMap>
721
+ void flowMap(FlowMap &map) const {
722
+ for (ArcIt a(_graph); a != INVALID; ++a) {
723
+ map.set(a, _res_cap[_arc_idb[a]]);
724
+ }
725
+ }
726
+
727
+ /// \brief Return the potential (dual value) of the given node.
728
+ ///
729
+ /// This function returns the potential (dual value) of the
730
+ /// given node.
731
+ ///
732
+ /// \pre \ref run() must be called before using this function.
733
+ Cost potential(const Node& n) const {
734
+ return static_cast<Cost>(_pi[_node_id[n]]);
735
+ }
736
+
737
+ /// \brief Copy the potential values (the dual solution) into the
738
+ /// given map.
739
+ ///
740
+ /// This function copies the potential (dual value) of each node
741
+ /// into the given map.
742
+ /// The \c Cost type of the algorithm must be convertible to the
743
+ /// \c Value type of the map.
744
+ ///
745
+ /// \pre \ref run() must be called before using this function.
746
+ template <typename PotentialMap>
747
+ void potentialMap(PotentialMap &map) const {
748
+ for (NodeIt n(_graph); n != INVALID; ++n) {
749
+ map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
750
+ }
751
+ }
752
+
753
+ /// @}
754
+
755
+ private:
756
+
757
+ // Initialize the algorithm
758
+ ProblemType init() {
759
+ if (_res_node_num <= 1) return INFEASIBLE;
760
+
761
+ // Check the sum of supply values
762
+ _sum_supply = 0;
763
+ for (int i = 0; i != _root; ++i) {
764
+ _sum_supply += _supply[i];
765
+ }
766
+ if (_sum_supply > 0) return INFEASIBLE;
767
+
768
+ // Check lower and upper bounds
769
+ LEMON_DEBUG(checkBoundMaps(),
770
+ "Upper bounds must be greater or equal to the lower bounds");
771
+
772
+
773
+ // Initialize vectors
774
+ for (int i = 0; i != _res_node_num; ++i) {
775
+ _pi[i] = 0;
776
+ _excess[i] = _supply[i];
777
+ }
778
+
779
+ // Remove infinite upper bounds and check negative arcs
780
+ const Value MAX = std::numeric_limits<Value>::max();
781
+ int last_out;
782
+ if (_has_lower) {
783
+ for (int i = 0; i != _root; ++i) {
784
+ last_out = _first_out[i+1];
785
+ for (int j = _first_out[i]; j != last_out; ++j) {
786
+ if (_forward[j]) {
787
+ Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
788
+ if (c >= MAX) return UNBOUNDED;
789
+ _excess[i] -= c;
790
+ _excess[_target[j]] += c;
791
+ }
792
+ }
793
+ }
794
+ } else {
795
+ for (int i = 0; i != _root; ++i) {
796
+ last_out = _first_out[i+1];
797
+ for (int j = _first_out[i]; j != last_out; ++j) {
798
+ if (_forward[j] && _scost[j] < 0) {
799
+ Value c = _upper[j];
800
+ if (c >= MAX) return UNBOUNDED;
801
+ _excess[i] -= c;
802
+ _excess[_target[j]] += c;
803
+ }
804
+ }
805
+ }
806
+ }
807
+ Value ex, max_cap = 0;
808
+ for (int i = 0; i != _res_node_num; ++i) {
809
+ ex = _excess[i];
810
+ _excess[i] = 0;
811
+ if (ex < 0) max_cap -= ex;
812
+ }
813
+ for (int j = 0; j != _res_arc_num; ++j) {
814
+ if (_upper[j] >= MAX) _upper[j] = max_cap;
815
+ }
816
+
817
+ // Initialize the large cost vector and the epsilon parameter
