hitokage 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +20 -0
- data/.travis.yml +4 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +21 -0
- data/README.md +89 -0
- data/Rakefile +19 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/ext/hitokage_ext/double-conversion/AUTHORS +14 -0
- data/ext/hitokage_ext/double-conversion/COPYING +26 -0
- data/ext/hitokage_ext/double-conversion/LICENSE +26 -0
- data/ext/hitokage_ext/double-conversion/README +54 -0
- data/ext/hitokage_ext/double-conversion/bignum-dtoa.cc +641 -0
- data/ext/hitokage_ext/double-conversion/bignum-dtoa.h +84 -0
- data/ext/hitokage_ext/double-conversion/bignum.cc +766 -0
- data/ext/hitokage_ext/double-conversion/bignum.h +144 -0
- data/ext/hitokage_ext/double-conversion/cached-powers.cc +175 -0
- data/ext/hitokage_ext/double-conversion/cached-powers.h +64 -0
- data/ext/hitokage_ext/double-conversion/diy-fp.cc +57 -0
- data/ext/hitokage_ext/double-conversion/diy-fp.h +118 -0
- data/ext/hitokage_ext/double-conversion/double-conversion.cc +982 -0
- data/ext/hitokage_ext/double-conversion/double-conversion.h +543 -0
- data/ext/hitokage_ext/double-conversion/fast-dtoa.cc +665 -0
- data/ext/hitokage_ext/double-conversion/fast-dtoa.h +88 -0
- data/ext/hitokage_ext/double-conversion/fixed-dtoa.cc +404 -0
- data/ext/hitokage_ext/double-conversion/fixed-dtoa.h +56 -0
- data/ext/hitokage_ext/double-conversion/ieee.h +402 -0
- data/ext/hitokage_ext/double-conversion/strtod.cc +555 -0
- data/ext/hitokage_ext/double-conversion/strtod.h +45 -0
- data/ext/hitokage_ext/double-conversion/utils.h +341 -0
- data/ext/hitokage_ext/extconf.rb +10 -0
- data/ext/hitokage_ext/hitokage_ext.cc +26 -0
- data/hitokage.gemspec +26 -0
- data/lib/hitokage.rb +5 -0
- data/lib/hitokage/replace_float_to_s.rb +6 -0
- data/lib/hitokage/version.rb +3 -0
- metadata +136 -0
@@ -0,0 +1,88 @@
|
|
1
|
+
// Copyright 2010 the V8 project authors. All rights reserved.
|
2
|
+
// Redistribution and use in source and binary forms, with or without
|
3
|
+
// modification, are permitted provided that the following conditions are
|
4
|
+
// met:
|
5
|
+
//
|
6
|
+
// * Redistributions of source code must retain the above copyright
|
7
|
+
// notice, this list of conditions and the following disclaimer.
|
8
|
+
// * Redistributions in binary form must reproduce the above
|
9
|
+
// copyright notice, this list of conditions and the following
|
10
|
+
// disclaimer in the documentation and/or other materials provided
|
11
|
+
// with the distribution.
|
12
|
+
// * Neither the name of Google Inc. nor the names of its
|
13
|
+
// contributors may be used to endorse or promote products derived
|
14
|
+
// from this software without specific prior written permission.
|
15
|
+
//
|
16
|
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
17
|
+
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
18
|
+
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
19
|
+
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
20
|
+
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
21
|
+
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
22
|
+
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
23
|
+
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
24
|
+
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
25
|
+
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26
|
+
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27
|
+
|
28
|
+
#ifndef DOUBLE_CONVERSION_FAST_DTOA_H_
|
29
|
+
#define DOUBLE_CONVERSION_FAST_DTOA_H_
|
30
|
+
|
31
|
+
#include "utils.h"
|
32
|
+
|
33
|
+
namespace double_conversion {
|
34
|
+
|
35
|
+
enum FastDtoaMode {
|
36
|
+
// Computes the shortest representation of the given input. The returned
|
37
|
+
// result will be the most accurate number of this length. Longer
|
38
|
+
// representations might be more accurate.
