kreuzberg 4.0.0.rc1 → 4.0.0.rc2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (342) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +14 -8
  3. data/.rspec +3 -3
  4. data/.rubocop.yaml +1 -534
  5. data/.rubocop.yml +538 -0
  6. data/Gemfile +8 -9
  7. data/Gemfile.lock +9 -109
  8. data/README.md +426 -421
  9. data/Rakefile +25 -25
  10. data/Steepfile +47 -47
  11. data/examples/async_patterns.rb +341 -340
  12. data/ext/kreuzberg_rb/extconf.rb +45 -35
  13. data/ext/kreuzberg_rb/native/Cargo.lock +6535 -0
  14. data/ext/kreuzberg_rb/native/Cargo.toml +44 -36
  15. data/ext/kreuzberg_rb/native/README.md +425 -425
  16. data/ext/kreuzberg_rb/native/build.rs +15 -17
  17. data/ext/kreuzberg_rb/native/include/ieeefp.h +11 -11
  18. data/ext/kreuzberg_rb/native/include/msvc_compat/strings.h +14 -14
  19. data/ext/kreuzberg_rb/native/include/strings.h +20 -20
  20. data/ext/kreuzberg_rb/native/include/unistd.h +47 -47
  21. data/ext/kreuzberg_rb/native/src/lib.rs +2998 -2939
  22. data/extconf.rb +28 -28
  23. data/kreuzberg.gemspec +148 -105
  24. data/lib/kreuzberg/api_proxy.rb +142 -142
  25. data/lib/kreuzberg/cache_api.rb +46 -45
  26. data/lib/kreuzberg/cli.rb +55 -55
  27. data/lib/kreuzberg/cli_proxy.rb +127 -127
  28. data/lib/kreuzberg/config.rb +691 -684
  29. data/lib/kreuzberg/error_context.rb +32 -0
  30. data/lib/kreuzberg/errors.rb +118 -50
  31. data/lib/kreuzberg/extraction_api.rb +85 -84
  32. data/lib/kreuzberg/mcp_proxy.rb +186 -186
  33. data/lib/kreuzberg/ocr_backend_protocol.rb +113 -113
  34. data/lib/kreuzberg/post_processor_protocol.rb +86 -86
  35. data/lib/kreuzberg/result.rb +216 -216
  36. data/lib/kreuzberg/setup_lib_path.rb +80 -79
  37. data/lib/kreuzberg/validator_protocol.rb +89 -89
  38. data/lib/kreuzberg/version.rb +5 -5
  39. data/lib/kreuzberg.rb +103 -82
  40. data/sig/kreuzberg/internal.rbs +184 -184
  41. data/sig/kreuzberg.rbs +520 -468
  42. data/spec/binding/cache_spec.rb +227 -227
  43. data/spec/binding/cli_proxy_spec.rb +85 -87
  44. data/spec/binding/cli_spec.rb +55 -54
  45. data/spec/binding/config_spec.rb +345 -345
  46. data/spec/binding/config_validation_spec.rb +283 -283
  47. data/spec/binding/error_handling_spec.rb +213 -213
  48. data/spec/binding/errors_spec.rb +66 -66
  49. data/spec/binding/plugins/ocr_backend_spec.rb +307 -307
  50. data/spec/binding/plugins/postprocessor_spec.rb +269 -269
  51. data/spec/binding/plugins/validator_spec.rb +274 -274
  52. data/spec/fixtures/config.toml +39 -39
  53. data/spec/fixtures/config.yaml +41 -42
  54. data/spec/fixtures/invalid_config.toml +4 -4
  55. data/spec/smoke/package_spec.rb +178 -178
  56. data/spec/spec_helper.rb +42 -42
  57. data/vendor/kreuzberg/Cargo.toml +204 -134
  58. data/vendor/kreuzberg/README.md +175 -175
  59. data/vendor/kreuzberg/benches/otel_overhead.rs +48 -0
  60. data/vendor/kreuzberg/build.rs +474 -460
  61. data/vendor/kreuzberg/src/api/error.rs +81 -81
  62. data/vendor/kreuzberg/src/api/handlers.rs +199 -199
  63. data/vendor/kreuzberg/src/api/mod.rs +79 -79
  64. data/vendor/kreuzberg/src/api/server.rs +353 -353
  65. data/vendor/kreuzberg/src/api/types.rs +170 -170
  66. data/vendor/kreuzberg/src/cache/mod.rs +1167 -1143
  67. data/vendor/kreuzberg/src/chunking/mod.rs +677 -677
  68. data/vendor/kreuzberg/src/core/batch_mode.rs +95 -35
  69. data/vendor/kreuzberg/src/core/config.rs +1032 -1032
  70. data/vendor/kreuzberg/src/core/extractor.rs +1024 -903
  71. data/vendor/kreuzberg/src/core/io.rs +329 -327
  72. data/vendor/kreuzberg/src/core/mime.rs +605 -615
  73. data/vendor/kreuzberg/src/core/mod.rs +45 -42
  74. data/vendor/kreuzberg/src/core/pipeline.rs +984 -906
  75. data/vendor/kreuzberg/src/embeddings.rs +432 -323
  76. data/vendor/kreuzberg/src/error.rs +431 -431
  77. data/vendor/kreuzberg/src/extraction/archive.rs +954 -954
  78. data/vendor/kreuzberg/src/extraction/docx.rs +40 -40
  79. data/vendor/kreuzberg/src/extraction/email.rs +854 -854
  80. data/vendor/kreuzberg/src/extraction/excel.rs +688 -688
  81. data/vendor/kreuzberg/src/extraction/html.rs +553 -553
  82. data/vendor/kreuzberg/src/extraction/image.rs +368 -368
  83. data/vendor/kreuzberg/src/extraction/libreoffice.rs +563 -564
  84. data/vendor/kreuzberg/src/extraction/markdown.rs +213 -0
  85. data/vendor/kreuzberg/src/extraction/mod.rs +81 -77
  86. data/vendor/kreuzberg/src/extraction/office_metadata/app_properties.rs +398 -398
  87. data/vendor/kreuzberg/src/extraction/office_metadata/core_properties.rs +247 -247
  88. data/vendor/kreuzberg/src/extraction/office_metadata/custom_properties.rs +240 -240
  89. data/vendor/kreuzberg/src/extraction/office_metadata/mod.rs +130 -128
  90. data/vendor/kreuzberg/src/extraction/office_metadata/odt_properties.rs +287 -0
  91. data/vendor/kreuzberg/src/extraction/pptx.rs +3000 -3000
  92. data/vendor/kreuzberg/src/extraction/structured.rs +490 -490
  93. data/vendor/kreuzberg/src/extraction/table.rs +328 -328
  94. data/vendor/kreuzberg/src/extraction/text.rs +269 -269
  95. data/vendor/kreuzberg/src/extraction/xml.rs +333 -333
  96. data/vendor/kreuzberg/src/extractors/archive.rs +446 -425
  97. data/vendor/kreuzberg/src/extractors/bibtex.rs +469 -0
  98. data/vendor/kreuzberg/src/extractors/docbook.rs +502 -0
  99. data/vendor/kreuzberg/src/extractors/docx.rs +367 -479
  100. data/vendor/kreuzberg/src/extractors/email.rs +143 -129
  101. data/vendor/kreuzberg/src/extractors/epub.rs +707 -0
  102. data/vendor/kreuzberg/src/extractors/excel.rs +343 -344
  103. data/vendor/kreuzberg/src/extractors/fictionbook.rs +491 -0
  104. data/vendor/kreuzberg/src/extractors/fictionbook.rs.backup2 +738 -0
  105. data/vendor/kreuzberg/src/extractors/html.rs +393 -410
  106. data/vendor/kreuzberg/src/extractors/image.rs +198 -195
  107. data/vendor/kreuzberg/src/extractors/jats.rs +1051 -0
  108. data/vendor/kreuzberg/src/extractors/jupyter.rs +367 -0
  109. data/vendor/kreuzberg/src/extractors/latex.rs +652 -0
  110. data/vendor/kreuzberg/src/extractors/markdown.rs +700 -0
  111. data/vendor/kreuzberg/src/extractors/mod.rs +365 -268
  112. data/vendor/kreuzberg/src/extractors/odt.rs +628 -0
  113. data/vendor/kreuzberg/src/extractors/opml.rs +634 -0
  114. data/vendor/kreuzberg/src/extractors/orgmode.rs +528 -0
  115. data/vendor/kreuzberg/src/extractors/pdf.rs +493 -496
  116. data/vendor/kreuzberg/src/extractors/pptx.rs +248 -234
  117. data/vendor/kreuzberg/src/extractors/rst.rs +576 -0
  118. data/vendor/kreuzberg/src/extractors/rtf.rs +810 -0
  119. data/vendor/kreuzberg/src/extractors/security.rs +484 -0
  120. data/vendor/kreuzberg/src/extractors/security_tests.rs +367 -0
  121. data/vendor/kreuzberg/src/extractors/structured.rs +140 -126
  122. data/vendor/kreuzberg/src/extractors/text.rs +260 -242
  123. data/vendor/kreuzberg/src/extractors/typst.rs +650 -0
  124. data/vendor/kreuzberg/src/extractors/xml.rs +135 -128
  125. data/vendor/kreuzberg/src/image/dpi.rs +164 -164
  126. data/vendor/kreuzberg/src/image/mod.rs +6 -6
  127. data/vendor/kreuzberg/src/image/preprocessing.rs +417 -417
  128. data/vendor/kreuzberg/src/image/resize.rs +89 -89
  129. data/vendor/kreuzberg/src/keywords/config.rs +154 -154
  130. data/vendor/kreuzberg/src/keywords/mod.rs +237 -237
  131. data/vendor/kreuzberg/src/keywords/processor.rs +267 -267
