hitokage 1.0.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (38) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +20 -0
  3. data/.travis.yml +4 -0
  4. data/Gemfile +4 -0
  5. data/LICENSE.txt +21 -0
  6. data/README.md +89 -0
  7. data/Rakefile +19 -0
  8. data/bin/console +14 -0
  9. data/bin/setup +8 -0
  10. data/ext/hitokage_ext/double-conversion/AUTHORS +14 -0
  11. data/ext/hitokage_ext/double-conversion/COPYING +26 -0
  12. data/ext/hitokage_ext/double-conversion/LICENSE +26 -0
  13. data/ext/hitokage_ext/double-conversion/README +54 -0
  14. data/ext/hitokage_ext/double-conversion/bignum-dtoa.cc +641 -0
  15. data/ext/hitokage_ext/double-conversion/bignum-dtoa.h +84 -0
  16. data/ext/hitokage_ext/double-conversion/bignum.cc +766 -0
  17. data/ext/hitokage_ext/double-conversion/bignum.h +144 -0
  18. data/ext/hitokage_ext/double-conversion/cached-powers.cc +175 -0
  19. data/ext/hitokage_ext/double-conversion/cached-powers.h +64 -0
  20. data/ext/hitokage_ext/double-conversion/diy-fp.cc +57 -0
  21. data/ext/hitokage_ext/double-conversion/diy-fp.h +118 -0
  22. data/ext/hitokage_ext/double-conversion/double-conversion.cc +982 -0
  23. data/ext/hitokage_ext/double-conversion/double-conversion.h +543 -0
  24. data/ext/hitokage_ext/double-conversion/fast-dtoa.cc +665 -0
  25. data/ext/hitokage_ext/double-conversion/fast-dtoa.h +88 -0
  26. data/ext/hitokage_ext/double-conversion/fixed-dtoa.cc +404 -0
  27. data/ext/hitokage_ext/double-conversion/fixed-dtoa.h +56 -0
  28. data/ext/hitokage_ext/double-conversion/ieee.h +402 -0
  29. data/ext/hitokage_ext/double-conversion/strtod.cc +555 -0
  30. data/ext/hitokage_ext/double-conversion/strtod.h +45 -0
  31. data/ext/hitokage_ext/double-conversion/utils.h +341 -0
  32. data/ext/hitokage_ext/extconf.rb +10 -0
  33. data/ext/hitokage_ext/hitokage_ext.cc +26 -0
  34. data/hitokage.gemspec +26 -0
  35. data/lib/hitokage.rb +5 -0
  36. data/lib/hitokage/replace_float_to_s.rb +6 -0
  37. data/lib/hitokage/version.rb +3 -0
  38. metadata +136 -0
@@ -0,0 +1,555 @@
1
+ // Copyright 2010 the V8 project authors. All rights reserved.
2
+ // Redistribution and use in source and binary forms, with or without
3
+ // modification, are permitted provided that the following conditions are
4
+ // met:
5
+ //
6
+ // * Redistributions of source code must retain the above copyright
7
+ // notice, this list of conditions and the following disclaimer.
8
+ // * Redistributions in binary form must reproduce the above
9
+ // copyright notice, this list of conditions and the following
10
+ // disclaimer in the documentation and/or other materials provided
11
+ // with the distribution.
12
+ // * Neither the name of Google Inc. nor the names of its
13
+ // contributors may be used to endorse or promote products derived
14
+ // from this software without specific prior written permission.
15
+ //
16
+ // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
+ // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
+ // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
+ // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
+ // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
+ // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
+ // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
+ // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
+ // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
+ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
+ // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
+
28
+ #include <stdarg.h>
29
+ #include <limits.h>
30
+
31
+ #include "strtod.h"
32
+ #include "bignum.h"
33
+ #include "cached-powers.h"
34
+ #include "ieee.h"
35
+
36
+ namespace double_conversion {
37
+
38
+ // 2^53 = 9007199254740992.
39
+ // Any integer with at most 15 decimal digits will hence fit into a double
40
+ // (which has a 53bit significand) without loss of precision.