|
39
|
+
FAST_DTOA_SHORTEST,
|
40
|
+
// Same as FAST_DTOA_SHORTEST but for single-precision floats.
|
41
|
+
FAST_DTOA_SHORTEST_SINGLE,
|
42
|
+
// Computes a representation where the precision (number of digits) is
|
43
|
+
// given as input. The precision is independent of the decimal point.
|
44
|
+
FAST_DTOA_PRECISION
|
45
|
+
};
|
46
|
+
|
47
|
+
// FastDtoa will produce at most kFastDtoaMaximalLength digits. This does not
|
48
|
+
// include the terminating '\0' character.
|
49
|
+
static const int kFastDtoaMaximalLength = 17;
|
50
|
+
// Same for single-precision numbers.
|
51
|
+
static const int kFastDtoaMaximalSingleLength = 9;
|
52
|
+
|
53
|
+
// Provides a decimal representation of v.
|
54
|
+
// The result should be interpreted as buffer * 10^(point - length).
|
55
|
+
//
|
56
|
+
// Precondition:
|
57
|
+
// * v must be a strictly positive finite double.
|
58
|
+
//
|
59
|
+
// Returns true if it succeeds, otherwise the result can not be trusted.
|
60
|
+
// There will be *length digits inside the buffer followed by a null terminator.
|
61
|
+
// If the function returns true and mode equals
|
62
|
+
// - FAST_DTOA_SHORTEST, then
|
63
|
+
// the parameter requested_digits is ignored.
|
64
|
+
// The result satisfies
|
65
|
+
// v == (double) (buffer * 10^(point - length)).
|
66
|
+
// The digits in the buffer are the shortest representation possible. E.g.
|
67
|
+
// if 0.099999999999 and 0.1 represent the same double then "1" is returned
|
68
|
+
// with point = 0.
|
69
|
+
// The last digit will be closest to the actual v. That is, even if several
|
70
|
+
// digits might correctly yield 'v' when read again, the buffer will contain
|
71
|
+
// the one closest to v.
|
72
|
+
// - FAST_DTOA_PRECISION, then
|
73
|
+
// the buffer contains requested_digits digits.
|
74
|
+
// the difference v - (buffer * 10^(point-length)) is closest to zero for
|
75
|
+
// all possible representations of requested_digits digits.
|
76
|
+
// If there are two values that are equally close, then FastDtoa returns
|
77
|
+
// false.
|
78
|
+
// For both modes the buffer must be large enough to hold the result.
|
79
|
+
bool FastDtoa(double d,
|
80
|
+
FastDtoaMode mode,
|
81
|
+
int requested_digits,
|
82
|
+
Vector<char> buffer,
|
83
|
+
int* length,
|
84
|
+
int* decimal_point);
|
85
|
+
|
86
|
+
} // namespace double_conversion
|
87
|
+
|
88
|
+
#endif // DOUBLE_CONVERSION_FAST_DTOA_H_
|
@@ -0,0 +1,404 @@
|
|
1
|
+
// Copyright 2010 the V8 project authors. All rights reserved.
|
2
|
+
// Redistribution and use in source and binary forms, with or without
|
3
|
+
// modification, are permitted provided that the following conditions are
|
4
|
+
// met:
|
5
|
+
//
|
6
|
+
// * Redistributions of source code must retain the above copyright
|
7
|
+
// notice, this list of conditions and the following disclaimer.
|
8
|
+
// * Redistributions in binary form must reproduce the above
|
9
|
+
// copyright notice, this list of conditions and the following
|
10
|
+
// disclaimer in the documentation and/or other materials provided
|
11
|
+
// with the distribution.
|
12
|
+
// * Neither the name of Google Inc. nor the names of its
|
13
|
+
// contributors may be used to endorse or promote products derived
|
14
|
+
// from this software without specific prior written permission.
