hitokage 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +20 -0
- data/.travis.yml +4 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +21 -0
- data/README.md +89 -0
- data/Rakefile +19 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/ext/hitokage_ext/double-conversion/AUTHORS +14 -0
- data/ext/hitokage_ext/double-conversion/COPYING +26 -0
- data/ext/hitokage_ext/double-conversion/LICENSE +26 -0
- data/ext/hitokage_ext/double-conversion/README +54 -0
- data/ext/hitokage_ext/double-conversion/bignum-dtoa.cc +641 -0
- data/ext/hitokage_ext/double-conversion/bignum-dtoa.h +84 -0
- data/ext/hitokage_ext/double-conversion/bignum.cc +766 -0
- data/ext/hitokage_ext/double-conversion/bignum.h +144 -0
- data/ext/hitokage_ext/double-conversion/cached-powers.cc +175 -0
- data/ext/hitokage_ext/double-conversion/cached-powers.h +64 -0
- data/ext/hitokage_ext/double-conversion/diy-fp.cc +57 -0
- data/ext/hitokage_ext/double-conversion/diy-fp.h +118 -0
- data/ext/hitokage_ext/double-conversion/double-conversion.cc +982 -0
- data/ext/hitokage_ext/double-conversion/double-conversion.h +543 -0
- data/ext/hitokage_ext/double-conversion/fast-dtoa.cc +665 -0
- data/ext/hitokage_ext/double-conversion/fast-dtoa.h +88 -0
- data/ext/hitokage_ext/double-conversion/fixed-dtoa.cc +404 -0
- data/ext/hitokage_ext/double-conversion/fixed-dtoa.h +56 -0
- data/ext/hitokage_ext/double-conversion/ieee.h +402 -0
- data/ext/hitokage_ext/double-conversion/strtod.cc +555 -0
- data/ext/hitokage_ext/double-conversion/strtod.h +45 -0
- data/ext/hitokage_ext/double-conversion/utils.h +341 -0
- data/ext/hitokage_ext/extconf.rb +10 -0
- data/ext/hitokage_ext/hitokage_ext.cc +26 -0
- data/hitokage.gemspec +26 -0
- data/lib/hitokage.rb +5 -0
- data/lib/hitokage/replace_float_to_s.rb +6 -0
- data/lib/hitokage/version.rb +3 -0
- metadata +136 -0
@@ -0,0 +1,56 @@
|
|
1
|
+
// Copyright 2010 the V8 project authors. All rights reserved.
|
2
|
+
// Redistribution and use in source and binary forms, with or without
|
3
|
+
// modification, are permitted provided that the following conditions are
|
4
|
+
// met:
|
5
|
+
//
|
6
|
+
// * Redistributions of source code must retain the above copyright
|
7
|
+
// notice, this list of conditions and the following disclaimer.
|
8
|
+
// * Redistributions in binary form must reproduce the above
|
9
|
+
// copyright notice, this list of conditions and the following
|
10
|
+
// disclaimer in the documentation and/or other materials provided
|
11
|
+
// with the distribution.
|
12
|
+
// * Neither the name of Google Inc. nor the names of its
|
13
|
+
// contributors may be used to endorse or promote products derived
|
14
|
+
// from this software without specific prior written permission.
|
15
|
+
//
|
16
|
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
17
|
+
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
18
|
+
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
19
|
+
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
20
|
+
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
21
|
+
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
22
|
+
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
23
|
+
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
24
|
+
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
25
|
+
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26
|
+
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27
|
+
|
28
|
+
#ifndef DOUBLE_CONVERSION_FIXED_DTOA_H_
|
29
|
+
#define DOUBLE_CONVERSION_FIXED_DTOA_H_
|
30
|
+
|
31
|
+
#include "utils.h"
|
32
|
+
|
33
|
+
namespace double_conversion {
|
34
|
+
|
35
|
+
// Produces digits necessary to print a given number with
|
36
|
+
// 'fractional_count' digits after the decimal point.
|
37
|
+
// The buffer must be big enough to hold the result plus one terminating null
|
38
|
+
// character.
