kreuzberg 4.0.0.rc1 → 4.0.0.rc2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (342) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +14 -8
  3. data/.rspec +3 -3
  4. data/.rubocop.yaml +1 -534
  5. data/.rubocop.yml +538 -0
  6. data/Gemfile +8 -9
  7. data/Gemfile.lock +9 -109
  8. data/README.md +426 -421
  9. data/Rakefile +25 -25
  10. data/Steepfile +47 -47
  11. data/examples/async_patterns.rb +341 -340
  12. data/ext/kreuzberg_rb/extconf.rb +45 -35
  13. data/ext/kreuzberg_rb/native/Cargo.lock +6535 -0
  14. data/ext/kreuzberg_rb/native/Cargo.toml +44 -36
  15. data/ext/kreuzberg_rb/native/README.md +425 -425
  16. data/ext/kreuzberg_rb/native/build.rs +15 -17
  17. data/ext/kreuzberg_rb/native/include/ieeefp.h +11 -11
  18. data/ext/kreuzberg_rb/native/include/msvc_compat/strings.h +14 -14
  19. data/ext/kreuzberg_rb/native/include/strings.h +20 -20
  20. data/ext/kreuzberg_rb/native/include/unistd.h +47 -47
  21. data/ext/kreuzberg_rb/native/src/lib.rs +2998 -2939
  22. data/extconf.rb +28 -28
  23. data/kreuzberg.gemspec +148 -105
  24. data/lib/kreuzberg/api_proxy.rb +142 -142
  25. data/lib/kreuzberg/cache_api.rb +46 -45
  26. data/lib/kreuzberg/cli.rb +55 -55
  27. data/lib/kreuzberg/cli_proxy.rb +127 -127
  28. data/lib/kreuzberg/config.rb +691 -684
  29. data/lib/kreuzberg/error_context.rb +32 -0
  30. data/lib/kreuzberg/errors.rb +118 -50
  31. data/lib/kreuzberg/extraction_api.rb +85 -84
  32. data/lib/kreuzberg/mcp_proxy.rb +186 -186
  33. data/lib/kreuzberg/ocr_backend_protocol.rb +113 -113
  34. data/lib/kreuzberg/post_processor_protocol.rb +86 -86
  35. data/lib/kreuzberg/result.rb +216 -216
  36. data/lib/kreuzberg/setup_lib_path.rb +80 -79
  37. data/lib/kreuzberg/validator_protocol.rb +89 -89
  38. data/lib/kreuzberg/version.rb +5 -5
  39. data/lib/kreuzberg.rb +103 -82
  40. data/sig/kreuzberg/internal.rbs +184 -184
  41. data/sig/kreuzberg.rbs +520 -468
  42. data/spec/binding/cache_spec.rb +227 -227
  43. data/spec/binding/cli_proxy_spec.rb +85 -87
  44. data/spec/binding/cli_spec.rb +55 -54
  45. data/spec/binding/config_spec.rb +345 -345
  46. data/spec/binding/config_validation_spec.rb +283 -283
  47. data/spec/binding/error_handling_spec.rb +213 -213
  48. data/spec/binding/errors_spec.rb +66 -66
  49. data/spec/binding/plugins/ocr_backend_spec.rb +307 -307
  50. data/spec/binding/plugins/postprocessor_spec.rb +269 -269
  51. data/spec/binding/plugins/validator_spec.rb +274 -274
  52. data/spec/fixtures/config.toml +39 -39
  53. data/spec/fixtures/config.yaml +41 -42
  54. data/spec/fixtures/invalid_config.toml +4 -4
  55. data/spec/smoke/package_spec.rb +178 -178
  56. data/spec/spec_helper.rb +42 -42
  57. data/vendor/kreuzberg/Cargo.toml +204 -134
  58. data/vendor/kreuzberg/README.md +175 -175
  59. data/vendor/kreuzberg/benches/otel_overhead.rs +48 -0
  60. data/vendor/kreuzberg/build.rs +474 -460
  61. data/vendor/kreuzberg/src/api/error.rs +81 -81
  62. data/vendor/kreuzberg/src/api/handlers.rs +199 -199
  63. data/vendor/kreuzberg/src/api/mod.rs +79 -79
  64. data/vendor/kreuzberg/src/api/server.rs +353 -353
  65. data/vendor/kreuzberg/src/api/types.rs +170 -170
  66. data/vendor/kreuzberg/src/cache/mod.rs +1167 -1143
  67. data/vendor/kreuzberg/src/chunking/mod.rs +677 -677
  68. data/vendor/kreuzberg/src/core/batch_mode.rs +95 -35
  69. data/vendor/kreuzberg/src/core/config.rs +1032 -1032
  70. data/vendor/kreuzberg/src/core/extractor.rs +1024 -903
  71. data/vendor/kreuzberg/src/core/io.rs +329 -327
  72. data/vendor/kreuzberg/src/core/mime.rs +605 -615
  73. data/vendor/kreuzberg/src/core/mod.rs +45 -42
  74. data/vendor/kreuzberg/src/core/pipeline.rs +984 -906
  75. data/vendor/kreuzberg/src/embeddings.rs +432 -323
  76. data/vendor/kreuzberg/src/error.rs +431 -431
  77. data/vendor/kreuzberg/src/extraction/archive.rs +954 -954
  78. data/vendor/kreuzberg/src/extraction/docx.rs +40 -40
  79. data/vendor/kreuzberg/src/extraction/email.rs +854 -854
  80. data/vendor/kreuzberg/src/extraction/excel.rs +688 -688
  81. data/vendor/kreuzberg/src/extraction/html.rs +553 -553
  82. data/vendor/kreuzberg/src/extraction/image.rs +368 -368
  83. data/vendor/kreuzberg/src/extraction/libreoffice.rs +563 -564
  84. data/vendor/kreuzberg/src/extraction/markdown.rs +213 -0
  85. data/vendor/kreuzberg/src/extraction/mod.rs +81 -77
  86. data/vendor/kreuzberg/src/extraction/office_metadata/app_properties.rs +398 -398
  87. data/vendor/kreuzberg/src/extraction/office_metadata/core_properties.rs +247 -247
  88. data/vendor/kreuzberg/src/extraction/office_metadata/custom_properties.rs +240 -240
  89. data/vendor/kreuzberg/src/extraction/office_metadata/mod.rs +130 -128
  90. data/vendor/kreuzberg/src/extraction/office_metadata/odt_properties.rs +287 -0
  91. data/vendor/kreuzberg/src/extraction/pptx.rs +3000 -3000
  92. data/vendor/kreuzberg/src/extraction/structured.rs +490 -490
  93. data/vendor/kreuzberg/src/extraction/table.rs +328 -328
  94. data/vendor/kreuzberg/src/extraction/text.rs +269 -269
  95. data/vendor/kreuzberg/src/extraction/xml.rs +333 -333
  96. data/vendor/kreuzberg/src/extractors/archive.rs +446 -425
  97. data/vendor/kreuzberg/src/extractors/bibtex.rs +469 -0
  98. data/vendor/kreuzberg/src/extractors/docbook.rs +502 -0
  99. data/vendor/kreuzberg/src/extractors/docx.rs +367 -479
  100. data/vendor/kreuzberg/src/extractors/email.rs +143 -129
  101. data/vendor/kreuzberg/src/extractors/epub.rs +707 -0
  102. data/vendor/kreuzberg/src/extractors/excel.rs +343 -344
  103. data/vendor/kreuzberg/src/extractors/fictionbook.rs +491 -0
  104. data/vendor/kreuzberg/src/extractors/fictionbook.rs.backup2 +738 -0
  105. data/vendor/kreuzberg/src/extractors/html.rs +393 -410
  106. data/vendor/kreuzberg/src/extractors/image.rs +198 -195
  107. data/vendor/kreuzberg/src/extractors/jats.rs +1051 -0
  108. data/vendor/kreuzberg/src/extractors/jupyter.rs +367 -0
  109. data/vendor/kreuzberg/src/extractors/latex.rs +652 -0
  110. data/vendor/kreuzberg/src/extractors/markdown.rs +700 -0
  111. data/vendor/kreuzberg/src/extractors/mod.rs +365 -268
  112. data/vendor/kreuzberg/src/extractors/odt.rs +628 -0
  113. data/vendor/kreuzberg/src/extractors/opml.rs +634 -0
  114. data/vendor/kreuzberg/src/extractors/orgmode.rs +528 -0
  115. data/vendor/kreuzberg/src/extractors/pdf.rs +493 -496
  116. data/vendor/kreuzberg/src/extractors/pptx.rs +248 -234
  117. data/vendor/kreuzberg/src/extractors/rst.rs +576 -0
  118. data/vendor/kreuzberg/src/extractors/rtf.rs +810 -0
  119. data/vendor/kreuzberg/src/extractors/security.rs +484 -0
  120. data/vendor/kreuzberg/src/extractors/security_tests.rs +367 -0
  121. data/vendor/kreuzberg/src/extractors/structured.rs +140 -126
  122. data/vendor/kreuzberg/src/extractors/text.rs +260 -242