818
+ _epsilon = 0;
819
+ LargeCost lc;
820
+ for (int i = 0; i != _root; ++i) {
821
+ last_out = _first_out[i+1];
822
+ for (int j = _first_out[i]; j != last_out; ++j) {
823
+ lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
824
+ _cost[j] = lc;
825
+ if (lc > _epsilon) _epsilon = lc;
826
+ }
827
+ }
828
+ _epsilon /= _alpha;
829
+
830
+ // Initialize maps for Circulation and remove non-zero lower bounds
831
+ ConstMap<Arc, Value> low(0);
832
+ typedef typename Digraph::template ArcMap<Value> ValueArcMap;
833
+ typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
834
+ ValueArcMap cap(_graph), flow(_graph);
835
+ ValueNodeMap sup(_graph);
836
+ for (NodeIt n(_graph); n != INVALID; ++n) {
837
+ sup[n] = _supply[_node_id[n]];
838
+ }
839
+ if (_has_lower) {
840
+ for (ArcIt a(_graph); a != INVALID; ++a) {
841
+ int j = _arc_idf[a];
842
+ Value c = _lower[j];
843
+ cap[a] = _upper[j] - c;
844
+ sup[_graph.source(a)] -= c;
845
+ sup[_graph.target(a)] += c;
846
+ }
847
+ } else {
848
+ for (ArcIt a(_graph); a != INVALID; ++a) {
849
+ cap[a] = _upper[_arc_idf[a]];
850
+ }
851
+ }
852
+
853
+ _sup_node_num = 0;
854
+ for (NodeIt n(_graph); n != INVALID; ++n) {
855
+ if (sup[n] > 0) ++_sup_node_num;
856
+ }
857
+
858
+ // Find a feasible flow using Circulation
859
+ Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
860
+ circ(_graph, low, cap, sup);
861
+ if (!circ.flowMap(flow).run()) return INFEASIBLE;
862
+
863
+ // Set residual capacities and handle GEQ supply type
864
+ if (_sum_supply < 0) {
865
+ for (ArcIt a(_graph); a != INVALID; ++a) {
866
+ Value fa = flow[a];
867
+ _res_cap[_arc_idf[a]] = cap[a] - fa;
868
+ _res_cap[_arc_idb[a]] = fa;
869
+ sup[_graph.source(a)] -= fa;
870
+ sup[_graph.target(a)] += fa;
871
+ }
872
+ for (NodeIt n(_graph); n != INVALID; ++n) {
873
+ _excess[_node_id[n]] = sup[n];
874
+ }
875
+ for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
876
+ int u = _target[a];
877
+ int ra = _reverse[a];
878
+ _res_cap[a] = -_sum_supply + 1;
879
+ _res_cap[ra] = -_excess[u];
880
+ _cost[a] = 0;
881
+ _cost[ra] = 0;
882
+ _excess[u] = 0;
883
+ }
884
+ } else {
885
+ for (ArcIt a(_graph); a != INVALID; ++a) {
886
+ Value fa = flow[a];
887
+ _res_cap[_arc_idf[a]] = cap[a] - fa;
888
+ _res_cap[_arc_idb[a]] = fa;
889
+ }
890
+ for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
891
+ int ra = _reverse[a];
892
+ _res_cap[a] = 0;
893
+ _res_cap[ra] = 0;
894
+ _cost[a] = 0;
895
+ _cost[ra] = 0;
896
+ }
897
+ }
898
+
899
+ // Initialize data structures for buckets
900
+ _max_rank = _alpha * _res_node_num;
901
+ _buckets.resize(_max_rank);
902
+ _bucket_next.resize(_res_node_num + 1);
903
+ _bucket_prev.resize(_res_node_num + 1);
904
+ _rank.resize(_res_node_num + 1);
905
+
906
+ return OPTIMAL;
907
+ }
908
+
909
+ // Check if the upper bound is greater than or equal to the lower bound
910
+ // on each forward arc.