|
15
|
+
//
|
16
|
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
17
|
+
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
18
|
+
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
19
|
+
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
20
|
+
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
21
|
+
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
22
|
+
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
23
|
+
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
24
|
+
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
25
|
+
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26
|
+
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27
|
+
|
28
|
+
#include <math.h>
|
29
|
+
|
30
|
+
#include "fixed-dtoa.h"
|
31
|
+
#include "ieee.h"
|
32
|
+
|
33
|
+
namespace double_conversion {
|
34
|
+
|
35
|
+
// Represents a 128bit type. This class should be replaced by a native type on
|
36
|
+
// platforms that support 128bit integers.
|
37
|
+
class UInt128 {
|
38
|
+
public:
|
39
|
+
UInt128() : high_bits_(0), low_bits_(0) { }
|
40
|
+
UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
|
41
|
+
|
42
|
+
void Multiply(uint32_t multiplicand) {
|
43
|
+
uint64_t accumulator;
|
44
|
+
|
45
|
+
accumulator = (low_bits_ & kMask32) * multiplicand;
|
46
|
+
uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
|
47
|
+
accumulator >>= 32;
|
48
|
+
accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
|
49
|
+
low_bits_ = (accumulator << 32) + part;
|
50
|
+
accumulator >>= 32;
|
51
|
+
accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
|
52
|
+
part = static_cast<uint32_t>(accumulator & kMask32);
|
53
|
+
accumulator >>= 32;
|
54
|
+
accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
|
55
|
+
high_bits_ = (accumulator << 32) + part;
|
56
|
+
ASSERT((accumulator >> 32) == 0);
|
57
|
+
}
|
58
|
+
|
59
|
+
void Shift(int shift_amount) {
|
60
|
+
ASSERT(-64 <= shift_amount && shift_amount <= 64);
|
61
|
+
if (shift_amount == 0) {
|
62
|
+
return;
|
63
|
+
} else if (shift_amount == -64) {
|
64
|
+
high_bits_ = low_bits_;
|
65
|
+
low_bits_ = 0;
|
66
|
+
} else if (shift_amount == 64) {
|
67
|
+
low_bits_ = high_bits_;
|
68
|
+
high_bits_ = 0;
|
69
|
+
} else if (shift_amount <= 0) {
|
70
|
+
high_bits_ <<= -shift_amount;
|
71
|
+
high_bits_ += low_bits_ >> (64 + shift_amount);
|
72
|
+
low_bits_ <<= -shift_amount;
|
73
|
+
} else {
|
74
|
+
low_bits_ >>= shift_amount;
|
75
|
+
low_bits_ += high_bits_ << (64 - shift_amount);
|
76
|
+
high_bits_ >>= shift_amount;
|
77
|
+
}
|
78
|
+
}
|
79
|
+
|
80
|
+
// Modifies *this to *this MOD (2^power).
|
81
|
+
// Returns *this DIV (2^power).
|
82
|
+
int DivModPowerOf2(int power) {
|
83
|
+
if (power >= 64) {
|
84
|
+
int result = static_cast<int>(high_bits_ >> (power - 64));
|
85
|
+
high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
|
86
|
+
return result;
|
87
|
+
} else {
|
88
|
+
uint64_t part_low = low_bits_ >> power;
|
89
|
+
uint64_t part_high = high_bits_ << (64 - power);
|
90
|
+
int result = static_cast<int>(part_low + part_high);
|
91
|
+
high_bits_ = 0;
|
92
|
+
low_bits_ -= part_low << power;
|
93
|
+
return result;
|
94
|
+
}
|
95
|
+
}
|
96
|
+
|
97
|
+
bool IsZero() const {
|
98
|
+
return high_bits_ == 0 && low_bits_ == 0;
|
99
|
+
}
|
100
|
+
|
101
|
+
int BitAt(int position) {
|
102
|
+
if (position >= 64) {
|
103
|
+
return static_cast<int>(high_bits_ >> (position - 64)) & 1;
|
104
|
+
} else {
|
105
|
+
return static_cast<int>(low_bits_ >> position) & 1;
|
106
|
+
}
|
107
|
+
}
|
108
|
+
|
109
|
+
private:
|
110
|
+
static const uint64_t kMask32 = 0xFFFFFFFF;
|
111
|
+
// Value == (high_bits_ << 64) + low_bits_
|
112
|
+
uint64_t high_bits_;
|
113
|
+
uint64_t low_bits_;
|
114
|
+
};
|
115
|
+
|
116
|
+
|
117
|
+
static const int kDoubleSignificandSize = 53; // Includes the hidden bit.
