hitokage 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +20 -0
- data/.travis.yml +4 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +21 -0
- data/README.md +89 -0
- data/Rakefile +19 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/ext/hitokage_ext/double-conversion/AUTHORS +14 -0
- data/ext/hitokage_ext/double-conversion/COPYING +26 -0
- data/ext/hitokage_ext/double-conversion/LICENSE +26 -0
- data/ext/hitokage_ext/double-conversion/README +54 -0
- data/ext/hitokage_ext/double-conversion/bignum-dtoa.cc +641 -0
- data/ext/hitokage_ext/double-conversion/bignum-dtoa.h +84 -0
- data/ext/hitokage_ext/double-conversion/bignum.cc +766 -0
- data/ext/hitokage_ext/double-conversion/bignum.h +144 -0
- data/ext/hitokage_ext/double-conversion/cached-powers.cc +175 -0
- data/ext/hitokage_ext/double-conversion/cached-powers.h +64 -0
- data/ext/hitokage_ext/double-conversion/diy-fp.cc +57 -0
- data/ext/hitokage_ext/double-conversion/diy-fp.h +118 -0
- data/ext/hitokage_ext/double-conversion/double-conversion.cc +982 -0
- data/ext/hitokage_ext/double-conversion/double-conversion.h +543 -0
- data/ext/hitokage_ext/double-conversion/fast-dtoa.cc +665 -0
- data/ext/hitokage_ext/double-conversion/fast-dtoa.h +88 -0
- data/ext/hitokage_ext/double-conversion/fixed-dtoa.cc +404 -0
- data/ext/hitokage_ext/double-conversion/fixed-dtoa.h +56 -0
- data/ext/hitokage_ext/double-conversion/ieee.h +402 -0
- data/ext/hitokage_ext/double-conversion/strtod.cc +555 -0
- data/ext/hitokage_ext/double-conversion/strtod.h +45 -0
- data/ext/hitokage_ext/double-conversion/utils.h +341 -0
- data/ext/hitokage_ext/extconf.rb +10 -0
- data/ext/hitokage_ext/hitokage_ext.cc +26 -0
- data/hitokage.gemspec +26 -0
- data/lib/hitokage.rb +5 -0
- data/lib/hitokage/replace_float_to_s.rb +6 -0
- data/lib/hitokage/version.rb +3 -0
- metadata +136 -0
@@ -0,0 +1,555 @@
|
|
1
|
+
// Copyright 2010 the V8 project authors. All rights reserved.
|
2
|
+
// Redistribution and use in source and binary forms, with or without
|
3
|
+
// modification, are permitted provided that the following conditions are
|
4
|
+
// met:
|
5
|
+
//
|
6
|
+
// * Redistributions of source code must retain the above copyright
|
7
|
+
// notice, this list of conditions and the following disclaimer.
|
8
|
+
// * Redistributions in binary form must reproduce the above
|
9
|
+
// copyright notice, this list of conditions and the following
|
10
|
+
// disclaimer in the documentation and/or other materials provided
|
11
|
+
// with the distribution.
|
12
|
+
// * Neither the name of Google Inc. nor the names of its
|
13
|
+
// contributors may be used to endorse or promote products derived
|
14
|
+
// from this software without specific prior written permission.
|
15
|
+
//
|
16
|
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
17
|
+
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
18
|
+
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
19
|
+
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
20
|
+
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
21
|
+
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
22
|
+
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
23
|
+
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
24
|
+
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
25
|
+
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26
|
+
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27
|
+
|
28
|
+
#include <stdarg.h>
|
29
|
+
#include <limits.h>
|
30
|
+
|
31
|
+
#include "strtod.h"
|
32
|
+
#include "bignum.h"
|
33
|
+
#include "cached-powers.h"
|
34
|
+
#include "ieee.h"
|
35
|
+
|
36
|
+
namespace double_conversion {
|
37
|
+
|
38
|
+
// 2^53 = 9007199254740992.
|
39
|
+
// Any integer with at most 15 decimal digits will hence fit into a double
|
40
|
+
// (which has a 53bit significand) without loss of precision.