41
+ static const int kMaxExactDoubleIntegerDecimalDigits = 15;
42
+ // 2^64 = 18446744073709551616 > 10^19
43
+ static const int kMaxUint64DecimalDigits = 19;
44
+
45
+ // Max double: 1.7976931348623157 x 10^308
46
+ // Min non-zero double: 4.9406564584124654 x 10^-324
47
+ // Any x >= 10^309 is interpreted as +infinity.
48
+ // Any x <= 10^-324 is interpreted as 0.
49
+ // Note that 2.5e-324 (despite being smaller than the min double) will be read
50
+ // as non-zero (equal to the min non-zero double).
51
+ static const int kMaxDecimalPower = 309;
52
+ static const int kMinDecimalPower = -324;
53
+
54
+ // 2^64 = 18446744073709551616
55
+ static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
56
+
57
+
58
+ static const double exact_powers_of_ten[] = {
59
+ 1.0, // 10^0
60
+ 10.0,
61
+ 100.0,
62
+ 1000.0,
63
+ 10000.0,
64
+ 100000.0,
65
+ 1000000.0,
66
+ 10000000.0,
67
+ 100000000.0,
68
+ 1000000000.0,
69
+ 10000000000.0, // 10^10
70
+ 100000000000.0,
71
+ 1000000000000.0,
72
+ 10000000000000.0,
73
+ 100000000000000.0,
74
+ 1000000000000000.0,
75
+ 10000000000000000.0,
76
+ 100000000000000000.0,
77
+ 1000000000000000000.0,
78
+ 10000000000000000000.0,
79
+ 100000000000000000000.0, // 10^20
80
+ 1000000000000000000000.0,
81
+ // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
82
+ 10000000000000000000000.0
83
+ };
84
+ static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
85
+
86
+ // Maximum number of significant digits in the decimal representation.
87
+ // In fact the value is 772 (see conversions.cc), but to give us some margin
88
+ // we round up to 780.
89
+ static const int kMaxSignificantDecimalDigits = 780;
90
+
91
+ static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
92
+ for (int i = 0; i < buffer.length(); i++) {
93
+ if (buffer[i] != '0') {
94
+ return buffer.SubVector(i, buffer.length());
95
+ }
96
+ }
97
+ return Vector<const char>(buffer.start(), 0);
98
+ }
99
+
100
+
101
+ static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
102
+ for (int i = buffer.length() - 1; i >= 0; --i) {
103
+ if (buffer[i] != '0') {
104
+ return buffer.SubVector(0, i + 1);
105
+ }
106
+ }
107
+ return Vector<const char>(buffer.start(), 0);
108
+ }
109
+
110
+
111
+ static void CutToMaxSignificantDigits(Vector<const char> buffer,
112
+ int exponent,
113
+ char* significant_buffer,
114
+ int* significant_exponent) {
115
+ for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
116
+ significant_buffer[i] = buffer[i];
117
+ }
118
+ // The input buffer has been trimmed. Therefore the last digit must be
119
+ // different from '0'.
120
+ ASSERT(buffer[buffer.length() - 1] != '0');
121
+ // Set the last digit to be non-zero. This is sufficient to guarantee
122
+ // correct rounding.
123
+ significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
124
+ *significant_exponent =
125
+ exponent + (buffer.length() - kMaxSignificantDecimalDigits);
126
+ }
127
+
128
+
129
+ // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
130
+ // If possible the input-buffer is reused, but if the buffer needs to be
131
+ // modified (due to cutting), then the input needs to be copied into the
132
+ // buffer_copy_space.
133
+ static void TrimAndCut(Vector<const char> buffer, int exponent,
134
+ char* buffer_copy_space, int space_size,
135
+ Vector<const char>* trimmed, int* updated_exponent) {
136
+ Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
137
+ Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
138
+ exponent += left_trimmed.length() - right_trimmed.length();
139
+ if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
140
+ (void) space_size; // Mark variable as used.
