hitokage 1.0.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (38) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +20 -0
  3. data/.travis.yml +4 -0
  4. data/Gemfile +4 -0
  5. data/LICENSE.txt +21 -0
  6. data/README.md +89 -0
  7. data/Rakefile +19 -0
  8. data/bin/console +14 -0
  9. data/bin/setup +8 -0
  10. data/ext/hitokage_ext/double-conversion/AUTHORS +14 -0
  11. data/ext/hitokage_ext/double-conversion/COPYING +26 -0
  12. data/ext/hitokage_ext/double-conversion/LICENSE +26 -0
  13. data/ext/hitokage_ext/double-conversion/README +54 -0
  14. data/ext/hitokage_ext/double-conversion/bignum-dtoa.cc +641 -0
  15. data/ext/hitokage_ext/double-conversion/bignum-dtoa.h +84 -0
  16. data/ext/hitokage_ext/double-conversion/bignum.cc +766 -0
  17. data/ext/hitokage_ext/double-conversion/bignum.h +144 -0
  18. data/ext/hitokage_ext/double-conversion/cached-powers.cc +175 -0
  19. data/ext/hitokage_ext/double-conversion/cached-powers.h +64 -0
  20. data/ext/hitokage_ext/double-conversion/diy-fp.cc +57 -0
  21. data/ext/hitokage_ext/double-conversion/diy-fp.h +118 -0
  22. data/ext/hitokage_ext/double-conversion/double-conversion.cc +982 -0
  23. data/ext/hitokage_ext/double-conversion/double-conversion.h +543 -0
  24. data/ext/hitokage_ext/double-conversion/fast-dtoa.cc +665 -0
  25. data/ext/hitokage_ext/double-conversion/fast-dtoa.h +88 -0
  26. data/ext/hitokage_ext/double-conversion/fixed-dtoa.cc +404 -0
  27. data/ext/hitokage_ext/double-conversion/fixed-dtoa.h +56 -0
  28. data/ext/hitokage_ext/double-conversion/ieee.h +402 -0
  29. data/ext/hitokage_ext/double-conversion/strtod.cc +555 -0
  30. data/ext/hitokage_ext/double-conversion/strtod.h +45 -0
  31. data/ext/hitokage_ext/double-conversion/utils.h +341 -0
  32. data/ext/hitokage_ext/extconf.rb +10 -0
  33. data/ext/hitokage_ext/hitokage_ext.cc +26 -0
  34. data/hitokage.gemspec +26 -0
  35. data/lib/hitokage.rb +5 -0
  36. data/lib/hitokage/replace_float_to_s.rb +6 -0
  37. data/lib/hitokage/version.rb +3 -0
  38. metadata +136 -0
@@ -0,0 +1,665 @@
1
+ // Copyright 2012 the V8 project authors. All rights reserved.
2
+ // Redistribution and use in source and binary forms, with or without
3
+ // modification, are permitted provided that the following conditions are
4
+ // met:
5
+ //
6
+ // * Redistributions of source code must retain the above copyright
7
+ // notice, this list of conditions and the following disclaimer.
8
+ // * Redistributions in binary form must reproduce the above
9
+ // copyright notice, this list of conditions and the following
10
+ // disclaimer in the documentation and/or other materials provided
11
+ // with the distribution.
12
+ // * Neither the name of Google Inc. nor the names of its
13
+ // contributors may be used to endorse or promote products derived
14
+ // from this software without specific prior written permission.
15
+ //
16
+ // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
+ // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
+ // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
+ // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
+ // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
+ // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
+ // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
+ // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
+ // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
+ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
+ // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
+
28
+ #include "fast-dtoa.h"
29
+
30
+ #include "cached-powers.h"
31
+ #include "diy-fp.h"
32
+ #include "ieee.h"
33
+
34
+ namespace double_conversion {
35
+
36
+ // The minimal and maximal target exponent define the range of w's binary
37
+ // exponent, where 'w' is the result of multiplying the input by a cached power
38
+ // of ten.