  132. data/vendor/kreuzberg/src/keywords/rake.rs +293 -294
  133. data/vendor/kreuzberg/src/keywords/types.rs +68 -68
  134. data/vendor/kreuzberg/src/keywords/yake.rs +163 -163
  135. data/vendor/kreuzberg/src/language_detection/mod.rs +942 -942
  136. data/vendor/kreuzberg/src/lib.rs +105 -102
  137. data/vendor/kreuzberg/src/mcp/mod.rs +32 -32
  138. data/vendor/kreuzberg/src/mcp/server.rs +1968 -1966
  139. data/vendor/kreuzberg/src/ocr/cache.rs +469 -469
  140. data/vendor/kreuzberg/src/ocr/error.rs +37 -37
  141. data/vendor/kreuzberg/src/ocr/hocr.rs +216 -216
  142. data/vendor/kreuzberg/src/ocr/mod.rs +58 -58
  143. data/vendor/kreuzberg/src/ocr/processor.rs +863 -847
  144. data/vendor/kreuzberg/src/ocr/table/mod.rs +4 -4
  145. data/vendor/kreuzberg/src/ocr/table/tsv_parser.rs +144 -144
  146. data/vendor/kreuzberg/src/ocr/tesseract_backend.rs +450 -450
  147. data/vendor/kreuzberg/src/ocr/types.rs +393 -393
  148. data/vendor/kreuzberg/src/ocr/utils.rs +47 -47
  149. data/vendor/kreuzberg/src/ocr/validation.rs +206 -206
  150. data/vendor/kreuzberg/src/panic_context.rs +154 -0
  151. data/vendor/kreuzberg/src/pdf/error.rs +122 -122
  152. data/vendor/kreuzberg/src/pdf/images.rs +139 -139
  153. data/vendor/kreuzberg/src/pdf/metadata.rs +346 -346
  154. data/vendor/kreuzberg/src/pdf/mod.rs +50 -50
  155. data/vendor/kreuzberg/src/pdf/rendering.rs +369 -369
  156. data/vendor/kreuzberg/src/pdf/table.rs +393 -420
  157. data/vendor/kreuzberg/src/pdf/text.rs +158 -161
  158. data/vendor/kreuzberg/src/plugins/extractor.rs +1013 -1010
  159. data/vendor/kreuzberg/src/plugins/mod.rs +209 -209
  160. data/vendor/kreuzberg/src/plugins/ocr.rs +620 -629
  161. data/vendor/kreuzberg/src/plugins/processor.rs +642 -641
  162. data/vendor/kreuzberg/src/plugins/registry.rs +1337 -1324
  163. data/vendor/kreuzberg/src/plugins/traits.rs +258 -258
  164. data/vendor/kreuzberg/src/plugins/validator.rs +956 -955
  165. data/vendor/kreuzberg/src/stopwords/mod.rs +1470 -1470
  166. data/vendor/kreuzberg/src/text/mod.rs +19 -19
  167. data/vendor/kreuzberg/src/text/quality.rs +697 -697
  168. data/vendor/kreuzberg/src/text/string_utils.rs +217 -217
  169. data/vendor/kreuzberg/src/text/token_reduction/cjk_utils.rs +164 -164
  170. data/vendor/kreuzberg/src/text/token_reduction/config.rs +100 -100
  171. data/vendor/kreuzberg/src/text/token_reduction/core.rs +796 -796
  172. data/vendor/kreuzberg/src/text/token_reduction/filters.rs +902 -902
  173. data/vendor/kreuzberg/src/text/token_reduction/mod.rs +160 -160
  174. data/vendor/kreuzberg/src/text/token_reduction/semantic.rs +619 -619
  175. data/vendor/kreuzberg/src/text/token_reduction/simd_text.rs +147 -147
  176. data/vendor/kreuzberg/src/types.rs +903 -873
  177. data/vendor/kreuzberg/src/utils/mod.rs +17 -17
  178. data/vendor/kreuzberg/src/utils/quality.rs +959 -959
  179. data/vendor/kreuzberg/src/utils/string_utils.rs +381 -381
  180. data/vendor/kreuzberg/stopwords/af_stopwords.json +53 -53
  181. data/vendor/kreuzberg/stopwords/ar_stopwords.json +482 -482
  182. data/vendor/kreuzberg/stopwords/bg_stopwords.json +261 -261
  183. data/vendor/kreuzberg/stopwords/bn_stopwords.json +400 -400
  184. data/vendor/kreuzberg/stopwords/br_stopwords.json +1205 -1205
  185. data/vendor/kreuzberg/stopwords/ca_stopwords.json +280 -280
  186. data/vendor/kreuzberg/stopwords/cs_stopwords.json +425 -425
  187. data/vendor/kreuzberg/stopwords/da_stopwords.json +172 -172
  188. data/vendor/kreuzberg/stopwords/de_stopwords.json +622 -622
  189. data/vendor/kreuzberg/stopwords/el_stopwords.json +849 -849
  190. data/vendor/kreuzberg/stopwords/en_stopwords.json +1300 -1300
  191. data/vendor/kreuzberg/stopwords/eo_stopwords.json +175 -175
  192. data/vendor/kreuzberg/stopwords/es_stopwords.json +734 -734
  193. data/vendor/kreuzberg/stopwords/et_stopwords.json +37 -37
  194. data/vendor/kreuzberg/stopwords/eu_stopwords.json +100 -100
  195. data/vendor/kreuzberg/stopwords/fa_stopwords.json +801 -801
  196. data/vendor/kreuzberg/stopwords/fi_stopwords.json +849 -849
  197. data/vendor/kreuzberg/stopwords/fr_stopwords.json +693 -693
  198. data/vendor/kreuzberg/stopwords/ga_stopwords.json +111 -111
  199. data/vendor/kreuzberg/stopwords/gl_stopwords.json +162 -162
  200. data/vendor/kreuzberg/stopwords/gu_stopwords.json +226 -226
  201. data/vendor/kreuzberg/stopwords/ha_stopwords.json +41 -41
  202. data/vendor/kreuzberg/stopwords/he_stopwords.json +196 -196
  203. data/vendor/kreuzberg/stopwords/hi_stopwords.json +227 -227
  204. data/vendor/kreuzberg/stopwords/hr_stopwords.json +181 -181
  205. data/vendor/kreuzberg/stopwords/hu_stopwords.json +791 -791
  206. data/vendor/kreuzberg/stopwords/hy_stopwords.json +47 -47
  207. data/vendor/kreuzberg/stopwords/id_stopwords.json +760 -760
  208. data/vendor/kreuzberg/stopwords/it_stopwords.json +634 -634
  209. data/vendor/kreuzberg/stopwords/ja_stopwords.json +136 -136
  210. data/vendor/kreuzberg/stopwords/kn_stopwords.json +84 -84
  211. data/vendor/kreuzberg/stopwords/ko_stopwords.json +681 -681
  212. data/vendor/kreuzberg/stopwords/ku_stopwords.json +64 -64
  213. data/vendor/kreuzberg/stopwords/la_stopwords.json +51 -51
  214. data/vendor/kreuzberg/stopwords/lt_stopwords.json +476 -476
  215. data/vendor/kreuzberg/stopwords/lv_stopwords.json +163 -163
  216. data/vendor/kreuzberg/stopwords/ml_stopwords.json +1 -1
  217. data/vendor/kreuzberg/stopwords/mr_stopwords.json +101 -101
  218. data/vendor/kreuzberg/stopwords/ms_stopwords.json +477 -477
  219. data/vendor/kreuzberg/stopwords/ne_stopwords.json +490 -490
  220. data/vendor/kreuzberg/stopwords/nl_stopwords.json +415 -415
  221. data/vendor/kreuzberg/stopwords/no_stopwords.json +223 -223
  222. data/vendor/kreuzberg/stopwords/pl_stopwords.json +331 -331
  223. data/vendor/kreuzberg/stopwords/pt_stopwords.json +562 -562
  224. data/vendor/kreuzberg/stopwords/ro_stopwords.json +436 -436
  225. data/vendor/kreuzberg/stopwords/ru_stopwords.json +561 -561
  226. data/vendor/kreuzberg/stopwords/si_stopwords.json +193 -193
  227. data/vendor/kreuzberg/stopwords/sk_stopwords.json +420 -420
  228. data/vendor/kreuzberg/stopwords/sl_stopwords.json +448 -448
  229. data/vendor/kreuzberg/stopwords/so_stopwords.json +32 -32
  230. data/vendor/kreuzberg/stopwords/st_stopwords.json +33 -33
  231. data/vendor/kreuzberg/stopwords/sv_stopwords.json +420 -420
  232. data/vendor/kreuzberg/stopwords/sw_stopwords.json +76 -76
  233. data/vendor/kreuzberg/stopwords/ta_stopwords.json +129 -129
  234. data/vendor/kreuzberg/stopwords/te_stopwords.json +54 -54
  235. data/vendor/kreuzberg/stopwords/th_stopwords.json +118 -118
  236. data/vendor/kreuzberg/stopwords/tl_stopwords.json +149 -149
  237. data/vendor/kreuzberg/stopwords/tr_stopwords.json +506 -506
  238. data/vendor/kreuzberg/stopwords/uk_stopwords.json +75 -75
  239. data/vendor/kreuzberg/stopwords/ur_stopwords.json +519 -519
  240. data/vendor/kreuzberg/stopwords/vi_stopwords.json +647 -647
  241. data/vendor/kreuzberg/stopwords/yo_stopwords.json +62 -62
  242. data/vendor/kreuzberg/stopwords/zh_stopwords.json +796 -796
  243. data/vendor/kreuzberg/stopwords/zu_stopwords.json +31 -31
  244. data/vendor/kreuzberg/tests/api_extract_multipart.rs +52 -0