  123. data/vendor/kreuzberg/src/extractors/typst.rs +650 -0
  124. data/vendor/kreuzberg/src/extractors/xml.rs +135 -128
  125. data/vendor/kreuzberg/src/image/dpi.rs +164 -164
  126. data/vendor/kreuzberg/src/image/mod.rs +6 -6
  127. data/vendor/kreuzberg/src/image/preprocessing.rs +417 -417
  128. data/vendor/kreuzberg/src/image/resize.rs +89 -89
  129. data/vendor/kreuzberg/src/keywords/config.rs +154 -154
  130. data/vendor/kreuzberg/src/keywords/mod.rs +237 -237
  131. data/vendor/kreuzberg/src/keywords/processor.rs +267 -267
  132. data/vendor/kreuzberg/src/keywords/rake.rs +293 -294
  133. data/vendor/kreuzberg/src/keywords/types.rs +68 -68
  134. data/vendor/kreuzberg/src/keywords/yake.rs +163 -163
  135. data/vendor/kreuzberg/src/language_detection/mod.rs +942 -942
  136. data/vendor/kreuzberg/src/lib.rs +105 -102
  137. data/vendor/kreuzberg/src/mcp/mod.rs +32 -32
  138. data/vendor/kreuzberg/src/mcp/server.rs +1968 -1966
  139. data/vendor/kreuzberg/src/ocr/cache.rs +469 -469
  140. data/vendor/kreuzberg/src/ocr/error.rs +37 -37
  141. data/vendor/kreuzberg/src/ocr/hocr.rs +216 -216
  142. data/vendor/kreuzberg/src/ocr/mod.rs +58 -58
  143. data/vendor/kreuzberg/src/ocr/processor.rs +863 -847
  144. data/vendor/kreuzberg/src/ocr/table/mod.rs +4 -4
  145. data/vendor/kreuzberg/src/ocr/table/tsv_parser.rs +144 -144
  146. data/vendor/kreuzberg/src/ocr/tesseract_backend.rs +450 -450
  147. data/vendor/kreuzberg/src/ocr/types.rs +393 -393
  148. data/vendor/kreuzberg/src/ocr/utils.rs +47 -47
  149. data/vendor/kreuzberg/src/ocr/validation.rs +206 -206
  150. data/vendor/kreuzberg/src/panic_context.rs +154 -0
  151. data/vendor/kreuzberg/src/pdf/error.rs +122 -122
  152. data/vendor/kreuzberg/src/pdf/images.rs +139 -139
  153. data/vendor/kreuzberg/src/pdf/metadata.rs +346 -346
  154. data/vendor/kreuzberg/src/pdf/mod.rs +50 -50
  155. data/vendor/kreuzberg/src/pdf/rendering.rs +369 -369
  156. data/vendor/kreuzberg/src/pdf/table.rs +393 -420
  157. data/vendor/kreuzberg/src/pdf/text.rs +158 -161
  158. data/vendor/kreuzberg/src/plugins/extractor.rs +1013 -1010
  159. data/vendor/kreuzberg/src/plugins/mod.rs +209 -209
  160. data/vendor/kreuzberg/src/plugins/ocr.rs +620 -629
  161. data/vendor/kreuzberg/src/plugins/processor.rs +642 -641
  162. data/vendor/kreuzberg/src/plugins/registry.rs +1337 -1324
  163. data/vendor/kreuzberg/src/plugins/traits.rs +258 -258
  164. data/vendor/kreuzberg/src/plugins/validator.rs +956 -955
  165. data/vendor/kreuzberg/src/stopwords/mod.rs +1470 -1470
  166. data/vendor/kreuzberg/src/text/mod.rs +19 -19
  167. data/vendor/kreuzberg/src/text/quality.rs +697 -697
  168. data/vendor/kreuzberg/src/text/string_utils.rs +217 -217
  169. data/vendor/kreuzberg/src/text/token_reduction/cjk_utils.rs +164 -164
  170. data/vendor/kreuzberg/src/text/token_reduction/config.rs +100 -100
  171. data/vendor/kreuzberg/src/text/token_reduction/core.rs +796 -796
  172. data/vendor/kreuzberg/src/text/token_reduction/filters.rs +902 -902
  173. data/vendor/kreuzberg/src/text/token_reduction/mod.rs +160 -160
  174. data/vendor/kreuzberg/src/text/token_reduction/semantic.rs +619 -619
  175. data/vendor/kreuzberg/src/text/token_reduction/simd_text.rs +147 -147
  176. data/vendor/kreuzberg/src/types.rs +903 -873
  177. data/vendor/kreuzberg/src/utils/mod.rs +17 -17
  178. data/vendor/kreuzberg/src/utils/quality.rs +959 -959
  179. data/vendor/kreuzberg/src/utils/string_utils.rs +381 -381
  180. data/vendor/kreuzberg/stopwords/af_stopwords.json +53 -53
  181. data/vendor/kreuzberg/stopwords/ar_stopwords.json +482 -482
  182. data/vendor/kreuzberg/stopwords/bg_stopwords.json +261 -261
  183. data/vendor/kreuzberg/stopwords/bn_stopwords.json +400 -400
  184. data/vendor/kreuzberg/stopwords/br_stopwords.json +1205 -1205
  185. data/vendor/kreuzberg/stopwords/ca_stopwords.json +280 -280
  186. data/vendor/kreuzberg/stopwords/cs_stopwords.json +425 -425
  187. data/vendor/kreuzberg/stopwords/da_stopwords.json +172 -172
  188. data/vendor/kreuzberg/stopwords/de_stopwords.json +622 -622
  189. data/vendor/kreuzberg/stopwords/el_stopwords.json +849 -849
  190. data/vendor/kreuzberg/stopwords/en_stopwords.json +1300 -1300
  191. data/vendor/kreuzberg/stopwords/eo_stopwords.json +175 -175
  192. data/vendor/kreuzberg/stopwords/es_stopwords.json +734 -734
  193. data/vendor/kreuzberg/stopwords/et_stopwords.json +37 -37
  194. data/vendor/kreuzberg/stopwords/eu_stopwords.json +100 -100
  195. data/vendor/kreuzberg/stopwords/fa_stopwords.json +801 -801
  196. data/vendor/kreuzberg/stopwords/fi_stopwords.json +849 -849
  197. data/vendor/kreuzberg/stopwords/fr_stopwords.json +693 -693
  198. data/vendor/kreuzberg/stopwords/ga_stopwords.json +111 -111
  199. data/vendor/kreuzberg/stopwords/gl_stopwords.json +162 -162
  200. data/vendor/kreuzberg/stopwords/gu_stopwords.json +226 -226
  201. data/vendor/kreuzberg/stopwords/ha_stopwords.json +41 -41
  202. data/vendor/kreuzberg/stopwords/he_stopwords.json +196 -196
  203. data/vendor/kreuzberg/stopwords/hi_stopwords.json +227 -227
  204. data/vendor/kreuzberg/stopwords/hr_stopwords.json +181 -181
  205. data/vendor/kreuzberg/stopwords/hu_stopwords.json +791 -791
  206. data/vendor/kreuzberg/stopwords/hy_stopwords.json +47 -47
  207. data/vendor/kreuzberg/stopwords/id_stopwords.json +760 -760
  208. data/vendor/kreuzberg/stopwords/it_stopwords.json +634 -634
  209. data/vendor/kreuzberg/stopwords/ja_stopwords.json +136 -136
  210. data/vendor/kreuzberg/stopwords/kn_stopwords.json +84 -84
  211. data/vendor/kreuzberg/stopwords/ko_stopwords.json +681 -681
  212. data/vendor/kreuzberg/stopwords/ku_stopwords.json +64 -64
  213. data/vendor/kreuzberg/stopwords/la_stopwords.json +51 -51
  214. data/vendor/kreuzberg/stopwords/lt_stopwords.json +476 -476
  215. data/vendor/kreuzberg/stopwords/lv_stopwords.json +163 -163
  216. data/vendor/kreuzberg/stopwords/ml_stopwords.json +1 -1
  217. data/vendor/kreuzberg/stopwords/mr_stopwords.json +101 -101
  218. data/vendor/kreuzberg/stopwords/ms_stopwords.json +477 -477
  219. data/vendor/kreuzberg/stopwords/ne_stopwords.json +490 -490
  220. data/vendor/kreuzberg/stopwords/nl_stopwords.json +415 -415
  221. data/vendor/kreuzberg/stopwords/no_stopwords.json +223 -223
  222. data/vendor/kreuzberg/stopwords/pl_stopwords.json +331 -331
  223. data/vendor/kreuzberg/stopwords/pt_stopwords.json +562 -562
  224. data/vendor/kreuzberg/stopwords/ro_stopwords.json +436 -436
  225. data/vendor/kreuzberg/stopwords/ru_stopwords.json +561 -561
  226. data/vendor/kreuzberg/stopwords/si_stopwords.json +193 -193
  227. data/vendor/kreuzberg/stopwords/sk_stopwords.json +420 -420
  228. data/vendor/kreuzberg/stopwords/sl_stopwords.json +448 -448
  229. data/vendor/kreuzberg/stopwords/so_stopwords.json +32 -32
