hitokage 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +20 -0
- data/.travis.yml +4 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +21 -0
- data/README.md +89 -0
- data/Rakefile +19 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/ext/hitokage_ext/double-conversion/AUTHORS +14 -0
- data/ext/hitokage_ext/double-conversion/COPYING +26 -0
- data/ext/hitokage_ext/double-conversion/LICENSE +26 -0
- data/ext/hitokage_ext/double-conversion/README +54 -0
- data/ext/hitokage_ext/double-conversion/bignum-dtoa.cc +641 -0
- data/ext/hitokage_ext/double-conversion/bignum-dtoa.h +84 -0
- data/ext/hitokage_ext/double-conversion/bignum.cc +766 -0
- data/ext/hitokage_ext/double-conversion/bignum.h +144 -0
- data/ext/hitokage_ext/double-conversion/cached-powers.cc +175 -0
- data/ext/hitokage_ext/double-conversion/cached-powers.h +64 -0
- data/ext/hitokage_ext/double-conversion/diy-fp.cc +57 -0
- data/ext/hitokage_ext/double-conversion/diy-fp.h +118 -0
- data/ext/hitokage_ext/double-conversion/double-conversion.cc +982 -0
- data/ext/hitokage_ext/double-conversion/double-conversion.h +543 -0
- data/ext/hitokage_ext/double-conversion/fast-dtoa.cc +665 -0
- data/ext/hitokage_ext/double-conversion/fast-dtoa.h +88 -0
- data/ext/hitokage_ext/double-conversion/fixed-dtoa.cc +404 -0
- data/ext/hitokage_ext/double-conversion/fixed-dtoa.h +56 -0
- data/ext/hitokage_ext/double-conversion/ieee.h +402 -0
- data/ext/hitokage_ext/double-conversion/strtod.cc +555 -0
- data/ext/hitokage_ext/double-conversion/strtod.h +45 -0
- data/ext/hitokage_ext/double-conversion/utils.h +341 -0
- data/ext/hitokage_ext/extconf.rb +10 -0
- data/ext/hitokage_ext/hitokage_ext.cc +26 -0
- data/hitokage.gemspec +26 -0
- data/lib/hitokage.rb +5 -0
- data/lib/hitokage/replace_float_to_s.rb +6 -0
- data/lib/hitokage/version.rb +3 -0
- metadata +136 -0
@@ -0,0 +1,665 @@
|
|
1
|
+
// Copyright 2012 the V8 project authors. All rights reserved.
|
2
|
+
// Redistribution and use in source and binary forms, with or without
|
3
|
+
// modification, are permitted provided that the following conditions are
|
4
|
+
// met:
|
5
|
+
//
|
6
|
+
// * Redistributions of source code must retain the above copyright
|
7
|
+
// notice, this list of conditions and the following disclaimer.
|
8
|
+
// * Redistributions in binary form must reproduce the above
|
9
|
+
// copyright notice, this list of conditions and the following
|
10
|
+
// disclaimer in the documentation and/or other materials provided
|
11
|
+
// with the distribution.
|
12
|
+
// * Neither the name of Google Inc. nor the names of its
|
13
|
+
// contributors may be used to endorse or promote products derived
|
14
|
+
// from this software without specific prior written permission.
|
15
|
+
//
|
16
|
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
17
|
+
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
18
|
+
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
19
|
+
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
20
|
+
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
21
|
+
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
22
|
+
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
23
|
+
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
24
|
+
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
25
|
+
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26
|
+
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27
|
+
|
28
|
+
#include "fast-dtoa.h"
|
29
|
+
|
30
|
+
#include "cached-powers.h"
|
31
|
+
#include "diy-fp.h"
|
32
|
+
#include "ieee.h"
|
33
|
+
|
34
|
+
namespace double_conversion {
|
35
|
+
|
36
|
+
// The minimal and maximal target exponent define the range of w's binary
|
37
|
+
// exponent, where 'w' is the result of multiplying the input by a cached power
|
38
|
+
// of ten.
|
39
|
+
//
|
40
|
+
// A different range might be chosen on a different platform, to optimize digit
|
41
|
+
// generation, but a smaller range requires more powers of ten to be cached.
|
42
|
+
static const int kMinimalTargetExponent = -60;
|
43
|
+
static const int kMaximalTargetExponent = -32;
|
44
|
+
|
45
|
+
|
46
|
+
// Adjusts the last digit of the generated number, and screens out generated
|
47
|
+
// solutions that may be inaccurate. A solution may be inaccurate if it is
|
48
|
+
// outside the safe interval, or if we cannot prove that it is closer to the
|
49
|
+
// input than a neighboring representation of the same length.