|
41
|
+
static const int kMaxExactDoubleIntegerDecimalDigits = 15;
|
42
|
+
// 2^64 = 18446744073709551616 > 10^19
|
43
|
+
static const int kMaxUint64DecimalDigits = 19;
|
44
|
+
|
45
|
+
// Max double: 1.7976931348623157 x 10^308
|
46
|
+
// Min non-zero double: 4.9406564584124654 x 10^-324
|
47
|
+
// Any x >= 10^309 is interpreted as +infinity.
|
48
|
+
// Any x <= 10^-324 is interpreted as 0.
|
49
|
+
// Note that 2.5e-324 (despite being smaller than the min double) will be read
|
50
|
+
// as non-zero (equal to the min non-zero double).
|
51
|
+
static const int kMaxDecimalPower = 309;
|
52
|
+
static const int kMinDecimalPower = -324;
|
53
|
+
|
54
|
+
// 2^64 = 18446744073709551616
|
55
|
+
static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
|
56
|
+
|
57
|
+
|
58
|
+
static const double exact_powers_of_ten[] = {
|
59
|
+
1.0, // 10^0
|
60
|
+
10.0,
|
61
|
+
100.0,
|
62
|
+
1000.0,
|
63
|
+
10000.0,
|
64
|
+
100000.0,
|
65
|
+
1000000.0,
|
66
|
+
10000000.0,
|
67
|
+
100000000.0,
|
68
|
+
1000000000.0,
|
69
|
+
10000000000.0, // 10^10
|
70
|
+
100000000000.0,
|
71
|
+
1000000000000.0,
|
72
|
+
10000000000000.0,
|
73
|
+
100000000000000.0,
|
74
|
+
1000000000000000.0,
|
75
|
+
10000000000000000.0,
|
76
|
+
100000000000000000.0,
|
77
|
+
1000000000000000000.0,
|
78
|
+
10000000000000000000.0,
|
79
|
+
100000000000000000000.0, // 10^20
|
80
|
+
1000000000000000000000.0,
|
81
|
+
// 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
|
82
|
+
10000000000000000000000.0
|
83
|
+
};
|
84
|
+
static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
|
85
|
+
|
86
|
+
// Maximum number of significant digits in the decimal representation.
|
87
|
+
// In fact the value is 772 (see conversions.cc), but to give us some margin
|
88
|
+
// we round up to 780.
|
89
|
+
static const int kMaxSignificantDecimalDigits = 780;
|
90
|
+
|
91
|
+
static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
|
92
|
+
for (int i = 0; i < buffer.length(); i++) {
|
93
|
+
if (buffer[i] != '0') {
|
94
|
+
return buffer.SubVector(i, buffer.length());
|
95
|
+
}
|
96
|
+
}
|
97
|
+
return Vector<const char>(buffer.start(), 0);
|
98
|
+
}
|
99
|
+
|
100
|
+
|
101
|
+
static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
|
102
|
+
for (int i = buffer.length() - 1; i >= 0; --i) {
|
103
|
+
if (buffer[i] != '0') {
|
104
|
+
return buffer.SubVector(0, i + 1);
|
105
|
+
}
|
106
|
+
}
|
107
|
+
return Vector<const char>(buffer.start(), 0);
|
108
|
+
}
|
109
|
+
|
110
|
+
|
111
|
+
static void CutToMaxSignificantDigits(Vector<const char> buffer,
|
112
|
+
int exponent,
|
113
|
+
char* significant_buffer,
|
114
|
+
int* significant_exponent) {
|
115
|
+
for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
|
116
|
+
significant_buffer[i] = buffer[i];
|
117
|
+
}
|
118
|
+
// The input buffer has been trimmed. Therefore the last digit must be
|
119
|
+
// different from '0'.
|
120
|
+
ASSERT(buffer[buffer.length() - 1] != '0');
|
121
|
+
// Set the last digit to be non-zero. This is sufficient to guarantee
|
122
|
+
// correct rounding.
|
123
|
+
significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
|
124
|
+
*significant_exponent =
|
125
|
+
exponent + (buffer.length() - kMaxSignificantDecimalDigits);
|
126
|
+
}
|
127
|
+
|
128
|
+
|
129
|
+
// Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
|
130
|
+
// If possible the input-buffer is reused, but if the buffer needs to be
|
131
|
+
// modified (due to cutting), then the input needs to be copied into the
|
132
|
+
// buffer_copy_space.