|
39
|
+
//
|
40
|
+
// The produced digits might be too short in which case the caller has to fill
|
41
|
+
// the gaps with '0's.
|
42
|
+
// Example: FastFixedDtoa(0.001, 5, ...) is allowed to return buffer = "1", and
|
43
|
+
// decimal_point = -2.
|
44
|
+
// Halfway cases are rounded towards +/-Infinity (away from 0). The call
|
45
|
+
// FastFixedDtoa(0.15, 2, ...) thus returns buffer = "2", decimal_point = 0.
|
46
|
+
// The returned buffer may contain digits that would be truncated from the
|
47
|
+
// shortest representation of the input.
|
48
|
+
//
|
49
|
+
// This method only works for some parameters. If it can't handle the input it
|
50
|
+
// returns false. The output is null-terminated when the function succeeds.
|
51
|
+
bool FastFixedDtoa(double v, int fractional_count,
|
52
|
+
Vector<char> buffer, int* length, int* decimal_point);
|
53
|
+
|
54
|
+
} // namespace double_conversion
|
55
|
+
|
56
|
+
#endif // DOUBLE_CONVERSION_FIXED_DTOA_H_
|
@@ -0,0 +1,402 @@
|
|
1
|
+
// Copyright 2012 the V8 project authors. All rights reserved.
|
2
|
+
// Redistribution and use in source and binary forms, with or without
|
3
|
+
// modification, are permitted provided that the following conditions are
|
4
|
+
// met:
|
5
|
+
//
|
6
|
+
// * Redistributions of source code must retain the above copyright
|
7
|
+
// notice, this list of conditions and the following disclaimer.
|
8
|
+
// * Redistributions in binary form must reproduce the above
|
9
|
+
// copyright notice, this list of conditions and the following
|
10
|
+
// disclaimer in the documentation and/or other materials provided
|
11
|
+
// with the distribution.
|
12
|
+
// * Neither the name of Google Inc. nor the names of its
|
13
|
+
// contributors may be used to endorse or promote products derived
|
14
|
+
// from this software without specific prior written permission.
|
15
|
+
//
|
16
|
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
17
|
+
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
18
|
+
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
19
|
+
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
20
|
+
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
21
|
+
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
22
|
+
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
23
|
+
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
24
|
+
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
25
|
+
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26
|
+
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27
|
+
|
28
|
+
#ifndef DOUBLE_CONVERSION_DOUBLE_H_
|
29
|
+
#define DOUBLE_CONVERSION_DOUBLE_H_
|
30
|
+
|
31
|
+
#include "diy-fp.h"
|
32
|
+
|
33
|
+
namespace double_conversion {
|
34
|
+
|
35
|
+
// We assume that doubles and uint64_t have the same endianness.
|
36
|
+
static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
|
37
|
+
static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
|
38
|
+
static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
|
39
|
+
static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }
|
40
|
+
|
41
|
+
// Helper functions for doubles.
|
42
|
+
class Double {
|
43
|
+
public:
|
44
|
+
static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
|
45
|
+
static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
|
46
|
+
static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
|
47
|
+
static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
|
48
|
+
static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
|
49
|
+
static const int kSignificandSize = 53;
|
50
|
+
|
51
|
+
Double() : d64_(0) {}
|
52
|
+
explicit Double(double d) : d64_(double_to_uint64(d)) {}
|
53
|
+
explicit Double(uint64_t d64) : d64_(d64) {}
|
54
|
+
explicit Double(DiyFp diy_fp)
|
55
|
+
: d64_(DiyFpToUint64(diy_fp)) {}
|
56
|
+
|
57
|
+
// The value encoded by this Double must be greater or equal to +0.0.
|
58
|
+
// It must not be special (infinity, or NaN).
|
59
|
+
DiyFp AsDiyFp() const {
|
60
|
+
ASSERT(Sign() > 0);
|
61
|
+
ASSERT(!IsSpecial());
|
62
|
+
return DiyFp(Significand(), Exponent());
|
63
|
+
}
|
64
|
+
|
65
|
+
// The value encoded by this Double must be strictly greater than 0.