  245. data/vendor/kreuzberg/tests/api_tests.rs +966 -966
  246. data/vendor/kreuzberg/tests/archive_integration.rs +543 -543
  247. data/vendor/kreuzberg/tests/batch_orchestration.rs +556 -542
  248. data/vendor/kreuzberg/tests/batch_processing.rs +316 -304
  249. data/vendor/kreuzberg/tests/bibtex_parity_test.rs +421 -0
  250. data/vendor/kreuzberg/tests/concurrency_stress.rs +525 -509
  251. data/vendor/kreuzberg/tests/config_features.rs +598 -580
  252. data/vendor/kreuzberg/tests/config_loading_tests.rs +415 -439
  253. data/vendor/kreuzberg/tests/core_integration.rs +510 -493
  254. data/vendor/kreuzberg/tests/csv_integration.rs +414 -424
  255. data/vendor/kreuzberg/tests/docbook_extractor_tests.rs +498 -0
  256. data/vendor/kreuzberg/tests/docx_metadata_extraction_test.rs +122 -124
  257. data/vendor/kreuzberg/tests/docx_vs_pandoc_comparison.rs +370 -0
  258. data/vendor/kreuzberg/tests/email_integration.rs +325 -325
  259. data/vendor/kreuzberg/tests/epub_native_extractor_tests.rs +275 -0
  260. data/vendor/kreuzberg/tests/error_handling.rs +393 -393
  261. data/vendor/kreuzberg/tests/fictionbook_extractor_tests.rs +228 -0
  262. data/vendor/kreuzberg/tests/format_integration.rs +159 -159
  263. data/vendor/kreuzberg/tests/helpers/mod.rs +142 -142
  264. data/vendor/kreuzberg/tests/html_table_test.rs +551 -0
  265. data/vendor/kreuzberg/tests/image_integration.rs +253 -253
  266. data/vendor/kreuzberg/tests/instrumentation_test.rs +139 -0
  267. data/vendor/kreuzberg/tests/jats_extractor_tests.rs +639 -0
  268. data/vendor/kreuzberg/tests/jupyter_extractor_tests.rs +704 -0
  269. data/vendor/kreuzberg/tests/keywords_integration.rs +479 -479
  270. data/vendor/kreuzberg/tests/keywords_quality.rs +509 -509
  271. data/vendor/kreuzberg/tests/latex_extractor_tests.rs +496 -0
  272. data/vendor/kreuzberg/tests/markdown_extractor_tests.rs +490 -0
  273. data/vendor/kreuzberg/tests/mime_detection.rs +428 -428
  274. data/vendor/kreuzberg/tests/ocr_configuration.rs +510 -510
  275. data/vendor/kreuzberg/tests/ocr_errors.rs +676 -676
  276. data/vendor/kreuzberg/tests/ocr_quality.rs +627 -627
  277. data/vendor/kreuzberg/tests/ocr_stress.rs +469 -469
  278. data/vendor/kreuzberg/tests/odt_extractor_tests.rs +695 -0
  279. data/vendor/kreuzberg/tests/opml_extractor_tests.rs +616 -0
  280. data/vendor/kreuzberg/tests/orgmode_extractor_tests.rs +822 -0
  281. data/vendor/kreuzberg/tests/pdf_integration.rs +43 -43
  282. data/vendor/kreuzberg/tests/pipeline_integration.rs +1411 -1412
  283. data/vendor/kreuzberg/tests/plugin_ocr_backend_test.rs +771 -771
  284. data/vendor/kreuzberg/tests/plugin_postprocessor_test.rs +560 -561
  285. data/vendor/kreuzberg/tests/plugin_system.rs +921 -921
  286. data/vendor/kreuzberg/tests/plugin_validator_test.rs +783 -783
  287. data/vendor/kreuzberg/tests/registry_integration_tests.rs +586 -607
  288. data/vendor/kreuzberg/tests/rst_extractor_tests.rs +692 -0
  289. data/vendor/kreuzberg/tests/rtf_extractor_tests.rs +776 -0
  290. data/vendor/kreuzberg/tests/security_validation.rs +415 -404
  291. data/vendor/kreuzberg/tests/stopwords_integration_test.rs +888 -888
  292. data/vendor/kreuzberg/tests/test_fastembed.rs +609 -609
  293. data/vendor/kreuzberg/tests/typst_behavioral_tests.rs +1259 -0
  294. data/vendor/kreuzberg/tests/typst_extractor_tests.rs +647 -0
  295. data/vendor/kreuzberg/tests/xlsx_metadata_extraction_test.rs +87 -87
  296. data/vendor/rb-sys/.cargo-ok +1 -0
  297. data/vendor/rb-sys/.cargo_vcs_info.json +6 -0
  298. data/vendor/rb-sys/Cargo.lock +393 -0
  299. data/vendor/rb-sys/Cargo.toml +70 -0
  300. data/vendor/rb-sys/Cargo.toml.orig +57 -0
  301. data/vendor/rb-sys/LICENSE-APACHE +190 -0
  302. data/vendor/rb-sys/LICENSE-MIT +21 -0
  303. data/vendor/rb-sys/bin/release.sh +21 -0
  304. data/vendor/rb-sys/build/features.rs +108 -0
  305. data/vendor/rb-sys/build/main.rs +246 -0
  306. data/vendor/rb-sys/build/stable_api_config.rs +153 -0
  307. data/vendor/rb-sys/build/version.rs +48 -0
  308. data/vendor/rb-sys/readme.md +36 -0
  309. data/vendor/rb-sys/src/bindings.rs +21 -0
  310. data/vendor/rb-sys/src/hidden.rs +11 -0
  311. data/vendor/rb-sys/src/lib.rs +34 -0
  312. data/vendor/rb-sys/src/macros.rs +371 -0
  313. data/vendor/rb-sys/src/memory.rs +53 -0
  314. data/vendor/rb-sys/src/ruby_abi_version.rs +38 -0
  315. data/vendor/rb-sys/src/special_consts.rs +31 -0
  316. data/vendor/rb-sys/src/stable_api/compiled.c +179 -0
  317. data/vendor/rb-sys/src/stable_api/compiled.rs +257 -0
  318. data/vendor/rb-sys/src/stable_api/ruby_2_6.rs +316 -0
  319. data/vendor/rb-sys/src/stable_api/ruby_2_7.rs +316 -0
  320. data/vendor/rb-sys/src/stable_api/ruby_3_0.rs +324 -0
  321. data/vendor/rb-sys/src/stable_api/ruby_3_1.rs +317 -0
  322. data/vendor/rb-sys/src/stable_api/ruby_3_2.rs +315 -0
  323. data/vendor/rb-sys/src/stable_api/ruby_3_3.rs +326 -0
  324. data/vendor/rb-sys/src/stable_api/ruby_3_4.rs +327 -0
  325. data/vendor/rb-sys/src/stable_api.rs +261 -0
  326. data/vendor/rb-sys/src/symbol.rs +31 -0
  327. data/vendor/rb-sys/src/tracking_allocator.rs +332 -0
  328. data/vendor/rb-sys/src/utils.rs +89 -0
  329. data/vendor/rb-sys/src/value_type.rs +7 -0
  330. metadata +90 -95
  331. data/pkg/kreuzberg-4.0.0.rc1.gem +0 -0
  332. data/spec/examples.txt +0 -104
  333. data/vendor/kreuzberg/src/bin/profile_extract.rs +0 -455
  334. data/vendor/kreuzberg/src/extraction/pandoc/batch.rs +0 -275
  335. data/vendor/kreuzberg/src/extraction/pandoc/mime_types.rs +0 -178
  336. data/vendor/kreuzberg/src/extraction/pandoc/mod.rs +0 -491
  337. data/vendor/kreuzberg/src/extraction/pandoc/server.rs +0 -496
  338. data/vendor/kreuzberg/src/extraction/pandoc/subprocess.rs +0 -1188
  339. data/vendor/kreuzberg/src/extraction/pandoc/version.rs +0 -162
  340. data/vendor/kreuzberg/src/extractors/pandoc.rs +0 -201
  341. data/vendor/kreuzberg/tests/chunking_offset_demo.rs +0 -92
  342. data/vendor/kreuzberg/tests/pandoc_integration.rs +0 -503
@@ -1,619 +1,619 @@
1
- use ahash::AHashMap;
2
- use std::cmp::Ordering;
3
-
4
- #[derive(Debug, Clone)]
5
- struct ScoredToken {
6
- token: String,
7
- position: usize,
8
- importance_score: f32,
9
- #[allow(dead_code)]
10
- context_boost: f32,
11
- #[allow(dead_code)]
12
- frequency_score: f32,
13
- }
14
-
15
- impl PartialEq for ScoredToken {
16
- fn eq(&self, other: &Self) -> bool {
17
- self.importance_score == other.importance_score
18
- }
19
- }
20
-
21
- impl Eq for ScoredToken {}
22
-
23
- impl PartialOrd for ScoredToken {
24
- fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
25
- Some(self.cmp(other))
26
- }
27
- }
28
-
29
- impl Ord for ScoredToken {
30
- fn cmp(&self, other: &Self) -> Ordering {
31
- self.importance_score
32
- .partial_cmp(&other.importance_score)
33
- .unwrap_or(Ordering::Equal)
34
- }
35
- }
36
-
37
- pub struct SemanticAnalyzer {
38
- importance_weights: AHashMap<String, f32>,
39
- hypernyms: AHashMap<String, String>,
40
- semantic_clusters: AHashMap<String, Vec<String>>,
41
- }
42
-
43
- impl SemanticAnalyzer {
44
- pub fn new(_language: &str) -> Self {
45
- let mut analyzer = Self {
46
- importance_weights: AHashMap::new(),
47
- hypernyms: AHashMap::new(),
48
- semantic_clusters: AHashMap::new(),
49
- };
50
-
51
- analyzer.initialize_importance_weights();
52