|
50
|
+
//
|
51
|
+
// Input: * buffer containing the digits of too_high / 10^kappa
|
52
|
+
// * the buffer's length
|
53
|
+
// * distance_too_high_w == (too_high - w).f() * unit
|
54
|
+
// * unsafe_interval == (too_high - too_low).f() * unit
|
55
|
+
// * rest = (too_high - buffer * 10^kappa).f() * unit
|
56
|
+
// * ten_kappa = 10^kappa * unit
|
57
|
+
// * unit = the common multiplier
|
58
|
+
// Output: returns true if the buffer is guaranteed to contain the closest
|
59
|
+
// representable number to the input.
|
60
|
+
// Modifies the generated digits in the buffer to approach (round towards) w.
|
61
|
+
static bool RoundWeed(Vector<char> buffer,
|
62
|
+
int length,
|
63
|
+
uint64_t distance_too_high_w,
|
64
|
+
uint64_t unsafe_interval,
|
65
|
+
uint64_t rest,
|
66
|
+
uint64_t ten_kappa,
|
67
|
+
uint64_t unit) {
|
68
|
+
uint64_t small_distance = distance_too_high_w - unit;
|
69
|
+
uint64_t big_distance = distance_too_high_w + unit;
|
70
|
+
// Let w_low = too_high - big_distance, and
|
71
|
+
// w_high = too_high - small_distance.
|
72
|
+
// Note: w_low < w < w_high
|
73
|
+
//
|
74
|
+
// The real w (* unit) must lie somewhere inside the interval
|
75
|
+
// ]w_low; w_high[ (often written as "(w_low; w_high)")
|
76
|
+
|
77
|
+
// Basically the buffer currently contains a number in the unsafe interval
|
78
|
+
// ]too_low; too_high[ with too_low < w < too_high
|
79
|
+
//
|
80
|
+
// too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
81
|
+
// ^v 1 unit ^ ^ ^ ^
|
82
|
+
// boundary_high --------------------- . . . .
|
83
|
+
// ^v 1 unit . . . .
|
84
|
+
// - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
|
85
|
+
// . . ^ . .
|
86
|
+
// . big_distance . . .
|
87
|
+
// . . . . rest
|
88
|
+
// small_distance . . . .
|
89
|
+
// v . . . .
|
90
|
+
// w_high - - - - - - - - - - - - - - - - - - . . . .
|
91
|
+
// ^v 1 unit . . . .
|
92
|
+
// w ---------------------------------------- . . . .
|
93
|
+
// ^v 1 unit v . . .
|
94
|
+
// w_low - - - - - - - - - - - - - - - - - - - - - . . .
|
95
|
+
// . . v
|
96
|
+
// buffer --------------------------------------------------+-------+--------
|
97
|
+
// . .
|
98
|
+
// safe_interval .
|
99
|
+
// v .
|
100
|
+
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
|
101
|
+
// ^v 1 unit .
|
102
|
+
// boundary_low ------------------------- unsafe_interval
|
103
|
+
// ^v 1 unit v
|
104
|
+
// too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
105
|
+
//
|
106
|
+
//
|
107
|
+
// Note that the value of buffer could lie anywhere inside the range too_low
|
108
|
+
// to too_high.
|
109
|
+
//
|
110
|
+
// boundary_low, boundary_high and w are approximations of the real boundaries
|
111
|
+
// and v (the input number). They are guaranteed to be precise up to one unit.
|
112
|
+
// In fact the error is guaranteed to be strictly less than one unit.
|
113
|
+
//
|
114
|
+
// Anything that lies outside the unsafe interval is guaranteed not to round
|
115
|
+
// to v when read again.
|
116
|
+
// Anything that lies inside the safe interval is guaranteed to round to v
|
117
|
+
// when read again.
|
118
|
+
// If the number inside the buffer lies inside the unsafe interval but not
|
119
|
+
// inside the safe interval then we simply do not know and bail out (returning
|
120
|
+
// false).
|
121
|
+
//
|
122
|
+
// Similarly we have to take into account the imprecision of 'w' when finding
|
123
|
+
// the closest representation of 'w'. If we have two potential
|
124
|
+
// representations, and one is closer to both w_low and w_high, then we know
|
125
|
+
// it is closer to the actual value v.
|
126
|
+
//
|
127
|
+
// By generating the digits of too_high we got the largest (closest to
|
128
|
+
// too_high) buffer that is still in the unsafe interval. In the case where
|
129
|
+
// w_high < buffer < too_high we try to decrement the buffer.
|
130
|
+
// This way the buffer approaches (rounds towards) w.
|
131
|
+
// There are 3 conditions that stop the decrementation process:
|
132
|
+
// 1) the buffer is already below w_high
|
133
|
+
// 2) decrementing the buffer would make it leave the unsafe interval
|
134
|
+
// 3) decrementing the buffer would yield a number below w_high and farther
|
135
|
+
// away than the current number. In other words:
|
136
|
+
// (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
|
137
|
+
// Instead of using the buffer directly we use its distance to too_high.