|
133
|
+
static void TrimAndCut(Vector<const char> buffer, int exponent,
|
134
|
+
char* buffer_copy_space, int space_size,
|
135
|
+
Vector<const char>* trimmed, int* updated_exponent) {
|
136
|
+
Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
|
137
|
+
Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
|
138
|
+
exponent += left_trimmed.length() - right_trimmed.length();
|
139
|
+
if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
|
140
|
+
(void) space_size; // Mark variable as used.
|
141
|
+
ASSERT(space_size >= kMaxSignificantDecimalDigits);
|
142
|
+
CutToMaxSignificantDigits(right_trimmed, exponent,
|
143
|
+
buffer_copy_space, updated_exponent);
|
144
|
+
*trimmed = Vector<const char>(buffer_copy_space,
|
145
|
+
kMaxSignificantDecimalDigits);
|
146
|
+
} else {
|
147
|
+
*trimmed = right_trimmed;
|
148
|
+
*updated_exponent = exponent;
|
149
|
+
}
|
150
|
+
}
|
151
|
+
|
152
|
+
|
153
|
+
// Reads digits from the buffer and converts them to a uint64.
|
154
|
+
// Reads in as many digits as fit into a uint64.
|
155
|
+
// When the string starts with "1844674407370955161" no further digit is read.
|
156
|
+
// Since 2^64 = 18446744073709551616 it would still be possible read another
|
157
|
+
// digit if it was less or equal than 6, but this would complicate the code.
|
158
|
+
static uint64_t ReadUint64(Vector<const char> buffer,
|
159
|
+
int* number_of_read_digits) {
|
160
|
+
uint64_t result = 0;
|
161
|
+
int i = 0;
|
162
|
+
while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
|
163
|
+
int digit = buffer[i++] - '0';
|
164
|
+
ASSERT(0 <= digit && digit <= 9);
|
165
|
+
result = 10 * result + digit;
|
166
|
+
}
|
167
|
+
*number_of_read_digits = i;
|
168
|
+
return result;
|
169
|
+
}
|
170
|
+
|
171
|
+
|
172
|
+
// Reads a DiyFp from the buffer.
|
173
|
+
// The returned DiyFp is not necessarily normalized.
|
174
|
+
// If remaining_decimals is zero then the returned DiyFp is accurate.
|
175
|
+
// Otherwise it has been rounded and has error of at most 1/2 ulp.
|
176
|
+
static void ReadDiyFp(Vector<const char> buffer,
|
177
|
+
DiyFp* result,
|
178
|
+
int* remaining_decimals) {
|
179
|
+
int read_digits;
|
180
|
+
uint64_t significand = ReadUint64(buffer, &read_digits);
|
181
|
+
if (buffer.length() == read_digits) {
|
182
|
+
*result = DiyFp(significand, 0);
|
183
|
+
*remaining_decimals = 0;
|
184
|
+
} else {
|
185
|
+
// Round the significand.
|
186
|
+
if (buffer[read_digits] >= '5') {
|
187
|
+
significand++;
|
188
|
+
}
|
189
|
+
// Compute the binary exponent.
|
190
|
+
int exponent = 0;
|
191
|
+
*result = DiyFp(significand, exponent);
|
192
|
+
*remaining_decimals = buffer.length() - read_digits;
|
193
|
+
}
|
194
|
+
}
|
195
|
+
|
196
|
+
|
197
|
+
static bool DoubleStrtod(Vector<const char> trimmed,
|
198
|
+
int exponent,
|
199
|
+
double* result) {
|
200
|
+
#if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
|
201
|
+
// On x86 the floating-point stack can be 64 or 80 bits wide. If it is
|
202
|
+
// 80 bits wide (as is the case on Linux) then double-rounding occurs and the
|
203
|
+
// result is not accurate.
|
204
|
+
// We know that Windows32 uses 64 bits and is therefore accurate.
|
205
|
+
// Note that the ARM simulator is compiled for 32bits. It therefore exhibits
|
206
|
+
// the same problem.
|
207
|
+
return false;
|
208
|
+
#endif
|
209
|
+
if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
|
210
|
+
int read_digits;
|
211
|
+
// The trimmed input fits into a double.