- analyzer.initialize_hypernyms();
53
- analyzer.initialize_semantic_clusters();
54
-
55
- analyzer
56
- }
57
-
58
- pub fn apply_semantic_filtering(&self, text: &str, threshold: f32) -> String {
59
- let tokens = self.tokenize_and_score(text);
60
- let filtered_tokens = self.filter_by_importance(tokens, threshold);
61
- self.reconstruct_text(filtered_tokens)
62
- }
63
-
64
- pub fn apply_hypernym_compression(&self, text: &str, target_reduction: Option<f32>) -> String {
65
- let tokens = self.tokenize_and_score(text);
66
- let compressed_tokens = self.compress_with_hypernyms(tokens, target_reduction);
67
- self.reconstruct_text(compressed_tokens)
68
- }
69
-
70
- fn tokenize_and_score(&self, text: &str) -> Vec<ScoredToken> {
71
- let words: Vec<&str> = text.split_whitespace().collect();
72
- let mut scored_tokens = Vec::with_capacity(words.len());
73
-
74
- let mut word_freq = AHashMap::new();
75
- for word in &words {
76
- let clean_word = self.clean_word(word);
77
- *word_freq.entry(clean_word).or_insert(0) += 1;
78
- }
79
-
80
- for (position, word) in words.iter().enumerate() {
81
- let clean_word = self.clean_word(word);
82
- let base_importance = self.calculate_base_importance(&clean_word);
83
- let context_boost = self.calculate_context_boost(&clean_word, position, &words);
84
- let frequency_score = self.calculate_frequency_score(&clean_word, &word_freq, words.len());
85
-
86
- let total_score = base_importance + context_boost + frequency_score;
87
-
88
- scored_tokens.push(ScoredToken {
89
- token: word.to_string(),
90
- position,
91
- importance_score: total_score,
92
- context_boost,
93
- frequency_score,
94
- });
95
- }
96
-
97
- scored_tokens
98
- }
99
-
100
- fn filter_by_importance(&self, tokens: Vec<ScoredToken>, threshold: f32) -> Vec<ScoredToken> {
101
- tokens
102
- .into_iter()
103
- .filter(|token| token.importance_score >= threshold)
104
- .collect()
105
- }
106
-
107
- fn compress_with_hypernyms(&self, tokens: Vec<ScoredToken>, target_reduction: Option<f32>) -> Vec<ScoredToken> {
108
- let mut result = tokens;
109
-
110
- if let Some(target) = target_reduction {
111
- let target_count = ((1.0 - target) * result.len() as f32) as usize;
112
-
113
- // Handle NaN values in importance scores by treating them as equal ~keep
114
- result.sort_by(|a, b| {
115
- b.importance_score
116
- .partial_cmp(&a.importance_score)
117
- .unwrap_or(std::cmp::Ordering::Equal)
118
- });
119
-
120
- for token in result.iter_mut().skip(target_count) {
121
- if let Some(hypernym) = self.get_hypernym(&token.token) {
122
- token.token = hypernym;
123
- token.importance_score *= 0.8;
124
- }
125
- }
126
-
127
- result.truncate(target_count.max(1));
128
- } else {
129
- for token in &mut result {
130
- if token.importance_score < 0.5
131
- && let Some(hypernym) = self.get_hypernym(&token.token)
132
- {
133
- token.token = hypernym;
134
- }
135
- }
136
- }
137
-
138
- result.sort_by_key(|token| token.position);
139
- result
140
- }
141
-
142
- fn reconstruct_text(&self, tokens: Vec<ScoredToken>) -> String {
143
- tokens
144
- .into_iter()
145
- .map(|token| token.token)
146
- .collect::<Vec<_>>()
147
- .join(" ")
148
- }
149
-
150
- fn calculate_base_importance(&self, word: &str) -> f32 {
151
- if let Some(&weight) = self.importance_weights.get(word) {
152
- return weight;
153
- }
154
-
155
- let mut score = 0.3;
156
-
157
- score += (word.len() as f32 * 0.02).min(0.2);
158
-
159
- if word.chars().next().map(|c| c.is_uppercase()).unwrap_or(false) {
160
- score += 0.2;
161
- }
162
-
163
- if word.chars().any(|c| c.is_numeric()) {
164
- score += 0.15;
165
- }
166
-
167
- if self.is_technical_term(word) {
168
- score += 0.25;
169
- }
170
-
171
- score.min(1.0)
172
- }
173
-
174
- fn calculate_context_boost(&self, word: &str, position: usize, words: &[&str]) -> f32 {
175
- let mut boost = 0.0;
176
-
177
- if position == 0 || position == words.len() - 1 {
178
- boost += 0.1;
179
- }
180
-
181
- let window = 2;
182
- let start = position.saturating_sub(window);
183
- let end = (position + window + 1).min(words.len());
184
-
185
- for &context_word in &words[start..end] {
186
- if context_word != word {
187
- boost += self.calculate_contextual_weight(word, context_word);
188
- }
189
- }
190
-
191
- boost.min(0.3)
192
- }
193
-
194
- fn calculate_frequency_score(&self, word: &str, word_freq: &AHashMap<String, i32>, total_words: usize) -> f32 {
195
- if let Some(&freq) = word_freq.get(word) {
196
- let tf = freq as f32 / total_words as f32;
197
-
198
- (tf.ln() + 1.0) * 0.1
199
- } else {
200
- 0.0
201
- }
202
- }
203
-
204
- fn calculate_contextual_weight(&self, word: &str, context_word: &str) -> f32 {
205
- if self.is_technical_term(word) && self.is_technical_term(context_word) {
206
- 0.05
207
- } else if context_word.chars().next().map(|c| c.is_uppercase()).unwrap_or(false) {
208
- 0.02
209
- } else {
210
- 0.0
211
- }
212
- }
213
-
214
- fn is_technical_term(&self, word: &str) -> bool {
215
- word.len() > 6
216
- && (word.contains("_")
217
- || word.chars().filter(|&c| c.is_uppercase()).count() > 1
218
- || word.ends_with("tion")
219
- || word.ends_with("ment")
220
- || word.ends_with("ing"))
221
- }
222
-
223
- fn get_hypernym(&self, word: &str) -> Option<String> {
224
- let clean_word = self.clean_word(word).to_lowercase();
225
- self.hypernyms.get(&clean_word).cloned()
226
- }
227
-
228
- fn clean_word(&self, word: &str) -> String {
229
- word.chars()
230
- .filter(|c| c.is_alphanumeric())
231
- .collect::<String>()
232
- .to_lowercase()
233
- }
234
-
235
- fn initialize_importance_weights(&mut self) {
236
- let high_importance = [
237
- ("result", 0.8),
238
- ("conclusion", 0.8),
239
- ("important", 0.7),
240
- ("significant", 0.7),
241
- ("analysis", 0.7),
242
- ("method", 0.6),
243
- ("data", 0.6),
244
- ("system", 0.6),
245
- ("performance", 0.6),
246
- ("improvement", 0.6),
247
- ];
248
-
249
- for (word, score) in &high_importance {
250
- self.importance_weights.insert(word.to_string(), *score);
251
- }
252
-
253
- let medium_importance = [
254
- ("process", 0.5),
255
- ("algorithm", 0.5),
256
- ("function", 0.5),
257
- ("model", 0.5),
258
- ("implementation", 0.5),
259
- ];
260
-
261
- for (word, score) in &medium_importance {
262
- self.importance_weights.insert(word.to_string(), *score);
263
- }
264
- }
265
-
266
- fn initialize_hypernyms(&mut self) {
267
- let hypernym_pairs = [
268
- ("car", "vehicle"),
269
- ("dog", "animal"),
270
- ("apple", "fruit"),
271
- ("chair", "furniture"),
272
- ("book", "publication"),
273
- ("computer", "device"),
274
- ("algorithm", "method"),
275
- ("implementation", "approach"),
276
- ("optimization", "improvement"),
277
- ("analysis", "study"),
278
- ];
279
-
280
- for (word, hypernym) in &hypernym_pairs {
281
- self.hypernyms.insert(word.to_string(), hypernym.to_string());
282
- }
283
- }
284
-
285
- fn initialize_semantic_clusters(&mut self) {
286
- self.semantic_clusters.insert(
287
- "computing".to_string(),
288
- vec![
289
- "computer".to_string(),
290
- "algorithm".to_string(),
291
- "software".to_string(),
292
- "programming".to_string(),
293
- "code".to_string(),
294
- ],
295
- );
296
-
297
- self.semantic_clusters.insert(
298
- "analysis".to_string(),
299
- vec![
300
- "analysis".to_string(),
301
- "study".to_string(),
302
