kreuzberg 4.0.0.rc1 → 4.0.0.rc2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (342) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +14 -8
  3. data/.rspec +3 -3
  4. data/.rubocop.yaml +1 -534
  5. data/.rubocop.yml +538 -0
  6. data/Gemfile +8 -9
  7. data/Gemfile.lock +9 -109
  8. data/README.md +426 -421
  9. data/Rakefile +25 -25
  10. data/Steepfile +47 -47
  11. data/examples/async_patterns.rb +341 -340
  12. data/ext/kreuzberg_rb/extconf.rb +45 -35
  13. data/ext/kreuzberg_rb/native/Cargo.lock +6535 -0
  14. data/ext/kreuzberg_rb/native/Cargo.toml +44 -36
  15. data/ext/kreuzberg_rb/native/README.md +425 -425
  16. data/ext/kreuzberg_rb/native/build.rs +15 -17
  17. data/ext/kreuzberg_rb/native/include/ieeefp.h +11 -11
  18. data/ext/kreuzberg_rb/native/include/msvc_compat/strings.h +14 -14
  19. data/ext/kreuzberg_rb/native/include/strings.h +20 -20
  20. data/ext/kreuzberg_rb/native/include/unistd.h +47 -47
  21. data/ext/kreuzberg_rb/native/src/lib.rs +2998 -2939
  22. data/extconf.rb +28 -28
  23. data/kreuzberg.gemspec +148 -105
  24. data/lib/kreuzberg/api_proxy.rb +142 -142
  25. data/lib/kreuzberg/cache_api.rb +46 -45
  26. data/lib/kreuzberg/cli.rb +55 -55
  27. data/lib/kreuzberg/cli_proxy.rb +127 -127
  28. data/lib/kreuzberg/config.rb +691 -684
  29. data/lib/kreuzberg/error_context.rb +32 -0
  30. data/lib/kreuzberg/errors.rb +118 -50
  31. data/lib/kreuzberg/extraction_api.rb +85 -84
  32. data/lib/kreuzberg/mcp_proxy.rb +186 -186
  33. data/lib/kreuzberg/ocr_backend_protocol.rb +113 -113
  34. data/lib/kreuzberg/post_processor_protocol.rb +86 -86
  35. data/lib/kreuzberg/result.rb +216 -216
  36. data/lib/kreuzberg/setup_lib_path.rb +80 -79
  37. data/lib/kreuzberg/validator_protocol.rb +89 -89
  38. data/lib/kreuzberg/version.rb +5 -5
  39. data/lib/kreuzberg.rb +103 -82
  40. data/sig/kreuzberg/internal.rbs +184 -184
  41. data/sig/kreuzberg.rbs +520 -468
  42. data/spec/binding/cache_spec.rb +227 -227
  43. data/spec/binding/cli_proxy_spec.rb +85 -87
  44. data/spec/binding/cli_spec.rb +55 -54
  45. data/spec/binding/config_spec.rb +345 -345
  46. data/spec/binding/config_validation_spec.rb +283 -283
  47. data/spec/binding/error_handling_spec.rb +213 -213
  48. data/spec/binding/errors_spec.rb +66 -66
  49. data/spec/binding/plugins/ocr_backend_spec.rb +307 -307
  50. data/spec/binding/plugins/postprocessor_spec.rb +269 -269
  51. data/spec/binding/plugins/validator_spec.rb +274 -274
  52. data/spec/fixtures/config.toml +39 -39
  53. data/spec/fixtures/config.yaml +41 -42
  54. data/spec/fixtures/invalid_config.toml +4 -4
  55. data/spec/smoke/package_spec.rb +178 -178
  56. data/spec/spec_helper.rb +42 -42
  57. data/vendor/kreuzberg/Cargo.toml +204 -134
  58. data/vendor/kreuzberg/README.md +175 -175
  59. data/vendor/kreuzberg/benches/otel_overhead.rs +48 -0
  60. data/vendor/kreuzberg/build.rs +474 -460
  61. data/vendor/kreuzberg/src/api/error.rs +81 -81
  62. data/vendor/kreuzberg/src/api/handlers.rs +199 -199
  63. data/vendor/kreuzberg/src/api/mod.rs +79 -79
  64. data/vendor/kreuzberg/src/api/server.rs +353 -353
  65. data/vendor/kreuzberg/src/api/types.rs +170 -170
  66. data/vendor/kreuzberg/src/cache/mod.rs +1167 -1143
  67. data/vendor/kreuzberg/src/chunking/mod.rs +677 -677
  68. data/vendor/kreuzberg/src/core/batch_mode.rs +95 -35
  69. data/vendor/kreuzberg/src/core/config.rs +1032 -1032
  70. data/vendor/kreuzberg/src/core/extractor.rs +1024 -903
  71. data/vendor/kreuzberg/src/core/io.rs +329 -327
  72. data/vendor/kreuzberg/src/core/mime.rs +605 -615
  73. data/vendor/kreuzberg/src/core/mod.rs +45 -42
  74. data/vendor/kreuzberg/src/core/pipeline.rs +984 -906
  75. data/vendor/kreuzberg/src/embeddings.rs +432 -323
  76. data/vendor/kreuzberg/src/error.rs +431 -431
  77. data/vendor/kreuzberg/src/extraction/archive.rs +954 -954
  78. data/vendor/kreuzberg/src/extraction/docx.rs +40 -40
  79. data/vendor/kreuzberg/src/extraction/email.rs +854 -854
  80. data/vendor/kreuzberg/src/extraction/excel.rs +688 -688
  81. data/vendor/kreuzberg/src/extraction/html.rs +553 -553
  82. data/vendor/kreuzberg/src/extraction/image.rs +368 -368
  83. data/vendor/kreuzberg/src/extraction/libreoffice.rs +563 -564
  84. data/vendor/kreuzberg/src/extraction/markdown.rs +213 -0
  85. data/vendor/kreuzberg/src/extraction/mod.rs +81 -77
  86. data/vendor/kreuzberg/src/extraction/office_metadata/app_properties.rs +398 -398
  87. data/vendor/kreuzberg/src/extraction/office_metadata/core_properties.rs +247 -247
  88. data/vendor/kreuzberg/src/extraction/office_metadata/custom_properties.rs +240 -240
  89. data/vendor/kreuzberg/src/extraction/office_metadata/mod.rs +130 -128
  90. data/vendor/kreuzberg/src/extraction/office_metadata/odt_properties.rs +287 -0
  91. data/vendor/kreuzberg/src/extraction/pptx.rs +3000 -3000
  92. data/vendor/kreuzberg/src/extraction/structured.rs +490 -490
  93. data/vendor/kreuzberg/src/extraction/table.rs +328 -328
  94. data/vendor/kreuzberg/src/extraction/text.rs +269 -269
  95. data/vendor/kreuzberg/src/extraction/xml.rs +333 -333
  96. data/vendor/kreuzberg/src/extractors/archive.rs +446 -425
  97. data/vendor/kreuzberg/src/extractors/bibtex.rs +469 -0
  98. data/vendor/kreuzberg/src/extractors/docbook.rs +502 -0
  99. data/vendor/kreuzberg/src/extractors/docx.rs +367 -479
  100. data/vendor/kreuzberg/src/extractors/email.rs +143 -129
  101. data/vendor/kreuzberg/src/extractors/epub.rs +707 -0
  102. data/vendor/kreuzberg/src/extractors/excel.rs +343 -344
  103. data/vendor/kreuzberg/src/extractors/fictionbook.rs +491 -0
  104. data/vendor/kreuzberg/src/extractors/fictionbook.rs.backup2 +738 -0
  105. data/vendor/kreuzberg/src/extractors/html.rs +393 -410
  106. data/vendor/kreuzberg/src/extractors/image.rs +198 -195
  107. data/vendor/kreuzberg/src/extractors/jats.rs +1051 -0
  108. data/vendor/kreuzberg/src/extractors/jupyter.rs +367 -0
  109. data/vendor/kreuzberg/src/extractors/latex.rs +652 -0
  110. data/vendor/kreuzberg/src/extractors/markdown.rs +700 -0
  111. data/vendor/kreuzberg/src/extractors/mod.rs +365 -268
  112. data/vendor/kreuzberg/src/extractors/odt.rs +628 -0
  113. data/vendor/kreuzberg/src/extractors/opml.rs +634 -0
  114. data/vendor/kreuzberg/src/extractors/orgmode.rs +528 -0
  115. data/vendor/kreuzberg/src/extractors/pdf.rs +493 -496
  116. data/vendor/kreuzberg/src/extractors/pptx.rs +248 -234