  230. data/vendor/kreuzberg/stopwords/st_stopwords.json +33 -33
  231. data/vendor/kreuzberg/stopwords/sv_stopwords.json +420 -420
  232. data/vendor/kreuzberg/stopwords/sw_stopwords.json +76 -76
  233. data/vendor/kreuzberg/stopwords/ta_stopwords.json +129 -129
  234. data/vendor/kreuzberg/stopwords/te_stopwords.json +54 -54
  235. data/vendor/kreuzberg/stopwords/th_stopwords.json +118 -118
  236. data/vendor/kreuzberg/stopwords/tl_stopwords.json +149 -149
  237. data/vendor/kreuzberg/stopwords/tr_stopwords.json +506 -506
  238. data/vendor/kreuzberg/stopwords/uk_stopwords.json +75 -75
  239. data/vendor/kreuzberg/stopwords/ur_stopwords.json +519 -519
  240. data/vendor/kreuzberg/stopwords/vi_stopwords.json +647 -647
  241. data/vendor/kreuzberg/stopwords/yo_stopwords.json +62 -62
  242. data/vendor/kreuzberg/stopwords/zh_stopwords.json +796 -796
  243. data/vendor/kreuzberg/stopwords/zu_stopwords.json +31 -31
  244. data/vendor/kreuzberg/tests/api_extract_multipart.rs +52 -0
  245. data/vendor/kreuzberg/tests/api_tests.rs +966 -966
  246. data/vendor/kreuzberg/tests/archive_integration.rs +543 -543
  247. data/vendor/kreuzberg/tests/batch_orchestration.rs +556 -542
  248. data/vendor/kreuzberg/tests/batch_processing.rs +316 -304
  249. data/vendor/kreuzberg/tests/bibtex_parity_test.rs +421 -0
  250. data/vendor/kreuzberg/tests/concurrency_stress.rs +525 -509
  251. data/vendor/kreuzberg/tests/config_features.rs +598 -580
  252. data/vendor/kreuzberg/tests/config_loading_tests.rs +415 -439
  253. data/vendor/kreuzberg/tests/core_integration.rs +510 -493
  254. data/vendor/kreuzberg/tests/csv_integration.rs +414 -424
  255. data/vendor/kreuzberg/tests/docbook_extractor_tests.rs +498 -0
  256. data/vendor/kreuzberg/tests/docx_metadata_extraction_test.rs +122 -124
  257. data/vendor/kreuzberg/tests/docx_vs_pandoc_comparison.rs +370 -0
  258. data/vendor/kreuzberg/tests/email_integration.rs +325 -325
  259. data/vendor/kreuzberg/tests/epub_native_extractor_tests.rs +275 -0
  260. data/vendor/kreuzberg/tests/error_handling.rs +393 -393
  261. data/vendor/kreuzberg/tests/fictionbook_extractor_tests.rs +228 -0
  262. data/vendor/kreuzberg/tests/format_integration.rs +159 -159
  263. data/vendor/kreuzberg/tests/helpers/mod.rs +142 -142
  264. data/vendor/kreuzberg/tests/html_table_test.rs +551 -0
  265. data/vendor/kreuzberg/tests/image_integration.rs +253 -253
  266. data/vendor/kreuzberg/tests/instrumentation_test.rs +139 -0
  267. data/vendor/kreuzberg/tests/jats_extractor_tests.rs +639 -0
  268. data/vendor/kreuzberg/tests/jupyter_extractor_tests.rs +704 -0
  269. data/vendor/kreuzberg/tests/keywords_integration.rs +479 -479
  270. data/vendor/kreuzberg/tests/keywords_quality.rs +509 -509
  271. data/vendor/kreuzberg/tests/latex_extractor_tests.rs +496 -0
  272. data/vendor/kreuzberg/tests/markdown_extractor_tests.rs +490 -0
  273. data/vendor/kreuzberg/tests/mime_detection.rs +428 -428
  274. data/vendor/kreuzberg/tests/ocr_configuration.rs +510 -510
  275. data/vendor/kreuzberg/tests/ocr_errors.rs +676 -676
  276. data/vendor/kreuzberg/tests/ocr_quality.rs +627 -627
  277. data/vendor/kreuzberg/tests/ocr_stress.rs +469 -469
  278. data/vendor/kreuzberg/tests/odt_extractor_tests.rs +695 -0
  279. data/vendor/kreuzberg/tests/opml_extractor_tests.rs +616 -0
  280. data/vendor/kreuzberg/tests/orgmode_extractor_tests.rs +822 -0
  281. data/vendor/kreuzberg/tests/pdf_integration.rs +43 -43
  282. data/vendor/kreuzberg/tests/pipeline_integration.rs +1411 -1412
  283. data/vendor/kreuzberg/tests/plugin_ocr_backend_test.rs +771 -771
  284. data/vendor/kreuzberg/tests/plugin_postprocessor_test.rs +560 -561
  285. data/vendor/kreuzberg/tests/plugin_system.rs +921 -921
  286. data/vendor/kreuzberg/tests/plugin_validator_test.rs +783 -783
  287. data/vendor/kreuzberg/tests/registry_integration_tests.rs +586 -607
  288. data/vendor/kreuzberg/tests/rst_extractor_tests.rs +692 -0
  289. data/vendor/kreuzberg/tests/rtf_extractor_tests.rs +776 -0
  290. data/vendor/kreuzberg/tests/security_validation.rs +415 -404
  291. data/vendor/kreuzberg/tests/stopwords_integration_test.rs +888 -888
  292. data/vendor/kreuzberg/tests/test_fastembed.rs +609 -609
  293. data/vendor/kreuzberg/tests/typst_behavioral_tests.rs +1259 -0
  294. data/vendor/kreuzberg/tests/typst_extractor_tests.rs +647 -0
  295. data/vendor/kreuzberg/tests/xlsx_metadata_extraction_test.rs +87 -87
  296. data/vendor/rb-sys/.cargo-ok +1 -0
  297. data/vendor/rb-sys/.cargo_vcs_info.json +6 -0
  298. data/vendor/rb-sys/Cargo.lock +393 -0
  299. data/vendor/rb-sys/Cargo.toml +70 -0
  300. data/vendor/rb-sys/Cargo.toml.orig +57 -0
  301. data/vendor/rb-sys/LICENSE-APACHE +190 -0
  302. data/vendor/rb-sys/LICENSE-MIT +21 -0
  303. data/vendor/rb-sys/bin/release.sh +21 -0
  304. data/vendor/rb-sys/build/features.rs +108 -0
  305. data/vendor/rb-sys/build/main.rs +246 -0
  306. data/vendor/rb-sys/build/stable_api_config.rs +153 -0
  307. data/vendor/rb-sys/build/version.rs +48 -0
  308. data/vendor/rb-sys/readme.md +36 -0
  309. data/vendor/rb-sys/src/bindings.rs +21 -0
  310. data/vendor/rb-sys/src/hidden.rs +11 -0
  311. data/vendor/rb-sys/src/lib.rs +34 -0
  312. data/vendor/rb-sys/src/macros.rs +371 -0
  313. data/vendor/rb-sys/src/memory.rs +53 -0
  314. data/vendor/rb-sys/src/ruby_abi_version.rs +38 -0
  315. data/vendor/rb-sys/src/special_consts.rs +31 -0
  316. data/vendor/rb-sys/src/stable_api/compiled.c +179 -0
  317. data/vendor/rb-sys/src/stable_api/compiled.rs +257 -0
  318. data/vendor/rb-sys/src/stable_api/ruby_2_6.rs +316 -0
  319. data/vendor/rb-sys/src/stable_api/ruby_2_7.rs +316 -0
  320. data/vendor/rb-sys/src/stable_api/ruby_3_0.rs +324 -0
  321. data/vendor/rb-sys/src/stable_api/ruby_3_1.rs +317 -0
  322. data/vendor/rb-sys/src/stable_api/ruby_3_2.rs +315 -0
  323. data/vendor/rb-sys/src/stable_api/ruby_3_3.rs +326 -0
  324. data/vendor/rb-sys/src/stable_api/ruby_3_4.rs +327 -0
  325. data/vendor/rb-sys/src/stable_api.rs +261 -0
  326. data/vendor/rb-sys/src/symbol.rs +31 -0
  327. data/vendor/rb-sys/src/tracking_allocator.rs +332 -0
  328. data/vendor/rb-sys/src/utils.rs +89 -0
  329. data/vendor/rb-sys/src/value_type.rs +7 -0
  330. metadata +90 -95
  331. data/pkg/kreuzberg-4.0.0.rc1.gem +0 -0
  332. data/spec/examples.txt +0 -104
  333. data/vendor/kreuzberg/src/bin/profile_extract.rs +0 -455
  334. data/vendor/kreuzberg/src/extraction/pandoc/batch.rs +0 -275
  335. data/vendor/kreuzberg/src/extraction/pandoc/mime_types.rs +0 -178
  336. data/vendor/kreuzberg/src/extraction/pandoc/mod.rs +0 -491
  337. data/vendor/kreuzberg/src/extraction/pandoc/server.rs +0 -496
  338. data/vendor/kreuzberg/src/extraction/pandoc/subprocess.rs +0 -1188
  339. data/vendor/kreuzberg/src/extraction/pandoc/version.rs +0 -162