39
+ //
40
+ // A different range might be chosen on a different platform, to optimize digit
41
+ // generation, but a smaller range requires more powers of ten to be cached.
42
+ static const int kMinimalTargetExponent = -60;
43
+ static const int kMaximalTargetExponent = -32;
44
+
45
+
46
+ // Adjusts the last digit of the generated number, and screens out generated
47
+ // solutions that may be inaccurate. A solution may be inaccurate if it is
48
+ // outside the safe interval, or if we cannot prove that it is closer to the
49
+ // input than a neighboring representation of the same length.
50
+ //
51
+ // Input: * buffer containing the digits of too_high / 10^kappa
52
+ // * the buffer's length
53
+ // * distance_too_high_w == (too_high - w).f() * unit
54
+ // * unsafe_interval == (too_high - too_low).f() * unit
55
+ // * rest = (too_high - buffer * 10^kappa).f() * unit
56
+ // * ten_kappa = 10^kappa * unit
57
+ // * unit = the common multiplier
58
+ // Output: returns true if the buffer is guaranteed to contain the closest
59
+ // representable number to the input.
60
+ // Modifies the generated digits in the buffer to approach (round towards) w.
61
+ static bool RoundWeed(Vector<char> buffer,
62
+ int length,
63
+ uint64_t distance_too_high_w,
64
+ uint64_t unsafe_interval,
65
+ uint64_t rest,
66
+ uint64_t ten_kappa,
67
+ uint64_t unit) {
68
+ uint64_t small_distance = distance_too_high_w - unit;
69
+ uint64_t big_distance = distance_too_high_w + unit;
70
+ // Let w_low = too_high - big_distance, and
71
+ // w_high = too_high - small_distance.
72
+ // Note: w_low < w < w_high
73
+ //
74
+ // The real w (* unit) must lie somewhere inside the interval
75
+ // ]w_low; w_high[ (often written as "(w_low; w_high)")
76
+
77
+ // Basically the buffer currently contains a number in the unsafe interval
78
+ // ]too_low; too_high[ with too_low < w < too_high
79
+ //
80
+ // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
81
+ // ^v 1 unit ^ ^ ^ ^
82
+ // boundary_high --------------------- . . . .
83
+ // ^v 1 unit . . . .
84
+ // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
85
+ // . . ^ . .
86
+ // . big_distance . . .
87
+ // . . . . rest
88
+ // small_distance . . . .
89
+ // v . . . .
90
+ // w_high - - - - - - - - - - - - - - - - - - . . . .
91
+ // ^v 1 unit . . . .
92
+ // w ---------------------------------------- . . . .
93
+ // ^v 1 unit v . . .
94
+ // w_low - - - - - - - - - - - - - - - - - - - - - . . .
95
+ // . . v
96
+ // buffer --------------------------------------------------+-------+--------
97
+ // . .
98
+ // safe_interval .
99
+ // v .
100
+ // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
101
+ // ^v 1 unit .
102
+ // boundary_low ------------------------- unsafe_interval
103
+ // ^v 1 unit v
104
+ // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
105
+ //
106
+ //
107
+ // Note that the value of buffer could lie anywhere inside the range too_low
108
+ // to too_high.
109
+ //
110
+ // boundary_low, boundary_high and w are approximations of the real boundaries
111
+ // and v (the input number). They are guaranteed to be precise up to one unit.
112
+ // In fact the error is guaranteed to be strictly less than one unit.
113
+ //
114
+ // Anything that lies outside the unsafe interval is guaranteed not to round
115
+ // to v when read again.
116
+ // Anything that lies inside the safe interval is guaranteed to round to v
117
+ // when read again.
118
+ // If the number inside the buffer lies inside the unsafe interval but not
119
+ // inside the safe interval then we simply do not know and bail out (returning
120
+ // false).
121
+ //
122
+ // Similarly we have to take into account the imprecision of 'w' when finding
123
+ // the closest representation of 'w'. If we have two potential
124
+ // representations, and one is closer to both w_low and w_high, then we know
125
+ // it is closer to the actual value v.