|
138
|
+
// Conceptually rest ~= too_high - buffer
|
139
|
+
// We need to do the following tests in this order to avoid over- and
|
140
|
+
// underflows.
|
141
|
+
ASSERT(rest <= unsafe_interval);
|
142
|
+
while (rest < small_distance && // Negated condition 1
|
143
|
+
unsafe_interval - rest >= ten_kappa && // Negated condition 2
|
144
|
+
(rest + ten_kappa < small_distance || // buffer{-1} > w_high
|
145
|
+
small_distance - rest >= rest + ten_kappa - small_distance)) {
|
146
|
+
buffer[length - 1]--;
|
147
|
+
rest += ten_kappa;
|
148
|
+
}
|
149
|
+
|
150
|
+
// We have approached w+ as much as possible. We now test if approaching w-
|
151
|
+
// would require changing the buffer. If yes, then we have two possible
|
152
|
+
// representations close to w, but we cannot decide which one is closer.
|
153
|
+
if (rest < big_distance &&
|
154
|
+
unsafe_interval - rest >= ten_kappa &&
|
155
|
+
(rest + ten_kappa < big_distance ||
|
156
|
+
big_distance - rest > rest + ten_kappa - big_distance)) {
|
157
|
+
return false;
|
158
|
+
}
|
159
|
+
|
160
|
+
// Weeding test.
|
161
|
+
// The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
|
162
|
+
// Since too_low = too_high - unsafe_interval this is equivalent to
|
163
|
+
// [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
|
164
|
+
// Conceptually we have: rest ~= too_high - buffer
|
165
|
+
return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
|
166
|
+
}
|
167
|
+
|
168
|
+
|
169
|
+
// Rounds the buffer upwards if the result is closer to v by possibly adding
|
170
|
+
// 1 to the buffer. If the precision of the calculation is not sufficient to
|
171
|
+
// round correctly, return false.
|
172
|
+
// The rounding might shift the whole buffer in which case the kappa is
|
173
|
+
// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
|
174
|
+
//
|
175
|
+
// If 2*rest > ten_kappa then the buffer needs to be round up.
|
176
|
+
// rest can have an error of +/- 1 unit. This function accounts for the
|
177
|
+
// imprecision and returns false, if the rounding direction cannot be
|
178
|
+
// unambiguously determined.
|
179
|
+
//
|
180
|
+
// Precondition: rest < ten_kappa.
|
181
|
+
static bool RoundWeedCounted(Vector<char> buffer,
|
182
|
+
int length,
|
183
|
+
uint64_t rest,
|
184
|
+
uint64_t ten_kappa,
|
185
|
+
uint64_t unit,
|
186
|
+
int* kappa) {
|
187
|
+
ASSERT(rest < ten_kappa);
|
188
|
+
// The following tests are done in a specific order to avoid overflows. They
|
189
|
+
// will work correctly with any uint64 values of rest < ten_kappa and unit.
|
190
|
+
//
|
191
|
+
// If the unit is too big, then we don't know which way to round. For example
|
192
|
+
// a unit of 50 means that the real number lies within rest +/- 50. If
|
193
|
+
// 10^kappa == 40 then there is no way to tell which way to round.
|
194
|
+
if (unit >= ten_kappa) return false;
|
195
|
+
// Even if unit is just half the size of 10^kappa we are already completely
|
196
|
+
// lost. (And after the previous test we know that the expression will not
|
197
|
+
// over/underflow.)
|
198
|
+
if (ten_kappa - unit <= unit) return false;
|
199
|
+
// If 2 * (rest + unit) <= 10^kappa we can safely round down.
|
200
|
+
if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
|
201
|
+
return true;
|
202
|
+
}
|
203
|
+
// If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
|
204
|
+
if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
|
205
|
+
// Increment the last digit recursively until we find a non '9' digit.
|
206
|
+
buffer[length - 1]++;
|
207
|
+
for (int i = length - 1; i > 0; --i) {
|
208
|
+
if (buffer[i] != '0' + 10) break;
|
209
|
+
buffer[i] = '0';
|
210
|
+
buffer[i - 1]++;
|
211
|
+
}
|
212
|
+
// If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
|
213
|
+
// exception of the first digit all digits are now '0'. Simply switch the
|
214
|
+
// first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
|
215
|
+
// the power (the kappa) is increased.
|
216
|
+
if (buffer[0] == '0' + 10) {
|
217
|
+
buffer[0] = '1';
|
218
|
+
(*kappa) += 1;
|
219
|
+
}
|
220
|
+
return true;
|
221
|
+
}
|
222
|
+
return false;
|
223
|
+
}
|
224
|
+
|
225
|
+
// Returns the biggest power of ten that is less than or equal to the given
|
226
|
+
// number. We furthermore receive the maximum number of bits 'number' has.