  340. data/vendor/kreuzberg/src/extractors/pandoc.rs +0 -201
  341. data/vendor/kreuzberg/tests/chunking_offset_demo.rs +0 -92
  342. data/vendor/kreuzberg/tests/pandoc_integration.rs +0 -503
@@ -1,479 +1,479 @@
1
- //! Integration tests for keyword extraction functionality.
2
- //!
3
- //! These tests verify end-to-end keyword extraction with both YAKE and RAKE algorithms,
4
- //! testing various configurations, languages, and edge cases.
5
-
6
- #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
7
- use kreuzberg::keywords::{KeywordAlgorithm, KeywordConfig, extract_keywords};
8
-
9
- /// Sample document about machine learning for testing.
10
- #[allow(dead_code)]
11
- const ML_DOCUMENT: &str = r#"
12
- Machine learning is a branch of artificial intelligence and computer science which focuses on the use of data and algorithms to imitate the way that humans learn.
13
- Machine learning algorithms build a model based on sample data, known as training data, to make predictions or decisions without being explicitly programmed to do so.
14
- Deep learning is a type of machine learning based on artificial neural networks. The learning process is deep because the structure of artificial neural networks consists of multiple input, output, and hidden layers.
15
- Neural networks can be used for supervised, semi-supervised, and unsupervised learning. Convolutional neural networks are commonly applied to analyzing visual imagery.
16
- Natural language processing is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language.
17
- "#;
18
-
19
- /// Sample document about climate change for testing.
20
- #[allow(dead_code)]
21
- const CLIMATE_DOCUMENT: &str = r#"
22
- Climate change refers to long-term shifts in temperatures and weather patterns. These shifts may be natural, such as through variations in the solar cycle.
23
- But since the 1800s, human activities have been the main driver of climate change, primarily due to burning fossil fuels like coal, oil, and gas.
24
- Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun's heat and raising temperatures.
25
- The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from burning fossil fuels for energy, agriculture, and deforestation.
26
- Global warming is the long-term heating of Earth's climate system. Climate science reveals that human activity has been the dominant cause of climate change since the mid-20th century.
27
- "#;
28
-
29
- /// Sample Spanish document for multilingual testing.
30
- #[allow(dead_code)]
31
- const SPANISH_DOCUMENT: &str = r#"
32
- El aprendizaje automático es una rama de la inteligencia artificial. Los algoritmos de aprendizaje automático construyen modelos basados en datos de entrenamiento.
33
- Las redes neuronales artificiales son sistemas inspirados en las redes neuronales biológicas del cerebro humano. El aprendizaje profundo utiliza redes neuronales multicapa.
34
- El procesamiento del lenguaje natural es un campo de la inteligencia artificial que se ocupa de la interacción entre computadoras y lenguajes humanos.
35
- "#;
36
-
37
- #[cfg(feature = "keywords-yake")]
38
- #[test]
39
- fn test_yake_basic_extraction() {
40
- let config = KeywordConfig::yake();
41
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
42
-
43
- assert!(!keywords.is_empty(), "Should extract keywords from document");
44
- assert!(
45
- keywords.len() <= config.max_keywords,
46
- "Should respect max_keywords limit"
47
- );
48
-
49
- for i in 1..keywords.len() {
50
- assert!(
51
- keywords[i - 1].score >= keywords[i].score,
52
- "Keywords should be sorted by score descending: {} >= {}",
53
- keywords[i - 1].score,
54
- keywords[i].score
55
- );
56
- }
57
-
58
- for keyword in &keywords {
59
- assert_eq!(keyword.algorithm, KeywordAlgorithm::Yake);
60
- }
61
-
62
- let keyword_texts: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
63
- let relevant_terms = [
64
- "machine learning",
65
- "artificial intelligence",
66
- "neural networks",
67
- "deep learning",
68
- ];
69
- let has_relevant = keyword_texts
70
- .iter()
71
- .any(|kw| relevant_terms.iter().any(|term| kw.to_lowercase().contains(term)));
72
- assert!(
73
- has_relevant,
74
- "Should extract at least one ML-related term, got: {:?}",
75
- keyword_texts
76
- );
77
- }
78
-
79
- #[cfg(feature = "keywords-rake")]
80
- #[test]
81
- fn test_rake_basic_extraction() {
82
- let config = KeywordConfig::rake();
83
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
84
-
85
- assert!(!keywords.is_empty(), "Should extract keywords from document");
86
- assert!(
87
- keywords.len() <= config.max_keywords,
88
- "Should respect max_keywords limit"
89
- );
90
-
91
- for i in 1..keywords.len() {
92
- assert!(
93
- keywords[i - 1].score >= keywords[i].score,
94
- "Keywords should be sorted by score descending"
95
- );
96
- }
97
-
98
- for keyword in &keywords {
99
- assert_eq!(keyword.algorithm, KeywordAlgorithm::Rake);
100
- }
101
-
102
- let keyword_texts: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
103
- let relevant_terms = [
104
- "machine learning",
105
- "artificial intelligence",
106
- "neural networks",
107
- "deep learning",
108
- ];
109
- let has_relevant = keyword_texts
110
- .iter()
111
- .any(|kw| relevant_terms.iter().any(|term| kw.to_lowercase().contains(term)));
112
- assert!(
113
- has_relevant,
114
- "Should extract at least one ML-related term, got: {:?}",
115
- keyword_texts
116
- );
117
- }
118
-
119
- #[cfg(all(feature = "keywords-yake", feature = "keywords-rake"))]
120
- #[test]
121
- fn test_yake_vs_rake_comparison() {
122
- let yake_config = KeywordConfig::yake().with_max_keywords(5);
123
- let rake_config = KeywordConfig::rake().with_max_keywords(5);
124
-
125
- let yake_keywords = extract_keywords(ML_DOCUMENT, &yake_config).unwrap();
126
- let rake_keywords = extract_keywords(ML_DOCUMENT, &rake_config).unwrap();
127
-
128
- assert!(!yake_keywords.is_empty(), "YAKE should extract keywords");
129
- assert!(!rake_keywords.is_empty(), "RAKE should extract keywords");
130
-
131
- assert!(yake_keywords.iter().all(|k| k.algorithm == KeywordAlgorithm::Yake));
132
- assert!(rake_keywords.iter().all(|k| k.algorithm == KeywordAlgorithm::Rake));
133
-
134
- println!("\nYAKE keywords:");
135
- for kw in &yake_keywords {
136
- println!(" {} (score: {:.3})", kw.text, kw.score);
137
- }
138
-
139
- println!("\nRAKE keywords:");
140
- for kw in &rake_keywords {
141
- println!(" {} (score: {:.3})", kw.text, kw.score);
142
- }
143
-
144
- let yake_texts: Vec<&str> = yake_keywords.iter().map(|k| k.text.as_str()).collect();
145
- let rake_texts: Vec<&str> = rake_keywords.iter().map(|k| k.text.as_str()).collect();
146
-
147
- let has_overlap = yake_texts.iter().any(|yt| {
148
- rake_texts.iter().any(|rt| {
149
- yt.to_lowercase() == rt.to_lowercase()
150