  117. data/vendor/kreuzberg/src/extractors/rst.rs +576 -0
  118. data/vendor/kreuzberg/src/extractors/rtf.rs +810 -0
  119. data/vendor/kreuzberg/src/extractors/security.rs +484 -0
  120. data/vendor/kreuzberg/src/extractors/security_tests.rs +367 -0
  121. data/vendor/kreuzberg/src/extractors/structured.rs +140 -126
  122. data/vendor/kreuzberg/src/extractors/text.rs +260 -242
  123. data/vendor/kreuzberg/src/extractors/typst.rs +650 -0
  124. data/vendor/kreuzberg/src/extractors/xml.rs +135 -128
  125. data/vendor/kreuzberg/src/image/dpi.rs +164 -164
  126. data/vendor/kreuzberg/src/image/mod.rs +6 -6
  127. data/vendor/kreuzberg/src/image/preprocessing.rs +417 -417
  128. data/vendor/kreuzberg/src/image/resize.rs +89 -89
  129. data/vendor/kreuzberg/src/keywords/config.rs +154 -154
  130. data/vendor/kreuzberg/src/keywords/mod.rs +237 -237
  131. data/vendor/kreuzberg/src/keywords/processor.rs +267 -267
  132. data/vendor/kreuzberg/src/keywords/rake.rs +293 -294
  133. data/vendor/kreuzberg/src/keywords/types.rs +68 -68
  134. data/vendor/kreuzberg/src/keywords/yake.rs +163 -163
  135. data/vendor/kreuzberg/src/language_detection/mod.rs +942 -942
  136. data/vendor/kreuzberg/src/lib.rs +105 -102
  137. data/vendor/kreuzberg/src/mcp/mod.rs +32 -32
  138. data/vendor/kreuzberg/src/mcp/server.rs +1968 -1966
  139. data/vendor/kreuzberg/src/ocr/cache.rs +469 -469
  140. data/vendor/kreuzberg/src/ocr/error.rs +37 -37
  141. data/vendor/kreuzberg/src/ocr/hocr.rs +216 -216
  142. data/vendor/kreuzberg/src/ocr/mod.rs +58 -58
  143. data/vendor/kreuzberg/src/ocr/processor.rs +863 -847
  144. data/vendor/kreuzberg/src/ocr/table/mod.rs +4 -4
  145. data/vendor/kreuzberg/src/ocr/table/tsv_parser.rs +144 -144
  146. data/vendor/kreuzberg/src/ocr/tesseract_backend.rs +450 -450
  147. data/vendor/kreuzberg/src/ocr/types.rs +393 -393
  148. data/vendor/kreuzberg/src/ocr/utils.rs +47 -47
  149. data/vendor/kreuzberg/src/ocr/validation.rs +206 -206
  150. data/vendor/kreuzberg/src/panic_context.rs +154 -0
  151. data/vendor/kreuzberg/src/pdf/error.rs +122 -122
  152. data/vendor/kreuzberg/src/pdf/images.rs +139 -139
  153. data/vendor/kreuzberg/src/pdf/metadata.rs +346 -346
  154. data/vendor/kreuzberg/src/pdf/mod.rs +50 -50
  155. data/vendor/kreuzberg/src/pdf/rendering.rs +369 -369
  156. data/vendor/kreuzberg/src/pdf/table.rs +393 -420
  157. data/vendor/kreuzberg/src/pdf/text.rs +158 -161
  158. data/vendor/kreuzberg/src/plugins/extractor.rs +1013 -1010
  159. data/vendor/kreuzberg/src/plugins/mod.rs +209 -209
  160. data/vendor/kreuzberg/src/plugins/ocr.rs +620 -629
  161. data/vendor/kreuzberg/src/plugins/processor.rs +642 -641
  162. data/vendor/kreuzberg/src/plugins/registry.rs +1337 -1324
  163. data/vendor/kreuzberg/src/plugins/traits.rs +258 -258
  164. data/vendor/kreuzberg/src/plugins/validator.rs +956 -955
  165. data/vendor/kreuzberg/src/stopwords/mod.rs +1470 -1470
  166. data/vendor/kreuzberg/src/text/mod.rs +19 -19
  167. data/vendor/kreuzberg/src/text/quality.rs +697 -697
  168. data/vendor/kreuzberg/src/text/string_utils.rs +217 -217
  169. data/vendor/kreuzberg/src/text/token_reduction/cjk_utils.rs +164 -164
  170. data/vendor/kreuzberg/src/text/token_reduction/config.rs +100 -100
  171. data/vendor/kreuzberg/src/text/token_reduction/core.rs +796 -796
  172. data/vendor/kreuzberg/src/text/token_reduction/filters.rs +902 -902
  173. data/vendor/kreuzberg/src/text/token_reduction/mod.rs +160 -160
  174. data/vendor/kreuzberg/src/text/token_reduction/semantic.rs +619 -619
  175. data/vendor/kreuzberg/src/text/token_reduction/simd_text.rs +147 -147
  176. data/vendor/kreuzberg/src/types.rs +903 -873
  177. data/vendor/kreuzberg/src/utils/mod.rs +17 -17
  178. data/vendor/kreuzberg/src/utils/quality.rs +959 -959
  179. data/vendor/kreuzberg/src/utils/string_utils.rs +381 -381
  180. data/vendor/kreuzberg/stopwords/af_stopwords.json +53 -53
  181. data/vendor/kreuzberg/stopwords/ar_stopwords.json +482 -482
  182. data/vendor/kreuzberg/stopwords/bg_stopwords.json +261 -261
  183. data/vendor/kreuzberg/stopwords/bn_stopwords.json +400 -400
  184. data/vendor/kreuzberg/stopwords/br_stopwords.json +1205 -1205
  185. data/vendor/kreuzberg/stopwords/ca_stopwords.json +280 -280
  186. data/vendor/kreuzberg/stopwords/cs_stopwords.json +425 -425
  187. data/vendor/kreuzberg/stopwords/da_stopwords.json +172 -172
  188. data/vendor/kreuzberg/stopwords/de_stopwords.json +622 -622
  189. data/vendor/kreuzberg/stopwords/el_stopwords.json +849 -849
  190. data/vendor/kreuzberg/stopwords/en_stopwords.json +1300 -1300
  191. data/vendor/kreuzberg/stopwords/eo_stopwords.json +175 -175
  192. data/vendor/kreuzberg/stopwords/es_stopwords.json +734 -734
  193. data/vendor/kreuzberg/stopwords/et_stopwords.json +37 -37
  194. data/vendor/kreuzberg/stopwords/eu_stopwords.json +100 -100
  195. data/vendor/kreuzberg/stopwords/fa_stopwords.json +801 -801
  196. data/vendor/kreuzberg/stopwords/fi_stopwords.json +849 -849
  197. data/vendor/kreuzberg/stopwords/fr_stopwords.json +693 -693
  198. data/vendor/kreuzberg/stopwords/ga_stopwords.json +111 -111
  199. data/vendor/kreuzberg/stopwords/gl_stopwords.json +162 -162
  200. data/vendor/kreuzberg/stopwords/gu_stopwords.json +226 -226
  201. data/vendor/kreuzberg/stopwords/ha_stopwords.json +41 -41
  202. data/vendor/kreuzberg/stopwords/he_stopwords.json +196 -196
  203. data/vendor/kreuzberg/stopwords/hi_stopwords.json +227 -227
  204. data/vendor/kreuzberg/stopwords/hr_stopwords.json +181 -181
  205. data/vendor/kreuzberg/stopwords/hu_stopwords.json +791 -791
  206. data/vendor/kreuzberg/stopwords/hy_stopwords.json +47 -47
  207. data/vendor/kreuzberg/stopwords/id_stopwords.json +760 -760
  208. data/vendor/kreuzberg/stopwords/it_stopwords.json +634 -634
  209. data/vendor/kreuzberg/stopwords/ja_stopwords.json +136 -136
  210. data/vendor/kreuzberg/stopwords/kn_stopwords.json +84 -84
  211. data/vendor/kreuzberg/stopwords/ko_stopwords.json +681 -681
  212. data/vendor/kreuzberg/stopwords/ku_stopwords.json +64 -64
  213. data/vendor/kreuzberg/stopwords/la_stopwords.json +51 -51
  214. data/vendor/kreuzberg/stopwords/lt_stopwords.json +476 -476
  215. data/vendor/kreuzberg/stopwords/lv_stopwords.json +163 -163
  216. data/vendor/kreuzberg/stopwords/ml_stopwords.json +1 -1
  217. data/vendor/kreuzberg/stopwords/mr_stopwords.json +101 -101
  218. data/vendor/kreuzberg/stopwords/ms_stopwords.json +477 -477