- "research".to_string(),
303
- "investigation".to_string(),
304
- "examination".to_string(),
305
- ],
306
- );
307
-
308
- self.semantic_clusters.insert(
309
- "performance".to_string(),
310
- vec![
311
- "performance".to_string(),
312
- "speed".to_string(),
313
- "efficiency".to_string(),
314
- "optimization".to_string(),
315
- "improvement".to_string(),
316
- ],
317
- );
318
- }
319
- }
320
-
321
- #[cfg(test)]
322
- mod tests {
323
- use super::*;
324
-
325
- #[test]
326
- fn test_semantic_filtering() {
327
- let analyzer = SemanticAnalyzer::new("en");
328
- let input = "The quick brown fox jumps over the lazy dog with great performance";
329
- let result = analyzer.apply_semantic_filtering(input, 0.4);
330
-
331
- assert!(result.contains("performance") || result.contains("fox") || result.contains("dog"));
332
- assert!(result.len() < input.len());
333
- }
334
-
335
- #[test]
336
- fn test_hypernym_compression() {
337
- let analyzer = SemanticAnalyzer::new("en");
338
- let input = "The car drove past the dog near the apple tree";
339
- let result = analyzer.apply_hypernym_compression(input, Some(0.5));
340
-
341
- let original_words = input.split_whitespace().count();
342
- let result_words = result.split_whitespace().count();
343
- assert!(result_words <= (original_words as f32 * 0.5) as usize + 1);
344
- }
345
-
346
- #[test]
347
- fn test_importance_scoring() {
348
- let analyzer = SemanticAnalyzer::new("en");
349
- let tokens = analyzer.tokenize_and_score("The important analysis shows significant results");
350
-
351
- let important_token = tokens.iter().find(|t| t.token == "important").unwrap();
352
- let analysis_token = tokens.iter().find(|t| t.token == "analysis").unwrap();
353
- let the_token = tokens.iter().find(|t| t.token == "The").unwrap();
354
-
355
- assert!(important_token.importance_score > the_token.importance_score);
356
- assert!(analysis_token.importance_score > the_token.importance_score);
357
- }
358
-
359
- #[test]
360
- fn test_semantic_filtering_empty_text() {
361
- let analyzer = SemanticAnalyzer::new("en");
362
- let result = analyzer.apply_semantic_filtering("", 0.5);
363
- assert_eq!(result, "");
364
- }
365
-
366
- #[test]
367
- fn test_semantic_filtering_high_threshold() {
368
- let analyzer = SemanticAnalyzer::new("en");
369
- let input = "The quick brown fox";
370
- let result = analyzer.apply_semantic_filtering(input, 0.9);
371
- assert!(result.len() <= input.len());
372
- }
373
-
374
- #[test]
375
- fn test_hypernym_compression_without_target() {
376
- let analyzer = SemanticAnalyzer::new("en");
377
- let input = "The car drove past the dog";
378
- let result = analyzer.apply_hypernym_compression(input, None);
379
- assert!(!result.is_empty());
380
- }
381
-
382
- #[test]
383
- fn test_technical_term_detection() {
384
- let analyzer = SemanticAnalyzer::new("en");
385
-
386
- assert!(analyzer.is_technical_term("implementation"));
387
- assert!(analyzer.is_technical_term("optimization"));
388
- assert!(analyzer.is_technical_term("processing"));
389
- assert!(analyzer.is_technical_term("HTTP_SERVER"));
390
- assert!(!analyzer.is_technical_term("cat"));
391
- assert!(!analyzer.is_technical_term("dog"));
392
- }
393
-
394
- #[test]
395
- fn test_clean_word() {
396
- let analyzer = SemanticAnalyzer::new("en");
397
-
398
- assert_eq!(analyzer.clean_word("Hello!"), "hello");
399
- assert_eq!(analyzer.clean_word("test123"), "test123");
400
- assert_eq!(analyzer.clean_word("word,"), "word");
401
- assert_eq!(analyzer.clean_word("(test)"), "test");
402
- }
403
-
404
- #[test]
405
- fn test_calculate_base_importance() {
406
- let analyzer = SemanticAnalyzer::new("en");
407
-
408
- let result_score = analyzer.calculate_base_importance("result");
409
- let conclusion_score = analyzer.calculate_base_importance("conclusion");
410
-
411
- assert!(result_score > 0.5);
412
- assert!(conclusion_score > 0.5);
413
-
414
- let process_score = analyzer.calculate_base_importance("process");
415
- assert!(process_score >= 0.4);
416
-
417
- let regular_score = analyzer.calculate_base_importance("cat");
418
- assert!(regular_score < result_score);
419
- }
420
-
421
- #[test]
422
- fn test_calculate_base_importance_uppercase() {
423
- let analyzer = SemanticAnalyzer::new("en");
424
-
425
- let uppercase_score = analyzer.calculate_base_importance("Test");
426
- let lowercase_score = analyzer.calculate_base_importance("test");
427
-
428
- assert!(uppercase_score > lowercase_score);
429
- }
430
-
431
- #[test]
432
- fn test_calculate_base_importance_with_numbers() {
433
- let analyzer = SemanticAnalyzer::new("en");
434
-
435
- let with_number = analyzer.calculate_base_importance("test123");
436
- let without_number = analyzer.calculate_base_importance("test");
437
-
438
- assert!(with_number > without_number);
439
- }
440
-
441
- #[test]
442
- fn test_calculate_base_importance_length_bonus() {
443
- let analyzer = SemanticAnalyzer::new("en");
444
-
445
- let long_word = analyzer.calculate_base_importance("verylongword");
446
- let short_word = analyzer.calculate_base_importance("cat");
447
-
448
- assert!(long_word > short_word);
449
- }
450
-
451
- #[test]
452
- fn test_get_hypernym() {
453
- let analyzer = SemanticAnalyzer::new("en");
454
-
455
- assert_eq!(analyzer.get_hypernym("car"), Some("vehicle".to_string()));
456
- assert_eq!(analyzer.get_hypernym("dog"), Some("animal".to_string()));
457
- assert_eq!(analyzer.get_hypernym("apple"), Some("fruit".to_string()));
458
- assert_eq!(analyzer.get_hypernym("unknown"), None);
459
- }
460
-
461
- #[test]
462
- fn test_get_hypernym_case_insensitive() {
463
- let analyzer = SemanticAnalyzer::new("en");
464
-
465
- assert_eq!(analyzer.get_hypernym("CAR"), Some("vehicle".to_string()));
466
- assert_eq!(analyzer.get_hypernym("Dog"), Some("animal".to_string()));
467
- }
468
-
469
- #[test]
470
- fn test_tokenize_and_score_positions() {
471
- let analyzer = SemanticAnalyzer::new("en");
472
- let tokens = analyzer.tokenize_and_score("first middle last");
473
-
474
- assert_eq!(tokens[0].position, 0);
475
- assert_eq!(tokens[1].position, 1);
476
- assert_eq!(tokens[2].position, 2);
477
- }
478
-
479
- #[test]
480
- fn test_context_boost_for_edge_positions() {
481
- let analyzer = SemanticAnalyzer::new("en");
482
- let tokens = analyzer.tokenize_and_score("first middle last");
483
-
484
- assert!(tokens[0].importance_score > 0.0);
485
- assert!(tokens[2].importance_score > 0.0);
486
- }
487
-
488
- #[test]
489
- fn test_frequency_score() {
490
- let analyzer = SemanticAnalyzer::new("en");
491
- let tokens = analyzer.tokenize_and_score("test test test other");
492
-
493
- let test_token = tokens.iter().find(|t| t.token == "test").unwrap();
494
- let other_token = tokens.iter().find(|t| t.token == "other").unwrap();
495
-
496
- assert!(test_token.frequency_score > other_token.frequency_score);
497
- }
498
-
499
- #[test]
500
- fn test_scored_token_ordering() {
501
- let token1 = ScoredToken {
502
- token: "a".to_string(),
503
- position: 0,
504
- importance_score: 0.5,
505
- context_boost: 0.0,
506
- frequency_score: 0.0,
507
- };
508
-
509
- let token2 = ScoredToken {
510
- token: "b".to_string(),
511
- position: 1,
512
- importance_score: 0.7,
513
- context_boost: 0.0,
514
- frequency_score: 0.0,
515
- };
516
-
517