911
+ bool checkBoundMaps() {
912
+ for (int j = 0; j != _res_arc_num; ++j) {
913
+ if (_forward[j] && _upper[j] < _lower[j]) return false;
914
+ }
915
+ return true;
916
+ }
917
+
918
+ // Execute the algorithm and transform the results
919
+ void start(Method method) {
920
+ const int MAX_PARTIAL_PATH_LENGTH = 4;
921
+
922
+ switch (method) {
923
+ case PUSH:
924
+ startPush();
925
+ break;
926
+ case AUGMENT:
927
+ startAugment(_res_node_num - 1);
928
+ break;
929
+ case PARTIAL_AUGMENT:
930
+ startAugment(MAX_PARTIAL_PATH_LENGTH);
931
+ break;
932
+ }
933
+
934
+ // Compute node potentials (dual solution)
935
+ for (int i = 0; i != _res_node_num; ++i) {
936
+ _pi[i] = static_cast<Cost>(_pi[i] / (_res_node_num * _alpha));
937
+ }
938
+ bool optimal = true;
939
+ for (int i = 0; optimal && i != _res_node_num; ++i) {
940
+ LargeCost pi_i = _pi[i];
941
+ int last_out = _first_out[i+1];
942
+ for (int j = _first_out[i]; j != last_out; ++j) {
943
+ if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) {
944
+ optimal = false;
945
+ break;
946
+ }
947
+ }
948
+ }
949
+
950
+ if (!optimal) {
951
+ // Compute node potentials for the original costs with BellmanFord
952
+ // (if it is necessary)
953
+ typedef std::pair<int, int> IntPair;
954
+ StaticDigraph sgr;
955
+ std::vector<IntPair> arc_vec;
956
+ std::vector<LargeCost> cost_vec;
957
+ LargeCostArcMap cost_map(cost_vec);
958
+
959
+ arc_vec.clear();
960
+ cost_vec.clear();
961
+ for (int j = 0; j != _res_arc_num; ++j) {
962
+ if (_res_cap[j] > 0) {
963
+ int u = _source[j], v = _target[j];
964
+ arc_vec.push_back(IntPair(u, v));
965
+ cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]);
966
+ }
967
+ }
968
+ sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end());
969
+
970
+ typename BellmanFord<StaticDigraph, LargeCostArcMap>::Create
971
+ bf(sgr, cost_map);
972
+ bf.init(0);
973
+ bf.start();
974
+
975
+ for (int i = 0; i != _res_node_num; ++i) {
976
+ _pi[i] += bf.dist(sgr.node(i));
977
+ }
978
+ }
979
+
980
+ // Shift potentials to meet the requirements of the GEQ type
981
+ // optimality conditions
982
+ LargeCost max_pot = _pi[_root];
983
+ for (int i = 0; i != _res_node_num; ++i) {
984
+ if (_pi[i] > max_pot) max_pot = _pi[i];
985
+ }
986
+ if (max_pot != 0) {
987
+ for (int i = 0; i != _res_node_num; ++i) {
988
+ _pi[i] -= max_pot;
989
+ }
990
+ }
991
+
992
+ // Handle non-zero lower bounds
993
+ if (_has_lower) {
994
+ int limit = _first_out[_root];
995
+ for (int j = 0; j != limit; ++j) {
996
+ if (_forward[j]) _res_cap[_reverse[j]] += _lower[j];
997
+ }
998
+ }
999
+ }
1000
+
1001
+ // Initialize a cost scaling phase
1002
+ void initPhase() {
1003
+ // Saturate arcs not satisfying the optimality condition
1004
+ for (int u = 0; u != _res_node_num; ++u) {
1005
+ int last_out = _first_out[u+1];
1006
+ LargeCost pi_u = _pi[u];
1007
+ for (int a = _first_out[u]; a != last_out; ++a) {
1008
+ Value delta = _res_cap[a];
1009
+ if (delta > 0) {
1010
+ int v = _target[a];
1011
+ if (_cost[a] + pi_u - _pi[v] < 0) {
1012
+ _excess[u] -= delta;
1013
+ _excess[v] += delta;
1014
+ _res_cap[a] = 0;
1015
+ _res_cap[_reverse[a]] += delta;
1016
+ }
1017
+ }
1018
+ }
1019
+ }
1020
+
1021
+ // Find active nodes (i.e. nodes with positive excess)
1022
+ for (int u = 0; u != _res_node_num; ++u) {
1023