  219. data/vendor/kreuzberg/stopwords/ne_stopwords.json +490 -490
  220. data/vendor/kreuzberg/stopwords/nl_stopwords.json +415 -415
  221. data/vendor/kreuzberg/stopwords/no_stopwords.json +223 -223
  222. data/vendor/kreuzberg/stopwords/pl_stopwords.json +331 -331
  223. data/vendor/kreuzberg/stopwords/pt_stopwords.json +562 -562
  224. data/vendor/kreuzberg/stopwords/ro_stopwords.json +436 -436
  225. data/vendor/kreuzberg/stopwords/ru_stopwords.json +561 -561
  226. data/vendor/kreuzberg/stopwords/si_stopwords.json +193 -193
  227. data/vendor/kreuzberg/stopwords/sk_stopwords.json +420 -420
  228. data/vendor/kreuzberg/stopwords/sl_stopwords.json +448 -448
  229. data/vendor/kreuzberg/stopwords/so_stopwords.json +32 -32
  230. data/vendor/kreuzberg/stopwords/st_stopwords.json +33 -33
  231. data/vendor/kreuzberg/stopwords/sv_stopwords.json +420 -420
  232. data/vendor/kreuzberg/stopwords/sw_stopwords.json +76 -76
  233. data/vendor/kreuzberg/stopwords/ta_stopwords.json +129 -129
  234. data/vendor/kreuzberg/stopwords/te_stopwords.json +54 -54
  235. data/vendor/kreuzberg/stopwords/th_stopwords.json +118 -118
  236. data/vendor/kreuzberg/stopwords/tl_stopwords.json +149 -149
  237. data/vendor/kreuzberg/stopwords/tr_stopwords.json +506 -506
  238. data/vendor/kreuzberg/stopwords/uk_stopwords.json +75 -75
  239. data/vendor/kreuzberg/stopwords/ur_stopwords.json +519 -519
  240. data/vendor/kreuzberg/stopwords/vi_stopwords.json +647 -647
  241. data/vendor/kreuzberg/stopwords/yo_stopwords.json +62 -62
  242. data/vendor/kreuzberg/stopwords/zh_stopwords.json +796 -796
  243. data/vendor/kreuzberg/stopwords/zu_stopwords.json +31 -31
  244. data/vendor/kreuzberg/tests/api_extract_multipart.rs +52 -0
  245. data/vendor/kreuzberg/tests/api_tests.rs +966 -966
  246. data/vendor/kreuzberg/tests/archive_integration.rs +543 -543
  247. data/vendor/kreuzberg/tests/batch_orchestration.rs +556 -542
  248. data/vendor/kreuzberg/tests/batch_processing.rs +316 -304
  249. data/vendor/kreuzberg/tests/bibtex_parity_test.rs +421 -0
  250. data/vendor/kreuzberg/tests/concurrency_stress.rs +525 -509
  251. data/vendor/kreuzberg/tests/config_features.rs +598 -580
  252. data/vendor/kreuzberg/tests/config_loading_tests.rs +415 -439
  253. data/vendor/kreuzberg/tests/core_integration.rs +510 -493
  254. data/vendor/kreuzberg/tests/csv_integration.rs +414 -424
  255. data/vendor/kreuzberg/tests/docbook_extractor_tests.rs +498 -0
  256. data/vendor/kreuzberg/tests/docx_metadata_extraction_test.rs +122 -124
  257. data/vendor/kreuzberg/tests/docx_vs_pandoc_comparison.rs +370 -0
  258. data/vendor/kreuzberg/tests/email_integration.rs +325 -325
  259. data/vendor/kreuzberg/tests/epub_native_extractor_tests.rs +275 -0
  260. data/vendor/kreuzberg/tests/error_handling.rs +393 -393
  261. data/vendor/kreuzberg/tests/fictionbook_extractor_tests.rs +228 -0
  262. data/vendor/kreuzberg/tests/format_integration.rs +159 -159
  263. data/vendor/kreuzberg/tests/helpers/mod.rs +142 -142
  264. data/vendor/kreuzberg/tests/html_table_test.rs +551 -0
  265. data/vendor/kreuzberg/tests/image_integration.rs +253 -253
  266. data/vendor/kreuzberg/tests/instrumentation_test.rs +139 -0
  267. data/vendor/kreuzberg/tests/jats_extractor_tests.rs +639 -0
  268. data/vendor/kreuzberg/tests/jupyter_extractor_tests.rs +704 -0
  269. data/vendor/kreuzberg/tests/keywords_integration.rs +479 -479
  270. data/vendor/kreuzberg/tests/keywords_quality.rs +509 -509
  271. data/vendor/kreuzberg/tests/latex_extractor_tests.rs +496 -0
  272. data/vendor/kreuzberg/tests/markdown_extractor_tests.rs +490 -0
  273. data/vendor/kreuzberg/tests/mime_detection.rs +428 -428
  274. data/vendor/kreuzberg/tests/ocr_configuration.rs +510 -510
  275. data/vendor/kreuzberg/tests/ocr_errors.rs +676 -676
  276. data/vendor/kreuzberg/tests/ocr_quality.rs +627 -627
  277. data/vendor/kreuzberg/tests/ocr_stress.rs +469 -469
  278. data/vendor/kreuzberg/tests/odt_extractor_tests.rs +695 -0
  279. data/vendor/kreuzberg/tests/opml_extractor_tests.rs +616 -0
  280. data/vendor/kreuzberg/tests/orgmode_extractor_tests.rs +822 -0
  281. data/vendor/kreuzberg/tests/pdf_integration.rs +43 -43
  282. data/vendor/kreuzberg/tests/pipeline_integration.rs +1411 -1412
  283. data/vendor/kreuzberg/tests/plugin_ocr_backend_test.rs +771 -771
  284. data/vendor/kreuzberg/tests/plugin_postprocessor_test.rs +560 -561
  285. data/vendor/kreuzberg/tests/plugin_system.rs +921 -921
  286. data/vendor/kreuzberg/tests/plugin_validator_test.rs +783 -783
  287. data/vendor/kreuzberg/tests/registry_integration_tests.rs +586 -607
  288. data/vendor/kreuzberg/tests/rst_extractor_tests.rs +692 -0
  289. data/vendor/kreuzberg/tests/rtf_extractor_tests.rs +776 -0
  290. data/vendor/kreuzberg/tests/security_validation.rs +415 -404
  291. data/vendor/kreuzberg/tests/stopwords_integration_test.rs +888 -888
  292. data/vendor/kreuzberg/tests/test_fastembed.rs +609 -609
  293. data/vendor/kreuzberg/tests/typst_behavioral_tests.rs +1259 -0
  294. data/vendor/kreuzberg/tests/typst_extractor_tests.rs +647 -0
  295. data/vendor/kreuzberg/tests/xlsx_metadata_extraction_test.rs +87 -87
  296. data/vendor/rb-sys/.cargo-ok +1 -0
  297. data/vendor/rb-sys/.cargo_vcs_info.json +6 -0
  298. data/vendor/rb-sys/Cargo.lock +393 -0
  299. data/vendor/rb-sys/Cargo.toml +70 -0
  300. data/vendor/rb-sys/Cargo.toml.orig +57 -0
  301. data/vendor/rb-sys/LICENSE-APACHE +190 -0
  302. data/vendor/rb-sys/LICENSE-MIT +21 -0
  303. data/vendor/rb-sys/bin/release.sh +21 -0
  304. data/vendor/rb-sys/build/features.rs +108 -0
  305. data/vendor/rb-sys/build/main.rs +246 -0
  306. data/vendor/rb-sys/build/stable_api_config.rs +153 -0
  307. data/vendor/rb-sys/build/version.rs +48 -0
  308. data/vendor/rb-sys/readme.md +36 -0
  309. data/vendor/rb-sys/src/bindings.rs +21 -0
  310. data/vendor/rb-sys/src/hidden.rs +11 -0
  311. data/vendor/rb-sys/src/lib.rs +34 -0
  312. data/vendor/rb-sys/src/macros.rs +371 -0
  313. data/vendor/rb-sys/src/memory.rs +53 -0
  314. data/vendor/rb-sys/src/ruby_abi_version.rs +38 -0
  315. data/vendor/rb-sys/src/special_consts.rs +31 -0
  316. data/vendor/rb-sys/src/stable_api/compiled.c +179 -0
  317. data/vendor/rb-sys/src/stable_api/compiled.rs +257 -0
  318. data/vendor/rb-sys/src/stable_api/ruby_2_6.rs +316 -0
  319. data/vendor/rb-sys/src/stable_api/ruby_2_7.rs +316 -0
  320. data/vendor/rb-sys/src/stable_api/ruby_3_0.rs +324 -0