|
66
|
+
DiyFp AsNormalizedDiyFp() const {
|
67
|
+
ASSERT(value() > 0.0);
|
68
|
+
uint64_t f = Significand();
|
69
|
+
int e = Exponent();
|
70
|
+
|
71
|
+
// The current double could be a denormal.
|
72
|
+
while ((f & kHiddenBit) == 0) {
|
73
|
+
f <<= 1;
|
74
|
+
e--;
|
75
|
+
}
|
76
|
+
// Do the final shifts in one go.
|
77
|
+
f <<= DiyFp::kSignificandSize - kSignificandSize;
|
78
|
+
e -= DiyFp::kSignificandSize - kSignificandSize;
|
79
|
+
return DiyFp(f, e);
|
80
|
+
}
|
81
|
+
|
82
|
+
// Returns the double's bit as uint64.
|
83
|
+
uint64_t AsUint64() const {
|
84
|
+
return d64_;
|
85
|
+
}
|
86
|
+
|
87
|
+
// Returns the next greater double. Returns +infinity on input +infinity.
|
88
|
+
double NextDouble() const {
|
89
|
+
if (d64_ == kInfinity) return Double(kInfinity).value();
|
90
|
+
if (Sign() < 0 && Significand() == 0) {
|
91
|
+
// -0.0
|
92
|
+
return 0.0;
|
93
|
+
}
|
94
|
+
if (Sign() < 0) {
|
95
|
+
return Double(d64_ - 1).value();
|
96
|
+
} else {
|
97
|
+
return Double(d64_ + 1).value();
|
98
|
+
}
|
99
|
+
}
|
100
|
+
|
101
|
+
double PreviousDouble() const {
|
102
|
+
if (d64_ == (kInfinity | kSignMask)) return -Double::Infinity();
|
103
|
+
if (Sign() < 0) {
|
104
|
+
return Double(d64_ + 1).value();
|
105
|
+
} else {
|
106
|
+
if (Significand() == 0) return -0.0;
|
107
|
+
return Double(d64_ - 1).value();
|
108
|
+
}
|
109
|
+
}
|
110
|
+
|
111
|
+
int Exponent() const {
|
112
|
+
if (IsDenormal()) return kDenormalExponent;
|
113
|
+
|
114
|
+
uint64_t d64 = AsUint64();
|
115
|
+
int biased_e =
|
116
|
+
static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
|
117
|
+
return biased_e - kExponentBias;
|
118
|
+
}
|
119
|
+
|
120
|
+
uint64_t Significand() const {
|
121
|
+
uint64_t d64 = AsUint64();
|
122
|
+
uint64_t significand = d64 & kSignificandMask;
|
123
|
+
if (!IsDenormal()) {
|
124
|
+
return significand + kHiddenBit;
|
125
|
+
} else {
|
126
|
+
return significand;
|
127
|
+
}
|
128
|
+
}
|
129
|
+
|
130
|
+
// Returns true if the double is a denormal.
|
131
|
+
bool IsDenormal() const {
|
132
|
+
uint64_t d64 = AsUint64();
|
133
|
+
return (d64 & kExponentMask) == 0;
|
134
|
+
}
|
135
|
+
|
136
|
+
// We consider denormals not to be special.
|
137
|
+
// Hence only Infinity and NaN are special.
|
138
|
+
bool IsSpecial() const {
|
139
|
+
uint64_t d64 = AsUint64();
|
140
|
+
return (d64 & kExponentMask) == kExponentMask;
|
141
|
+
}
|
142
|
+
|
143
|
+
bool IsNan() const {
|
144
|
+
uint64_t d64 = AsUint64();
|
145
|
+
return ((d64 & kExponentMask) == kExponentMask) &&
|
146
|
+
((d64 & kSignificandMask) != 0);
|
147
|
+
}
|
148
|
+
|
149
|
+
bool IsInfinite() const {
|
150
|
+
uint64_t d64 = AsUint64();
|
151
|
+
return ((d64 & kExponentMask) == kExponentMask) &&
|
152
|
+
((d64 & kSignificandMask) == 0);
|
153
|
+
}
|
154
|
+
|
155
|
+
int Sign() const {
|
156
|
+
uint64_t d64 = AsUint64();
|
157
|
+
return (d64 & kSignMask) == 0? 1: -1;
|
158
|
+
}
|
159
|
+
|
160
|
+
// Precondition: the value encoded by this Double must be greater or equal
|
161
|
+
// than +0.0.