- assert!(token2 > token1);
518
- assert_eq!(token1, token1.clone());
519
- }
520
-
521
- #[test]
522
- fn test_reconstruct_text() {
523
- let analyzer = SemanticAnalyzer::new("en");
524
- let tokens = vec![
525
- ScoredToken {
526
- token: "Hello".to_string(),
527
- position: 0,
528
- importance_score: 0.5,
529
- context_boost: 0.0,
530
- frequency_score: 0.0,
531
- },
532
- ScoredToken {
533
- token: "world".to_string(),
534
- position: 1,
535
- importance_score: 0.5,
536
- context_boost: 0.0,
537
- frequency_score: 0.0,
538
- },
539
- ];
540
-
541
- let result = analyzer.reconstruct_text(tokens);
542
- assert_eq!(result, "Hello world");
543
- }
544
-
545
- #[test]
546
- fn test_compress_with_hypernyms_respects_target() {
547
- let analyzer = SemanticAnalyzer::new("en");
548
- let tokens = vec![
549
- ScoredToken {
550
- token: "car".to_string(),
551
- position: 0,
552
- importance_score: 0.3,
553
- context_boost: 0.0,
554
- frequency_score: 0.0,
555
- },
556
- ScoredToken {
557
- token: "dog".to_string(),
558
- position: 1,
559
- importance_score: 0.3,
560
- context_boost: 0.0,
561
- frequency_score: 0.0,
562
- },
563
- ScoredToken {
564
- token: "test".to_string(),
565
- position: 2,
566
- importance_score: 0.8,
567
- context_boost: 0.0,
568
- frequency_score: 0.0,
569
- },
570
- ];
571
-
572
- let result = analyzer.compress_with_hypernyms(tokens, Some(0.5));
573
- assert!(result.len() <= 2);
574
- }
575
-
576
- #[test]
577
- fn test_initialize_importance_weights() {
578
- let analyzer = SemanticAnalyzer::new("en");
579
-
580
- assert!(analyzer.importance_weights.contains_key("result"));
581
- assert!(analyzer.importance_weights.contains_key("conclusion"));
582
- assert!(analyzer.importance_weights.contains_key("important"));
583
- assert!(analyzer.importance_weights.contains_key("process"));
584
- }
585
-
586
- #[test]
587
- fn test_initialize_hypernyms() {
588
- let analyzer = SemanticAnalyzer::new("en");
589
-
590
- assert!(analyzer.hypernyms.contains_key("car"));
591
- assert!(analyzer.hypernyms.contains_key("dog"));
592
- assert!(analyzer.hypernyms.contains_key("apple"));
593
- }
594
-
595
- #[test]
596
- fn test_initialize_semantic_clusters() {
597
- let analyzer = SemanticAnalyzer::new("en");
598
-
599
- assert!(analyzer.semantic_clusters.contains_key("computing"));
600
- assert!(analyzer.semantic_clusters.contains_key("analysis"));
601
- assert!(analyzer.semantic_clusters.contains_key("performance"));
602
- }
603
-
604
- #[test]
605
- fn test_contextual_weight_technical_terms() {
606
- let analyzer = SemanticAnalyzer::new("en");
607
-
608
- let weight = analyzer.calculate_contextual_weight("implementation", "optimization");
609
- assert!(weight > 0.0);
610
- }
611
-
612
- #[test]
613
- fn test_hypernym_compression_zero_target() {
614
- let analyzer = SemanticAnalyzer::new("en");
615
- let input = "The car drove fast";
616
- let result = analyzer.apply_hypernym_compression(input, Some(0.0));
617
- assert!(!result.is_empty());
618
- }
619
- }
1
+ use ahash::AHashMap;
2
+ use std::cmp::Ordering;
3
+
4
+ #[derive(Debug, Clone)]
5
+ struct ScoredToken {
6
+ token: String,
7
+ position: usize,
8
+ importance_score: f32,
9
+ #[allow(dead_code)]
10
+ context_boost: f32,
11
+ #[allow(dead_code)]
12
+ frequency_score: f32,
13
+ }
14
+
15
+ impl PartialEq for ScoredToken {
16
+ fn eq(&self, other: &Self) -> bool {
17
+ self.importance_score == other.importance_score
18
+ }
19
+ }
20
+
21
+ impl Eq for ScoredToken {}
22
+
23
+ impl PartialOrd for ScoredToken {
24
+ fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
25
+ Some(self.cmp(other))
26
+ }
27
+ }
28
+
29
+ impl Ord for ScoredToken {
30
+ fn cmp(&self, other: &Self) -> Ordering {
31
+ self.importance_score
32
+ .partial_cmp(&other.importance_score)
33
+ .unwrap_or(Ordering::Equal)
34
+ }
35
+ }
36
+
37
+ pub struct SemanticAnalyzer {
38
+ importance_weights: AHashMap<String, f32>,
39
+ hypernyms: AHashMap<String, String>,
40
+ semantic_clusters: AHashMap<String, Vec<String>>,
41
+ }
42
+
43
+ impl SemanticAnalyzer {
44
+ pub fn new(_language: &str) -> Self {
45
+ let mut analyzer = Self {
46
+ importance_weights: AHashMap::new(),
47
+ hypernyms: AHashMap::new(),
48
+ semantic_clusters: AHashMap::new(),
49
+ };
50
+
51
+ analyzer.initialize_importance_weights();
52
+ analyzer.initialize_hypernyms();
53
+ analyzer.initialize_semantic_clusters();
54
+
55
+ analyzer
56
+ }
57
+
58
+ pub fn apply_semantic_filtering(&self, text: &str, threshold: f32) -> String {
59
+ let tokens = self.tokenize_and_score(text);
60
+ let filtered_tokens = self.filter_by_importance(tokens, threshold);
61
+ self.reconstruct_text(filtered_tokens)
62
+ }
63
+
64
+ pub fn apply_hypernym_compression(&self, text: &str, target_reduction: Option<f32>) -> String {
65
+ let tokens = self.tokenize_and_score(text);
66
+ let compressed_tokens = self.compress_with_hypernyms(tokens, target_reduction);
67
+ self.reconstruct_text(compressed_tokens)
68
+ }
69
+
70
+ fn tokenize_and_score(&self, text: &str) -> Vec<ScoredToken> {
71
+ let words: Vec<&str> = text.split_whitespace().collect();
72
+ let mut scored_tokens = Vec::with_capacity(words.len());
73
+
74
+ let mut word_freq = AHashMap::new();
75
+ for word in &words {
76
+ let clean_word = self.clean_word(word);
77
+ *word_freq.entry(clean_word).or_insert(0) += 1;
78
+ }
79
+
80
+ for (position, word) in words.iter().enumerate() {
81
+ let clean_word = self.clean_word(word);
82
+ let base_importance = self.calculate_base_importance(&clean_word);
83
+ let context_boost = self.calculate_context_boost(&clean_word, position, &words);
84
+ let frequency_score = self.calculate_frequency_score(&clean_word, &word_freq, words.len());
85
+
86
+ let total_score = base_importance + context_boost + frequency_score;
87
+
88
+ scored_tokens.push(ScoredToken {
89
+ token: word.to_string(),
90
+ position,
91
+ importance_score: total_score,
92
+ context_boost,
93
+ frequency_score,
94
+ });
95
+ }
96
+
97
+ scored_tokens
98
+ }
99
+
100
+ fn filter_by_importance(&self, tokens: Vec<ScoredToken>, threshold: f32) -> Vec<ScoredToken> {
101
+ tokens
102
+ .into_iter()
103
+ .filter(|token| token.importance_score >= threshold)
104
+ .collect()
105
+ }
106
+
107
+ fn compress_with_hypernyms(&self, tokens: Vec<ScoredToken>, target_reduction: Option<f32>) -> Vec<ScoredToken> {
108
+ let mut result = tokens;
109
+
110
+ if let Some(target) = target_reduction {
111
+ let target_count = ((1.0 - target) * result.len() as f32) as usize;
112
+
113
+ // Handle NaN values in importance scores by treating them as equal ~keep
114
+ result.sort_by(|a, b| {
115
+ b.importance_score
116
+ .partial_cmp(&a.importance_score)
117
+ .unwrap_or(std::cmp::Ordering::Equal)
118
+ });
119
+
120
+ for token in result.iter_mut().skip(target_count) {
121
+ if let Some(hypernym) = self.get_hypernym(&token.token) {
122
+ token.token = hypernym;
123
+ token.importance_score *= 0.8;
124
+ }
125
+ }
126
+
127
+ result.truncate(target_count.max(1));
128
+ } else {
129
+ for token in &mut result {
130
+ if token.importance_score < 0.5
131
+ && let Some(hypernym) = self.get_hypernym(&token.token)
132
+ {
133
+ token.token = hypernym;
134
+ }
135
+ }
136
+ }
137
+
138
+ result.sort_by_key(|token| token.position);
139
+ result
140
+ }
141
+
142