|
118
|
+
|
119
|
+
|
120
|
+
static void FillDigits32FixedLength(uint32_t number, int requested_length,
|
121
|
+
Vector<char> buffer, int* length) {
|
122
|
+
for (int i = requested_length - 1; i >= 0; --i) {
|
123
|
+
buffer[(*length) + i] = '0' + number % 10;
|
124
|
+
number /= 10;
|
125
|
+
}
|
126
|
+
*length += requested_length;
|
127
|
+
}
|
128
|
+
|
129
|
+
|
130
|
+
static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
|
131
|
+
int number_length = 0;
|
132
|
+
// We fill the digits in reverse order and exchange them afterwards.
|
133
|
+
while (number != 0) {
|
134
|
+
int digit = number % 10;
|
135
|
+
number /= 10;
|
136
|
+
buffer[(*length) + number_length] = static_cast<char>('0' + digit);
|
137
|
+
number_length++;
|
138
|
+
}
|
139
|
+
// Exchange the digits.
|
140
|
+
int i = *length;
|
141
|
+
int j = *length + number_length - 1;
|
142
|
+
while (i < j) {
|
143
|
+
char tmp = buffer[i];
|
144
|
+
buffer[i] = buffer[j];
|
145
|
+
buffer[j] = tmp;
|
146
|
+
i++;
|
147
|
+
j--;
|
148
|
+
}
|
149
|
+
*length += number_length;
|
150
|
+
}
|
151
|
+
|
152
|
+
|
153
|
+
static void FillDigits64FixedLength(uint64_t number,
|
154
|
+
Vector<char> buffer, int* length) {
|
155
|
+
const uint32_t kTen7 = 10000000;
|
156
|
+
// For efficiency cut the number into 3 uint32_t parts, and print those.
|
157
|
+
uint32_t part2 = static_cast<uint32_t>(number % kTen7);
|
158
|
+
number /= kTen7;
|
159
|
+
uint32_t part1 = static_cast<uint32_t>(number % kTen7);
|
160
|
+
uint32_t part0 = static_cast<uint32_t>(number / kTen7);
|
161
|
+
|
162
|
+
FillDigits32FixedLength(part0, 3, buffer, length);
|
163
|
+
FillDigits32FixedLength(part1, 7, buffer, length);
|
164
|
+
FillDigits32FixedLength(part2, 7, buffer, length);
|
165
|
+
}
|
166
|
+
|
167
|
+
|
168
|
+
static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
|
169
|
+
const uint32_t kTen7 = 10000000;
|
170
|
+
// For efficiency cut the number into 3 uint32_t parts, and print those.
|
171
|
+
uint32_t part2 = static_cast<uint32_t>(number % kTen7);
|
172
|
+
number /= kTen7;
|
173
|
+
uint32_t part1 = static_cast<uint32_t>(number % kTen7);
|
174
|
+
uint32_t part0 = static_cast<uint32_t>(number / kTen7);
|
175
|
+
|
176
|
+
if (part0 != 0) {
|
177
|
+
FillDigits32(part0, buffer, length);
|
178
|
+
FillDigits32FixedLength(part1, 7, buffer, length);
|
179
|
+
FillDigits32FixedLength(part2, 7, buffer, length);
|
180
|
+
} else if (part1 != 0) {
|
181
|
+
FillDigits32(part1, buffer, length);
|
182
|
+
FillDigits32FixedLength(part2, 7, buffer, length);
|
183
|
+
} else {
|
184
|
+
FillDigits32(part2, buffer, length);
|
185
|
+
}
|
186
|
+
}
|
187
|
+
|
188
|
+
|
189
|
+
static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
|
190
|
+
// An empty buffer represents 0.