+ if (_excess[u] > 0) _active_nodes.push_back(u);
1024
+ }
1025
+
1026
+ // Initialize the next arcs
1027
+ for (int u = 0; u != _res_node_num; ++u) {
1028
+ _next_out[u] = _first_out[u];
1029
+ }
1030
+ }
1031
+
1032
+ // Price (potential) refinement heuristic
1033
+ bool priceRefinement() {
1034
+
1035
+ // Stack for stroing the topological order
1036
+ IntVector stack(_res_node_num);
1037
+ int stack_top;
1038
+
1039
+ // Perform phases
1040
+ while (topologicalSort(stack, stack_top)) {
1041
+
1042
+ // Compute node ranks in the acyclic admissible network and
1043
+ // store the nodes in buckets
1044
+ for (int i = 0; i != _res_node_num; ++i) {
1045
+ _rank[i] = 0;
1046
+ }
1047
+ const int bucket_end = _root + 1;
1048
+ for (int r = 0; r != _max_rank; ++r) {
1049
+ _buckets[r] = bucket_end;
1050
+ }
1051
+ int top_rank = 0;
1052
+ for ( ; stack_top >= 0; --stack_top) {
1053
+ int u = stack[stack_top], v;
1054
+ int rank_u = _rank[u];
1055
+
1056
+ LargeCost rc, pi_u = _pi[u];
1057
+ int last_out = _first_out[u+1];
1058
+ for (int a = _first_out[u]; a != last_out; ++a) {
1059
+ if (_res_cap[a] > 0) {
1060
+ v = _target[a];
1061
+ rc = _cost[a] + pi_u - _pi[v];
1062
+ if (rc < 0) {
1063
+ LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon);
1064
+ if (nrc < LargeCost(_max_rank)) {
1065
+ int new_rank_v = rank_u + static_cast<int>(nrc);
1066
+ if (new_rank_v > _rank[v]) {
1067
+ _rank[v] = new_rank_v;
1068
+ }
1069
+ }
1070
+ }
1071
+ }
1072
+ }
1073
+
1074
+ if (rank_u > 0) {
1075
+ top_rank = std::max(top_rank, rank_u);
1076
+ int bfirst = _buckets[rank_u];
1077
+ _bucket_next[u] = bfirst;
1078
+ _bucket_prev[bfirst] = u;
1079
+ _buckets[rank_u] = u;
1080
+ }
1081
+ }
1082
+
1083
+ // Check if the current flow is epsilon-optimal
1084
+ if (top_rank == 0) {
1085
+ return true;
1086
+ }
1087
+
1088
+ // Process buckets in top-down order
1089
+ for (int rank = top_rank; rank > 0; --rank) {
1090
+ while (_buckets[rank] != bucket_end) {
1091
+ // Remove the first node from the current bucket
1092
+ int u = _buckets[rank];
1093
+ _buckets[rank] = _bucket_next[u];
1094
+
1095
+ // Search the outgoing arcs of u
1096
+ LargeCost rc, pi_u = _pi[u];
1097
+ int last_out = _first_out[u+1];
1098
+ int v, old_rank_v, new_rank_v;
1099
+ for (int a = _first_out[u]; a != last_out; ++a) {
1100
+ if (_res_cap[a] > 0) {
1101
+ v = _target[a];
1102
+ old_rank_v = _rank[v];
1103
+
1104
+ if (old_rank_v < rank) {
1105
+
1106
+ // Compute the new rank of node v
1107
+ rc = _cost[a] + pi_u - _pi[v];
1108
+ if (rc < 0) {
1109
+ new_rank_v = rank;
1110
+ } else {
1111
+ LargeCost nrc = rc / _epsilon;
1112
+ new_rank_v = 0;
1113
+ if (nrc < LargeCost(_max_rank)) {
1114
+ new_rank_v = rank - 1 - static_cast<int>(nrc);
1115
+ }
1116
+ }
1117
+
1118
+ // Change the rank of node v
1119
+ if (new_rank_v > old_rank_v) {
1120
+ _rank[v] = new_rank_v;
1121
+
1122
+ // Remove v from its old bucket
1123
+ if (old_rank_v > 0) {
1124
+ if (_buckets[old_rank_v] == v) {
1125
+ _buckets[old_rank_v] = _bucket_next[v];
1126
+ } else {
1127
+ int pv = _bucket_prev[v], nv = _bucket_next[v];
1128
+ _bucket_next[pv] = nv;
1129
+ _bucket_prev[nv] = pv;
1130
+ }
1131
+ }
1132
+
1133
+ // Insert v into its new bucket
1134
+ int nv = _buckets[new_rank_v];
1135
+ _bucket_next[v] = nv;
1136
+ _bucket_prev[nv] = v;