|
212
|
+
// If the 10^exponent (resp. 10^-exponent) fits into a double too then we
|
213
|
+
// can compute the result-double simply by multiplying (resp. dividing) the
|
214
|
+
// two numbers.
|
215
|
+
// This is possible because IEEE guarantees that floating-point operations
|
216
|
+
// return the best possible approximation.
|
217
|
+
if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
|
218
|
+
// 10^-exponent fits into a double.
|
219
|
+
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
220
|
+
ASSERT(read_digits == trimmed.length());
|
221
|
+
*result /= exact_powers_of_ten[-exponent];
|
222
|
+
return true;
|
223
|
+
}
|
224
|
+
if (0 <= exponent && exponent < kExactPowersOfTenSize) {
|
225
|
+
// 10^exponent fits into a double.
|
226
|
+
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
227
|
+
ASSERT(read_digits == trimmed.length());
|
228
|
+
*result *= exact_powers_of_ten[exponent];
|
229
|
+
return true;
|
230
|
+
}
|
231
|
+
int remaining_digits =
|
232
|
+
kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
|
233
|
+
if ((0 <= exponent) &&
|
234
|
+
(exponent - remaining_digits < kExactPowersOfTenSize)) {
|
235
|
+
// The trimmed string was short and we can multiply it with
|
236
|
+
// 10^remaining_digits. As a result the remaining exponent now fits
|
237
|
+
// into a double too.
|
238
|
+
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
239
|
+
ASSERT(read_digits == trimmed.length());
|
240
|
+
*result *= exact_powers_of_ten[remaining_digits];
|
241
|
+
*result *= exact_powers_of_ten[exponent - remaining_digits];
|
242
|
+
return true;
|
243
|
+
}
|
244
|
+
}
|
245
|
+
return false;
|
246
|
+
}
|
247
|
+
|
248
|
+
|
249
|
+
// Returns 10^exponent as an exact DiyFp.
|
250
|
+
// The given exponent must be in the range [1; kDecimalExponentDistance[.
|
251
|
+
static DiyFp AdjustmentPowerOfTen(int exponent) {
|
252
|
+
ASSERT(0 < exponent);
|
253
|
+
ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
|
254
|
+
// Simply hardcode the remaining powers for the given decimal exponent
|
255
|
+
// distance.
|
256
|
+
ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
|
257
|
+
switch (exponent) {
|
258
|
+
case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
|
259
|
+
case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
|
260
|
+
case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
|
261
|
+
case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
|
262
|
+
case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
|
263
|
+
case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
|
264
|
+
case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
|
265
|
+
default:
|
266
|
+
UNREACHABLE();
|
267
|
+
}
|
268
|
+
}
|
269
|
+
|
270
|
+
|
271
|
+
// If the function returns true then the result is the correct double.
|
272
|
+
// Otherwise it is either the correct double or the double that is just below
|
273
|
+
// the correct double.
|
274
|
+
static bool DiyFpStrtod(Vector<const char> buffer,
|
275
|
+
int exponent,
|
276
|
+
double* result) {
|
277
|
+
DiyFp input;
|
278
|
+
int remaining_decimals;
|
279
|
+
ReadDiyFp(buffer, &input, &remaining_decimals);
|
280
|
+
// Since we may have dropped some digits the input is not accurate.
|
281
|
+
// If remaining_decimals is different than 0 than the error is at most
|
282
|
+
// .5 ulp (unit in the last place).
|
283
|
+
// We don't want to deal with fractions and therefore keep a common
|
284
|
+
// denominator.
|
285
|
+
const int kDenominatorLog = 3;
|
286
|
+
const int kDenominator = 1 << kDenominatorLog;
|
287
|
+
// Move the remaining decimals into the exponent.
|
288
|
+
exponent += remaining_decimals;
|
289
|
+
uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
|
290
|
+
|
291
|
+
int old_e = input.e();
|
292
|
+
input.Normalize();
|
293
|
+
error <<= old_e - input.e();
|
294
|
+
|
295
|
+
ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
|
296
|
+
if (exponent < PowersOfTenCache::kMinDecimalExponent) {
|
297
|
+
*result = 0.0;
|
298
|
+
return true;
|
299
|
+
}
|
300
|
+
DiyFp cached_power;
|
301
|
+
int cached_decimal_exponent;
|
302
|
+
PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
|
303
|
+
&cached_power,
|
304
|
+
&cached_decimal_exponent);
|
305
|
+
|
306
|
+
if (cached_decimal_exponent != exponent) {
|
307
|
+
int adjustment_exponent = exponent - cached_decimal_exponent;
|
308
|
+
DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
|
309
|
+
input.Multiply(adjustment_power);
|
310
|
+
if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
|
311
|
+
// The product of input with the adjustment power fits into a 64 bit
|
312
|
+
// integer.