+ fn reconstruct_text(&self, tokens: Vec<ScoredToken>) -> String {
143
+ tokens
144
+ .into_iter()
145
+ .map(|token| token.token)
146
+ .collect::<Vec<_>>()
147
+ .join(" ")
148
+ }
149
+
150
+ fn calculate_base_importance(&self, word: &str) -> f32 {
151
+ if let Some(&weight) = self.importance_weights.get(word) {
152
+ return weight;
153
+ }
154
+
155
+ let mut score = 0.3;
156
+
157
+ score += (word.len() as f32 * 0.02).min(0.2);
158
+
159
+ if word.chars().next().map(|c| c.is_uppercase()).unwrap_or(false) {
160
+ score += 0.2;
161
+ }
162
+
163
+ if word.chars().any(|c| c.is_numeric()) {
164
+ score += 0.15;
165
+ }
166
+
167
+ if self.is_technical_term(word) {
168
+ score += 0.25;
169
+ }
170
+
171
+ score.min(1.0)
172
+ }
173
+
174
+ fn calculate_context_boost(&self, word: &str, position: usize, words: &[&str]) -> f32 {
175
+ let mut boost = 0.0;
176
+
177
+ if position == 0 || position == words.len() - 1 {
178
+ boost += 0.1;
179
+ }
180
+
181
+ let window = 2;
182
+ let start = position.saturating_sub(window);
183
+ let end = (position + window + 1).min(words.len());
184
+
185
+ for &context_word in &words[start..end] {
186
+ if context_word != word {
187
+ boost += self.calculate_contextual_weight(word, context_word);
188
+ }
189
+ }
190
+
191
+ boost.min(0.3)
192
+ }
193
+
194
+ fn calculate_frequency_score(&self, word: &str, word_freq: &AHashMap<String, i32>, total_words: usize) -> f32 {
195
+ if let Some(&freq) = word_freq.get(word) {
196
+ let tf = freq as f32 / total_words as f32;
197
+
198
+ (tf.ln() + 1.0) * 0.1
199
+ } else {
200
+ 0.0
201
+ }
202
+ }
203
+
204
+ fn calculate_contextual_weight(&self, word: &str, context_word: &str) -> f32 {
205
+ if self.is_technical_term(word) && self.is_technical_term(context_word) {
206
+ 0.05
207
+ } else if context_word.chars().next().map(|c| c.is_uppercase()).unwrap_or(false) {
208
+ 0.02
209
+ } else {
210
+ 0.0
211
+ }
212
+ }
213
+
214
+ fn is_technical_term(&self, word: &str) -> bool {
215
+ word.len() > 6
216
+ && (word.contains("_")
217
+ || word.chars().filter(|&c| c.is_uppercase()).count() > 1
218
+ || word.ends_with("tion")
219
+ || word.ends_with("ment")
220
+ || word.ends_with("ing"))
221
+ }
222
+
223
+ fn get_hypernym(&self, word: &str) -> Option<String> {
224
+ let clean_word = self.clean_word(word).to_lowercase();
225
+ self.hypernyms.get(&clean_word).cloned()
226
+ }
227
+
228
+ fn clean_word(&self, word: &str) -> String {
229
+ word.chars()
230
+ .filter(|c| c.is_alphanumeric())
231
+ .collect::<String>()
232
+ .to_lowercase()
233
+ }
234
+
235
+ fn initialize_importance_weights(&mut self) {
236
+ let high_importance = [
237
+ ("result", 0.8),
238
+ ("conclusion", 0.8),
239
+ ("important", 0.7),
240
+ ("significant", 0.7),
241
+ ("analysis", 0.7),
242
+ ("method", 0.6),
243
+ ("data", 0.6),
244
+ ("system", 0.6),
245
+ ("performance", 0.6),
246
+ ("improvement", 0.6),
247
+ ];
248
+
249
+ for (word, score) in &high_importance {
250
+ self.importance_weights.insert(word.to_string(), *score);
251
+ }
252
+
253
+ let medium_importance = [
254
+ ("process", 0.5),
255
+ ("algorithm", 0.5),
256
+ ("function", 0.5),
257
+ ("model", 0.5),
258
+ ("implementation", 0.5),
259
+ ];
260
+
261
+ for (word, score) in &medium_importance {
262
+ self.importance_weights.insert(word.to_string(), *score);
263
+ }
264
+ }
265
+
266
+ fn initialize_hypernyms(&mut self) {
267
+ let hypernym_pairs = [
268
+ ("car", "vehicle"),
269
+ ("dog", "animal"),
270
+ ("apple", "fruit"),
271
+ ("chair", "furniture"),
272
+ ("book", "publication"),
273
+ ("computer", "device"),
274
+ ("algorithm", "method"),
275
+ ("implementation", "approach"),
276
+ ("optimization", "improvement"),
277
+ ("analysis", "study"),
278
+ ];
279
+
280
+ for (word, hypernym) in &hypernym_pairs {
281
+ self.hypernyms.insert(word.to_string(), hypernym.to_string());
282
+ }
283
+ }
284
+
285
+ fn initialize_semantic_clusters(&mut self) {
286
+ self.semantic_clusters.insert(
287
+ "computing".to_string(),
288
+ vec![
289
+ "computer".to_string(),
290
+ "algorithm".to_string(),
291
+ "software".to_string(),
292
+ "programming".to_string(),
293
+ "code".to_string(),
294
+ ],
295
+ );
296
+
297
+ self.semantic_clusters.insert(
298
+ "analysis".to_string(),
299
+ vec![
300
+ "analysis".to_string(),
301
+ "study".to_string(),
302
+ "research".to_string(),
303
+ "investigation".to_string(),
304
+ "examination".to_string(),
305
+ ],
306
+ );
307
+
308
+ self.semantic_clusters.insert(
309
+ "performance".to_string(),
310
+ vec![
311
+ "performance".to_string(),
312
+ "speed".to_string(),
313
+ "efficiency".to_string(),
314
+ "optimization".to_string(),
315
+ "improvement".to_string(),
316
+ ],
317
+ );
318
+ }
319
+ }
320
+
321
+ #[cfg(test)]
322
+ mod tests {
323
+ use super::*;
324
+
325
+ #[test]
326
+ fn test_semantic_filtering() {
327
+ let analyzer = SemanticAnalyzer::new("en");
328
+ let input = "The quick brown fox jumps over the lazy dog with great performance";
329
+ let result = analyzer.apply_semantic_filtering(input, 0.4);
330
+
331
+ assert!(result.contains("performance") || result.contains("fox") || result.contains("dog"));
332
+ assert!(result.len() < input.len());
333
+ }
334
+
335
+ #[test]
336
+ fn test_hypernym_compression() {
337
+ let analyzer = SemanticAnalyzer::new("en");
338
+ let input = "The car drove past the dog near the apple tree";
339
+ let result = analyzer.apply_hypernym_compression(input, Some(0.5));
340
+
341
+ let original_words = input.split_whitespace().count();
342
+ let result_words = result.split_whitespace().count();
343
+ assert!(result_words <= (original_words as f32 * 0.5) as usize + 1);
344
+ }
345
+
346
+ #[test]
347
+ fn test_importance_scoring() {
348
+ let analyzer = SemanticAnalyzer::new("en");
349
+ let tokens = analyzer.tokenize_and_score("The important analysis shows significant results");
350
+
351
+ let important_token = tokens.iter().find(|t| t.token == "important").unwrap();
352
+ let analysis_token = tokens.iter().find(|t| t.token == "analysis").unwrap();
353
+ let the_token = tokens.iter().find(|t| t.token == "The").unwrap();
354
+
355
+ assert!(important_token.importance_score > the_token.importance_score);
356
+ assert!(analysis_token.importance_score > the_token.importance_score);
357
+ }
358
+
359
+ #[test]
360
+ fn test_semantic_filtering_empty_text() {
361
+ let analyzer = SemanticAnalyzer::new("en");
362
+ let result = analyzer.apply_semantic_filtering("", 0.5);
363
+ assert_eq!(result, "");
364
+ }
365
+
366
+ #[test]
367
+ fn test_semantic_filtering_high_threshold() {
368
+ let analyzer = SemanticAnalyzer::new("en");
369
+ let input = "The quick brown fox";
370
+ let result = analyzer.apply_semantic_filtering(input, 0.9);
371
+ assert!(result.len() <= input.len());
372
+ }
373
+
374
+ #[test]
375
+ fn test_hypernym_compression_without_target() {
376
+ let analyzer = SemanticAnalyzer::new("en");
377
+ let input = "The car drove past the dog";
378
+ let result = analyzer.apply_hypernym_compression(input, None);
379
+ assert!(!result.is_empty());
380
+ }
381
+
382
+ #[test]
383
+ fn test_technical_term_detection() {
384
+ let analyzer = SemanticAnalyzer::new("en");
385
+
386
+ assert!(analyzer.is_technical_term("implementation"));
387
+ assert!(analyzer.is_technical_term("optimization"));
388