1137
+ _buckets[new_rank_v] = v;
1138
+ }
1139
+ }
1140
+ }
1141
+ }
1142
+
1143
+ // Refine potential of node u
1144
+ _pi[u] -= rank * _epsilon;
1145
+ }
1146
+ }
1147
+
1148
+ }
1149
+
1150
+ return false;
1151
+ }
1152
+
1153
+ // Find and cancel cycles in the admissible network and
1154
+ // determine topological order using DFS
1155
+ bool topologicalSort(IntVector &stack, int &stack_top) {
1156
+ const int MAX_CYCLE_CANCEL = 1;
1157
+
1158
+ BoolVector reached(_res_node_num, false);
1159
+ BoolVector processed(_res_node_num, false);
1160
+ IntVector pred(_res_node_num);
1161
+ for (int i = 0; i != _res_node_num; ++i) {
1162
+ _next_out[i] = _first_out[i];
1163
+ }
1164
+ stack_top = -1;
1165
+
1166
+ int cycle_cnt = 0;
1167
+ for (int start = 0; start != _res_node_num; ++start) {
1168
+ if (reached[start]) continue;
1169
+
1170
+ // Start DFS search from this start node
1171
+ pred[start] = -1;
1172
+ int tip = start, v;
1173
+ while (true) {
1174
+ // Check the outgoing arcs of the current tip node
1175
+ reached[tip] = true;
1176
+ LargeCost pi_tip = _pi[tip];
1177
+ int a, last_out = _first_out[tip+1];
1178
+ for (a = _next_out[tip]; a != last_out; ++a) {
1179
+ if (_res_cap[a] > 0) {
1180
+ v = _target[a];
1181
+ if (_cost[a] + pi_tip - _pi[v] < 0) {
1182
+ if (!reached[v]) {
1183
+ // A new node is reached
1184
+ reached[v] = true;
1185
+ pred[v] = tip;
1186
+ _next_out[tip] = a;
1187
+ tip = v;
1188
+ a = _next_out[tip];
1189
+ last_out = _first_out[tip+1];
1190
+ break;
1191
+ }
1192
+ else if (!processed[v]) {
1193
+ // A cycle is found
1194
+ ++cycle_cnt;
1195
+ _next_out[tip] = a;
1196
+
1197
+ // Find the minimum residual capacity along the cycle
1198
+ Value d, delta = _res_cap[a];
1199
+ int u, delta_node = tip;
1200
+ for (u = tip; u != v; ) {
1201
+ u = pred[u];
1202
+ d = _res_cap[_next_out[u]];
1203
+ if (d <= delta) {
1204
+ delta = d;
1205
+ delta_node = u;
1206
+ }
1207
+ }
1208
+
1209
+ // Augment along the cycle
1210
+ _res_cap[a] -= delta;
1211
+ _res_cap[_reverse[a]] += delta;
1212
+ for (u = tip; u != v; ) {
1213
+ u = pred[u];
1214
+ int ca = _next_out[u];
1215
+ _res_cap[ca] -= delta;
1216
+ _res_cap[_reverse[ca]] += delta;
1217
+ }
1218
+
1219
+ // Check the maximum number of cycle canceling
1220
+ if (cycle_cnt >= MAX_CYCLE_CANCEL) {
1221
+ return false;
1222
+ }
1223
+
1224
+ // Roll back search to delta_node
1225
+ if (delta_node != tip) {
1226
+ for (u = tip; u != delta_node; u = pred[u]) {
1227
+ reached[u] = false;
1228
+ }
1229
+ tip = delta_node;
1230
+ a = _next_out[tip] + 1;
1231
+ last_out = _first_out[tip+1];
1232
+ break;
1233
+ }
1234
+ }
1235
+ }
1236
+ }
1237
+ }
1238
+
1239
+ // Step back to the previous node
1240
+ if (a == last_out) {
1241
+ processed[tip] = true;
1242
+ stack[++stack_top] = tip;
1243
+ tip = pred[tip];
1244
+ if (tip < 0) {
1245
+ // Finish DFS from the current start node
1246
+ break;
1247
+ }
1248
+ ++_next_out[tip];
1249
+ }
1250
+ }
1251
+
1252
+ }
1253
+
1254
+ return (cycle_cnt == 0);
1255
+ }
1256
+
1257
+ // Global potential update heuristic
1258
+ void globalUpdate() {
1259
+ const int bucket_end = _root + 1;
1260
+
1261
+ // Initialize buckets
1262
+ for (int r = 0; r != _max_rank; ++r) {
1263
+ _buckets[r] = bucket_end;
1264
+ }
1265
+ Value total_excess = 0;
1266
+ int b0 = bucket_end;