|
162
|
+
DiyFp UpperBoundary() const {
|
163
|
+
ASSERT(Sign() > 0);
|
164
|
+
return DiyFp(Significand() * 2 + 1, Exponent() - 1);
|
165
|
+
}
|
166
|
+
|
167
|
+
// Computes the two boundaries of this.
|
168
|
+
// The bigger boundary (m_plus) is normalized. The lower boundary has the same
|
169
|
+
// exponent as m_plus.
|
170
|
+
// Precondition: the value encoded by this Double must be greater than 0.
|
171
|
+
void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
|
172
|
+
ASSERT(value() > 0.0);
|
173
|
+
DiyFp v = this->AsDiyFp();
|
174
|
+
DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
|
175
|
+
DiyFp m_minus;
|
176
|
+
if (LowerBoundaryIsCloser()) {
|
177
|
+
m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
|
178
|
+
} else {
|
179
|
+
m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
|
180
|
+
}
|
181
|
+
m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
|
182
|
+
m_minus.set_e(m_plus.e());
|
183
|
+
*out_m_plus = m_plus;
|
184
|
+
*out_m_minus = m_minus;
|
185
|
+
}
|
186
|
+
|
187
|
+
bool LowerBoundaryIsCloser() const {
|
188
|
+
// The boundary is closer if the significand is of the form f == 2^p-1 then
|
189
|
+
// the lower boundary is closer.
|
190
|
+
// Think of v = 1000e10 and v- = 9999e9.
|
191
|
+
// Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
|
192
|
+
// at a distance of 1e8.
|
193
|
+
// The only exception is for the smallest normal: the largest denormal is
|
194
|
+
// at the same distance as its successor.
|
195
|
+
// Note: denormals have the same exponent as the smallest normals.
|
196
|
+
bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
|
197
|
+
return physical_significand_is_zero && (Exponent() != kDenormalExponent);
|
198
|
+
}
|
199
|
+
|
200
|
+
double value() const { return uint64_to_double(d64_); }
|
201
|
+
|
202
|
+
// Returns the significand size for a given order of magnitude.
|
203
|
+
// If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
|
204
|
+
// This function returns the number of significant binary digits v will have
|
205
|
+
// once it's encoded into a double. In almost all cases this is equal to
|
206
|
+
// kSignificandSize. The only exceptions are denormals. They start with
|
207
|
+
// leading zeroes and their effective significand-size is hence smaller.