  321. data/vendor/rb-sys/src/stable_api/ruby_3_1.rs +317 -0
  322. data/vendor/rb-sys/src/stable_api/ruby_3_2.rs +315 -0
  323. data/vendor/rb-sys/src/stable_api/ruby_3_3.rs +326 -0
  324. data/vendor/rb-sys/src/stable_api/ruby_3_4.rs +327 -0
  325. data/vendor/rb-sys/src/stable_api.rs +261 -0
  326. data/vendor/rb-sys/src/symbol.rs +31 -0
  327. data/vendor/rb-sys/src/tracking_allocator.rs +332 -0
  328. data/vendor/rb-sys/src/utils.rs +89 -0
  329. data/vendor/rb-sys/src/value_type.rs +7 -0
  330. metadata +90 -95
  331. data/pkg/kreuzberg-4.0.0.rc1.gem +0 -0
  332. data/spec/examples.txt +0 -104
  333. data/vendor/kreuzberg/src/bin/profile_extract.rs +0 -455
  334. data/vendor/kreuzberg/src/extraction/pandoc/batch.rs +0 -275
  335. data/vendor/kreuzberg/src/extraction/pandoc/mime_types.rs +0 -178
  336. data/vendor/kreuzberg/src/extraction/pandoc/mod.rs +0 -491
  337. data/vendor/kreuzberg/src/extraction/pandoc/server.rs +0 -496
  338. data/vendor/kreuzberg/src/extraction/pandoc/subprocess.rs +0 -1188
  339. data/vendor/kreuzberg/src/extraction/pandoc/version.rs +0 -162
  340. data/vendor/kreuzberg/src/extractors/pandoc.rs +0 -201
  341. data/vendor/kreuzberg/tests/chunking_offset_demo.rs +0 -92
  342. data/vendor/kreuzberg/tests/pandoc_integration.rs +0 -503
@@ -1,509 +1,509 @@
1
- //! Keyword extraction quality assessment tests.
2
- //!
3
- //! This module tests keyword extraction quality by comparing against ground truth keywords.
4
- //! Measures precision, recall, and F1 to ensure default configurations work well out of the box.
5
- //!
6
- //! Test philosophy:
7
- //! - Define ground truth keywords for test documents (domain experts would identify these)
8
- //! - Measure how well extracted keywords match ground truth
9
- //! - Assert minimum quality thresholds for precision/recall/F1
10
- //! - Verify domain relevance of extracted terms
11
-
12
- #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
13
- use kreuzberg::keywords::{KeywordConfig, extract_keywords};
14
- use std::collections::HashSet;
15
-
16
- /// Ground truth keywords for ML document.
17
- /// These are the terms a machine learning expert would identify as key concepts.
18
- #[allow(dead_code)]
19
- fn get_ml_ground_truth() -> HashSet<&'static str> {
20
- [
21
- "machine learning",
22
- "artificial intelligence",
23
- "deep learning",
24
- "neural networks",
25
- "artificial neural networks",
26
- "convolutional neural networks",
27
- "algorithms",
28
- "training data",
29
- "supervised learning",
30
- "unsupervised learning",
31
- "semi-supervised",
32
- "natural language processing",
33
- "computer science",
34
- "model",
35
- "predictions",
36
- "data",
37
- "learning",
38
- ]
39
- .iter()
40
- .cloned()
41
- .collect()
42
- }
43
-
44
- /// Ground truth keywords for climate change document.
45
- #[allow(dead_code)]
46
- fn get_climate_ground_truth() -> HashSet<&'static str> {
47
- [
48
- "climate change",
49
- "global warming",
50
- "greenhouse gases",
51
- "greenhouse gas emissions",
52
- "fossil fuels",
53
- "burning fossil fuels",
54
- "carbon dioxide",
55
- "methane",
56
- "temperatures",
57
- "weather patterns",
58
- "climate system",
59
- "human activities",
60
- "agriculture",
61
- "deforestation",
62
- "solar cycle",
63
- "earth",
64
- ]
65
- .iter()
66
- .cloned()
67
- .collect()
68
- }
69
-
70
- #[derive(Debug)]
71
- #[allow(dead_code)]
72
- struct KeywordQualityScores {
73
- precision: f64,
74
- recall: f64,
75
- f1: f64,
76
- exact_matches: usize,
77
- partial_matches: usize,
78
- total_extracted: usize,
79
- total_ground_truth: usize,
80
- }
81
-
82
- impl KeywordQualityScores {
83
- fn new(exact_matches: usize, partial_matches: usize, total_extracted: usize, total_ground_truth: usize) -> Self {
84
- let precision = if total_extracted > 0 {
85
- (exact_matches + partial_matches) as f64 / total_extracted as f64
86
- } else {
87
- 0.0
88
- };
89
-
90
- let recall = if total_ground_truth > 0 {
91
- (exact_matches + partial_matches) as f64 / total_ground_truth as f64
92
- } else {
93
- 0.0
94
- };
95
-
96
- let f1 = if precision + recall > 0.0 {
97
- 2.0 * precision * recall / (precision + recall)
98
- } else {
99
- 0.0
100
- };
101
-
102
- Self {
103
- precision,
104
- recall,
105
- f1,
106
- exact_matches,
107
- partial_matches,
108
- total_extracted,
109
- total_ground_truth,
110
- }
111
- }
112
- }
113
-
114
- /// Evaluate extracted keywords against ground truth.
115
- ///
116
- /// Supports both exact matches and partial matches:
117
- /// - Exact: "machine learning" == "machine learning"
118
- /// - Partial: "machine" matches "machine learning" (subset)
119
- #[allow(dead_code)]
120
- fn evaluate_keyword_quality(extracted: &[&str], ground_truth: &HashSet<&str>) -> KeywordQualityScores {
121
- let extracted_lower: Vec<String> = extracted.iter().map(|s| s.to_lowercase()).collect();
122
- let ground_truth_lower: HashSet<String> = ground_truth.iter().map(|s| s.to_lowercase()).collect();
123
-
124
- let mut exact_matches = 0;
125
- let mut partial_matches = 0;
126
- let mut matched_ground_truth: HashSet<String> = HashSet::new();
127
-
128
- for extracted_kw in &extracted_lower {
129
- if ground_truth_lower.contains(extracted_kw) {
130
- exact_matches += 1;
131
- matched_ground_truth.insert(extracted_kw.clone());
132
- continue;
133
- }
134
-
135
- let mut found_partial = false;
136
- for gt_kw in &ground_truth_lower {
137
- if (gt_kw.contains(extracted_kw) || extracted_kw.contains(gt_kw)) && !matched_ground_truth.contains(gt_kw) {
138
- partial_matches += 1;
139
- matched_ground_truth.insert(gt_kw.clone());
140
- found_partial = true;
141
- break;
142
- }
143
- }
144
-
145
- if !found_partial {
146
- for gt_kw in &ground_truth_lower {
147
- let gt_words: Vec<&str> = gt_kw.split_whitespace().collect();
148
- let ex_words: HashSet<&str> = extracted_kw.split_whitespace().collect();
149
-
150
- let overlap = gt_words.iter().filter(|w| ex_words.contains(*w)).count();
151
- if overlap >= gt_words.len() / 2 && overlap > 0 && !matched_ground_truth.contains(gt_kw) {
152
- partial_matches += 1;
153
- matched_ground_truth.insert(gt_kw.clone());
154
- break;
155
- }
156
- }
157
- }
158
- }
159
-
160
- KeywordQualityScores::new(
161
- exact_matches,
162
- partial_matches,
163
- extracted_lower.len(),
164
- ground_truth_lower.len(),
165
- )
166
- }
167
-
168
- /// ML document text (subset for testing).