126
+ //
127
+ // By generating the digits of too_high we got the largest (closest to
128
+ // too_high) buffer that is still in the unsafe interval. In the case where
129
+ // w_high < buffer < too_high we try to decrement the buffer.
130
+ // This way the buffer approaches (rounds towards) w.
131
+ // There are 3 conditions that stop the decrementation process:
132
+ // 1) the buffer is already below w_high
133
+ // 2) decrementing the buffer would make it leave the unsafe interval
134
+ // 3) decrementing the buffer would yield a number below w_high and farther
135
+ // away than the current number. In other words:
136
+ // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
137
+ // Instead of using the buffer directly we use its distance to too_high.
138
+ // Conceptually rest ~= too_high - buffer
139
+ // We need to do the following tests in this order to avoid over- and
140
+ // underflows.
141
+ ASSERT(rest <= unsafe_interval);
142
+ while (rest < small_distance && // Negated condition 1
143
+ unsafe_interval - rest >= ten_kappa && // Negated condition 2
144
+ (rest + ten_kappa < small_distance || // buffer{-1} > w_high
145
+ small_distance - rest >= rest + ten_kappa - small_distance)) {
146
+ buffer[length - 1]--;
147
+ rest += ten_kappa;
148
+ }
149
+
150
+ // We have approached w+ as much as possible. We now test if approaching w-
151
+ // would require changing the buffer. If yes, then we have two possible
152
+ // representations close to w, but we cannot decide which one is closer.
153
+ if (rest < big_distance &&
154
+ unsafe_interval - rest >= ten_kappa &&
155
+ (rest + ten_kappa < big_distance ||
156
+ big_distance - rest > rest + ten_kappa - big_distance)) {
157
+ return false;
158
+ }
159
+
160
+ // Weeding test.
161
+ // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
162
+ // Since too_low = too_high - unsafe_interval this is equivalent to
163
+ // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
164
+ // Conceptually we have: rest ~= too_high - buffer
165
+ return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
166
+ }
167
+
168
+
169
+ // Rounds the buffer upwards if the result is closer to v by possibly adding
170
+ // 1 to the buffer. If the precision of the calculation is not sufficient to
171
+ // round correctly, return false.
172
+ // The rounding might shift the whole buffer in which case the kappa is
173
+ // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
174
+ //
175
+ // If 2*rest > ten_kappa then the buffer needs to be round up.
176
+ // rest can have an error of +/- 1 unit. This function accounts for the
177
+ // imprecision and returns false, if the rounding direction cannot be
178
+ // unambiguously determined.
179
+ //
180
+ // Precondition: rest < ten_kappa.
181
+ static bool RoundWeedCounted(Vector<char> buffer,
182
+ int length,
183
+ uint64_t rest,
184
+ uint64_t ten_kappa,
185
+ uint64_t unit,
186
+ int* kappa) {
187
+ ASSERT(rest < ten_kappa);
188
+ // The following tests are done in a specific order to avoid overflows. They
189
+ // will work correctly with any uint64 values of rest < ten_kappa and unit.
190
+ //
191
+ // If the unit is too big, then we don't know which way to round. For example
192
+ // a unit of 50 means that the real number lies within rest +/- 50. If
193
+ // 10^kappa == 40 then there is no way to tell which way to round.
194
+ if (unit >= ten_kappa) return false;
195
+ // Even if unit is just half the size of 10^kappa we are already completely
196
+ // lost. (And after the previous test we know that the expression will not
197
+ // over/underflow.)
198
+ if (ten_kappa - unit <= unit) return false;
199
+ // If 2 * (rest + unit) <= 10^kappa we can safely round down.
200
+ if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
201
+ return true;
202
+ }
203
+ // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
204
+ if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
205
+ // Increment the last digit recursively until we find a non '9' digit.
206
+ buffer[length - 1]++;
207
+ for (int i = length - 1; i > 0; --i) {
208
+ if (buffer[i] != '0' + 10) break;
209
+ buffer[i] = '0';
210
+ buffer[i - 1]++;
211
+ }
212
+ // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
213
+ // exception of the first digit all digits are now '0'. Simply switch the
214
+ // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
215
+ // the power (the kappa) is increased.