|
227
|
+
//
|
228
|
+
// Returns power == 10^(exponent_plus_one-1) such that
|
229
|
+
// power <= number < power * 10.
|
230
|
+
// If number_bits == 0 then 0^(0-1) is returned.
|
231
|
+
// The number of bits must be <= 32.
|
232
|
+
// Precondition: number < (1 << (number_bits + 1)).
|
233
|
+
|
234
|
+
// Inspired by the method for finding an integer log base 10 from here:
|
235
|
+
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
|
236
|
+
static unsigned int const kSmallPowersOfTen[] =
|
237
|
+
{0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
|
238
|
+
1000000000};
|
239
|
+
|
240
|
+
static void BiggestPowerTen(uint32_t number,
|
241
|
+
int number_bits,
|
242
|
+
uint32_t* power,
|
243
|
+
int* exponent_plus_one) {
|
244
|
+
ASSERT(number < (1u << (number_bits + 1)));
|
245
|
+
// 1233/4096 is approximately 1/lg(10).
|
246
|
+
int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12);
|
247
|
+
// We increment to skip over the first entry in the kPowersOf10 table.
|
248
|
+
// Note: kPowersOf10[i] == 10^(i-1).
|
249
|
+
exponent_plus_one_guess++;
|
250
|
+
// We don't have any guarantees that 2^number_bits <= number.
|
251
|
+
if (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
|
252
|
+
exponent_plus_one_guess--;
|
253
|
+
}
|
254
|
+
*power = kSmallPowersOfTen[exponent_plus_one_guess];
|
255
|
+
*exponent_plus_one = exponent_plus_one_guess;
|
256
|
+
}
|
257
|
+
|
258
|
+
// Generates the digits of input number w.
|
259
|
+
// w is a floating-point number (DiyFp), consisting of a significand and an
|
260
|
+
// exponent. Its exponent is bounded by kMinimalTargetExponent and
|
261
|
+
// kMaximalTargetExponent.
|
262
|
+
// Hence -60 <= w.e() <= -32.
|
263
|
+
//
|
264
|
+
// Returns false if it fails, in which case the generated digits in the buffer
|
265
|
+
// should not be used.
|
266
|
+
// Preconditions:
|
267
|
+
// * low, w and high are correct up to 1 ulp (unit in the last place). That
|
268
|
+
// is, their error must be less than a unit of their last digits.
|
269
|
+
// * low.e() == w.e() == high.e()
|
270
|
+
// * low < w < high, and taking into account their error: low~ <= high~
|
271
|
+
// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
|
272
|
+
// Postconditions: returns false if procedure fails.
|
273
|
+
// otherwise:
|
274
|
+
// * buffer is not null-terminated, but len contains the number of digits.
|
275
|
+
// * buffer contains the shortest possible decimal digit-sequence
|
276
|
+
// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
|
277
|
+
// correct values of low and high (without their error).
|
278
|
+
// * if more than one decimal representation gives the minimal number of
|
279
|
+
// decimal digits then the one closest to W (where W is the correct value
|
280
|
+
// of w) is chosen.
|
281
|
+
// Remark: this procedure takes into account the imprecision of its input
|
282
|
+
// numbers. If the precision is not enough to guarantee all the postconditions
|
283
|
+
// then false is returned. This usually happens rarely (~0.5%).
|
284
|
+
//
|
285
|
+
// Say, for the sake of example, that
|
286
|
+
// w.e() == -48, and w.f() == 0x1234567890abcdef
|
287
|
+
// w's value can be computed by w.f() * 2^w.e()
|
288
|
+
// We can obtain w's integral digits by simply shifting w.f() by -w.e().
|
289
|
+
// -> w's integral part is 0x1234
|
290
|
+
// w's fractional part is therefore 0x567890abcdef.
|
291
|
+
// Printing w's integral part is easy (simply print 0x1234 in decimal).
|
292
|
+
// In order to print its fraction we repeatedly multiply the fraction by 10 and
|
293
|
+
// get each digit. Example the first digit after the point would be computed by
|
294
|
+
// (0x567890abcdef * 10) >> 48. -> 3
|
295
|
+
// The whole thing becomes slightly more complicated because we want to stop
|
296
|
+
// once we have enough digits. That is, once the digits inside the buffer
|
297
|
+
// represent 'w' we can stop. Everything inside the interval low - high
|
298
|
+
// represents w. However we have to pay attention to low, high and w's
|
299
|
+
// imprecision.