141
+ ASSERT(space_size >= kMaxSignificantDecimalDigits);
142
+ CutToMaxSignificantDigits(right_trimmed, exponent,
143
+ buffer_copy_space, updated_exponent);
144
+ *trimmed = Vector<const char>(buffer_copy_space,
145
+ kMaxSignificantDecimalDigits);
146
+ } else {
147
+ *trimmed = right_trimmed;
148
+ *updated_exponent = exponent;
149
+ }
150
+ }
151
+
152
+
153
+ // Reads digits from the buffer and converts them to a uint64.
154
+ // Reads in as many digits as fit into a uint64.
155
+ // When the string starts with "1844674407370955161" no further digit is read.
156
+ // Since 2^64 = 18446744073709551616 it would still be possible read another
157
+ // digit if it was less or equal than 6, but this would complicate the code.
158
+ static uint64_t ReadUint64(Vector<const char> buffer,
159
+ int* number_of_read_digits) {
160
+ uint64_t result = 0;
161
+ int i = 0;
162
+ while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
163
+ int digit = buffer[i++] - '0';
164
+ ASSERT(0 <= digit && digit <= 9);
165
+ result = 10 * result + digit;
166
+ }
167
+ *number_of_read_digits = i;
168
+ return result;
169
+ }
170
+
171
+
172
+ // Reads a DiyFp from the buffer.
173
+ // The returned DiyFp is not necessarily normalized.
174
+ // If remaining_decimals is zero then the returned DiyFp is accurate.
175
+ // Otherwise it has been rounded and has error of at most 1/2 ulp.
176
+ static void ReadDiyFp(Vector<const char> buffer,
177
+ DiyFp* result,
178
+ int* remaining_decimals) {
179
+ int read_digits;
180
+ uint64_t significand = ReadUint64(buffer, &read_digits);
181
+ if (buffer.length() == read_digits) {
182
+ *result = DiyFp(significand, 0);
183
+ *remaining_decimals = 0;
184
+ } else {
185
+ // Round the significand.
186
+ if (buffer[read_digits] >= '5') {
187
+ significand++;
188
+ }
189
+ // Compute the binary exponent.
190
+ int exponent = 0;
191
+ *result = DiyFp(significand, exponent);
192
+ *remaining_decimals = buffer.length() - read_digits;
193
+ }
194
+ }
195
+
196
+
197
+ static bool DoubleStrtod(Vector<const char> trimmed,
198
+ int exponent,
199
+ double* result) {
200
+ #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
201
+ // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
202
+ // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
203
+ // result is not accurate.
204
+ // We know that Windows32 uses 64 bits and is therefore accurate.
205
+ // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
206
+ // the same problem.
207
+ return false;
208
+ #endif
209
+ if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
210
+ int read_digits;
211
+ // The trimmed input fits into a double.
212
+ // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
213
+ // can compute the result-double simply by multiplying (resp. dividing) the
214
+ // two numbers.
215
+ // This is possible because IEEE guarantees that floating-point operations
216
+ // return the best possible approximation.
217
+ if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
218
+ // 10^-exponent fits into a double.
219
+ *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
220
+ ASSERT(read_digits == trimmed.length());
221
+ *result /= exact_powers_of_ten[-exponent];
222
+ return true;
223
+ }
224
+ if (0 <= exponent && exponent < kExactPowersOfTenSize) {
225
+ // 10^exponent fits into a double.
226
+ *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
227
+ ASSERT(read_digits == trimmed.length());
228
+ *result *= exact_powers_of_ten[exponent];
229
+ return true;
230
+ }
231
+ int remaining_digits =
232
+ kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
233
+ if ((0 <= exponent) &&
234
+ (exponent - remaining_digits < kExactPowersOfTenSize)) {
235
+ // The trimmed string was short and we can multiply it with
236
+ // 10^remaining_digits. As a result the remaining exponent now fits
237
+ // into a double too.
238
+ *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
239
+ ASSERT(read_digits == trimmed.length());
240
+ *result *= exact_powers_of_ten[remaining_digits];
241
+ *result *= exact_powers_of_ten[exponent - remaining_digits];
242
+ return true;
243
+ }
244
+ }
245
+ return false;
246
+ }
247
+
248
+
249
+ // Returns 10^exponent as an exact DiyFp.