216
+ if (buffer[0] == '0' + 10) {
217
+ buffer[0] = '1';
218
+ (*kappa) += 1;
219
+ }
220
+ return true;
221
+ }
222
+ return false;
223
+ }
224
+
225
+ // Returns the biggest power of ten that is less than or equal to the given
226
+ // number. We furthermore receive the maximum number of bits 'number' has.
227
+ //
228
+ // Returns power == 10^(exponent_plus_one-1) such that
229
+ // power <= number < power * 10.
230
+ // If number_bits == 0 then 0^(0-1) is returned.
231
+ // The number of bits must be <= 32.
232
+ // Precondition: number < (1 << (number_bits + 1)).
233
+
234
+ // Inspired by the method for finding an integer log base 10 from here:
235
+ // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
236
+ static unsigned int const kSmallPowersOfTen[] =
237
+ {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
238
+ 1000000000};
239
+
240
+ static void BiggestPowerTen(uint32_t number,
241
+ int number_bits,
242
+ uint32_t* power,
243
+ int* exponent_plus_one) {
244
+ ASSERT(number < (1u << (number_bits + 1)));
245
+ // 1233/4096 is approximately 1/lg(10).
246
+ int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12);
247
+ // We increment to skip over the first entry in the kPowersOf10 table.
248
+ // Note: kPowersOf10[i] == 10^(i-1).
249
+ exponent_plus_one_guess++;
250
+ // We don't have any guarantees that 2^number_bits <= number.
251
+ if (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
252
+ exponent_plus_one_guess--;
253
+ }
254
+ *power = kSmallPowersOfTen[exponent_plus_one_guess];
255
+ *exponent_plus_one = exponent_plus_one_guess;
256
+ }
257
+
258
+ // Generates the digits of input number w.
259
+ // w is a floating-point number (DiyFp), consisting of a significand and an
260
+ // exponent. Its exponent is bounded by kMinimalTargetExponent and
261
+ // kMaximalTargetExponent.
262
+ // Hence -60 <= w.e() <= -32.
263
+ //
264
+ // Returns false if it fails, in which case the generated digits in the buffer
265
+ // should not be used.
266
+ // Preconditions:
267
+ // * low, w and high are correct up to 1 ulp (unit in the last place). That
268
+ // is, their error must be less than a unit of their last digits.
269
+ // * low.e() == w.e() == high.e()
270
+ // * low < w < high, and taking into account their error: low~ <= high~
271
+ // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
272
+ // Postconditions: returns false if procedure fails.
273
+ // otherwise:
274
+ // * buffer is not null-terminated, but len contains the number of digits.
275
+ // * buffer contains the shortest possible decimal digit-sequence
276
+ // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
277
+ // correct values of low and high (without their error).
278
+ // * if more than one decimal representation gives the minimal number of
279
+ // decimal digits then the one closest to W (where W is the correct value
280
+ // of w) is chosen.
281
+ // Remark: this procedure takes into account the imprecision of its input
282
+ // numbers. If the precision is not enough to guarantee all the postconditions
283
+ // then false is returned. This usually happens rarely (~0.5%).
284
+ //
285
+ // Say, for the sake of example, that
286
+ // w.e() == -48, and w.f() == 0x1234567890abcdef
287
+ // w's value can be computed by w.f() * 2^w.e()
288
+ // We can obtain w's integral digits by simply shifting w.f() by -w.e().
289
+ // -> w's integral part is 0x1234
290
+ // w's fractional part is therefore 0x567890abcdef.
291
+ // Printing w's integral part is easy (simply print 0x1234 in decimal).
292
+ // In order to print its fraction we repeatedly multiply the fraction by 10 and
293
+ // get each digit. Example the first digit after the point would be computed by
294
+ // (0x567890abcdef * 10) >> 48. -> 3
295
+ // The whole thing becomes slightly more complicated because we want to stop
296
+ // once we have enough digits. That is, once the digits inside the buffer
297
+ // represent 'w' we can stop. Everything inside the interval low - high
298
+ // represents w. However we have to pay attention to low, high and w's
299
+ // imprecision.