|
300
|
+
static bool DigitGen(DiyFp low,
|
301
|
+
DiyFp w,
|
302
|
+
DiyFp high,
|
303
|
+
Vector<char> buffer,
|
304
|
+
int* length,
|
305
|
+
int* kappa) {
|
306
|
+
ASSERT(low.e() == w.e() && w.e() == high.e());
|
307
|
+
ASSERT(low.f() + 1 <= high.f() - 1);
|
308
|
+
ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
309
|
+
// low, w and high are imprecise, but by less than one ulp (unit in the last
|
310
|
+
// place).
|
311
|
+
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
|
312
|
+
// the new numbers are outside of the interval we want the final
|
313
|
+
// representation to lie in.
|
314
|
+
// Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
|
315
|
+
// numbers that are certain to lie in the interval. We will use this fact
|
316
|
+
// later on.
|
317
|
+
// We will now start by generating the digits within the uncertain
|
318
|
+
// interval. Later we will weed out representations that lie outside the safe
|
319
|
+
// interval and thus _might_ lie outside the correct interval.
|
320
|
+
uint64_t unit = 1;
|
321
|
+
DiyFp too_low = DiyFp(low.f() - unit, low.e());
|
322
|
+
DiyFp too_high = DiyFp(high.f() + unit, high.e());
|
323
|
+
// too_low and too_high are guaranteed to lie outside the interval we want the
|
324
|
+
// generated number in.
|
325
|
+
DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
|
326
|
+
// We now cut the input number into two parts: the integral digits and the
|
327
|
+
// fractionals. We will not write any decimal separator though, but adapt
|
328
|
+
// kappa instead.
|
329
|
+
// Reminder: we are currently computing the digits (stored inside the buffer)
|
330
|
+
// such that: too_low < buffer * 10^kappa < too_high
|
331
|
+
// We use too_high for the digit_generation and stop as soon as possible.
|
332
|
+
// If we stop early we effectively round down.
|
333
|
+
DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
|
334
|
+
// Division by one is a shift.
|
335
|
+
uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
|
336
|
+
// Modulo by one is an and.
|
337
|
+
uint64_t fractionals = too_high.f() & (one.f() - 1);
|
338
|
+
uint32_t divisor;
|
339
|
+
int divisor_exponent_plus_one;
|
340
|
+
BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
|
341
|
+
&divisor, &divisor_exponent_plus_one);
|
342
|
+
*kappa = divisor_exponent_plus_one;
|
343
|
+
*length = 0;
|
344
|
+
// Loop invariant: buffer = too_high / 10^kappa (integer division)
|
345
|
+
// The invariant holds for the first iteration: kappa has been initialized
|
346
|
+
// with the divisor exponent + 1. And the divisor is the biggest power of ten
|
347
|
+
// that is smaller than integrals.
|
348
|
+
while (*kappa > 0) {
|
349
|
+
int digit = integrals / divisor;
|
350
|
+
ASSERT(digit <= 9);
|
351
|
+
buffer[*length] = static_cast<char>('0' + digit);
|
352
|
+
(*length)++;
|
353
|
+
integrals %= divisor;
|
354
|
+
(*kappa)--;
|
355
|
+
// Note that kappa now equals the exponent of the divisor and that the
|
356
|
+
// invariant thus holds again.
|
357
|
+
uint64_t rest =
|
358
|
+
(static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
|
359
|
+
// Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
|
360
|
+
// Reminder: unsafe_interval.e() == one.e()
|
361
|
+
if (rest < unsafe_interval.f()) {
|
362
|
+
// Rounding down (by not emitting the remaining digits) yields a number
|
363
|
+
// that lies within the unsafe interval.
|
364
|
+
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
|
365
|
+
unsafe_interval.f(), rest,
|
366
|
+
static_cast<uint64_t>(divisor) << -one.e(), unit);
|
367
|
+
}
|
368
|
+
divisor /= 10;
|
369
|
+
}
|
370
|
+
|
371
|
+
// The integrals have been generated. We are at the point of the decimal
|
372
|
+
// separator. In the following loop we simply multiply the remaining digits by
|
373
|
+
// 10 and divide by one. We just need to pay attention to multiply associated
|
374
|
+
// data (like the interval or 'unit'), too.
|
375
|
+
// Note that the multiplication by 10 does not overflow, because w.e >= -60
|
376
|
+
// and thus one.e >= -60.
|
377
|
+
ASSERT(one.e() >= -60);
|
378
|
+
ASSERT(fractionals < one.f());
|
379
|
+
ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
380
|
+
for (;;) {
|
381
|
+
fractionals *= 10;
|
382
|
+
unit *= 10;
|
383
|
+
unsafe_interval.set_f(unsafe_interval.f() * 10);
|
384
|
+
// Integer division by one.
|
385
|
+
int digit = static_cast<int>(fractionals >> -one.e());
|
386
|
+
ASSERT(digit <= 9);
|
387
|
+
buffer[*length] = static_cast<char>('0' + digit);
|
388
|
+
(*length)++;
|
389
|
+
fractionals &= one.f() - 1; // Modulo by one.