1267
+ for (int i = 0; i != _res_node_num; ++i) {
1268
+ if (_excess[i] < 0) {
1269
+ _rank[i] = 0;
1270
+ _bucket_next[i] = b0;
1271
+ _bucket_prev[b0] = i;
1272
+ b0 = i;
1273
+ } else {
1274
+ total_excess += _excess[i];
1275
+ _rank[i] = _max_rank;
1276
+ }
1277
+ }
1278
+ if (total_excess == 0) return;
1279
+ _buckets[0] = b0;
1280
+
1281
+ // Search the buckets
1282
+ int r = 0;
1283
+ for ( ; r != _max_rank; ++r) {
1284
+ while (_buckets[r] != bucket_end) {
1285
+ // Remove the first node from the current bucket
1286
+ int u = _buckets[r];
1287
+ _buckets[r] = _bucket_next[u];
1288
+
1289
+ // Search the incoming arcs of u
1290
+ LargeCost pi_u = _pi[u];
1291
+ int last_out = _first_out[u+1];
1292
+ for (int a = _first_out[u]; a != last_out; ++a) {
1293
+ int ra = _reverse[a];
1294
+ if (_res_cap[ra] > 0) {
1295
+ int v = _source[ra];
1296
+ int old_rank_v = _rank[v];
1297
+ if (r < old_rank_v) {
1298
+ // Compute the new rank of v
1299
+ LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
1300
+ int new_rank_v = old_rank_v;
1301
+ if (nrc < LargeCost(_max_rank)) {
1302
+ new_rank_v = r + 1 + static_cast<int>(nrc);
1303
+ }
1304
+
1305
+ // Change the rank of v
1306
+ if (new_rank_v < old_rank_v) {
1307
+ _rank[v] = new_rank_v;
1308
+ _next_out[v] = _first_out[v];
1309
+
1310
+ // Remove v from its old bucket
1311
+ if (old_rank_v < _max_rank) {
1312
+ if (_buckets[old_rank_v] == v) {
1313
+ _buckets[old_rank_v] = _bucket_next[v];
1314
+ } else {
1315
+ int pv = _bucket_prev[v], nv = _bucket_next[v];
1316
+ _bucket_next[pv] = nv;
1317
+ _bucket_prev[nv] = pv;
1318
+ }
1319
+ }
1320
+
1321
+ // Insert v into its new bucket
1322
+ int nv = _buckets[new_rank_v];
1323
+ _bucket_next[v] = nv;
1324
+ _bucket_prev[nv] = v;
1325
+ _buckets[new_rank_v] = v;
1326
+ }
1327
+ }
1328
+ }
1329
+ }
1330
+
1331
+ // Finish search if there are no more active nodes
1332
+ if (_excess[u] > 0) {
1333
+ total_excess -= _excess[u];
1334
+ if (total_excess <= 0) break;
1335
+ }
1336
+ }
1337
+ if (total_excess <= 0) break;
1338
+ }
1339
+
1340
+ // Relabel nodes
1341
+ for (int u = 0; u != _res_node_num; ++u) {
1342
+ int k = std::min(_rank[u], r);
1343
+ if (k > 0) {
1344
+ _pi[u] -= _epsilon * k;
1345
+ _next_out[u] = _first_out[u];
1346
+ }
1347
+ }
1348
+ }
1349
+
1350
+ /// Execute the algorithm performing augment and relabel operations
1351
+ void startAugment(int max_length) {
1352
+ // Paramters for heuristics
1353
+ const int PRICE_REFINEMENT_LIMIT = 2;
1354
+ const double GLOBAL_UPDATE_FACTOR = 1.0;
1355
+ const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
1356
+ (_res_node_num + _sup_node_num * _sup_node_num));
1357
+ int next_global_update_limit = global_update_skip;
1358
+
1359
+ // Perform cost scaling phases
1360
+ IntVector path;
1361
+ BoolVector path_arc(_res_arc_num, false);
1362
+ int relabel_cnt = 0;
1363
+ int eps_phase_cnt = 0;
1364
+ for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1365
+ 1 : _epsilon / _alpha )
1366
+ {
1367
+ ++eps_phase_cnt;
1368
+
1369
+ // Price refinement heuristic
1370
+ if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
1371
+ if (priceRefinement()) continue;
1372
+ }
1373
+
1374
+ // Initialize current phase
1375
+ initPhase();
1376
+
1377
+ // Perform partial augment and relabel operations
1378