169
- #[allow(dead_code)]
170
- const ML_DOC_SAMPLE: &str = r#"
171
- Machine learning is a branch of artificial intelligence and computer science which focuses on the use of data and algorithms to imitate the way that humans learn.
172
- Machine learning algorithms build a model based on sample data, known as training data, to make predictions or decisions without being explicitly programmed to do so.
173
- Deep learning is a type of machine learning based on artificial neural networks. The learning process is deep because the structure of artificial neural networks consists of multiple input, output, and hidden layers.
174
- Neural networks can be used for supervised, semi-supervised, and unsupervised learning. Convolutional neural networks are commonly applied to analyzing visual imagery.
175
- Natural language processing is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language.
176
- "#;
177
-
178
- /// Climate document text (subset for testing).
179
- #[allow(dead_code)]
180
- const CLIMATE_DOC_SAMPLE: &str = r#"
181
- Climate change refers to long-term shifts in temperatures and weather patterns. These shifts may be natural, such as through variations in the solar cycle.
182
- But since the 1800s, human activities have been the main driver of climate change, primarily due to burning fossil fuels like coal, oil, and gas.
183
- Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun's heat and raising temperatures.
184
- The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from burning fossil fuels for energy, agriculture, and deforestation.
185
- Global warming is the long-term heating of Earth's climate system. Climate science reveals that human activity has been the dominant cause of climate change since the mid-20th century.
186
- "#;
187
-
188
- #[cfg(feature = "keywords-yake")]
189
- #[test]
190
- fn test_yake_quality_ml_document_default_config() {
191
- let config = KeywordConfig::yake();
192
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
193
-
194
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
195
-
196
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
197
- let ground_truth = get_ml_ground_truth();
198
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
199
-
200
- println!("\nYAKE ML Document Quality (Default Config):");
201
- println!(" Extracted: {} keywords", scores.total_extracted);
202
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
203
- println!(" Exact matches: {}", scores.exact_matches);
204
- println!(" Partial matches: {}", scores.partial_matches);
205
- println!(" Precision: {:.3}", scores.precision);
206
- println!(" Recall: {:.3}", scores.recall);
207
- println!(" F1: {:.3}", scores.f1);
208
- println!("\nExtracted keywords:");
209
- for (i, kw) in keywords.iter().enumerate().take(10) {
210
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
211
- }
212
-
213
- assert!(
214
- scores.precision >= 0.40,
215
- "YAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
216
- scores.precision,
217
- scores.exact_matches + scores.partial_matches,
218
- scores.total_extracted
219
- );
220
-
221
- assert!(
222
- scores.recall >= 0.30,
223
- "YAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
224
- scores.recall,
225
- scores.exact_matches + scores.partial_matches,
226
- scores.total_ground_truth
227
- );
228
-
229
- assert!(
230
- scores.f1 >= 0.30,
231
- "YAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
232
- scores.f1,
233
- scores.precision,
234
- scores.recall
235
- );
236
- }
237
-
238
- #[cfg(feature = "keywords-rake")]
239
- #[test]
240
- fn test_rake_quality_ml_document_default_config() {
241
- let config = KeywordConfig::rake();
242
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
243
-
244
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
245
-
246
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
247
- let ground_truth = get_ml_ground_truth();
248
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
249
-
250
- println!("\nRAKE ML Document Quality (Default Config):");
251
- println!(" Extracted: {} keywords", scores.total_extracted);
252
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
253
- println!(" Exact matches: {}", scores.exact_matches);
254
- println!(" Partial matches: {}", scores.partial_matches);
255
- println!(" Precision: {:.3}", scores.precision);
256
- println!(" Recall: {:.3}", scores.recall);
257
- println!(" F1: {:.3}", scores.f1);
258
- println!("\nExtracted keywords:");
259
- for (i, kw) in keywords.iter().enumerate().take(10) {
260
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
261
- }
262
-
263
- assert!(
264
- scores.precision >= 0.40,
265
- "RAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
266
- scores.precision,
267
- scores.exact_matches + scores.partial_matches,
268
- scores.total_extracted
269
- );
270
-
271
- assert!(
272
- scores.recall >= 0.30,
273
- "RAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
274
- scores.recall,
275
- scores.exact_matches + scores.partial_matches,
276
- scores.total_ground_truth
277
- );
278
-
279
- assert!(
280
- scores.f1 >= 0.30,
281
- "RAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
282
- scores.f1,
283
- scores.precision,
284
- scores.recall
285
- );
286
- }
287
-
288
- #[cfg(feature = "keywords-yake")]
289
- #[test]
290
- fn test_yake_quality_climate_document_default_config() {
291
- let config = KeywordConfig::yake();
292
- let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
293
-
294
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
295
-
296
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
297
- let ground_truth = get_climate_ground_truth();
298
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
299
-
300
- println!("\nYAKE Climate Document Quality (Default Config):");
301
- println!(" Extracted: {} keywords", scores.total_extracted);
302
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
303
- println!(" Exact matches: {}", scores.exact_matches);
304
- println!(" Partial matches: {}", scores.partial_matches);
305
- println!(" Precision: {:.3}", scores.precision);
306
- println!(" Recall: {:.3}", scores.recall);
307
- println!(" F1: {:.3}", scores.f1);
308
- println!("\nExtracted keywords:");
309
- for (i, kw) in keywords.iter().enumerate().take(10) {
310
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
311
- }
312
-
313
- assert!(
314
- scores.precision >= 0.40,
315
- "YAKE precision too low: {:.3} (expected >= 0.40)",
316
- scores.precision
317
- );
318
- assert!(
319
- scores.recall >= 0.30,
320
- "YAKE recall too low: {:.3} (expected >= 0.30)",
321
- scores.recall
322
- );
323
- assert!(
324
- scores.f1 >= 0.30,
325
- "YAKE F1 too low: {:.3} (expected >= 0.30)",
326
- scores.f1
327
- );
328
- }
329
-
330
- #[cfg(feature = "keywords-rake")]
331
- #[test]
332
- fn test_rake_quality_climate_document_default_config() {
333
- let config = KeywordConfig::rake();
334
- let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
335
-
336
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
337
-
338
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
339
- let ground_truth = get_climate_ground_truth();
340
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
341
-
342
- println!("\nRAKE Climate Document Quality (Default Config):");
343
- println!(" Extracted: {} keywords", scores.total_extracted);
344
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
345
- println!(" Exact matches: {}", scores.exact_matches);
346
- println!(" Partial matches: {}", scores.partial_matches);
347
- println!(" Precision: {:.3}", scores.precision);
348
- println!(" Recall: {:.3}", scores.recall);
349
- println!(" F1: {:.3}", scores.f1);
350
- println!("\nExtracted keywords:");
351
- for (i, kw) in keywords.iter().enumerate().take(10) {
352
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
353
- }
354
-
355
- assert!(
356
- scores.precision >= 0.40,
357
- "RAKE precision too low: {:.3} (expected >= 0.40)",