|
191
|
+
if (*length == 0) {
|
192
|
+
buffer[0] = '1';
|
193
|
+
*decimal_point = 1;
|
194
|
+
*length = 1;
|
195
|
+
return;
|
196
|
+
}
|
197
|
+
// Round the last digit until we either have a digit that was not '9' or until
|
198
|
+
// we reached the first digit.
|
199
|
+
buffer[(*length) - 1]++;
|
200
|
+
for (int i = (*length) - 1; i > 0; --i) {
|
201
|
+
if (buffer[i] != '0' + 10) {
|
202
|
+
return;
|
203
|
+
}
|
204
|
+
buffer[i] = '0';
|
205
|
+
buffer[i - 1]++;
|
206
|
+
}
|
207
|
+
// If the first digit is now '0' + 10, we would need to set it to '0' and add
|
208
|
+
// a '1' in front. However we reach the first digit only if all following
|
209
|
+
// digits had been '9' before rounding up. Now all trailing digits are '0' and
|
210
|
+
// we simply switch the first digit to '1' and update the decimal-point
|
211
|
+
// (indicating that the point is now one digit to the right).
|
212
|
+
if (buffer[0] == '0' + 10) {
|
213
|
+
buffer[0] = '1';
|
214
|
+
(*decimal_point)++;
|
215
|
+
}
|
216
|
+
}
|
217
|
+
|
218
|
+
|
219
|
+
// The given fractionals number represents a fixed-point number with binary
|
220
|
+
// point at bit (-exponent).
|
221
|
+
// Preconditions:
|
222
|
+
// -128 <= exponent <= 0.
|
223
|
+
// 0 <= fractionals * 2^exponent < 1
|
224
|
+
// The buffer holds the result.
|
225
|
+
// The function will round its result. During the rounding-process digits not
|
226
|
+
// generated by this function might be updated, and the decimal-point variable
|
227
|
+
// might be updated. If this function generates the digits 99 and the buffer
|
228
|
+
// already contained "199" (thus yielding a buffer of "19999") then a
|
229
|
+
// rounding-up will change the contents of the buffer to "20000".
|
230
|
+
static void FillFractionals(uint64_t fractionals, int exponent,
|
231
|
+
int fractional_count, Vector<char> buffer,
|
232
|
+
int* length, int* decimal_point) {
|
233
|
+
ASSERT(-128 <= exponent && exponent <= 0);
|
234
|
+
// 'fractionals' is a fixed-point number, with binary point at bit
|
235
|
+
// (-exponent). Inside the function the non-converted remainder of fractionals
|
236
|
+
// is a fixed-point number, with binary point at bit 'point'.
|
237
|
+
if (-exponent <= 64) {
|
238
|
+
// One 64 bit number is sufficient.
|
239
|
+
ASSERT(fractionals >> 56 == 0);
|
240
|
+
int point = -exponent;
|
241
|
+
for (int i = 0; i < fractional_count; ++i) {
|
242
|
+
if (fractionals == 0) break;
|
243
|
+
// Instead of multiplying by 10 we multiply by 5 and adjust the point
|
244
|
+
// location. This way the fractionals variable will not overflow.
|
245
|
+
// Invariant at the beginning of the loop: fractionals < 2^point.
|
246
|
+
// Initially we have: point <= 64 and fractionals < 2^56
|
247
|
+
// After each iteration the point is decremented by one.
|
248
|
+
// Note that 5^3 = 125 < 128 = 2^7.
|
249
|
+
// Therefore three iterations of this loop will not overflow fractionals
|
250
|
+
// (even without the subtraction at the end of the loop body). At this
|
251
|
+
// time point will satisfy point <= 61 and therefore fractionals < 2^point
|
252
|
+
// and any further multiplication of fractionals by 5 will not overflow.