+ while (true) {
1379
+ // Select an active node (FIFO selection)
1380
+ while (_active_nodes.size() > 0 &&
1381
+ _excess[_active_nodes.front()] <= 0) {
1382
+ _active_nodes.pop_front();
1383
+ }
1384
+ if (_active_nodes.size() == 0) break;
1385
+ int start = _active_nodes.front();
1386
+
1387
+ // Find an augmenting path from the start node
1388
+ int tip = start;
1389
+ while (int(path.size()) < max_length && _excess[tip] >= 0) {
1390
+ int u;
1391
+ LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
1392
+ LargeCost pi_tip = _pi[tip];
1393
+ int last_out = _first_out[tip+1];
1394
+ for (int a = _next_out[tip]; a != last_out; ++a) {
1395
+ if (_res_cap[a] > 0) {
1396
+ u = _target[a];
1397
+ rc = _cost[a] + pi_tip - _pi[u];
1398
+ if (rc < 0) {
1399
+ path.push_back(a);
1400
+ _next_out[tip] = a;
1401
+ if (path_arc[a]) {
1402
+ goto augment; // a cycle is found, stop path search
1403
+ }
1404
+ tip = u;
1405
+ path_arc[a] = true;
1406
+ goto next_step;
1407
+ }
1408
+ else if (rc < min_red_cost) {
1409
+ min_red_cost = rc;
1410
+ }
1411
+ }
1412
+ }
1413
+
1414
+ // Relabel tip node
1415
+ if (tip != start) {
1416
+ int ra = _reverse[path.back()];
1417
+ min_red_cost =
1418
+ std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
1419
+ }
1420
+ last_out = _next_out[tip];
1421
+ for (int a = _first_out[tip]; a != last_out; ++a) {
1422
+ if (_res_cap[a] > 0) {
1423
+ rc = _cost[a] + pi_tip - _pi[_target[a]];
1424
+ if (rc < min_red_cost) {
1425
+ min_red_cost = rc;
1426
+ }
1427
+ }
1428
+ }
1429
+ _pi[tip] -= min_red_cost + _epsilon;
1430
+ _next_out[tip] = _first_out[tip];
1431
+ ++relabel_cnt;
1432
+
1433
+ // Step back
1434
+ if (tip != start) {
1435
+ int pa = path.back();
1436
+ path_arc[pa] = false;
1437
+ tip = _source[pa];
1438
+ path.pop_back();
1439
+ }
1440
+
1441
+ next_step: ;
1442
+ }
1443
+
1444
+ // Augment along the found path (as much flow as possible)
1445
+ augment:
1446
+ Value delta;
1447
+ int pa, u, v = start;
1448
+ for (int i = 0; i != int(path.size()); ++i) {
1449
+ pa = path[i];
1450
+ u = v;
1451
+ v = _target[pa];
1452
+ path_arc[pa] = false;
1453
+ delta = std::min(_res_cap[pa], _excess[u]);
1454
+ _res_cap[pa] -= delta;
1455
+ _res_cap[_reverse[pa]] += delta;
1456
+ _excess[u] -= delta;
1457
+ _excess[v] += delta;
1458
+ if (_excess[v] > 0 && _excess[v] <= delta) {
1459
+ _active_nodes.push_back(v);
1460
+ }
1461
+ }
1462
+ path.clear();
1463
+
1464
+ // Global update heuristic
1465
+ if (relabel_cnt >= next_global_update_limit) {
1466
+ globalUpdate();
1467
+ next_global_update_limit += global_update_skip;
1468
+ }
1469
+ }
1470
+
1471
+ }
1472
+
1473
+ }
1474
+
1475
+ /// Execute the algorithm performing push and relabel operations
1476
+ void startPush() {
1477
+ // Paramters for heuristics
1478
+ const int PRICE_REFINEMENT_LIMIT = 2;
1479
+ const double GLOBAL_UPDATE_FACTOR = 2.0;
1480
+
1481
+ const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
1482
+ (_res_node_num + _sup_node_num * _sup_node_num));
1483
+ int next_global_update_limit = global_update_skip;
1484
+
1485
+ // Perform cost scaling phases
1486
+ BoolVector hyper(_res_node_num, false);
1487
+ LargeCostVector hyper_cost(_res_node_num);
1488
+ int relabel_cnt = 0;
1489
+ int eps_phase_cnt = 0;
1490
+ for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1491