|
313
|
+
ASSERT(DiyFp::kSignificandSize == 64);
|
314
|
+
} else {
|
315
|
+
// The adjustment power is exact. There is hence only an error of 0.5.
|
316
|
+
error += kDenominator / 2;
|
317
|
+
}
|
318
|
+
}
|
319
|
+
|
320
|
+
input.Multiply(cached_power);
|
321
|
+
// The error introduced by a multiplication of a*b equals
|
322
|
+
// error_a + error_b + error_a*error_b/2^64 + 0.5
|
323
|
+
// Substituting a with 'input' and b with 'cached_power' we have
|
324
|
+
// error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
|
325
|
+
// error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
|
326
|
+
int error_b = kDenominator / 2;
|
327
|
+
int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
|
328
|
+
int fixed_error = kDenominator / 2;
|
329
|
+
error += error_b + error_ab + fixed_error;
|
330
|
+
|
331
|
+
old_e = input.e();
|
332
|
+
input.Normalize();
|
333
|
+
error <<= old_e - input.e();
|
334
|
+
|
335
|
+
// See if the double's significand changes if we add/subtract the error.
|
336
|
+
int order_of_magnitude = DiyFp::kSignificandSize + input.e();
|
337
|
+
int effective_significand_size =
|
338
|
+
Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
|
339
|
+
int precision_digits_count =
|
340
|
+
DiyFp::kSignificandSize - effective_significand_size;
|
341
|
+
if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
|
342
|
+
// This can only happen for very small denormals. In this case the
|
343
|
+
// half-way multiplied by the denominator exceeds the range of an uint64.
|
344
|
+
// Simply shift everything to the right.
|
345
|
+
int shift_amount = (precision_digits_count + kDenominatorLog) -
|
346
|
+
DiyFp::kSignificandSize + 1;
|
347
|
+
input.set_f(input.f() >> shift_amount);
|
348
|
+
input.set_e(input.e() + shift_amount);
|
349
|
+
// We add 1 for the lost precision of error, and kDenominator for
|
350
|
+
// the lost precision of input.f().
|
351
|
+
error = (error >> shift_amount) + 1 + kDenominator;
|
352
|
+
precision_digits_count -= shift_amount;
|
353
|
+
}
|
354
|
+
// We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
|
355
|
+
ASSERT(DiyFp::kSignificandSize == 64);
|
356
|
+
ASSERT(precision_digits_count < 64);
|
357
|
+
uint64_t one64 = 1;
|
358
|
+
uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
|
359
|
+
uint64_t precision_bits = input.f() & precision_bits_mask;
|
360
|
+
uint64_t half_way = one64 << (precision_digits_count - 1);
|
361
|
+
precision_bits *= kDenominator;
|
362
|
+
half_way *= kDenominator;
|
363
|
+
DiyFp rounded_input(input.f() >> precision_digits_count,
|
364
|
+
input.e() + precision_digits_count);
|
365
|
+
if (precision_bits >= half_way + error) {
|
366
|
+
rounded_input.set_f(rounded_input.f() + 1);
|
367
|
+
}
|
368
|
+
// If the last_bits are too close to the half-way case than we are too
|
369
|
+
// inaccurate and round down. In this case we return false so that we can
|
370
|
+
// fall back to a more precise algorithm.
|
371
|
+
|
372
|
+
*result = Double(rounded_input).value();
|
373
|
+
if (half_way - error < precision_bits && precision_bits < half_way + error) {
|
374
|
+
// Too imprecise. The caller will have to fall back to a slower version.
|
375
|
+
// However the returned number is guaranteed to be either the correct
|
376
|
+
// double, or the next-lower double.