- || yt.to_lowercase().contains(&rt.to_lowercase())
151
- || rt.to_lowercase().contains(&yt.to_lowercase())
152
- })
153
- });
154
-
155
- if !has_overlap {
156
- println!("Note: YAKE and RAKE found completely different keywords, which is possible");
157
- }
158
- }
159
-
160
- #[cfg(feature = "keywords-yake")]
161
- #[test]
162
- fn test_yake_with_max_keywords() {
163
- let config = KeywordConfig::yake().with_max_keywords(3);
164
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
165
-
166
- assert!(keywords.len() <= 3, "Should respect max_keywords=3 limit");
167
-
168
- if !keywords.is_empty() {
169
- for i in 1..keywords.len() {
170
- assert!(keywords[i - 1].score >= keywords[i].score);
171
- }
172
- }
173
- }
174
-
175
- #[cfg(feature = "keywords-rake")]
176
- #[test]
177
- fn test_rake_with_max_keywords() {
178
- let config = KeywordConfig::rake().with_max_keywords(3);
179
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
180
-
181
- assert!(keywords.len() <= 3, "Should respect max_keywords=3 limit");
182
-
183
- if !keywords.is_empty() {
184
- for i in 1..keywords.len() {
185
- assert!(keywords[i - 1].score >= keywords[i].score);
186
- }
187
- }
188
- }
189
-
190
- #[cfg(feature = "keywords-yake")]
191
- #[test]
192
- fn test_yake_with_min_score() {
193
- let config = KeywordConfig::yake().with_min_score(0.5);
194
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
195
-
196
- for keyword in &keywords {
197
- assert!(
198
- keyword.score >= 0.5,
199
- "Keyword '{}' score {} should be >= 0.5",
200
- keyword.text,
201
- keyword.score
202
- );
203
- }
204
- }
205
-
206
- #[cfg(feature = "keywords-rake")]
207
- #[test]
208
- fn test_rake_with_min_score() {
209
- let config = KeywordConfig::rake().with_min_score(0.2);
210
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
211
-
212
- for keyword in &keywords {
213
- assert!(
214
- keyword.score >= 0.2,
215
- "Keyword '{}' score {} should be >= 0.2",
216
- keyword.text,
217
- keyword.score
218
- );
219
- }
220
- }
221
-
222
- #[cfg(feature = "keywords-yake")]
223
- #[test]
224
- fn test_yake_with_ngram_range() {
225
- let config = KeywordConfig::yake().with_ngram_range(1, 1);
226
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
227
-
228
- for keyword in &keywords {
229
- let word_count = keyword.text.split_whitespace().count();
230
- assert_eq!(word_count, 1, "Should only extract unigrams (single words)");
231
- }
232
-
233
- let config = KeywordConfig::yake().with_ngram_range(2, 3);
234
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
235
-
236
- for keyword in &keywords {
237
- let word_count = keyword.text.split_whitespace().count();
238
- assert!(
239
- (2..=3).contains(&word_count),
240
- "Should only extract 2-3 word phrases, got {} words in '{}'",
241
- word_count,
242
- keyword.text
243
- );
244
- }
245
- }
246
-
247
- #[cfg(feature = "keywords-rake")]
248
- #[test]
249
- fn test_rake_with_ngram_range() {
250
- let config = KeywordConfig::rake().with_ngram_range(1, 1);
251
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
252
-
253
- for keyword in &keywords {
254
- let word_count = keyword.text.split_whitespace().count();
255
- assert_eq!(word_count, 1, "Should only extract unigrams (single words)");
256
- }
257
-
258
- let config = KeywordConfig::rake().with_ngram_range(2, 2);
259
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
260
-
261
- for keyword in &keywords {
262
- let word_count = keyword.text.split_whitespace().count();
263
- assert_eq!(word_count, 2, "Should only extract bigrams (2-word phrases)");
264
- }
265
- }
266
-
267
- #[cfg(feature = "keywords-rake")]
268
- #[test]
269
- fn test_rake_with_spanish() {
270
- let config = KeywordConfig::rake().with_language("es");
271
- let keywords = extract_keywords(SPANISH_DOCUMENT, &config).unwrap();
272
-
273
- assert!(!keywords.is_empty(), "Should extract Spanish keywords");
274
-
275
- let keyword_texts: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
276
- println!("\nSpanish keywords:");
277
- for kw in &keywords {
278
- println!(" {} (score: {:.3})", kw.text, kw.score);
279
- }
280
-
281
- let relevant_terms = ["aprendizaje", "inteligencia", "redes neuronales", "lenguaje"];
282
- let has_relevant = keyword_texts
283
- .iter()
284
- .any(|kw| relevant_terms.iter().any(|term| kw.to_lowercase().contains(term)));
285
-
286
- assert!(
287
- has_relevant,
288
- "Should extract at least one relevant Spanish term, got: {:?}",
289
- keyword_texts
290
- );
291
- }
292
-
293
- #[cfg(feature = "keywords-yake")]
294
- #[test]
295
- fn test_yake_with_spanish() {
296
- let config = KeywordConfig::yake().with_language("es");
297
- let keywords = extract_keywords(SPANISH_DOCUMENT, &config).unwrap();
298
-
299
- assert!(!keywords.is_empty(), "Should extract Spanish keywords");
300
-
301
- println!("\nYAKE Spanish keywords:");
302
- for kw in &keywords {
303
- println!(" {} (score: {:.3})", kw.text, kw.score);
304
- }
305
- }
306
-
307
- #[cfg(feature = "keywords-rake")]
308
- #[test]
309
- fn test_rake_empty_document() {
310
- let config = KeywordConfig::rake();
311
- let keywords = extract_keywords("", &config).unwrap();
312
-
313
- assert!(keywords.is_empty(), "Empty document should yield no keywords");
314
- }
315
-
316
- #[cfg(feature = "keywords-yake")]
317
- #[test]
318
- fn test_yake_empty_document() {
319
- let config = KeywordConfig::yake();
320
- let keywords = extract_keywords("", &config).unwrap();
321
-
322
- assert!(keywords.is_empty(), "Empty document should yield no keywords");
323
- }
324
-
325
- #[cfg(feature = "keywords-rake")]
326
- #[test]
327
- fn test_rake_short_document() {
328
- let short_text = "Machine learning algorithms.";
329
- let config = KeywordConfig::rake();
330
- let keywords = extract_keywords(short_text, &config).unwrap();
331
-
332
- println!(
333
- "Keywords from short text: {:?}",
334
- keywords.iter().map(|k| &k.text).collect::<Vec<_>>()
335
- );
336
- }
337
-
338
- #[cfg(feature = "keywords-yake")]
339
- #[test]
340
- fn test_yake_short_document() {
341
- let short_text = "Machine learning algorithms.";
342
- let config = KeywordConfig::yake();
343
- let keywords = extract_keywords(short_text, &config).unwrap();
344
-
345
- println!(
346
- "YAKE keywords from short text: {:?}",
347
- keywords.iter().map(|k| &k.text).collect::<Vec<_>>()
348
- );
349
- }
350
-
351
- #[cfg(feature = "keywords-rake")]
352
- #[test]
353
- fn test_rake_different_domains() {
354
- let config = KeywordConfig::rake().with_max_keywords(5);
355
-
356
- let ml_keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
357
- println!("\nML domain keywords:");
358
- for kw in &ml_keywords {
359
- println!(" {} (score: {:.3})", kw.text, kw.score);
360
- }
361
-
362
- let climate_keywords = extract_keywords(CLIMATE_DOCUMENT, &config).unwrap();