|
390
|
+
(*kappa)--;
|
391
|
+
if (fractionals < unsafe_interval.f()) {
|
392
|
+
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
|
393
|
+
unsafe_interval.f(), fractionals, one.f(), unit);
|
394
|
+
}
|
395
|
+
}
|
396
|
+
}
|
397
|
+
|
398
|
+
|
399
|
+
|
400
|
+
// Generates (at most) requested_digits digits of input number w.
|
401
|
+
// w is a floating-point number (DiyFp), consisting of a significand and an
|
402
|
+
// exponent. Its exponent is bounded by kMinimalTargetExponent and
|
403
|
+
// kMaximalTargetExponent.
|
404
|
+
// Hence -60 <= w.e() <= -32.
|
405
|
+
//
|
406
|
+
// Returns false if it fails, in which case the generated digits in the buffer
|
407
|
+
// should not be used.
|
408
|
+
// Preconditions:
|
409
|
+
// * w is correct up to 1 ulp (unit in the last place). That
|
410
|
+
// is, its error must be strictly less than a unit of its last digit.
|
411
|
+
// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
|
412
|
+
//
|
413
|
+
// Postconditions: returns false if procedure fails.
|
414
|
+
// otherwise:
|
415
|
+
// * buffer is not null-terminated, but length contains the number of
|
416
|
+
// digits.
|
417
|
+
// * the representation in buffer is the most precise representation of
|
418
|
+
// requested_digits digits.
|
419
|
+
// * buffer contains at most requested_digits digits of w. If there are less
|
420
|
+
// than requested_digits digits then some trailing '0's have been removed.
|
421
|
+
// * kappa is such that
|
422
|
+
// w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
|
423
|
+
//
|
424
|
+
// Remark: This procedure takes into account the imprecision of its input
|
425
|
+
// numbers. If the precision is not enough to guarantee all the postconditions
|
426
|
+
// then false is returned. This usually happens rarely, but the failure-rate
|
427
|
+
// increases with higher requested_digits.
|
428
|
+
static bool DigitGenCounted(DiyFp w,
|
429
|
+
int requested_digits,
|
430
|
+
Vector<char> buffer,
|
431
|
+
int* length,
|
432
|
+
int* kappa) {
|
433
|
+
ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
434
|
+
ASSERT(kMinimalTargetExponent >= -60);
|
435
|
+
ASSERT(kMaximalTargetExponent <= -32);
|
436
|
+
// w is assumed to have an error less than 1 unit. Whenever w is scaled we
|
437
|
+
// also scale its error.
|
438
|
+
uint64_t w_error = 1;
|
439
|
+
// We cut the input number into two parts: the integral digits and the
|
440
|
+
// fractional digits. We don't emit any decimal separator, but adapt kappa
|
441
|
+
// instead. Example: instead of writing "1.2" we put "12" into the buffer and
|
442
|
+
// increase kappa by 1.
|
443
|
+
DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
|
444
|
+
// Division by one is a shift.
|
445
|
+
uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
|
446
|
+
// Modulo by one is an and.
|
447
|
+
uint64_t fractionals = w.f() & (one.f() - 1);
|
448
|
+
uint32_t divisor;
|
449
|
+
int divisor_exponent_plus_one;
|
450
|
+
BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
|
451
|
+
&divisor, &divisor_exponent_plus_one);
|
452
|
+
*kappa = divisor_exponent_plus_one;
|
453
|
+
*length = 0;
|
454
|
+
|
455
|
+
// Loop invariant: buffer = w / 10^kappa (integer division)
|
456
|
+
// The invariant holds for the first iteration: kappa has been initialized
|
457
|
+
// with the divisor exponent + 1. And the divisor is the biggest power of ten
|
458
|
+
// that is smaller than 'integrals'.
|
459
|
+
while (*kappa > 0) {
|
460
|
+
int digit = integrals / divisor;
|
461
|
+
ASSERT(digit <= 9);
|
462
|
+
buffer[*length] = static_cast<char>('0' + digit);
|
463
|
+
(*length)++;
|
464
|
+
requested_digits--;
|
465
|
+
integrals %= divisor;
|
466
|
+
(*kappa)--;
|
467
|
+
// Note that kappa now equals the exponent of the divisor and that the
|
468
|
+
// invariant thus holds again.
|
469
|
+
if (requested_digits == 0) break;
|
470
|
+
divisor /= 10;
|
471
|
+
}
|
472
|
+
|
473
|
+
if (requested_digits == 0) {
|
474
|
+
uint64_t rest =
|
475
|
+
(static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
|
476
|
+
return RoundWeedCounted(buffer, *length, rest,
|
477
|
+
static_cast<uint64_t>(divisor) << -one.e(), w_error,
|
478
|
+
kappa);
|
479
|
+
}
|
480
|
+
|
481
|
+
// The integrals have been generated. We are at the point of the decimal
|
482
|
+
// separator. In the following loop we simply multiply the remaining digits by
|
483
|
+
// 10 and divide by one. We just need to pay attention to multiply associated
|
484
|
+
// data (the 'unit'), too.