250
+ // The given exponent must be in the range [1; kDecimalExponentDistance[.
251
+ static DiyFp AdjustmentPowerOfTen(int exponent) {
252
+ ASSERT(0 < exponent);
253
+ ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
254
+ // Simply hardcode the remaining powers for the given decimal exponent
255
+ // distance.
256
+ ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
257
+ switch (exponent) {
258
+ case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
259
+ case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
260
+ case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
261
+ case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
262
+ case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
263
+ case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
264
+ case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
265
+ default:
266
+ UNREACHABLE();
267
+ }
268
+ }
269
+
270
+
271
+ // If the function returns true then the result is the correct double.
272
+ // Otherwise it is either the correct double or the double that is just below
273
+ // the correct double.
274
+ static bool DiyFpStrtod(Vector<const char> buffer,
275
+ int exponent,
276
+ double* result) {
277
+ DiyFp input;
278
+ int remaining_decimals;
279
+ ReadDiyFp(buffer, &input, &remaining_decimals);
280
+ // Since we may have dropped some digits the input is not accurate.
281
+ // If remaining_decimals is different than 0 than the error is at most
282
+ // .5 ulp (unit in the last place).
283
+ // We don't want to deal with fractions and therefore keep a common
284
+ // denominator.
285
+ const int kDenominatorLog = 3;
286
+ const int kDenominator = 1 << kDenominatorLog;
287
+ // Move the remaining decimals into the exponent.
288
+ exponent += remaining_decimals;
289
+ uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
290
+
291
+ int old_e = input.e();
292
+ input.Normalize();
293
+ error <<= old_e - input.e();
294
+
295
+ ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
296
+ if (exponent < PowersOfTenCache::kMinDecimalExponent) {
297
+ *result = 0.0;
298
+ return true;
299
+ }
300
+ DiyFp cached_power;
301
+ int cached_decimal_exponent;
302
+ PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
303
+ &cached_power,
304
+ &cached_decimal_exponent);
305
+
306
+ if (cached_decimal_exponent != exponent) {
307
+ int adjustment_exponent = exponent - cached_decimal_exponent;
308
+ DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
309
+ input.Multiply(adjustment_power);
310
+ if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
311
+ // The product of input with the adjustment power fits into a 64 bit
312
+ // integer.
313
+ ASSERT(DiyFp::kSignificandSize == 64);
314
+ } else {
315
+ // The adjustment power is exact. There is hence only an error of 0.5.
316
+ error += kDenominator / 2;
317
+ }
318
+ }
319
+
320
+ input.Multiply(cached_power);
321
+ // The error introduced by a multiplication of a*b equals
322
+ // error_a + error_b + error_a*error_b/2^64 + 0.5
323
+ // Substituting a with 'input' and b with 'cached_power' we have
324
+ // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
325
+ // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
326
+ int error_b = kDenominator / 2;
327
+ int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
328
+ int fixed_error = kDenominator / 2;
329
+ error += error_b + error_ab + fixed_error;
330
+
331
+ old_e = input.e();
332
+ input.Normalize();
333
+ error <<= old_e - input.e();
334
+
335
+ // See if the double's significand changes if we add/subtract the error.
336
+ int order_of_magnitude = DiyFp::kSignificandSize + input.e();
337
+ int effective_significand_size =
338
+ Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
339
+ int precision_digits_count =
340
+ DiyFp::kSignificandSize - effective_significand_size;
341
+ if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
342
+ // This can only happen for very small denormals. In this case the
343
+ // half-way multiplied by the denominator exceeds the range of an uint64.
344
+ // Simply shift everything to the right.
345
+ int shift_amount = (precision_digits_count + kDenominatorLog) -
346
+ DiyFp::kSignificandSize + 1;
347
+ input.set_f(input.f() >> shift_amount);
348
+ input.set_e(input.e() + shift_amount);
349
+ // We add 1 for the lost precision of error, and kDenominator for
350
+ // the lost precision of input.f().