363
- println!("\nClimate domain keywords:");
364
- for kw in &climate_keywords {
365
- println!(" {} (score: {:.3})", kw.text, kw.score);
366
- }
367
-
368
- assert!(!ml_keywords.is_empty(), "Should extract ML keywords");
369
- assert!(!climate_keywords.is_empty(), "Should extract climate keywords");
370
-
371
- let ml_texts: Vec<&str> = ml_keywords.iter().map(|k| k.text.as_str()).collect();
372
- let climate_texts: Vec<&str> = climate_keywords.iter().map(|k| k.text.as_str()).collect();
373
-
374
- let has_ml_term = ml_texts.iter().any(|kw| {
375
- kw.to_lowercase().contains("learn")
376
- || kw.to_lowercase().contains("neural")
377
- || kw.to_lowercase().contains("algorithm")
378
- });
379
-
380
- let has_climate_term = climate_texts.iter().any(|kw| {
381
- kw.to_lowercase().contains("climate")
382
- || kw.to_lowercase().contains("greenhouse")
383
- || kw.to_lowercase().contains("fossil")
384
- });
385
-
386
- assert!(has_ml_term, "ML document should have ML-related keywords");
387
- assert!(
388
- has_climate_term,
389
- "Climate document should have climate-related keywords"
390
- );
391
- }
392
-
393
- #[cfg(feature = "keywords-yake")]
394
- #[test]
395
- fn test_yake_different_domains() {
396
- let config = KeywordConfig::yake().with_max_keywords(5);
397
-
398
- let ml_keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
399
- println!("\nYAKE ML domain keywords:");
400
- for kw in &ml_keywords {
401
- println!(" {} (score: {:.3})", kw.text, kw.score);
402
- }
403
-
404
- let climate_keywords = extract_keywords(CLIMATE_DOCUMENT, &config).unwrap();
405
- println!("\nYAKE Climate domain keywords:");
406
- for kw in &climate_keywords {
407
- println!(" {} (score: {:.3})", kw.text, kw.score);
408
- }
409
-
410
- assert!(!ml_keywords.is_empty(), "Should extract ML keywords");
411
- assert!(!climate_keywords.is_empty(), "Should extract climate keywords");
412
- }
413
-
414
- #[cfg(feature = "keywords-rake")]
415
- #[test]
416
- fn test_rake_score_distribution() {
417
- let config = KeywordConfig::rake();
418
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
419
-
420
- if keywords.is_empty() {
421
- return;
422
- }
423
-
424
- for keyword in &keywords {
425
- assert!(
426
- keyword.score >= 0.0 && keyword.score <= 1.0,
427
- "Score {} for '{}' should be in [0.0, 1.0] range",
428
- keyword.score,
429
- keyword.text
430
- );
431
- }
432
-
433
- let first_score = keywords[0].score;
434
- let all_same = keywords.iter().all(|k| (k.score - first_score).abs() < 0.001);
435
- assert!(!all_same, "Scores should be distributed, not all identical");
436
- }
437
-
438
- #[cfg(feature = "keywords-yake")]
439
- #[test]
440
- fn test_yake_score_distribution() {
441
- let config = KeywordConfig::yake();
442
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
443
-
444
- if keywords.is_empty() {
445
- return;
446
- }
447
-
448
- for keyword in &keywords {
449
- assert!(
450
- keyword.score >= 0.0 && keyword.score <= 1.0,
451
- "Score {} for '{}' should be in [0.0, 1.0] range",
452
- keyword.score,
453
- keyword.text
454
- );
455
- }
456
-
457
- let first_score = keywords[0].score;
458
- let all_same = keywords.iter().all(|k| (k.score - first_score).abs() < 0.001);
459
- assert!(!all_same, "Scores should be distributed, not all identical");
460
- }
461
-
462
- #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
463
- #[test]
464
- fn test_keyword_struct_properties() {
465
- let config = KeywordConfig::default();
466
- let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
467
-
468
- if keywords.is_empty() {
469
- return;
470
- }
471
-
472
- for keyword in &keywords {
473
- assert!(!keyword.text.is_empty(), "Keyword text should not be empty");
474
- assert!(keyword.score >= 0.0, "Score should be non-negative");
475
- assert!(keyword.score <= 1.0, "Score should not exceed 1.0");
476
-
477
- assert_eq!(keyword.text.trim(), keyword.text, "Keyword text should be trimmed");
478
- }
479
- }
1
+ //! Integration tests for keyword extraction functionality.
2
+ //!
3
+ //! These tests verify end-to-end keyword extraction with both YAKE and RAKE algorithms,
4
+ //! testing various configurations, languages, and edge cases.
5
+
6
+ #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
7
+ use kreuzberg::keywords::{KeywordAlgorithm, KeywordConfig, extract_keywords};
8
+
9
+ /// Sample document about machine learning for testing.
10
+ #[allow(dead_code)]
11
+ const ML_DOCUMENT: &str = r#"
12
+ Machine learning is a branch of artificial intelligence and computer science which focuses on the use of data and algorithms to imitate the way that humans learn.
13
+ Machine learning algorithms build a model based on sample data, known as training data, to make predictions or decisions without being explicitly programmed to do so.
14
+ Deep learning is a type of machine learning based on artificial neural networks. The learning process is deep because the structure of artificial neural networks consists of multiple input, output, and hidden layers.
15
+ Neural networks can be used for supervised, semi-supervised, and unsupervised learning. Convolutional neural networks are commonly applied to analyzing visual imagery.
16
+ Natural language processing is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language.
17
+ "#;
18
+
19
+ /// Sample document about climate change for testing.
20
+ #[allow(dead_code)]
21
+ const CLIMATE_DOCUMENT: &str = r#"
22
+ Climate change refers to long-term shifts in temperatures and weather patterns. These shifts may be natural, such as through variations in the solar cycle.
23
+ But since the 1800s, human activities have been the main driver of climate change, primarily due to burning fossil fuels like coal, oil, and gas.
24
+ Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun's heat and raising temperatures.
25
+ The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from burning fossil fuels for energy, agriculture, and deforestation.
26
+ Global warming is the long-term heating of Earth's climate system. Climate science reveals that human activity has been the dominant cause of climate change since the mid-20th century.
27
+ "#;
28
+
29
+ /// Sample Spanish document for multilingual testing.
30
+ #[allow(dead_code)]
31
+ const SPANISH_DOCUMENT: &str = r#"
32
+ El aprendizaje automático es una rama de la inteligencia artificial. Los algoritmos de aprendizaje automático construyen modelos basados en datos de entrenamiento.
33
+ Las redes neuronales artificiales son sistemas inspirados en las redes neuronales biológicas del cerebro humano. El aprendizaje profundo utiliza redes neuronales multicapa.
34
+ El procesamiento del lenguaje natural es un campo de la inteligencia artificial que se ocupa de la interacción entre computadoras y lenguajes humanos.