300
+ static bool DigitGen(DiyFp low,
301
+ DiyFp w,
302
+ DiyFp high,
303
+ Vector<char> buffer,
304
+ int* length,
305
+ int* kappa) {
306
+ ASSERT(low.e() == w.e() && w.e() == high.e());
307
+ ASSERT(low.f() + 1 <= high.f() - 1);
308
+ ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
309
+ // low, w and high are imprecise, but by less than one ulp (unit in the last
310
+ // place).
311
+ // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
312
+ // the new numbers are outside of the interval we want the final
313
+ // representation to lie in.
314
+ // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
315
+ // numbers that are certain to lie in the interval. We will use this fact
316
+ // later on.
317
+ // We will now start by generating the digits within the uncertain
318
+ // interval. Later we will weed out representations that lie outside the safe
319
+ // interval and thus _might_ lie outside the correct interval.
320
+ uint64_t unit = 1;
321
+ DiyFp too_low = DiyFp(low.f() - unit, low.e());
322
+ DiyFp too_high = DiyFp(high.f() + unit, high.e());
323
+ // too_low and too_high are guaranteed to lie outside the interval we want the
324
+ // generated number in.
325
+ DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
326
+ // We now cut the input number into two parts: the integral digits and the
327
+ // fractionals. We will not write any decimal separator though, but adapt
328
+ // kappa instead.
329
+ // Reminder: we are currently computing the digits (stored inside the buffer)
330
+ // such that: too_low < buffer * 10^kappa < too_high
331
+ // We use too_high for the digit_generation and stop as soon as possible.
332
+ // If we stop early we effectively round down.
333
+ DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
334
+ // Division by one is a shift.
335
+ uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
336
+ // Modulo by one is an and.
337
+ uint64_t fractionals = too_high.f() & (one.f() - 1);
338
+ uint32_t divisor;
339
+ int divisor_exponent_plus_one;
340
+ BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
341
+ &divisor, &divisor_exponent_plus_one);
342
+ *kappa = divisor_exponent_plus_one;
343
+ *length = 0;
344
+ // Loop invariant: buffer = too_high / 10^kappa (integer division)
345
+ // The invariant holds for the first iteration: kappa has been initialized
346
+ // with the divisor exponent + 1. And the divisor is the biggest power of ten
347
+ // that is smaller than integrals.
348
+ while (*kappa > 0) {
349
+ int digit = integrals / divisor;
350
+ ASSERT(digit <= 9);
351
+ buffer[*length] = static_cast<char>('0' + digit);
352
+ (*length)++;
353
+ integrals %= divisor;
354
+ (*kappa)--;
355
+ // Note that kappa now equals the exponent of the divisor and that the
356
+ // invariant thus holds again.
357
+ uint64_t rest =
358
+ (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
359
+ // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
360
+ // Reminder: unsafe_interval.e() == one.e()
361
+ if (rest < unsafe_interval.f()) {
362
+ // Rounding down (by not emitting the remaining digits) yields a number
363
+ // that lies within the unsafe interval.
364
+ return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
365
+ unsafe_interval.f(), rest,
366
+ static_cast<uint64_t>(divisor) << -one.e(), unit);
367
+ }
368
+ divisor /= 10;
369
+ }
370
+
371
+ // The integrals have been generated. We are at the point of the decimal
372
+ // separator. In the following loop we simply multiply the remaining digits by
373
+ // 10 and divide by one. We just need to pay attention to multiply associated
374
+ // data (like the interval or 'unit'), too.
375
+ // Note that the multiplication by 10 does not overflow, because w.e >= -60
376
+ // and thus one.e >= -60.
377
+ ASSERT(one.e() >= -60);
378
+ ASSERT(fractionals < one.f());
379
+ ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
380
+ for (;;) {
381
+ fractionals *= 10;
382
+ unit *= 10;
383
+ unsafe_interval.set_f(unsafe_interval.f() * 10);
384
+ // Integer division by one.