351
+ error = (error >> shift_amount) + 1 + kDenominator;
352
+ precision_digits_count -= shift_amount;
353
+ }
354
+ // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
355
+ ASSERT(DiyFp::kSignificandSize == 64);
356
+ ASSERT(precision_digits_count < 64);
357
+ uint64_t one64 = 1;
358
+ uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
359
+ uint64_t precision_bits = input.f() & precision_bits_mask;
360
+ uint64_t half_way = one64 << (precision_digits_count - 1);
361
+ precision_bits *= kDenominator;
362
+ half_way *= kDenominator;
363
+ DiyFp rounded_input(input.f() >> precision_digits_count,
364
+ input.e() + precision_digits_count);
365
+ if (precision_bits >= half_way + error) {
366
+ rounded_input.set_f(rounded_input.f() + 1);
367
+ }
368
+ // If the last_bits are too close to the half-way case than we are too
369
+ // inaccurate and round down. In this case we return false so that we can
370
+ // fall back to a more precise algorithm.
371
+
372
+ *result = Double(rounded_input).value();
373
+ if (half_way - error < precision_bits && precision_bits < half_way + error) {
374
+ // Too imprecise. The caller will have to fall back to a slower version.
375
+ // However the returned number is guaranteed to be either the correct
376
+ // double, or the next-lower double.
377
+ return false;
378
+ } else {
379
+ return true;
380
+ }
381
+ }
382
+
383
+
384
+ // Returns
385
+ // - -1 if buffer*10^exponent < diy_fp.
386
+ // - 0 if buffer*10^exponent == diy_fp.
387
+ // - +1 if buffer*10^exponent > diy_fp.
388
+ // Preconditions:
389
+ // buffer.length() + exponent <= kMaxDecimalPower + 1
390
+ // buffer.length() + exponent > kMinDecimalPower
391
+ // buffer.length() <= kMaxDecimalSignificantDigits
392
+ static int CompareBufferWithDiyFp(Vector<const char> buffer,
393
+ int exponent,
394
+ DiyFp diy_fp) {
395
+ ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
396
+ ASSERT(buffer.length() + exponent > kMinDecimalPower);
397
+ ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
398
+ // Make sure that the Bignum will be able to hold all our numbers.
399
+ // Our Bignum implementation has a separate field for exponents. Shifts will
400
+ // consume at most one bigit (< 64 bits).
401
+ // ln(10) == 3.3219...
402
+ ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
403
+ Bignum buffer_bignum;
404
+ Bignum diy_fp_bignum;
405
+ buffer_bignum.AssignDecimalString(buffer);
406
+ diy_fp_bignum.AssignUInt64(diy_fp.f());
407
+ if (exponent >= 0) {
408
+ buffer_bignum.MultiplyByPowerOfTen(exponent);
409
+ } else {
410
+ diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
411
+ }
412
+ if (diy_fp.e() > 0) {
413
+ diy_fp_bignum.ShiftLeft(diy_fp.e());
414
+ } else {
415
+ buffer_bignum.ShiftLeft(-diy_fp.e());
416
+ }
417
+ return Bignum::Compare(buffer_bignum, diy_fp_bignum);
418
+ }
419
+
420
+
421
+ // Returns true if the guess is the correct double.
422
+ // Returns false, when guess is either correct or the next-lower double.