|
377
|
+
return false;
|
378
|
+
} else {
|
379
|
+
return true;
|
380
|
+
}
|
381
|
+
}
|
382
|
+
|
383
|
+
|
384
|
+
// Returns
|
385
|
+
// - -1 if buffer*10^exponent < diy_fp.
|
386
|
+
// - 0 if buffer*10^exponent == diy_fp.
|
387
|
+
// - +1 if buffer*10^exponent > diy_fp.
|
388
|
+
// Preconditions:
|
389
|
+
// buffer.length() + exponent <= kMaxDecimalPower + 1
|
390
|
+
// buffer.length() + exponent > kMinDecimalPower
|
391
|
+
// buffer.length() <= kMaxDecimalSignificantDigits
|
392
|
+
static int CompareBufferWithDiyFp(Vector<const char> buffer,
|
393
|
+
int exponent,
|
394
|
+
DiyFp diy_fp) {
|
395
|
+
ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
|
396
|
+
ASSERT(buffer.length() + exponent > kMinDecimalPower);
|
397
|
+
ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
|
398
|
+
// Make sure that the Bignum will be able to hold all our numbers.
|
399
|
+
// Our Bignum implementation has a separate field for exponents. Shifts will
|
400
|
+
// consume at most one bigit (< 64 bits).
|
401
|
+
// ln(10) == 3.3219...
|
402
|
+
ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
|
403
|
+
Bignum buffer_bignum;
|
404
|
+
Bignum diy_fp_bignum;
|
405
|
+
buffer_bignum.AssignDecimalString(buffer);
|
406
|
+
diy_fp_bignum.AssignUInt64(diy_fp.f());
|
407
|
+
if (exponent >= 0) {
|
408
|
+
buffer_bignum.MultiplyByPowerOfTen(exponent);
|
409
|
+
} else {
|
410
|
+
diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
|
411
|
+
}
|
412
|
+
if (diy_fp.e() > 0) {
|
413
|
+
diy_fp_bignum.ShiftLeft(diy_fp.e());
|
414
|
+
} else {
|
415
|
+
buffer_bignum.ShiftLeft(-diy_fp.e());
|
416
|
+
}
|
417
|
+
return Bignum::Compare(buffer_bignum, diy_fp_bignum);
|
418
|
+
}
|
419
|
+
|
420
|
+
|
421
|
+
// Returns true if the guess is the correct double.
|
422
|
+
// Returns false, when guess is either correct or the next-lower double.
|
423
|
+
static bool ComputeGuess(Vector<const char> trimmed, int exponent,
|
424
|
+
double* guess) {
|
425
|
+
if (trimmed.length() == 0) {
|
426
|
+
*guess = 0.0;
|
427
|
+
return true;
|
428
|
+
}
|
429
|
+
if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
|
430
|
+
*guess = Double::Infinity();
|
431
|
+
return true;
|
432
|
+
}
|
433
|
+
if (exponent + trimmed.length() <= kMinDecimalPower) {
|
434
|
+
*guess = 0.0;
|
435
|
+
return true;
|
436
|
+
}
|
437
|
+
|
438
|
+
if (DoubleStrtod(trimmed, exponent, guess) ||
|
439
|
+
DiyFpStrtod(trimmed, exponent, guess)) {
|
440
|
+
return true;
|
441
|
+
}
|
442
|
+
if (*guess == Double::Infinity()) {
|
443
|
+
return true;
|
444
|
+
}
|
445
|
+
return false;
|
446
|
+
}
|
447
|
+
|
448
|
+
double Strtod(Vector<const char> buffer, int exponent) {
|
449
|
+
char copy_buffer[kMaxSignificantDecimalDigits];
|
450
|
+
Vector<const char> trimmed;
|
451
|
+
int updated_exponent;
|
452
|
+
TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
|
453
|
+
&trimmed, &updated_exponent);
|
454
|
+
exponent = updated_exponent;
|
455
|
+
|
456
|
+
double guess;
|
457
|
+
bool is_correct = ComputeGuess(trimmed, exponent, &guess);
|
458
|
+
if (is_correct) return guess;
|
459
|
+
|
460
|
+
DiyFp upper_boundary = Double(guess).UpperBoundary();
|
461
|
+
int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
|
462
|
+
if (comparison < 0) {
|
463
|
+
return guess;
|
464
|
+
} else if (comparison > 0) {
|
465
|
+
return Double(guess).NextDouble();
|
466
|
+
} else if ((Double(guess).Significand() & 1) == 0) {
|
467
|
+
// Round towards even.