|
253
|
+
fractionals *= 5;
|
254
|
+
point--;
|
255
|
+
int digit = static_cast<int>(fractionals >> point);
|
256
|
+
ASSERT(digit <= 9);
|
257
|
+
buffer[*length] = static_cast<char>('0' + digit);
|
258
|
+
(*length)++;
|
259
|
+
fractionals -= static_cast<uint64_t>(digit) << point;
|
260
|
+
}
|
261
|
+
// If the first bit after the point is set we have to round up.
|
262
|
+
if (((fractionals >> (point - 1)) & 1) == 1) {
|
263
|
+
RoundUp(buffer, length, decimal_point);
|
264
|
+
}
|
265
|
+
} else { // We need 128 bits.
|
266
|
+
ASSERT(64 < -exponent && -exponent <= 128);
|
267
|
+
UInt128 fractionals128 = UInt128(fractionals, 0);
|
268
|
+
fractionals128.Shift(-exponent - 64);
|
269
|
+
int point = 128;
|
270
|
+
for (int i = 0; i < fractional_count; ++i) {
|
271
|
+
if (fractionals128.IsZero()) break;
|
272
|
+
// As before: instead of multiplying by 10 we multiply by 5 and adjust the
|
273
|
+
// point location.
|
274
|
+
// This multiplication will not overflow for the same reasons as before.
|
275
|
+
fractionals128.Multiply(5);
|
276
|
+
point--;
|
277
|
+
int digit = fractionals128.DivModPowerOf2(point);
|
278
|
+
ASSERT(digit <= 9);
|
279
|
+
buffer[*length] = static_cast<char>('0' + digit);
|
280
|
+
(*length)++;
|
281
|
+
}
|
282
|
+
if (fractionals128.BitAt(point - 1) == 1) {
|
283
|
+
RoundUp(buffer, length, decimal_point);
|
284
|
+
}
|
285
|
+
}
|
286
|
+
}
|
287
|
+
|
288
|
+
|
289
|
+
// Removes leading and trailing zeros.
|
290
|
+
// If leading zeros are removed then the decimal point position is adjusted.
|
291
|
+
static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
|
292
|
+
while (*length > 0 && buffer[(*length) - 1] == '0') {
|
293
|
+
(*length)--;
|
294
|
+
}
|
295
|
+
int first_non_zero = 0;
|
296
|
+
while (first_non_zero < *length && buffer[first_non_zero] == '0') {
|
297
|
+
first_non_zero++;
|
298
|
+
}
|
299
|
+
if (first_non_zero != 0) {
|
300
|
+
for (int i = first_non_zero; i < *length; ++i) {
|
301
|
+
buffer[i - first_non_zero] = buffer[i];
|
302
|
+
}
|
303
|
+
*length -= first_non_zero;
|
304
|
+
*decimal_point -= first_non_zero;
|
305
|
+
}
|
306
|
+
}
|
307
|
+
|
308
|
+
|
309
|
+
bool FastFixedDtoa(double v,
|
310
|
+
int fractional_count,
|
311
|
+
Vector<char> buffer,
|
312
|
+
int* length,
|
313
|
+
int* decimal_point) {
|
314
|
+
const uint32_t kMaxUInt32 = 0xFFFFFFFF;
|
315
|
+
uint64_t significand = Double(v).Significand();
|
316
|
+
int exponent = Double(v).Exponent();
|
317
|
+
// v = significand * 2^exponent (with significand a 53bit integer).
|
318
|
+
// If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
|
319
|
+
// don't know how to compute the representation. 2^73 ~= 9.5*10^21.
|
320
|
+
// If necessary this limit could probably be increased, but we don't need
|
321
|
+
// more.
|
322
|
+
if (exponent > 20) return false;
|
323
|
+
if (fractional_count > 20) return false;
|
324
|
+
*length = 0;
|
325
|
+
// At most kDoubleSignificandSize bits of the significand are non-zero.
|
326
|
+
// Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
|
327
|
+
// bits: 0..11*..0xxx..53*..xx
|
328
|
+
if (exponent + kDoubleSignificandSize > 64) {
|
329
|
+
// The exponent must be > 11.
|
330
|
+
//
|
331
|
+
// We know that v = significand * 2^exponent.