385
+ int digit = static_cast<int>(fractionals >> -one.e());
386
+ ASSERT(digit <= 9);
387
+ buffer[*length] = static_cast<char>('0' + digit);
388
+ (*length)++;
389
+ fractionals &= one.f() - 1; // Modulo by one.
390
+ (*kappa)--;
391
+ if (fractionals < unsafe_interval.f()) {
392
+ return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
393
+ unsafe_interval.f(), fractionals, one.f(), unit);
394
+ }
395
+ }
396
+ }
397
+
398
+
399
+
400
+ // Generates (at most) requested_digits digits of input number w.
401
+ // w is a floating-point number (DiyFp), consisting of a significand and an
402
+ // exponent. Its exponent is bounded by kMinimalTargetExponent and
403
+ // kMaximalTargetExponent.
404
+ // Hence -60 <= w.e() <= -32.
405
+ //
406
+ // Returns false if it fails, in which case the generated digits in the buffer
407
+ // should not be used.
408
+ // Preconditions:
409
+ // * w is correct up to 1 ulp (unit in the last place). That
410
+ // is, its error must be strictly less than a unit of its last digit.
411
+ // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
412
+ //
413
+ // Postconditions: returns false if procedure fails.
414
+ // otherwise:
415
+ // * buffer is not null-terminated, but length contains the number of
416
+ // digits.
417
+ // * the representation in buffer is the most precise representation of
418
+ // requested_digits digits.
419
+ // * buffer contains at most requested_digits digits of w. If there are less
420
+ // than requested_digits digits then some trailing '0's have been removed.
421
+ // * kappa is such that
422
+ // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
423
+ //
424
+ // Remark: This procedure takes into account the imprecision of its input
425
+ // numbers. If the precision is not enough to guarantee all the postconditions
426
+ // then false is returned. This usually happens rarely, but the failure-rate
427
+ // increases with higher requested_digits.
428
+ static bool DigitGenCounted(DiyFp w,
429
+ int requested_digits,
430
+ Vector<char> buffer,
431
+ int* length,
432
+ int* kappa) {
433
+ ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
434
+ ASSERT(kMinimalTargetExponent >= -60);
435
+ ASSERT(kMaximalTargetExponent <= -32);
436
+ // w is assumed to have an error less than 1 unit. Whenever w is scaled we
437
+ // also scale its error.
438
+ uint64_t w_error = 1;
439
+ // We cut the input number into two parts: the integral digits and the
440
+ // fractional digits. We don't emit any decimal separator, but adapt kappa
441
+ // instead. Example: instead of writing "1.2" we put "12" into the buffer and
442
+ // increase kappa by 1.
443
+ DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
444
+ // Division by one is a shift.
445
+ uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
446
+ // Modulo by one is an and.
447
+ uint64_t fractionals = w.f() & (one.f() - 1);
448
+ uint32_t divisor;
449
+ int divisor_exponent_plus_one;
450
+ BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
451
+ &divisor, &divisor_exponent_plus_one);
452
+ *kappa = divisor_exponent_plus_one;
453
+ *length = 0;
454
+
455
+ // Loop invariant: buffer = w / 10^kappa (integer division)
456
+ // The invariant holds for the first iteration: kappa has been initialized
457
+ // with the divisor exponent + 1. And the divisor is the biggest power of ten
458
+ // that is smaller than 'integrals'.
459
+ while (*kappa > 0) {
460
+ int digit = integrals / divisor;
461
+ ASSERT(digit <= 9);
462
+ buffer[*length] = static_cast<char>('0' + digit);
463
+ (*length)++;
464
+ requested_digits--;
465
+ integrals %= divisor;
466
+ (*kappa)--;
467
+ // Note that kappa now equals the exponent of the divisor and that the
468
+ // invariant thus holds again.