358
- scores.precision
359
- );
360
- assert!(
361
- scores.recall >= 0.30,
362
- "RAKE recall too low: {:.3} (expected >= 0.30)",
363
- scores.recall
364
- );
365
- assert!(
366
- scores.f1 >= 0.30,
367
- "RAKE F1 too low: {:.3} (expected >= 0.30)",
368
- scores.f1
369
- );
370
- }
371
-
372
- #[cfg(all(feature = "keywords-yake", feature = "keywords-rake"))]
373
- #[test]
374
- fn test_yake_vs_rake_quality_comparison() {
375
- let yake_config = KeywordConfig::yake();
376
- let rake_config = KeywordConfig::rake();
377
-
378
- let yake_keywords = extract_keywords(ML_DOC_SAMPLE, &yake_config).unwrap();
379
- let rake_keywords = extract_keywords(ML_DOC_SAMPLE, &rake_config).unwrap();
380
-
381
- let yake_extracted: Vec<&str> = yake_keywords.iter().map(|k| k.text.as_str()).collect();
382
- let rake_extracted: Vec<&str> = rake_keywords.iter().map(|k| k.text.as_str()).collect();
383
-
384
- let ground_truth = get_ml_ground_truth();
385
- let yake_scores = evaluate_keyword_quality(&yake_extracted, &ground_truth);
386
- let rake_scores = evaluate_keyword_quality(&rake_extracted, &ground_truth);
387
-
388
- println!("\nYAKE vs RAKE Quality Comparison (ML Document):");
389
- println!(
390
- " YAKE F1: {:.3} (P: {:.3}, R: {:.3})",
391
- yake_scores.f1, yake_scores.precision, yake_scores.recall
392
- );
393
- println!(
394
- " RAKE F1: {:.3} (P: {:.3}, R: {:.3})",
395
- rake_scores.f1, rake_scores.precision, rake_scores.recall
396
- );
397
-
398
- assert!(yake_scores.f1 >= 0.25, "YAKE F1 too low: {:.3}", yake_scores.f1);
399
- assert!(rake_scores.f1 >= 0.25, "RAKE F1 too low: {:.3}", rake_scores.f1);
400
-
401
- let best_f1 = yake_scores.f1.max(rake_scores.f1);
402
- assert!(
403
- best_f1 >= 0.30,
404
- "Neither algorithm achieved F1 >= 0.30. Best: {:.3}",
405
- best_f1
406
- );
407
- }
408
-
409
- #[cfg(feature = "keywords-yake")]
410
- #[test]
411
- fn test_yake_quality_with_optimized_config() {
412
- let config = KeywordConfig::yake()
413
- .with_max_keywords(15)
414
- .with_ngram_range(1, 3)
415
- .with_min_score(0.0);
416
-
417
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
418
-
419
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
420
- let ground_truth = get_ml_ground_truth();
421
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
422
-
423
- println!("\nYAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
424
- println!(
425
- " F1: {:.3} (P: {:.3}, R: {:.3})",
426
- scores.f1, scores.precision, scores.recall
427
- );
428
-
429
- assert!(
430
- scores.recall >= 0.35,
431
- "Optimized config should improve recall: {:.3} (expected >= 0.35)",
432
- scores.recall
433
- );
434
- }
435
-
436
- #[cfg(feature = "keywords-rake")]
437
- #[test]
438
- fn test_rake_quality_with_optimized_config() {
439
- let config = KeywordConfig::rake()
440
- .with_max_keywords(15)
441
- .with_ngram_range(1, 3)
442
- .with_min_score(0.0);
443
-
444
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
445
-
446
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
447
- let ground_truth = get_ml_ground_truth();
448
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
449
-
450
- println!("\nRAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
451
- println!(
452
- " F1: {:.3} (P: {:.3}, R: {:.3})",
453
- scores.f1, scores.precision, scores.recall
454
- );
455
-
456
- assert!(
457
- scores.recall >= 0.35,
458
- "Optimized config should improve recall: {:.3} (expected >= 0.35)",
459
- scores.recall
460
- );
461
- }
462
-
463
- #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
464
- #[test]
465
- fn test_extracted_keywords_are_domain_relevant() {
466
- let config = KeywordConfig::default();
467
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
468
-
469
- let ml_terms = [
470
- "machine",
471
- "learning",
472
- "artificial",
473
- "intelligence",
474
- "neural",
475
- "network",
476
- "deep",
477
- "algorithm",
478
- "data",
479
- "model",
480
- "training",
481
- "supervised",
482
- "unsupervised",
483
- "language",
484
- "processing",
485
- ];
486
-
487
- let relevant_count = keywords
488
- .iter()
489
- .filter(|kw| {
490
- let kw_lower = kw.text.to_lowercase();
491
- ml_terms.iter().any(|term| kw_lower.contains(term))
492
- })
493
- .count();
494
-
495
- let relevance_ratio = relevant_count as f64 / keywords.len() as f64;
496
-
497
- println!("\nDomain Relevance Check:");
498
- println!(" Extracted keywords: {}", keywords.len());
499
- println!(" Domain-relevant keywords: {}", relevant_count);
500
- println!(" Relevance ratio: {:.3}", relevance_ratio);
501
-
502
- assert!(
503
- relevance_ratio >= 0.70,
504
- "Too many irrelevant keywords extracted. Relevance: {:.3} (expected >= 0.70). Relevant: {}/{}",
505
- relevance_ratio,
506
- relevant_count,
507
- keywords.len()
508
- );
509
- }
1
+ //! Keyword extraction quality assessment tests.
2
+ //!
3
+ //! This module tests keyword extraction quality by comparing against ground truth keywords.
4
+ //! Measures precision, recall, and F1 to ensure default configurations work well out of the box.
5
+ //!
6
+ //! Test philosophy:
7
+ //! - Define ground truth keywords for test documents (domain experts would identify these)
8
+ //! - Measure how well extracted keywords match ground truth
9
+ //! - Assert minimum quality thresholds for precision/recall/F1
10
+ //! - Verify domain relevance of extracted terms
11
+
12
+ #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
13
+ use kreuzberg::keywords::{KeywordConfig, extract_keywords};
14
+ use std::collections::HashSet;
15
+
16
+ /// Ground truth keywords for ML document.
17
+ /// These are the terms a machine learning expert would identify as key concepts.
18
+ #[allow(dead_code)]
19
+ fn get_ml_ground_truth() -> HashSet<&'static str> {
20
+ [
21
+ "machine learning",
22
+ "artificial intelligence",
23
+ "deep learning",
24
+ "neural networks",
25
+ "artificial neural networks",
26
+ "convolutional neural networks",
27
+ "algorithms",
28
+ "training data",
29
+ "supervised learning",
30
+ "unsupervised learning",
31
+ "semi-supervised",
32
+ "natural language processing",
33
+ "computer science",
34
+ "model",
35
+ "predictions",
36
+ "data",
37
+ "learning",
38
+ ]
39
+ .iter()
40
+ .cloned()
41
+ .collect()
42
+ }
43
+
44
+ /// Ground truth keywords for climate change document.
45
+ #[allow(dead_code)]
46
+ fn get_climate_ground_truth() -> HashSet<&'static str> {
47
+ [
48
+ "climate change",
49
+ "global warming",
50
+ "greenhouse gases",
51
+ "greenhouse gas emissions",
52
+ "fossil fuels",
53
+ "burning fossil fuels",
54
+ "carbon dioxide",
55
+ "methane",
56
+ "temperatures",
57
+ "weather patterns",
58
+ "climate system",
59
+ "human activities",
60
+ "agriculture",
61
+ "deforestation",
62
+ "solar cycle",
63
+ "earth",
64
+ ]
65
+ .iter()
66
+ .cloned()
67
+ .collect()
68
+ }
69
+
70
+ #[derive(Debug)]
71
+ #[allow(dead_code)]
72
+ struct KeywordQualityScores {
73
+ precision: f64,
74
+ recall: f64,
75
+ f1: f64,
76
+ exact_matches: usize,
77
+ partial_matches: usize,
78
+ total_extracted: usize,
79
+ total_ground_truth: usize,
80
+ }
81
+
82
+ impl KeywordQualityScores {
83
+ fn new(exact_matches: usize, partial_matches: usize, total_extracted: usize, total_ground_truth: usize) -> Self {
84
+ let precision = if total_extracted > 0 {
85
+ (exact_matches + partial_matches) as f64 / total_extracted as f64
86
+ } else {
87
+ 0.0
88
+ };
89
+
90
+ let recall = if total_ground_truth > 0 {
91
+ (exact_matches + partial_matches) as f64 / total_ground_truth as f64
92
+ } else {
93
+ 0.0
94
+ };
95
+
96
+ let f1 = if precision + recall > 0.0 {
97
+ 2.0 * precision * recall / (precision + recall)
98
+ } else {
99
+ 0.0
100
+ };
101
+
102
+ Self {
103
+ precision,
104
+ recall,
105
+ f1,
106
+ exact_matches,
107
+ partial_matches,
108
+ total_extracted,
109
+ total_ground_truth,
110
+ }
111
+ }
112
+ }
113
+
114
+ /// Evaluate extracted keywords against ground truth.