+ 1 : _epsilon / _alpha )
1492
+ {
1493
+ ++eps_phase_cnt;
1494
+
1495
+ // Price refinement heuristic
1496
+ if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
1497
+ if (priceRefinement()) continue;
1498
+ }
1499
+
1500
+ // Initialize current phase
1501
+ initPhase();
1502
+
1503
+ // Perform push and relabel operations
1504
+ while (_active_nodes.size() > 0) {
1505
+ LargeCost min_red_cost, rc, pi_n;
1506
+ Value delta;
1507
+ int n, t, a, last_out = _res_arc_num;
1508
+
1509
+ next_node:
1510
+ // Select an active node (FIFO selection)
1511
+ n = _active_nodes.front();
1512
+ last_out = _first_out[n+1];
1513
+ pi_n = _pi[n];
1514
+
1515
+ // Perform push operations if there are admissible arcs
1516
+ if (_excess[n] > 0) {
1517
+ for (a = _next_out[n]; a != last_out; ++a) {
1518
+ if (_res_cap[a] > 0 &&
1519
+ _cost[a] + pi_n - _pi[_target[a]] < 0) {
1520
+ delta = std::min(_res_cap[a], _excess[n]);
1521
+ t = _target[a];
1522
+
1523
+ // Push-look-ahead heuristic
1524
+ Value ahead = -_excess[t];
1525
+ int last_out_t = _first_out[t+1];
1526
+ LargeCost pi_t = _pi[t];
1527
+ for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
1528
+ if (_res_cap[ta] > 0 &&
1529
+ _cost[ta] + pi_t - _pi[_target[ta]] < 0)
1530
+ ahead += _res_cap[ta];
1531
+ if (ahead >= delta) break;
1532
+ }
1533
+ if (ahead < 0) ahead = 0;
1534
+
1535
+ // Push flow along the arc
1536
+ if (ahead < delta && !hyper[t]) {
1537
+ _res_cap[a] -= ahead;
1538
+ _res_cap[_reverse[a]] += ahead;
1539
+ _excess[n] -= ahead;
1540
+ _excess[t] += ahead;
1541
+ _active_nodes.push_front(t);
1542
+ hyper[t] = true;
1543
+ hyper_cost[t] = _cost[a] + pi_n - pi_t;
1544
+ _next_out[n] = a;
1545
+ goto next_node;
1546
+ } else {
1547
+ _res_cap[a] -= delta;
1548
+ _res_cap[_reverse[a]] += delta;
1549
+ _excess[n] -= delta;
1550
+ _excess[t] += delta;
1551
+ if (_excess[t] > 0 && _excess[t] <= delta)
1552
+ _active_nodes.push_back(t);
1553
+ }
1554
+
1555
+ if (_excess[n] == 0) {
1556
+ _next_out[n] = a;
1557
+ goto remove_nodes;
1558
+ }
1559
+ }
1560
+ }
1561
+ _next_out[n] = a;
1562
+ }
1563
+
1564
+ // Relabel the node if it is still active (or hyper)
1565
+ if (_excess[n] > 0 || hyper[n]) {
1566
+ min_red_cost = hyper[n] ? -hyper_cost[n] :
1567
+ std::numeric_limits<LargeCost>::max();
1568
+ for (int a = _first_out[n]; a != last_out; ++a) {
1569
+ if (_res_cap[a] > 0) {
1570
+ rc = _cost[a] + pi_n - _pi[_target[a]];
1571
+ if (rc < min_red_cost) {
1572
+ min_red_cost = rc;
1573
+ }
1574
+ }
1575
+ }
1576
+ _pi[n] -= min_red_cost + _epsilon;
1577
+ _next_out[n] = _first_out[n];
1578
+ hyper[n] = false;
1579
+ ++relabel_cnt;
1580
+ }
1581
+
1582
+ // Remove nodes that are not active nor hyper
1583
+ remove_nodes:
1584
+ while ( _active_nodes.size() > 0 &&
1585
+ _excess[_active_nodes.front()] <= 0 &&
1586
+ !hyper[_active_nodes.front()] ) {
1587
+ _active_nodes.pop_front();
1588
+ }
1589
+
1590
+ // Global update heuristic
1591
+ if (relabel_cnt >= next_global_update_limit) {
1592
+ globalUpdate();
1593
+ for (int u = 0; u != _res_node_num; ++u)
1594
+ hyper[u] = false;
1595
+ next_global_update_limit += global_update_skip;
1596
+ }
1597
+ }
1598
+ }
1599
+ }
1600
+
1601
+ }; //class CostScaling
1602
+
1603
+ ///@}
1604
+
1605
+ } //namespace lemon
1606
+
1607
+ #endif //LEMON_COST_SCALING_H