|
485
|
+
// Note that the multiplication by 10 does not overflow, because w.e >= -60
|
486
|
+
// and thus one.e >= -60.
|
487
|
+
ASSERT(one.e() >= -60);
|
488
|
+
ASSERT(fractionals < one.f());
|
489
|
+
ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
490
|
+
while (requested_digits > 0 && fractionals > w_error) {
|
491
|
+
fractionals *= 10;
|
492
|
+
w_error *= 10;
|
493
|
+
// Integer division by one.
|
494
|
+
int digit = static_cast<int>(fractionals >> -one.e());
|
495
|
+
ASSERT(digit <= 9);
|
496
|
+
buffer[*length] = static_cast<char>('0' + digit);
|
497
|
+
(*length)++;
|
498
|
+
requested_digits--;
|
499
|
+
fractionals &= one.f() - 1; // Modulo by one.
|
500
|
+
(*kappa)--;
|
501
|
+
}
|
502
|
+
if (requested_digits != 0) return false;
|
503
|
+
return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
|
504
|
+
kappa);
|
505
|
+
}
|
506
|
+
|
507
|
+
|
508
|
+
// Provides a decimal representation of v.
|
509
|
+
// Returns true if it succeeds, otherwise the result cannot be trusted.
|
510
|
+
// There will be *length digits inside the buffer (not null-terminated).
|
511
|
+
// If the function returns true then
|
512
|
+
// v == (double) (buffer * 10^decimal_exponent).
|
513
|
+
// The digits in the buffer are the shortest representation possible: no
|
514
|
+
// 0.09999999999999999 instead of 0.1. The shorter representation will even be
|
515
|
+
// chosen even if the longer one would be closer to v.
|
516
|
+
// The last digit will be closest to the actual v. That is, even if several
|
517
|
+
// digits might correctly yield 'v' when read again, the closest will be
|
518
|
+
// computed.
|
519
|
+
static bool Grisu3(double v,
|
520
|
+
FastDtoaMode mode,
|
521
|
+
Vector<char> buffer,
|
522
|
+
int* length,
|
523
|
+
int* decimal_exponent) {
|
524
|
+
DiyFp w = Double(v).AsNormalizedDiyFp();
|
525
|
+
// boundary_minus and boundary_plus are the boundaries between v and its
|
526
|
+
// closest floating-point neighbors. Any number strictly between
|
527
|
+
// boundary_minus and boundary_plus will round to v when convert to a double.
|
528
|
+
// Grisu3 will never output representations that lie exactly on a boundary.
|
529
|
+
DiyFp boundary_minus, boundary_plus;
|
530
|
+
if (mode == FAST_DTOA_SHORTEST) {
|
531
|
+
Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
532
|
+
} else {
|
533
|
+
ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE);
|
534
|
+
float single_v = static_cast<float>(v);
|
535
|
+
Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
536
|
+
}
|
537
|
+
ASSERT(boundary_plus.e() == w.e());
|
538
|
+
DiyFp ten_mk; // Cached power of ten: 10^-k
|
539
|
+
int mk; // -k
|
540
|
+
int ten_mk_minimal_binary_exponent =
|
541
|
+
kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
542
|
+
int ten_mk_maximal_binary_exponent =
|
543
|
+
kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
544
|
+
PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
|
545
|
+
ten_mk_minimal_binary_exponent,
|
546
|
+
ten_mk_maximal_binary_exponent,
|
547
|
+
&ten_mk, &mk);
|
548
|
+
ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
|
549
|
+
DiyFp::kSignificandSize) &&
|
550
|
+
(kMaximalTargetExponent >= w.e() + ten_mk.e() +
|
551
|
+
DiyFp::kSignificandSize));
|
552
|
+
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
|
553
|
+
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
|
554
|
+
|
555
|
+
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated
|
556
|
+
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
|
557
|
+
// off by a small amount.
|
558
|
+
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
|
559
|
+
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then
|
560
|
+
// (f-1) * 2^e < w*10^k < (f+1) * 2^e
|
561
|
+
DiyFp scaled_w = DiyFp::Times(w, ten_mk);
|
562
|
+
ASSERT(scaled_w.e() ==
|
563
|
+
boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
|
564
|
+
// In theory it would be possible to avoid some recomputations by computing
|
565
|
+
// the difference between w and boundary_minus/plus (a power of 2) and to
|
566
|
+
// compute scaled_boundary_minus/plus by subtracting/adding from
|
567
|
+
// scaled_w. However the code becomes much less readable and the speed
|
568
|
+
// enhancements are not terriffic.