115
+ ///
116
+ /// Supports both exact matches and partial matches:
117
+ /// - Exact: "machine learning" == "machine learning"
118
+ /// - Partial: "machine" matches "machine learning" (subset)
119
+ #[allow(dead_code)]
120
+ fn evaluate_keyword_quality(extracted: &[&str], ground_truth: &HashSet<&str>) -> KeywordQualityScores {
121
+ let extracted_lower: Vec<String> = extracted.iter().map(|s| s.to_lowercase()).collect();
122
+ let ground_truth_lower: HashSet<String> = ground_truth.iter().map(|s| s.to_lowercase()).collect();
123
+
124
+ let mut exact_matches = 0;
125
+ let mut partial_matches = 0;
126
+ let mut matched_ground_truth: HashSet<String> = HashSet::new();
127
+
128
+ for extracted_kw in &extracted_lower {
129
+ if ground_truth_lower.contains(extracted_kw) {
130
+ exact_matches += 1;
131
+ matched_ground_truth.insert(extracted_kw.clone());
132
+ continue;
133
+ }
134
+
135
+ let mut found_partial = false;
136
+ for gt_kw in &ground_truth_lower {
137
+ if (gt_kw.contains(extracted_kw) || extracted_kw.contains(gt_kw)) && !matched_ground_truth.contains(gt_kw) {
138
+ partial_matches += 1;
139
+ matched_ground_truth.insert(gt_kw.clone());
140
+ found_partial = true;
141
+ break;
142
+ }
143
+ }
144
+
145
+ if !found_partial {
146
+ for gt_kw in &ground_truth_lower {
147
+ let gt_words: Vec<&str> = gt_kw.split_whitespace().collect();
148
+ let ex_words: HashSet<&str> = extracted_kw.split_whitespace().collect();
149
+
150
+ let overlap = gt_words.iter().filter(|w| ex_words.contains(*w)).count();
151
+ if overlap >= gt_words.len() / 2 && overlap > 0 && !matched_ground_truth.contains(gt_kw) {
152
+ partial_matches += 1;
153
+ matched_ground_truth.insert(gt_kw.clone());
154
+ break;
155
+ }
156
+ }
157
+ }
158
+ }
159
+
160
+ KeywordQualityScores::new(
161
+ exact_matches,
162
+ partial_matches,
163
+ extracted_lower.len(),
164
+ ground_truth_lower.len(),
165
+ )
166
+ }
167
+
168
+ /// ML document text (subset for testing).
169
+ #[allow(dead_code)]
170
+ const ML_DOC_SAMPLE: &str = r#"
171
+ Machine learning is a branch of artificial intelligence and computer science which focuses on the use of data and algorithms to imitate the way that humans learn.
172
+ Machine learning algorithms build a model based on sample data, known as training data, to make predictions or decisions without being explicitly programmed to do so.
173
+ Deep learning is a type of machine learning based on artificial neural networks. The learning process is deep because the structure of artificial neural networks consists of multiple input, output, and hidden layers.
174
+ Neural networks can be used for supervised, semi-supervised, and unsupervised learning. Convolutional neural networks are commonly applied to analyzing visual imagery.
175
+ Natural language processing is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language.
176
+ "#;
177
+
178
+ /// Climate document text (subset for testing).
179
+ #[allow(dead_code)]
180
+ const CLIMATE_DOC_SAMPLE: &str = r#"
181
+ Climate change refers to long-term shifts in temperatures and weather patterns. These shifts may be natural, such as through variations in the solar cycle.
182
+ But since the 1800s, human activities have been the main driver of climate change, primarily due to burning fossil fuels like coal, oil, and gas.
183
+ Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun's heat and raising temperatures.
184
+ The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from burning fossil fuels for energy, agriculture, and deforestation.
185
+ Global warming is the long-term heating of Earth's climate system. Climate science reveals that human activity has been the dominant cause of climate change since the mid-20th century.
186
+ "#;
187
+
188
+ #[cfg(feature = "keywords-yake")]
189
+ #[test]
190
+ fn test_yake_quality_ml_document_default_config() {
191
+ let config = KeywordConfig::yake();
192
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
193
+
194
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
195
+
196
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
197
+ let ground_truth = get_ml_ground_truth();
198
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
199
+
200
+ println!("\nYAKE ML Document Quality (Default Config):");
201
+ println!(" Extracted: {} keywords", scores.total_extracted);
202
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
203
+ println!(" Exact matches: {}", scores.exact_matches);
204
+ println!(" Partial matches: {}", scores.partial_matches);
205
+ println!(" Precision: {:.3}", scores.precision);
206
+ println!(" Recall: {:.3}", scores.recall);
207
+ println!(" F1: {:.3}", scores.f1);
208
+ println!("\nExtracted keywords:");
209
+ for (i, kw) in keywords.iter().enumerate().take(10) {
210
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
211
+ }
212
+
213
+ assert!(
214
+ scores.precision >= 0.40,
215
+ "YAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
216
+ scores.precision,
217
+ scores.exact_matches + scores.partial_matches,
218
+ scores.total_extracted
219
+ );
220
+
221
+ assert!(
222
+ scores.recall >= 0.30,
223
+ "YAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
224
+ scores.recall,
225
+ scores.exact_matches + scores.partial_matches,
226
+ scores.total_ground_truth
227
+ );
228
+
229
+ assert!(
230
+ scores.f1 >= 0.30,
231
+ "YAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
232
+ scores.f1,
233
+ scores.precision,
234
+ scores.recall
235
+ );
236
+ }
237
+
238
+ #[cfg(feature = "keywords-rake")]
239
+ #[test]
240
+ fn test_rake_quality_ml_document_default_config() {
241
+ let config = KeywordConfig::rake();
242
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
243
+
244
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
245
+
246
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
247
+ let ground_truth = get_ml_ground_truth();
248
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
249
+
250
+ println!("\nRAKE ML Document Quality (Default Config):");
251
+ println!(" Extracted: {} keywords", scores.total_extracted);
252
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
253
+ println!(" Exact matches: {}", scores.exact_matches);
254
+ println!(" Partial matches: {}", scores.partial_matches);
255
+ println!(" Precision: {:.3}", scores.precision);
256
+ println!(" Recall: {:.3}", scores.recall);
257
+ println!(" F1: {:.3}", scores.f1);
258
+ println!("\nExtracted keywords:");
259
+ for (i, kw) in keywords.iter().enumerate().take(10) {
260
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
261
+ }
262
+
263
+ assert!(
264
+ scores.precision >= 0.40,
265
+ "RAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
266
+ scores.precision,
267
+ scores.exact_matches + scores.partial_matches,
268
+ scores.total_extracted
269
+ );
270
+
271
+ assert!(
272
+ scores.recall >= 0.30,
273
+ "RAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
274
+ scores.recall,
275
+ scores.exact_matches + scores.partial_matches,
276
+ scores.total_ground_truth
277
+ );
278
+
279
+ assert!(
280
+ scores.f1 >= 0.30,
281
+ "RAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
282
+ scores.f1,
283
+ scores.precision,
284
+ scores.recall
285
+ );
286
+ }
287
+
288
+ #[cfg(feature = "keywords-yake")]
289
+ #[test]
290
+ fn test_yake_quality_climate_document_default_config() {
291