469
+ if (requested_digits == 0) break;
470
+ divisor /= 10;
471
+ }
472
+
473
+ if (requested_digits == 0) {
474
+ uint64_t rest =
475
+ (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
476
+ return RoundWeedCounted(buffer, *length, rest,
477
+ static_cast<uint64_t>(divisor) << -one.e(), w_error,
478
+ kappa);
479
+ }
480
+
481
+ // The integrals have been generated. We are at the point of the decimal
482
+ // separator. In the following loop we simply multiply the remaining digits by
483
+ // 10 and divide by one. We just need to pay attention to multiply associated
484
+ // data (the 'unit'), too.
485
+ // Note that the multiplication by 10 does not overflow, because w.e >= -60
486
+ // and thus one.e >= -60.
487
+ ASSERT(one.e() >= -60);
488
+ ASSERT(fractionals < one.f());
489
+ ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
490
+ while (requested_digits > 0 && fractionals > w_error) {
491
+ fractionals *= 10;
492
+ w_error *= 10;
493
+ // Integer division by one.
494
+ int digit = static_cast<int>(fractionals >> -one.e());
495
+ ASSERT(digit <= 9);
496
+ buffer[*length] = static_cast<char>('0' + digit);
497
+ (*length)++;
498
+ requested_digits--;
499
+ fractionals &= one.f() - 1; // Modulo by one.
500
+ (*kappa)--;
501
+ }
502
+ if (requested_digits != 0) return false;
503
+ return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
504
+ kappa);
505
+ }
506
+
507
+
508
+ // Provides a decimal representation of v.
509
+ // Returns true if it succeeds, otherwise the result cannot be trusted.
510
+ // There will be *length digits inside the buffer (not null-terminated).
511
+ // If the function returns true then
512
+ // v == (double) (buffer * 10^decimal_exponent).
513
+ // The digits in the buffer are the shortest representation possible: no
514
+ // 0.09999999999999999 instead of 0.1. The shorter representation will even be
515
+ // chosen even if the longer one would be closer to v.
516
+ // The last digit will be closest to the actual v. That is, even if several
517
+ // digits might correctly yield 'v' when read again, the closest will be
518
+ // computed.
519
+ static bool Grisu3(double v,
520
+ FastDtoaMode mode,
521
+ Vector<char> buffer,
522
+ int* length,
523
+ int* decimal_exponent) {
524
+ DiyFp w = Double(v).AsNormalizedDiyFp();
525
+ // boundary_minus and boundary_plus are the boundaries between v and its
526
+ // closest floating-point neighbors. Any number strictly between
527
+ // boundary_minus and boundary_plus will round to v when convert to a double.
528
+ // Grisu3 will never output representations that lie exactly on a boundary.
529
+ DiyFp boundary_minus, boundary_plus;
530
+ if (mode == FAST_DTOA_SHORTEST) {
531
+ Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
532
+ } else {
533
+ ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE);
534
+ float single_v = static_cast<float>(v);
535
+ Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
536
+ }
537
+ ASSERT(boundary_plus.e() == w.e());
538
+ DiyFp ten_mk; // Cached power of ten: 10^-k
539
+ int mk; // -k
540
+ int ten_mk_minimal_binary_exponent =
541
+ kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
542
+ int ten_mk_maximal_binary_exponent =
543
+ kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
544
+ PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
545
+ ten_mk_minimal_binary_exponent,
546
+ ten_mk_maximal_binary_exponent,
547
+ &ten_mk, &mk);
548
+ ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
549
+ DiyFp::kSignificandSize) &&
550
+ (kMaximalTargetExponent >= w.e() + ten_mk.e() +
551
+ DiyFp::kSignificandSize));
552
+ // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
553
+ // 64 bit significand and ten_mk is thus only precise up to 64 bits.
554
+
555
+ // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
556
+ // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
557
+ // off by a small amount.
558
+ // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
559
+ // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
560
+ // (f-1) * 2^e < w*10^k < (f+1) * 2^e
561
+ DiyFp scaled_w = DiyFp::Times(w, ten_mk);
562
+ ASSERT(scaled_w.e() ==
563
+ boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
564
+ // In theory it would be possible to avoid some recomputations by computing
565
+ // the difference between w and boundary_minus/plus (a power of 2) and to
566
+ // compute scaled_boundary_minus/plus by subtracting/adding from
567
+ // scaled_w. However the code becomes much less readable and the speed
568
+ // enhancements are not terriffic.