|
208
|
+
static int SignificandSizeForOrderOfMagnitude(int order) {
|
209
|
+
if (order >= (kDenormalExponent + kSignificandSize)) {
|
210
|
+
return kSignificandSize;
|
211
|
+
}
|
212
|
+
if (order <= kDenormalExponent) return 0;
|
213
|
+
return order - kDenormalExponent;
|
214
|
+
}
|
215
|
+
|
216
|
+
static double Infinity() {
|
217
|
+
return Double(kInfinity).value();
|
218
|
+
}
|
219
|
+
|
220
|
+
static double NaN() {
|
221
|
+
return Double(kNaN).value();
|
222
|
+
}
|
223
|
+
|
224
|
+
private:
|
225
|
+
static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
|
226
|
+
static const int kDenormalExponent = -kExponentBias + 1;
|
227
|
+
static const int kMaxExponent = 0x7FF - kExponentBias;
|
228
|
+
static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
|
229
|
+
static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
|
230
|
+
|
231
|
+
const uint64_t d64_;
|
232
|
+
|
233
|
+
static uint64_t DiyFpToUint64(DiyFp diy_fp) {
|
234
|
+
uint64_t significand = diy_fp.f();
|
235
|
+
int exponent = diy_fp.e();
|
236
|
+
while (significand > kHiddenBit + kSignificandMask) {
|
237
|
+
significand >>= 1;
|
238
|
+
exponent++;
|
239
|
+
}
|
240
|
+
if (exponent >= kMaxExponent) {
|
241
|
+
return kInfinity;
|
242
|
+
}
|
243
|
+
if (exponent < kDenormalExponent) {
|
244
|
+
return 0;
|
245
|
+
}
|
246
|
+
while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
|
247
|
+
significand <<= 1;
|
248
|
+
exponent--;
|
249
|
+
}
|
250
|
+
uint64_t biased_exponent;
|
251
|
+
if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
|
252
|
+
biased_exponent = 0;
|
253
|
+
} else {
|
254
|
+
biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
|
255
|
+
}
|
256
|
+
return (significand & kSignificandMask) |
|
257
|
+
(biased_exponent << kPhysicalSignificandSize);
|
258
|
+
}
|
259
|
+
|
260
|
+
DISALLOW_COPY_AND_ASSIGN(Double);
|
261
|
+
};
|
262
|
+
|
263
|
+
class Single {
|
264
|
+
public:
|
265
|
+
static const uint32_t kSignMask = 0x80000000;
|
266
|
+
static const uint32_t kExponentMask = 0x7F800000;
|
267
|
+
static const uint32_t kSignificandMask = 0x007FFFFF;
|
268
|
+
static const uint32_t kHiddenBit = 0x00800000;
|
269
|
+
static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit.
|
270
|
+
static const int kSignificandSize = 24;
|
271
|
+
|
272
|
+
Single() : d32_(0) {}
|
273
|
+
explicit Single(float f) : d32_(float_to_uint32(f)) {}
|
274
|
+
explicit Single(uint32_t d32) : d32_(d32) {}
|
275
|
+
|
276
|
+
// The value encoded by this Single must be greater or equal to +0.0.
|
277
|
+
// It must not be special (infinity, or NaN).
|
278
|
+
DiyFp AsDiyFp() const {
|
279
|
+
ASSERT(Sign() > 0);
|
280
|
+
ASSERT(!IsSpecial());
|
281
|
+
return DiyFp(Significand(), Exponent());
|
282
|
+
}
|
283
|
+
|
284
|
+
// Returns the single's bit as uint64.
|
285
|
+
uint32_t AsUint32() const {
|
286
|
+
return d32_;
|
287
|
+
}
|
288
|
+
|
289
|
+
int Exponent() const {
|
290
|
+
if (IsDenormal()) return kDenormalExponent;
|
291
|
+
|
292
|
+
uint32_t d32 = AsUint32();
|
293
|
+
int biased_e =
|
294
|
+
static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
|
295
|
+
return biased_e - kExponentBias;
|
296
|
+
}
|
297
|
+
|
298
|
+
uint32_t Significand() const {
|
299
|
+
uint32_t d32 = AsUint32();
|
300
|
+
uint32_t significand = d32 & kSignificandMask;
|
301
|
+
if (!IsDenormal()) {
|
302
|
+
return significand + kHiddenBit;
|
303
|
+
} else {
|
304
|
+
return significand;
|
305
|
+
}
|
306
|
+
}
|
307
|
+
|
308
|
+
// Returns true if the single is a denormal.
|
309
|
+
bool IsDenormal() const {
|
310
|
+
uint32_t d32 = AsUint32();
|
311
|
+
return (d32 & kExponentMask) == 0;
|
312
|
+
}
|
313
|
+
|
314
|
+
// We consider denormals not to be special.
|
315
|
+
// Hence only Infinity and NaN are special.