+ let config = KeywordConfig::yake();
292
+ let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
293
+
294
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
295
+
296
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
297
+ let ground_truth = get_climate_ground_truth();
298
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
299
+
300
+ println!("\nYAKE Climate Document Quality (Default Config):");
301
+ println!(" Extracted: {} keywords", scores.total_extracted);
302
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
303
+ println!(" Exact matches: {}", scores.exact_matches);
304
+ println!(" Partial matches: {}", scores.partial_matches);
305
+ println!(" Precision: {:.3}", scores.precision);
306
+ println!(" Recall: {:.3}", scores.recall);
307
+ println!(" F1: {:.3}", scores.f1);
308
+ println!("\nExtracted keywords:");
309
+ for (i, kw) in keywords.iter().enumerate().take(10) {
310
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
311
+ }
312
+
313
+ assert!(
314
+ scores.precision >= 0.40,
315
+ "YAKE precision too low: {:.3} (expected >= 0.40)",
316
+ scores.precision
317
+ );
318
+ assert!(
319
+ scores.recall >= 0.30,
320
+ "YAKE recall too low: {:.3} (expected >= 0.30)",
321
+ scores.recall
322
+ );
323
+ assert!(
324
+ scores.f1 >= 0.30,
325
+ "YAKE F1 too low: {:.3} (expected >= 0.30)",
326
+ scores.f1
327
+ );
328
+ }
329
+
330
+ #[cfg(feature = "keywords-rake")]
331
+ #[test]
332
+ fn test_rake_quality_climate_document_default_config() {
333
+ let config = KeywordConfig::rake();
334
+ let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
335
+
336
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
337
+
338
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
339
+ let ground_truth = get_climate_ground_truth();
340
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
341
+
342
+ println!("\nRAKE Climate Document Quality (Default Config):");
343
+ println!(" Extracted: {} keywords", scores.total_extracted);
344
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
345
+ println!(" Exact matches: {}", scores.exact_matches);
346
+ println!(" Partial matches: {}", scores.partial_matches);
347
+ println!(" Precision: {:.3}", scores.precision);
348
+ println!(" Recall: {:.3}", scores.recall);
349
+ println!(" F1: {:.3}", scores.f1);
350
+ println!("\nExtracted keywords:");
351
+ for (i, kw) in keywords.iter().enumerate().take(10) {
352
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
353
+ }
354
+
355
+ assert!(
356
+ scores.precision >= 0.40,
357
+ "RAKE precision too low: {:.3} (expected >= 0.40)",
358
+ scores.precision
359
+ );
360
+ assert!(
361
+ scores.recall >= 0.30,
362
+ "RAKE recall too low: {:.3} (expected >= 0.30)",
363
+ scores.recall
364
+ );
365
+ assert!(
366
+ scores.f1 >= 0.30,
367
+ "RAKE F1 too low: {:.3} (expected >= 0.30)",
368
+ scores.f1
369
+ );
370
+ }
371
+
372
+ #[cfg(all(feature = "keywords-yake", feature = "keywords-rake"))]
373
+ #[test]
374
+ fn test_yake_vs_rake_quality_comparison() {
375
+ let yake_config = KeywordConfig::yake();
376
+ let rake_config = KeywordConfig::rake();
377
+
378
+ let yake_keywords = extract_keywords(ML_DOC_SAMPLE, &yake_config).unwrap();
379
+ let rake_keywords = extract_keywords(ML_DOC_SAMPLE, &rake_config).unwrap();
380
+
381
+ let yake_extracted: Vec<&str> = yake_keywords.iter().map(|k| k.text.as_str()).collect();
382
+ let rake_extracted: Vec<&str> = rake_keywords.iter().map(|k| k.text.as_str()).collect();
383
+
384
+ let ground_truth = get_ml_ground_truth();
385
+ let yake_scores = evaluate_keyword_quality(&yake_extracted, &ground_truth);
386
+ let rake_scores = evaluate_keyword_quality(&rake_extracted, &ground_truth);
387
+
388
+ println!("\nYAKE vs RAKE Quality Comparison (ML Document):");
389
+ println!(
390
+ " YAKE F1: {:.3} (P: {:.3}, R: {:.3})",
391
+ yake_scores.f1, yake_scores.precision, yake_scores.recall
392
+ );
393
+ println!(
394
+ " RAKE F1: {:.3} (P: {:.3}, R: {:.3})",
395
+ rake_scores.f1, rake_scores.precision, rake_scores.recall
396
+ );
397
+
398
+ assert!(yake_scores.f1 >= 0.25, "YAKE F1 too low: {:.3}", yake_scores.f1);
399
+ assert!(rake_scores.f1 >= 0.25, "RAKE F1 too low: {:.3}", rake_scores.f1);
400
+
401
+ let best_f1 = yake_scores.f1.max(rake_scores.f1);
402
+ assert!(
403
+ best_f1 >= 0.30,
404
+ "Neither algorithm achieved F1 >= 0.30. Best: {:.3}",
405
+ best_f1
406
+ );
407
+ }
408
+
409
+ #[cfg(feature = "keywords-yake")]
410
+ #[test]
411
+ fn test_yake_quality_with_optimized_config() {
412
+ let config = KeywordConfig::yake()
413
+ .with_max_keywords(15)
414
+ .with_ngram_range(1, 3)
415
+ .with_min_score(0.0);
416
+
417
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
418
+
419
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
420
+ let ground_truth = get_ml_ground_truth();
421
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
422
+
423
+ println!("\nYAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
424
+ println!(
425
+ " F1: {:.3} (P: {:.3}, R: {:.3})",
426
+ scores.f1, scores.precision, scores.recall
427
+ );
428
+
429
+ assert!(
430
+ scores.recall >= 0.35,
431
+ "Optimized config should improve recall: {:.3} (expected >= 0.35)",
432
+ scores.recall
433
+ );
434
+ }
435
+
436
+ #[cfg(feature = "keywords-rake")]
437
+ #[test]
438
+ fn test_rake_quality_with_optimized_config() {
439
+ let config = KeywordConfig::rake()
440
+ .with_max_keywords(15)
441
+ .with_ngram_range(1, 3)
442
+ .with_min_score(0.0);
443
+
444
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
445
+
446
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
447
+ let ground_truth = get_ml_ground_truth();
448
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
449
+
450
+ println!("\nRAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
451
+ println!(
452
+ " F1: {:.3} (P: {:.3}, R: {:.3})",
453
+ scores.f1, scores.precision, scores.recall
454
+ );
455
+
456
+ assert!(
457
+ scores.recall >= 0.35,
458
+ "Optimized config should improve recall: {:.3} (expected >= 0.35)",
459
+ scores.recall
460
+ );
461
+ }
462
+
463
+ #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
464
+ #[test]
465
+ fn test_extracted_keywords_are_domain_relevant() {
466
+ let config = KeywordConfig::default();
467
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
468
+
469
+ let ml_terms = [
470
+ "machine",
471
+ "learning",
472
+ "artificial",
473
+ "intelligence",
474
+ "neural",
475
+ "network",
476
+ "deep",
477
+ "algorithm",
478
+ "data",
479
+ "model",
480
+ "training",
481
+ "supervised",
482
+ "unsupervised",
483
+ "language",
484
+ "processing",
485
+ ];
486
+
487
+ let relevant_count = keywords
488
+ .iter()
489
+ .filter(|kw| {
490
+ let kw_lower = kw.text.to_lowercase();
491
+ ml_terms.iter().any(|term| kw_lower.contains(term))
492
+ })
493
+ .count();
494
+
495
+ let relevance_ratio = relevant_count as f64 / keywords.len() as f64;
496
+
497
+ println!("\nDomain Relevance Check:");
498
+ println!(" Extracted keywords: {}", keywords.len());
499
+ println!(" Domain-relevant keywords: {}", relevant_count);
500
+ println!(" Relevance ratio: {:.3}", relevance_ratio);
501
+
502
+ assert!(
503
+ relevance_ratio >= 0.70,
504
+ "Too many irrelevant keywords extracted. Relevance: {:.3} (expected >= 0.70). Relevant: {}/{}",
505
+ relevance_ratio,
506
+ relevant_count,
507
+ keywords.len()
508
+ );
509
+ }