423
+ static bool ComputeGuess(Vector<const char> trimmed, int exponent,
424
+ double* guess) {
425
+ if (trimmed.length() == 0) {
426
+ *guess = 0.0;
427
+ return true;
428
+ }
429
+ if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
430
+ *guess = Double::Infinity();
431
+ return true;
432
+ }
433
+ if (exponent + trimmed.length() <= kMinDecimalPower) {
434
+ *guess = 0.0;
435
+ return true;
436
+ }
437
+
438
+ if (DoubleStrtod(trimmed, exponent, guess) ||
439
+ DiyFpStrtod(trimmed, exponent, guess)) {
440
+ return true;
441
+ }
442
+ if (*guess == Double::Infinity()) {
443
+ return true;
444
+ }
445
+ return false;
446
+ }
447
+
448
+ double Strtod(Vector<const char> buffer, int exponent) {
449
+ char copy_buffer[kMaxSignificantDecimalDigits];
450
+ Vector<const char> trimmed;
451
+ int updated_exponent;
452
+ TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
453
+ &trimmed, &updated_exponent);
454
+ exponent = updated_exponent;
455
+
456
+ double guess;
457
+ bool is_correct = ComputeGuess(trimmed, exponent, &guess);
458
+ if (is_correct) return guess;
459
+
460
+ DiyFp upper_boundary = Double(guess).UpperBoundary();
461
+ int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
462
+ if (comparison < 0) {
463
+ return guess;
464
+ } else if (comparison > 0) {
465
+ return Double(guess).NextDouble();
466
+ } else if ((Double(guess).Significand() & 1) == 0) {
467
+ // Round towards even.
468
+ return guess;
469
+ } else {
470
+ return Double(guess).NextDouble();
471
+ }
472
+ }
473
+
474
+ float Strtof(Vector<const char> buffer, int exponent) {
475
+ char copy_buffer[kMaxSignificantDecimalDigits];
476
+ Vector<const char> trimmed;
477
+ int updated_exponent;
478
+ TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
479
+ &trimmed, &updated_exponent);
480
+ exponent = updated_exponent;
481
+
482
+ double double_guess;
483
+ bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
484
+
485
+ float float_guess = static_cast<float>(double_guess);
486
+ if (float_guess == double_guess) {
487
+ // This shortcut triggers for integer values.
488
+ return float_guess;
489
+ }
490
+
491
+ // We must catch double-rounding. Say the double has been rounded up, and is
492
+ // now a boundary of a float, and rounds up again. This is why we have to
493
+ // look at previous too.
494
+ // Example (in decimal numbers):
495
+ // input: 12349
496
+ // high-precision (4 digits): 1235
497
+ // low-precision (3 digits):
498
+ // when read from input: 123
499
+ // when rounded from high precision: 124.
500
+ // To do this we simply look at the neigbors of the correct result and see
501
+ // if they would round to the same float. If the guess is not correct we have
502
+ // to look at four values (since two different doubles could be the correct
503
+ // double).
504
+
505
+ double double_next = Double(double_guess).NextDouble();
506
+ double double_previous = Double(double_guess).PreviousDouble();
507
+
508
+ float f1 = static_cast<float>(double_previous);
509
+ float f2 = float_guess;
510
+ float f3 = static_cast<float>(double_next);
511
+ float f4;
512
+ if (is_correct) {
513
+ f4 = f3;
514
+ } else {
515
+ double double_next2 = Double(double_next).NextDouble();
516
+ f4 = static_cast<float>(double_next2);
517
+ }
518
+ (void) f2; // Mark variable as used.
519
+ ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
520
+
521
+ // If the guess doesn't lie near a single-precision boundary we can simply
522
+ // return its float-value.
523
+ if (f1 == f4) {
524
+ return float_guess;
525
+ }
526
+
527
+ ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
528
+ (f1 == f2 && f2 != f3 && f3 == f4) ||
529
+ (f1 == f2 && f2 == f3 && f3 != f4));
530
+
531
+ // guess and next are the two possible canditates (in the same way that
532
+ // double_guess was the lower candidate for a double-precision guess).
533
+ float guess = f1;
534
+ float next = f4;
535
+ DiyFp upper_boundary;
536
+ if (guess == 0.0f) {
537
+ float min_float = 1e-45f;
538
+ upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
539
+ } else {
540
+ upper_boundary = Single(guess).UpperBoundary();
541
+ }
542
+ int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
543
+ if (comparison < 0) {
544
+ return guess;
545
+ } else if (comparison > 0) {
546
+ return next;
547
+ } else if ((Single(guess).Significand() & 1) == 0) {
548
+ // Round towards even.
549
+ return guess;
550
+ } else {
551
+ return next;
552
+ }
553
+ }
554
+
555
+ } // namespace double_conversion