|
569
|
+
DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
|
570
|
+
DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
|
571
|
+
|
572
|
+
// DigitGen will generate the digits of scaled_w. Therefore we have
|
573
|
+
// v == (double) (scaled_w * 10^-mk).
|
574
|
+
// Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
|
575
|
+
// integer than it will be updated. For instance if scaled_w == 1.23 then
|
576
|
+
// the buffer will be filled with "123" und the decimal_exponent will be
|
577
|
+
// decreased by 2.
|
578
|
+
int kappa;
|
579
|
+
bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
|
580
|
+
buffer, length, &kappa);
|
581
|
+
*decimal_exponent = -mk + kappa;
|
582
|
+
return result;
|
583
|
+
}
|
584
|
+
|
585
|
+
|
586
|
+
// The "counted" version of grisu3 (see above) only generates requested_digits
|
587
|
+
// number of digits. This version does not generate the shortest representation,
|
588
|
+
// and with enough requested digits 0.1 will at some point print as 0.9999999...
|
589
|
+
// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
|
590
|
+
// therefore the rounding strategy for halfway cases is irrelevant.
|
591
|
+
static bool Grisu3Counted(double v,
|
592
|
+
int requested_digits,
|
593
|
+
Vector<char> buffer,
|
594
|
+
int* length,
|
595
|
+
int* decimal_exponent) {
|
596
|
+
DiyFp w = Double(v).AsNormalizedDiyFp();
|
597
|
+
DiyFp ten_mk; // Cached power of ten: 10^-k
|
598
|
+
int mk; // -k
|
599
|
+
int ten_mk_minimal_binary_exponent =
|
600
|
+
kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
601
|
+
int ten_mk_maximal_binary_exponent =
|
602
|
+
kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
603
|
+
PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
|
604
|
+
ten_mk_minimal_binary_exponent,
|
605
|
+
ten_mk_maximal_binary_exponent,
|
606
|
+
&ten_mk, &mk);
|
607
|
+
ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
|
608
|
+
DiyFp::kSignificandSize) &&
|
609
|
+
(kMaximalTargetExponent >= w.e() + ten_mk.e() +
|
610
|
+
DiyFp::kSignificandSize));
|
611
|
+
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
|
612
|
+
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
|
613
|
+
|
614
|
+
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated
|
615
|
+
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
|
616
|
+
// off by a small amount.
|
617
|
+
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
|
618
|
+
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then
|
619
|
+
// (f-1) * 2^e < w*10^k < (f+1) * 2^e
|
620
|
+
DiyFp scaled_w = DiyFp::Times(w, ten_mk);
|
621
|
+
|
622
|
+
// We now have (double) (scaled_w * 10^-mk).
|
623
|
+
// DigitGen will generate the first requested_digits digits of scaled_w and
|
624
|
+
// return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
|
625
|
+
// will not always be exactly the same since DigitGenCounted only produces a
|
626
|
+
// limited number of digits.)
|
627
|
+
int kappa;
|
628
|
+
bool result = DigitGenCounted(scaled_w, requested_digits,
|
629
|
+
buffer, length, &kappa);
|
630
|
+
*decimal_exponent = -mk + kappa;
|
631
|
+
return result;
|
632
|
+
}
|
633
|
+
|
634
|
+
|
635
|
+
bool FastDtoa(double v,
|
636
|
+
FastDtoaMode mode,
|
637
|
+
int requested_digits,
|
638
|
+
Vector<char> buffer,
|
639
|
+
int* length,
|
640
|
+
int* decimal_point) {
|
641
|
+
ASSERT(v > 0);
|
642
|
+
ASSERT(!Double(v).IsSpecial());
|
643
|
+
|
644
|
+
bool result = false;
|
645
|
+
int decimal_exponent = 0;
|
646
|
+
switch (mode) {
|
647
|
+
case FAST_DTOA_SHORTEST:
|
648
|
+
case FAST_DTOA_SHORTEST_SINGLE:
|
649
|
+
result = Grisu3(v, mode, buffer, length, &decimal_exponent);
|
650
|
+
break;
|
651
|
+
case FAST_DTOA_PRECISION:
|
652
|
+
result = Grisu3Counted(v, requested_digits,
|
653
|
+
buffer, length, &decimal_exponent);
|
654
|
+
break;
|
655
|
+
default:
|
656
|
+
UNREACHABLE();
|
657
|
+
}
|
658
|
+
if (result) {
|
659
|
+
*decimal_point = *length + decimal_exponent;
|
660
|
+
buffer[*length] = '\0';
|
661
|
+
}
|
662
|
+
return result;
|
663
|
+
}
|
664
|
+
|
665
|
+
} // namespace double_conversion
|