569
+ DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
570
+ DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
571
+
572
+ // DigitGen will generate the digits of scaled_w. Therefore we have
573
+ // v == (double) (scaled_w * 10^-mk).
574
+ // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
575
+ // integer than it will be updated. For instance if scaled_w == 1.23 then
576
+ // the buffer will be filled with "123" und the decimal_exponent will be
577
+ // decreased by 2.
578
+ int kappa;
579
+ bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
580
+ buffer, length, &kappa);
581
+ *decimal_exponent = -mk + kappa;
582
+ return result;
583
+ }
584
+
585
+
586
+ // The "counted" version of grisu3 (see above) only generates requested_digits
587
+ // number of digits. This version does not generate the shortest representation,
588
+ // and with enough requested digits 0.1 will at some point print as 0.9999999...
589
+ // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
590
+ // therefore the rounding strategy for halfway cases is irrelevant.
591
+ static bool Grisu3Counted(double v,
592
+ int requested_digits,
593
+ Vector<char> buffer,
594
+ int* length,
595
+ int* decimal_exponent) {
596
+ DiyFp w = Double(v).AsNormalizedDiyFp();
597
+ DiyFp ten_mk; // Cached power of ten: 10^-k
598
+ int mk; // -k
599
+ int ten_mk_minimal_binary_exponent =
600
+ kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
601
+ int ten_mk_maximal_binary_exponent =
602
+ kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
603
+ PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
604
+ ten_mk_minimal_binary_exponent,
605
+ ten_mk_maximal_binary_exponent,
606
+ &ten_mk, &mk);
607
+ ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
608
+ DiyFp::kSignificandSize) &&
609
+ (kMaximalTargetExponent >= w.e() + ten_mk.e() +
610
+ DiyFp::kSignificandSize));
611
+ // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
612
+ // 64 bit significand and ten_mk is thus only precise up to 64 bits.
613
+
614
+ // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
615
+ // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
616
+ // off by a small amount.
617
+ // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
618
+ // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
619
+ // (f-1) * 2^e < w*10^k < (f+1) * 2^e
620
+ DiyFp scaled_w = DiyFp::Times(w, ten_mk);
621
+
622
+ // We now have (double) (scaled_w * 10^-mk).
623
+ // DigitGen will generate the first requested_digits digits of scaled_w and
624
+ // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
625
+ // will not always be exactly the same since DigitGenCounted only produces a
626
+ // limited number of digits.)
627
+ int kappa;
628
+ bool result = DigitGenCounted(scaled_w, requested_digits,
629
+ buffer, length, &kappa);
630
+ *decimal_exponent = -mk + kappa;
631
+ return result;
632
+ }
633
+
634
+
635
+ bool FastDtoa(double v,
636
+ FastDtoaMode mode,
637
+ int requested_digits,
638
+ Vector<char> buffer,
639
+ int* length,
640
+ int* decimal_point) {
641
+ ASSERT(v > 0);
642
+ ASSERT(!Double(v).IsSpecial());
643
+
644
+ bool result = false;
645
+ int decimal_exponent = 0;
646
+ switch (mode) {
647
+ case FAST_DTOA_SHORTEST:
648
+ case FAST_DTOA_SHORTEST_SINGLE:
649
+ result = Grisu3(v, mode, buffer, length, &decimal_exponent);
650
+ break;
651
+ case FAST_DTOA_PRECISION:
652
+ result = Grisu3Counted(v, requested_digits,
653
+ buffer, length, &decimal_exponent);
654
+ break;
655
+ default:
656
+ UNREACHABLE();
657
+ }
658
+ if (result) {
659
+ *decimal_point = *length + decimal_exponent;
660
+ buffer[*length] = '\0';
661
+ }
662
+ return result;
663
+ }
664
+
665
+ } // namespace double_conversion