35
+ "#;
36
+
37
+ #[cfg(feature = "keywords-yake")]
38
+ #[test]
39
+ fn test_yake_basic_extraction() {
40
+ let config = KeywordConfig::yake();
41
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
42
+
43
+ assert!(!keywords.is_empty(), "Should extract keywords from document");
44
+ assert!(
45
+ keywords.len() <= config.max_keywords,
46
+ "Should respect max_keywords limit"
47
+ );
48
+
49
+ for i in 1..keywords.len() {
50
+ assert!(
51
+ keywords[i - 1].score >= keywords[i].score,
52
+ "Keywords should be sorted by score descending: {} >= {}",
53
+ keywords[i - 1].score,
54
+ keywords[i].score
55
+ );
56
+ }
57
+
58
+ for keyword in &keywords {
59
+ assert_eq!(keyword.algorithm, KeywordAlgorithm::Yake);
60
+ }
61
+
62
+ let keyword_texts: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
63
+ let relevant_terms = [
64
+ "machine learning",
65
+ "artificial intelligence",
66
+ "neural networks",
67
+ "deep learning",
68
+ ];
69
+ let has_relevant = keyword_texts
70
+ .iter()
71
+ .any(|kw| relevant_terms.iter().any(|term| kw.to_lowercase().contains(term)));
72
+ assert!(
73
+ has_relevant,
74
+ "Should extract at least one ML-related term, got: {:?}",
75
+ keyword_texts
76
+ );
77
+ }
78
+
79
+ #[cfg(feature = "keywords-rake")]
80
+ #[test]
81
+ fn test_rake_basic_extraction() {
82
+ let config = KeywordConfig::rake();
83
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
84
+
85
+ assert!(!keywords.is_empty(), "Should extract keywords from document");
86
+ assert!(
87
+ keywords.len() <= config.max_keywords,
88
+ "Should respect max_keywords limit"
89
+ );
90
+
91
+ for i in 1..keywords.len() {
92
+ assert!(
93
+ keywords[i - 1].score >= keywords[i].score,
94
+ "Keywords should be sorted by score descending"
95
+ );
96
+ }
97
+
98
+ for keyword in &keywords {
99
+ assert_eq!(keyword.algorithm, KeywordAlgorithm::Rake);
100
+ }
101
+
102
+ let keyword_texts: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
103
+ let relevant_terms = [
104
+ "machine learning",
105
+ "artificial intelligence",
106
+ "neural networks",
107
+ "deep learning",
108
+ ];
109
+ let has_relevant = keyword_texts
110
+ .iter()
111
+ .any(|kw| relevant_terms.iter().any(|term| kw.to_lowercase().contains(term)));
112
+ assert!(
113
+ has_relevant,
114
+ "Should extract at least one ML-related term, got: {:?}",
115
+ keyword_texts
116
+ );
117
+ }
118
+
119
+ #[cfg(all(feature = "keywords-yake", feature = "keywords-rake"))]
120
+ #[test]
121
+ fn test_yake_vs_rake_comparison() {
122
+ let yake_config = KeywordConfig::yake().with_max_keywords(5);
123
+ let rake_config = KeywordConfig::rake().with_max_keywords(5);
124
+
125
+ let yake_keywords = extract_keywords(ML_DOCUMENT, &yake_config).unwrap();
126
+ let rake_keywords = extract_keywords(ML_DOCUMENT, &rake_config).unwrap();
127
+
128
+ assert!(!yake_keywords.is_empty(), "YAKE should extract keywords");
129
+ assert!(!rake_keywords.is_empty(), "RAKE should extract keywords");
130
+
131
+ assert!(yake_keywords.iter().all(|k| k.algorithm == KeywordAlgorithm::Yake));
132
+ assert!(rake_keywords.iter().all(|k| k.algorithm == KeywordAlgorithm::Rake));
133
+
134
+ println!("\nYAKE keywords:");
135
+ for kw in &yake_keywords {
136
+ println!(" {} (score: {:.3})", kw.text, kw.score);
137
+ }
138
+
139
+ println!("\nRAKE keywords:");
140
+ for kw in &rake_keywords {
141
+ println!(" {} (score: {:.3})", kw.text, kw.score);
142
+ }
143
+
144
+ let yake_texts: Vec<&str> = yake_keywords.iter().map(|k| k.text.as_str()).collect();
145
+ let rake_texts: Vec<&str> = rake_keywords.iter().map(|k| k.text.as_str()).collect();
146
+
147
+ let has_overlap = yake_texts.iter().any(|yt| {
148
+ rake_texts.iter().any(|rt| {
149
+ yt.to_lowercase() == rt.to_lowercase()
150
+ || yt.to_lowercase().contains(&rt.to_lowercase())
151
+ || rt.to_lowercase().contains(&yt.to_lowercase())
152
+ })
153
+ });
154
+
155
+ if !has_overlap {
156
+ println!("Note: YAKE and RAKE found completely different keywords, which is possible");
157
+ }
158
+ }
159
+
160
+ #[cfg(feature = "keywords-yake")]
161
+ #[test]
162
+ fn test_yake_with_max_keywords() {
163
+ let config = KeywordConfig::yake().with_max_keywords(3);
164
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
165
+
166
+ assert!(keywords.len() <= 3, "Should respect max_keywords=3 limit");
167
+
168
+ if !keywords.is_empty() {
169
+ for i in 1..keywords.len() {
170
+ assert!(keywords[i - 1].score >= keywords[i].score);
171
+ }
172
+ }
173
+ }
174
+
175
+ #[cfg(feature = "keywords-rake")]
176
+ #[test]
177
+ fn test_rake_with_max_keywords() {
178
+ let config = KeywordConfig::rake().with_max_keywords(3);
179
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
180
+
181
+ assert!(keywords.len() <= 3, "Should respect max_keywords=3 limit");
182
+
183
+ if !keywords.is_empty() {
184
+ for i in 1..keywords.len() {
185
+ assert!(keywords[i - 1].score >= keywords[i].score);
186
+ }
187
+ }
188
+ }
189
+
190
+ #[cfg(feature = "keywords-yake")]
191
+ #[test]
192
+ fn test_yake_with_min_score() {
193
+ let config = KeywordConfig::yake().with_min_score(0.5);
194
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
195
+
196
+ for keyword in &keywords {
197
+ assert!(
198
+ keyword.score >= 0.5,
199
+ "Keyword '{}' score {} should be >= 0.5",
200
+ keyword.text,
201
+ keyword.score
202
+ );
203
+ }
204
+ }
205
+
206
+ #[cfg(feature = "keywords-rake")]
207
+ #[test]
208
+ fn test_rake_with_min_score() {
209
+ let config = KeywordConfig::rake().with_min_score(0.2);
210
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
211
+
212
+ for keyword in &keywords {
213
+ assert!(
214
+ keyword.score >= 0.2,
215
+ "Keyword '{}' score {} should be >= 0.2",
216
+ keyword.text,
217
+ keyword.score
218
+ );
219
+ }
220
+ }
221
+
222
+ #[cfg(feature = "keywords-yake")]
223
+ #[test]
224
+ fn test_yake_with_ngram_range() {
225
+ let config = KeywordConfig::yake().with_ngram_range(1, 1);
226
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
227
+
228
+ for keyword in &keywords {
229
+ let word_count = keyword.text.split_whitespace().count();
230
+ assert_eq!(word_count, 1, "Should only extract unigrams (single words)");
231
+ }
232
+
233
+ let config = KeywordConfig::yake().with_ngram_range(2, 3);
234
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
235
+
236
+ for keyword in &keywords {
237
+ let word_count = keyword.text.split_whitespace().count();
238
+ assert!(
239
+ (2..=3).contains(&word_count),
240
+ "Should only extract 2-3 word phrases, got {} words in '{}'",
241
+ word_count,
242
+ keyword.text
243
+ );
244
+ }
245
+ }
246
+
247
+ #[cfg(feature = "keywords-rake")]
248
+ #[test]
249
+ fn test_rake_with_ngram_range() {
250
+ let config = KeywordConfig::rake().with_ngram_range(1, 1);
251
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
252
+
253
+ for keyword in &keywords {
254
+ let word_count = keyword.text.split_whitespace().count();
255
+ assert_eq!(word_count, 1, "Should only extract unigrams (single words)");
256
+ }
257
+
258
+ let config = KeywordConfig::rake().with_ngram_range(2, 2);
259
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
260
+
261
+ for keyword in &keywords {
262
+ let word_count = keyword.text.split_whitespace().count();
263