|
468
|
+
return guess;
|
469
|
+
} else {
|
470
|
+
return Double(guess).NextDouble();
|
471
|
+
}
|
472
|
+
}
|
473
|
+
|
474
|
+
float Strtof(Vector<const char> buffer, int exponent) {
|
475
|
+
char copy_buffer[kMaxSignificantDecimalDigits];
|
476
|
+
Vector<const char> trimmed;
|
477
|
+
int updated_exponent;
|
478
|
+
TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
|
479
|
+
&trimmed, &updated_exponent);
|
480
|
+
exponent = updated_exponent;
|
481
|
+
|
482
|
+
double double_guess;
|
483
|
+
bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
|
484
|
+
|
485
|
+
float float_guess = static_cast<float>(double_guess);
|
486
|
+
if (float_guess == double_guess) {
|
487
|
+
// This shortcut triggers for integer values.
|
488
|
+
return float_guess;
|
489
|
+
}
|
490
|
+
|
491
|
+
// We must catch double-rounding. Say the double has been rounded up, and is
|
492
|
+
// now a boundary of a float, and rounds up again. This is why we have to
|
493
|
+
// look at previous too.
|
494
|
+
// Example (in decimal numbers):
|
495
|
+
// input: 12349
|
496
|
+
// high-precision (4 digits): 1235
|
497
|
+
// low-precision (3 digits):
|
498
|
+
// when read from input: 123
|
499
|
+
// when rounded from high precision: 124.
|
500
|
+
// To do this we simply look at the neigbors of the correct result and see
|
501
|
+
// if they would round to the same float. If the guess is not correct we have
|
502
|
+
// to look at four values (since two different doubles could be the correct
|
503
|
+
// double).
|
504
|
+
|
505
|
+
double double_next = Double(double_guess).NextDouble();
|
506
|
+
double double_previous = Double(double_guess).PreviousDouble();
|
507
|
+
|
508
|
+
float f1 = static_cast<float>(double_previous);
|
509
|
+
float f2 = float_guess;
|
510
|
+
float f3 = static_cast<float>(double_next);
|
511
|
+
float f4;
|
512
|
+
if (is_correct) {
|
513
|
+
f4 = f3;
|
514
|
+
} else {
|
515
|
+
double double_next2 = Double(double_next).NextDouble();
|
516
|
+
f4 = static_cast<float>(double_next2);
|
517
|
+
}
|
518
|
+
(void) f2; // Mark variable as used.
|
519
|
+
ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
|
520
|
+
|
521
|
+
// If the guess doesn't lie near a single-precision boundary we can simply
|
522
|
+
// return its float-value.
|
523
|
+
if (f1 == f4) {
|
524
|
+
return float_guess;
|
525
|
+
}
|
526
|
+
|
527
|
+
ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
|
528
|
+
(f1 == f2 && f2 != f3 && f3 == f4) ||
|
529
|
+
(f1 == f2 && f2 == f3 && f3 != f4));
|
530
|
+
|
531
|
+
// guess and next are the two possible canditates (in the same way that
|
532
|
+
// double_guess was the lower candidate for a double-precision guess).
|
533
|
+
float guess = f1;
|
534
|
+
float next = f4;
|
535
|
+
DiyFp upper_boundary;
|
536
|
+
if (guess == 0.0f) {
|
537
|
+
float min_float = 1e-45f;
|
538
|
+
upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
|
539
|
+
} else {
|
540
|
+
upper_boundary = Single(guess).UpperBoundary();
|
541
|
+
}
|
542
|
+
int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
|
543
|
+
if (comparison < 0) {
|
544
|
+
return guess;
|
545
|
+
} else if (comparison > 0) {
|
546
|
+
return next;
|
547
|
+
} else if ((Single(guess).Significand() & 1) == 0) {
|
548
|
+
// Round towards even.
|
549
|
+
return guess;
|
550
|
+
} else {
|
551
|
+
return next;
|
552
|
+
}
|
553
|
+
}
|
554
|
+
|
555
|
+
} // namespace double_conversion
|