+ assert!(analyzer.is_technical_term("processing"));
389
+ assert!(analyzer.is_technical_term("HTTP_SERVER"));
390
+ assert!(!analyzer.is_technical_term("cat"));
391
+ assert!(!analyzer.is_technical_term("dog"));
392
+ }
393
+
394
+ #[test]
395
+ fn test_clean_word() {
396
+ let analyzer = SemanticAnalyzer::new("en");
397
+
398
+ assert_eq!(analyzer.clean_word("Hello!"), "hello");
399
+ assert_eq!(analyzer.clean_word("test123"), "test123");
400
+ assert_eq!(analyzer.clean_word("word,"), "word");
401
+ assert_eq!(analyzer.clean_word("(test)"), "test");
402
+ }
403
+
404
+ #[test]
405
+ fn test_calculate_base_importance() {
406
+ let analyzer = SemanticAnalyzer::new("en");
407
+
408
+ let result_score = analyzer.calculate_base_importance("result");
409
+ let conclusion_score = analyzer.calculate_base_importance("conclusion");
410
+
411
+ assert!(result_score > 0.5);
412
+ assert!(conclusion_score > 0.5);
413
+
414
+ let process_score = analyzer.calculate_base_importance("process");
415
+ assert!(process_score >= 0.4);
416
+
417
+ let regular_score = analyzer.calculate_base_importance("cat");
418
+ assert!(regular_score < result_score);
419
+ }
420
+
421
+ #[test]
422
+ fn test_calculate_base_importance_uppercase() {
423
+ let analyzer = SemanticAnalyzer::new("en");
424
+
425
+ let uppercase_score = analyzer.calculate_base_importance("Test");
426
+ let lowercase_score = analyzer.calculate_base_importance("test");
427
+
428
+ assert!(uppercase_score > lowercase_score);
429
+ }
430
+
431
+ #[test]
432
+ fn test_calculate_base_importance_with_numbers() {
433
+ let analyzer = SemanticAnalyzer::new("en");
434
+
435
+ let with_number = analyzer.calculate_base_importance("test123");
436
+ let without_number = analyzer.calculate_base_importance("test");
437
+
438
+ assert!(with_number > without_number);
439
+ }
440
+
441
+ #[test]
442
+ fn test_calculate_base_importance_length_bonus() {
443
+ let analyzer = SemanticAnalyzer::new("en");
444
+
445
+ let long_word = analyzer.calculate_base_importance("verylongword");
446
+ let short_word = analyzer.calculate_base_importance("cat");
447
+
448
+ assert!(long_word > short_word);
449
+ }
450
+
451
+ #[test]
452
+ fn test_get_hypernym() {
453
+ let analyzer = SemanticAnalyzer::new("en");
454
+
455
+ assert_eq!(analyzer.get_hypernym("car"), Some("vehicle".to_string()));
456
+ assert_eq!(analyzer.get_hypernym("dog"), Some("animal".to_string()));
457
+ assert_eq!(analyzer.get_hypernym("apple"), Some("fruit".to_string()));
458
+ assert_eq!(analyzer.get_hypernym("unknown"), None);
459
+ }
460
+
461
+ #[test]
462
+ fn test_get_hypernym_case_insensitive() {
463
+ let analyzer = SemanticAnalyzer::new("en");
464
+
465
+ assert_eq!(analyzer.get_hypernym("CAR"), Some("vehicle".to_string()));
466
+ assert_eq!(analyzer.get_hypernym("Dog"), Some("animal".to_string()));
467
+ }
468
+
469
+ #[test]
470
+ fn test_tokenize_and_score_positions() {
471
+ let analyzer = SemanticAnalyzer::new("en");
472
+ let tokens = analyzer.tokenize_and_score("first middle last");
473
+
474
+ assert_eq!(tokens[0].position, 0);
475
+ assert_eq!(tokens[1].position, 1);
476
+ assert_eq!(tokens[2].position, 2);
477
+ }
478
+
479
+ #[test]
480
+ fn test_context_boost_for_edge_positions() {
481
+ let analyzer = SemanticAnalyzer::new("en");
482
+ let tokens = analyzer.tokenize_and_score("first middle last");
483
+
484
+ assert!(tokens[0].importance_score > 0.0);
485
+ assert!(tokens[2].importance_score > 0.0);
486
+ }
487
+
488
+ #[test]
489
+ fn test_frequency_score() {
490
+ let analyzer = SemanticAnalyzer::new("en");
491
+ let tokens = analyzer.tokenize_and_score("test test test other");
492
+
493
+ let test_token = tokens.iter().find(|t| t.token == "test").unwrap();
494
+ let other_token = tokens.iter().find(|t| t.token == "other").unwrap();
495
+
496
+ assert!(test_token.frequency_score > other_token.frequency_score);
497
+ }
498
+
499
+ #[test]
500
+ fn test_scored_token_ordering() {
501
+ let token1 = ScoredToken {
502
+ token: "a".to_string(),
503
+ position: 0,
504
+ importance_score: 0.5,
505
+ context_boost: 0.0,
506
+ frequency_score: 0.0,
507
+ };
508
+
509
+ let token2 = ScoredToken {
510
+ token: "b".to_string(),
511
+ position: 1,
512
+ importance_score: 0.7,
513
+ context_boost: 0.0,
514
+ frequency_score: 0.0,
515
+ };
516
+
517
+ assert!(token2 > token1);
518
+ assert_eq!(token1, token1.clone());
519
+ }
520
+
521
+ #[test]
522
+ fn test_reconstruct_text() {
523
+ let analyzer = SemanticAnalyzer::new("en");
524
+ let tokens = vec![
525
+ ScoredToken {
526
+ token: "Hello".to_string(),
527
+ position: 0,
528
+ importance_score: 0.5,
529
+ context_boost: 0.0,
530
+ frequency_score: 0.0,
531
+ },
532
+ ScoredToken {
533
+ token: "world".to_string(),
534
+ position: 1,
535
+ importance_score: 0.5,
536
+ context_boost: 0.0,
537
+ frequency_score: 0.0,
538
+ },
539
+ ];
540
+
541
+ let result = analyzer.reconstruct_text(tokens);
542
+ assert_eq!(result, "Hello world");
543
+ }
544
+
545
+ #[test]
546
+ fn test_compress_with_hypernyms_respects_target() {
547
+ let analyzer = SemanticAnalyzer::new("en");
548
+ let tokens = vec![
549
+ ScoredToken {
550
+ token: "car".to_string(),
551
+ position: 0,
552
+ importance_score: 0.3,
553
+ context_boost: 0.0,
554
+ frequency_score: 0.0,
555
+ },
556
+ ScoredToken {
557
+ token: "dog".to_string(),
558
+ position: 1,
559
+ importance_score: 0.3,
560
+ context_boost: 0.0,
561
+ frequency_score: 0.0,
562
+ },
563
+ ScoredToken {
564
+ token: "test".to_string(),
565
+ position: 2,
566
+ importance_score: 0.8,
567
+ context_boost: 0.0,
568
+ frequency_score: 0.0,
569
+ },
570
+ ];
571
+
572
+ let result = analyzer.compress_with_hypernyms(tokens, Some(0.5));
573
+ assert!(result.len() <= 2);
574
+ }
575
+
576
+ #[test]
577
+ fn test_initialize_importance_weights() {
578
+ let analyzer = SemanticAnalyzer::new("en");
579
+
580
+ assert!(analyzer.importance_weights.contains_key("result"));
581
+ assert!(analyzer.importance_weights.contains_key("conclusion"));
582
+ assert!(analyzer.importance_weights.contains_key("important"));
583
+ assert!(analyzer.importance_weights.contains_key("process"));
584
+ }
585
+
586
+ #[test]
587
+ fn test_initialize_hypernyms() {
588
+ let analyzer = SemanticAnalyzer::new("en");
589
+
590
+ assert!(analyzer.hypernyms.contains_key("car"));
591
+ assert!(analyzer.hypernyms.contains_key("dog"));
592
+ assert!(analyzer.hypernyms.contains_key("apple"));
593
+ }
594
+
595
+ #[test]
596
+ fn test_initialize_semantic_clusters() {
597
+ let analyzer = SemanticAnalyzer::new("en");
598
+
599
+ assert!(analyzer.semantic_clusters.contains_key("computing"));
600
+ assert!(analyzer.semantic_clusters.contains_key("analysis"));
601
+ assert!(analyzer.semantic_clusters.contains_key("performance"));
602
+ }
603
+
604
+ #[test]
605
+ fn test_contextual_weight_technical_terms() {
606
+ let analyzer = SemanticAnalyzer::new("en");
607
+
608
+ let weight = analyzer.calculate_contextual_weight("implementation", "optimization");
609
+ assert!(weight > 0.0);
610
+ }
611
+
612
+ #[test]
613
+ fn test_hypernym_compression_zero_target() {
614
+ let analyzer = SemanticAnalyzer::new("en");
615
+ let input = "The car drove fast";
616
+ let result = analyzer.apply_hypernym_compression(input, Some(0.0));
617
+ assert!(!result.is_empty());
618
+ }
619
+ }