+ assert_eq!(word_count, 2, "Should only extract bigrams (2-word phrases)");
264
+ }
265
+ }
266
+
267
+ #[cfg(feature = "keywords-rake")]
268
+ #[test]
269
+ fn test_rake_with_spanish() {
270
+ let config = KeywordConfig::rake().with_language("es");
271
+ let keywords = extract_keywords(SPANISH_DOCUMENT, &config).unwrap();
272
+
273
+ assert!(!keywords.is_empty(), "Should extract Spanish keywords");
274
+
275
+ let keyword_texts: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
276
+ println!("\nSpanish keywords:");
277
+ for kw in &keywords {
278
+ println!(" {} (score: {:.3})", kw.text, kw.score);
279
+ }
280
+
281
+ let relevant_terms = ["aprendizaje", "inteligencia", "redes neuronales", "lenguaje"];
282
+ let has_relevant = keyword_texts
283
+ .iter()
284
+ .any(|kw| relevant_terms.iter().any(|term| kw.to_lowercase().contains(term)));
285
+
286
+ assert!(
287
+ has_relevant,
288
+ "Should extract at least one relevant Spanish term, got: {:?}",
289
+ keyword_texts
290
+ );
291
+ }
292
+
293
+ #[cfg(feature = "keywords-yake")]
294
+ #[test]
295
+ fn test_yake_with_spanish() {
296
+ let config = KeywordConfig::yake().with_language("es");
297
+ let keywords = extract_keywords(SPANISH_DOCUMENT, &config).unwrap();
298
+
299
+ assert!(!keywords.is_empty(), "Should extract Spanish keywords");
300
+
301
+ println!("\nYAKE Spanish keywords:");
302
+ for kw in &keywords {
303
+ println!(" {} (score: {:.3})", kw.text, kw.score);
304
+ }
305
+ }
306
+
307
+ #[cfg(feature = "keywords-rake")]
308
+ #[test]
309
+ fn test_rake_empty_document() {
310
+ let config = KeywordConfig::rake();
311
+ let keywords = extract_keywords("", &config).unwrap();
312
+
313
+ assert!(keywords.is_empty(), "Empty document should yield no keywords");
314
+ }
315
+
316
+ #[cfg(feature = "keywords-yake")]
317
+ #[test]
318
+ fn test_yake_empty_document() {
319
+ let config = KeywordConfig::yake();
320
+ let keywords = extract_keywords("", &config).unwrap();
321
+
322
+ assert!(keywords.is_empty(), "Empty document should yield no keywords");
323
+ }
324
+
325
+ #[cfg(feature = "keywords-rake")]
326
+ #[test]
327
+ fn test_rake_short_document() {
328
+ let short_text = "Machine learning algorithms.";
329
+ let config = KeywordConfig::rake();
330
+ let keywords = extract_keywords(short_text, &config).unwrap();
331
+
332
+ println!(
333
+ "Keywords from short text: {:?}",
334
+ keywords.iter().map(|k| &k.text).collect::<Vec<_>>()
335
+ );
336
+ }
337
+
338
+ #[cfg(feature = "keywords-yake")]
339
+ #[test]
340
+ fn test_yake_short_document() {
341
+ let short_text = "Machine learning algorithms.";
342
+ let config = KeywordConfig::yake();
343
+ let keywords = extract_keywords(short_text, &config).unwrap();
344
+
345
+ println!(
346
+ "YAKE keywords from short text: {:?}",
347
+ keywords.iter().map(|k| &k.text).collect::<Vec<_>>()
348
+ );
349
+ }
350
+
351
+ #[cfg(feature = "keywords-rake")]
352
+ #[test]
353
+ fn test_rake_different_domains() {
354
+ let config = KeywordConfig::rake().with_max_keywords(5);
355
+
356
+ let ml_keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
357
+ println!("\nML domain keywords:");
358
+ for kw in &ml_keywords {
359
+ println!(" {} (score: {:.3})", kw.text, kw.score);
360
+ }
361
+
362
+ let climate_keywords = extract_keywords(CLIMATE_DOCUMENT, &config).unwrap();
363
+ println!("\nClimate domain keywords:");
364
+ for kw in &climate_keywords {
365
+ println!(" {} (score: {:.3})", kw.text, kw.score);
366
+ }
367
+
368
+ assert!(!ml_keywords.is_empty(), "Should extract ML keywords");
369
+ assert!(!climate_keywords.is_empty(), "Should extract climate keywords");
370
+
371
+ let ml_texts: Vec<&str> = ml_keywords.iter().map(|k| k.text.as_str()).collect();
372
+ let climate_texts: Vec<&str> = climate_keywords.iter().map(|k| k.text.as_str()).collect();
373
+
374
+ let has_ml_term = ml_texts.iter().any(|kw| {
375
+ kw.to_lowercase().contains("learn")
376
+ || kw.to_lowercase().contains("neural")
377
+ || kw.to_lowercase().contains("algorithm")
378
+ });
379
+
380
+ let has_climate_term = climate_texts.iter().any(|kw| {
381
+ kw.to_lowercase().contains("climate")
382
+ || kw.to_lowercase().contains("greenhouse")
383
+ || kw.to_lowercase().contains("fossil")
384
+ });
385
+
386
+ assert!(has_ml_term, "ML document should have ML-related keywords");
387
+ assert!(
388
+ has_climate_term,
389
+ "Climate document should have climate-related keywords"
390
+ );
391
+ }
392
+
393
+ #[cfg(feature = "keywords-yake")]
394
+ #[test]
395
+ fn test_yake_different_domains() {
396
+ let config = KeywordConfig::yake().with_max_keywords(5);
397
+
398
+ let ml_keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
399
+ println!("\nYAKE ML domain keywords:");
400
+ for kw in &ml_keywords {
401
+ println!(" {} (score: {:.3})", kw.text, kw.score);
402
+ }
403
+
404
+ let climate_keywords = extract_keywords(CLIMATE_DOCUMENT, &config).unwrap();
405
+ println!("\nYAKE Climate domain keywords:");
406
+ for kw in &climate_keywords {
407
+ println!(" {} (score: {:.3})", kw.text, kw.score);
408
+ }
409
+
410
+ assert!(!ml_keywords.is_empty(), "Should extract ML keywords");
411
+ assert!(!climate_keywords.is_empty(), "Should extract climate keywords");
412
+ }
413
+
414
+ #[cfg(feature = "keywords-rake")]
415
+ #[test]
416
+ fn test_rake_score_distribution() {
417
+ let config = KeywordConfig::rake();
418
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
419
+
420
+ if keywords.is_empty() {
421
+ return;
422
+ }
423
+
424
+ for keyword in &keywords {
425
+ assert!(
426
+ keyword.score >= 0.0 && keyword.score <= 1.0,
427
+ "Score {} for '{}' should be in [0.0, 1.0] range",
428
+ keyword.score,
429
+ keyword.text
430
+ );
431
+ }
432
+
433
+ let first_score = keywords[0].score;
434
+ let all_same = keywords.iter().all(|k| (k.score - first_score).abs() < 0.001);
435
+ assert!(!all_same, "Scores should be distributed, not all identical");
436
+ }
437
+
438
+ #[cfg(feature = "keywords-yake")]
439
+ #[test]
440
+ fn test_yake_score_distribution() {
441
+ let config = KeywordConfig::yake();
442
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
443
+
444
+ if keywords.is_empty() {
445
+ return;
446
+ }
447
+
448
+ for keyword in &keywords {
449
+ assert!(
450
+ keyword.score >= 0.0 && keyword.score <= 1.0,
451
+ "Score {} for '{}' should be in [0.0, 1.0] range",
452
+ keyword.score,
453
+ keyword.text
454
+ );
455
+ }
456
+
457
+ let first_score = keywords[0].score;
458
+ let all_same = keywords.iter().all(|k| (k.score - first_score).abs() < 0.001);
459
+ assert!(!all_same, "Scores should be distributed, not all identical");
460
+ }
461
+
462
+ #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
463
+ #[test]
464
+ fn test_keyword_struct_properties() {
465
+ let config = KeywordConfig::default();
466
+ let keywords = extract_keywords(ML_DOCUMENT, &config).unwrap();
467
+
468
+ if keywords.is_empty() {
469
+ return;
470
+ }
471
+
472
+ for keyword in &keywords {
473
+ assert!(!keyword.text.is_empty(), "Keyword text should not be empty");
474
+ assert!(keyword.score >= 0.0, "Score should be non-negative");
475
+ assert!(keyword.score <= 1.0, "Score should not exceed 1.0");
476
+
477
+ assert_eq!(keyword.text.trim(), keyword.text, "Keyword text should be trimmed");
478
+ }
479
+ }