|
316
|
+
bool IsSpecial() const {
|
317
|
+
uint32_t d32 = AsUint32();
|
318
|
+
return (d32 & kExponentMask) == kExponentMask;
|
319
|
+
}
|
320
|
+
|
321
|
+
bool IsNan() const {
|
322
|
+
uint32_t d32 = AsUint32();
|
323
|
+
return ((d32 & kExponentMask) == kExponentMask) &&
|
324
|
+
((d32 & kSignificandMask) != 0);
|
325
|
+
}
|
326
|
+
|
327
|
+
bool IsInfinite() const {
|
328
|
+
uint32_t d32 = AsUint32();
|
329
|
+
return ((d32 & kExponentMask) == kExponentMask) &&
|
330
|
+
((d32 & kSignificandMask) == 0);
|
331
|
+
}
|
332
|
+
|
333
|
+
int Sign() const {
|
334
|
+
uint32_t d32 = AsUint32();
|
335
|
+
return (d32 & kSignMask) == 0? 1: -1;
|
336
|
+
}
|
337
|
+
|
338
|
+
// Computes the two boundaries of this.
|
339
|
+
// The bigger boundary (m_plus) is normalized. The lower boundary has the same
|
340
|
+
// exponent as m_plus.
|
341
|
+
// Precondition: the value encoded by this Single must be greater than 0.
|
342
|
+
void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
|
343
|
+
ASSERT(value() > 0.0);
|
344
|
+
DiyFp v = this->AsDiyFp();
|
345
|
+
DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
|
346
|
+
DiyFp m_minus;
|
347
|
+
if (LowerBoundaryIsCloser()) {
|
348
|
+
m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
|
349
|
+
} else {
|
350
|
+
m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
|
351
|
+
}
|
352
|
+
m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
|
353
|
+
m_minus.set_e(m_plus.e());
|
354
|
+
*out_m_plus = m_plus;
|
355
|
+
*out_m_minus = m_minus;
|
356
|
+
}
|
357
|
+
|
358
|
+
// Precondition: the value encoded by this Single must be greater or equal
|
359
|
+
// than +0.0.
|
360
|
+
DiyFp UpperBoundary() const {
|
361
|
+
ASSERT(Sign() > 0);
|
362
|
+
return DiyFp(Significand() * 2 + 1, Exponent() - 1);
|
363
|
+
}
|
364
|
+
|
365
|
+
bool LowerBoundaryIsCloser() const {
|
366
|
+
// The boundary is closer if the significand is of the form f == 2^p-1 then
|
367
|
+
// the lower boundary is closer.
|
368
|
+
// Think of v = 1000e10 and v- = 9999e9.
|
369
|
+
// Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
|
370
|
+
// at a distance of 1e8.
|
371
|
+
// The only exception is for the smallest normal: the largest denormal is
|
372
|
+
// at the same distance as its successor.
|
373
|
+
// Note: denormals have the same exponent as the smallest normals.
|
374
|
+
bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
|
375
|
+
return physical_significand_is_zero && (Exponent() != kDenormalExponent);
|
376
|
+
}
|
377
|
+
|
378
|
+
float value() const { return uint32_to_float(d32_); }
|
379
|
+
|
380
|
+
static float Infinity() {
|
381
|
+
return Single(kInfinity).value();
|
382
|
+
}
|
383
|
+
|
384
|
+
static float NaN() {
|
385
|
+
return Single(kNaN).value();
|
386
|
+
}
|
387
|
+
|
388
|
+
private:
|
389
|
+
static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
|
390
|
+
static const int kDenormalExponent = -kExponentBias + 1;
|
391
|
+
static const int kMaxExponent = 0xFF - kExponentBias;
|
392
|
+
static const uint32_t kInfinity = 0x7F800000;
|
393
|
+
static const uint32_t kNaN = 0x7FC00000;
|
394
|
+
|
395
|
+
const uint32_t d32_;
|
396
|
+
|
397
|
+
DISALLOW_COPY_AND_ASSIGN(Single);
|
398
|
+
};
|
399
|
+
|
400
|
+
} // namespace double_conversion
|
401
|
+
|
402
|
+
#endif // DOUBLE_CONVERSION_DOUBLE_H_
|