|
332
|
+
// And the exponent > 11.
|
333
|
+
// We simplify the task by dividing v by 10^17.
|
334
|
+
// The quotient delivers the first digits, and the remainder fits into a 64
|
335
|
+
// bit number.
|
336
|
+
// Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
|
337
|
+
const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5); // 5^17
|
338
|
+
uint64_t divisor = kFive17;
|
339
|
+
int divisor_power = 17;
|
340
|
+
uint64_t dividend = significand;
|
341
|
+
uint32_t quotient;
|
342
|
+
uint64_t remainder;
|
343
|
+
// Let v = f * 2^e with f == significand and e == exponent.
|
344
|
+
// Then need q (quotient) and r (remainder) as follows:
|
345
|
+
// v = q * 10^17 + r
|
346
|
+
// f * 2^e = q * 10^17 + r
|
347
|
+
// f * 2^e = q * 5^17 * 2^17 + r
|
348
|
+
// If e > 17 then
|
349
|
+
// f * 2^(e-17) = q * 5^17 + r/2^17
|
350
|
+
// else
|
351
|
+
// f = q * 5^17 * 2^(17-e) + r/2^e
|
352
|
+
if (exponent > divisor_power) {
|
353
|
+
// We only allow exponents of up to 20 and therefore (17 - e) <= 3
|
354
|
+
dividend <<= exponent - divisor_power;
|
355
|
+
quotient = static_cast<uint32_t>(dividend / divisor);
|
356
|
+
remainder = (dividend % divisor) << divisor_power;
|
357
|
+
} else {
|
358
|
+
divisor <<= divisor_power - exponent;
|
359
|
+
quotient = static_cast<uint32_t>(dividend / divisor);
|
360
|
+
remainder = (dividend % divisor) << exponent;
|
361
|
+
}
|
362
|
+
FillDigits32(quotient, buffer, length);
|
363
|
+
FillDigits64FixedLength(remainder, buffer, length);
|
364
|
+
*decimal_point = *length;
|
365
|
+
} else if (exponent >= 0) {
|
366
|
+
// 0 <= exponent <= 11
|
367
|
+
significand <<= exponent;
|
368
|
+
FillDigits64(significand, buffer, length);
|
369
|
+
*decimal_point = *length;
|
370
|
+
} else if (exponent > -kDoubleSignificandSize) {
|
371
|
+
// We have to cut the number.
|
372
|
+
uint64_t integrals = significand >> -exponent;
|
373
|
+
uint64_t fractionals = significand - (integrals << -exponent);
|
374
|
+
if (integrals > kMaxUInt32) {
|
375
|
+
FillDigits64(integrals, buffer, length);
|
376
|
+
} else {
|
377
|
+
FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
|
378
|
+
}
|
379
|
+
*decimal_point = *length;
|
380
|
+
FillFractionals(fractionals, exponent, fractional_count,
|
381
|
+
buffer, length, decimal_point);
|
382
|
+
} else if (exponent < -128) {
|
383
|
+
// This configuration (with at most 20 digits) means that all digits must be
|
384
|
+
// 0.
|
385
|
+
ASSERT(fractional_count <= 20);
|
386
|
+
buffer[0] = '\0';
|
387
|
+
*length = 0;
|
388
|
+
*decimal_point = -fractional_count;
|
389
|
+
} else {
|
390
|
+
*decimal_point = 0;
|
391
|
+
FillFractionals(significand, exponent, fractional_count,
|
392
|
+
buffer, length, decimal_point);
|
393
|
+
}
|
394
|
+
TrimZeros(buffer, length, decimal_point);
|
395
|
+
buffer[*length] = '\0';
|
396
|
+
if ((*length) == 0) {
|
397
|
+
// The string is empty and the decimal_point thus has no importance. Mimick
|
398
|
+
// Gay's dtoa and and set it to -fractional_count.
|
399
|
+
*decimal_point = -fractional_count;
|
400
|
+
}
|
401
|
+
return true;
|
402
|
+
}
|
403
|
+
|
404
|
+
} // namespace double_conversion
|