hitokage 1.0.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (38) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +20 -0
  3. data/.travis.yml +4 -0
  4. data/Gemfile +4 -0
  5. data/LICENSE.txt +21 -0
  6. data/README.md +89 -0
  7. data/Rakefile +19 -0
  8. data/bin/console +14 -0
  9. data/bin/setup +8 -0
  10. data/ext/hitokage_ext/double-conversion/AUTHORS +14 -0
  11. data/ext/hitokage_ext/double-conversion/COPYING +26 -0
  12. data/ext/hitokage_ext/double-conversion/LICENSE +26 -0
  13. data/ext/hitokage_ext/double-conversion/README +54 -0
  14. data/ext/hitokage_ext/double-conversion/bignum-dtoa.cc +641 -0
  15. data/ext/hitokage_ext/double-conversion/bignum-dtoa.h +84 -0
  16. data/ext/hitokage_ext/double-conversion/bignum.cc +766 -0
  17. data/ext/hitokage_ext/double-conversion/bignum.h +144 -0
  18. data/ext/hitokage_ext/double-conversion/cached-powers.cc +175 -0
  19. data/ext/hitokage_ext/double-conversion/cached-powers.h +64 -0
  20. data/ext/hitokage_ext/double-conversion/diy-fp.cc +57 -0
  21. data/ext/hitokage_ext/double-conversion/diy-fp.h +118 -0
  22. data/ext/hitokage_ext/double-conversion/double-conversion.cc +982 -0
  23. data/ext/hitokage_ext/double-conversion/double-conversion.h +543 -0
  24. data/ext/hitokage_ext/double-conversion/fast-dtoa.cc +665 -0
  25. data/ext/hitokage_ext/double-conversion/fast-dtoa.h +88 -0
  26. data/ext/hitokage_ext/double-conversion/fixed-dtoa.cc +404 -0
  27. data/ext/hitokage_ext/double-conversion/fixed-dtoa.h +56 -0
  28. data/ext/hitokage_ext/double-conversion/ieee.h +402 -0
  29. data/ext/hitokage_ext/double-conversion/strtod.cc +555 -0
  30. data/ext/hitokage_ext/double-conversion/strtod.h +45 -0
  31. data/ext/hitokage_ext/double-conversion/utils.h +341 -0
  32. data/ext/hitokage_ext/extconf.rb +10 -0
  33. data/ext/hitokage_ext/hitokage_ext.cc +26 -0
  34. data/hitokage.gemspec +26 -0
  35. data/lib/hitokage.rb +5 -0
  36. data/lib/hitokage/replace_float_to_s.rb +6 -0
  37. data/lib/hitokage/version.rb +3 -0
  38. metadata +136 -0
@@ -0,0 +1,84 @@
1
+ // Copyright 2010 the V8 project authors. All rights reserved.
2
+ // Redistribution and use in source and binary forms, with or without
3
+ // modification, are permitted provided that the following conditions are
4
+ // met:
5
+ //
6
+ // * Redistributions of source code must retain the above copyright
7
+ // notice, this list of conditions and the following disclaimer.
8
+ // * Redistributions in binary form must reproduce the above
9
+ // copyright notice, this list of conditions and the following
10
+ // disclaimer in the documentation and/or other materials provided
11
+ // with the distribution.
12
+ // * Neither the name of Google Inc. nor the names of its
13
+ // contributors may be used to endorse or promote products derived
14
+ // from this software without specific prior written permission.
15
+ //
16
+ // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
+ // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
+ // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
+ // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
+ // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
+ // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
+ // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
+ // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
+ // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
+ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
+ // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
+
28
+ #ifndef DOUBLE_CONVERSION_BIGNUM_DTOA_H_
29
+ #define DOUBLE_CONVERSION_BIGNUM_DTOA_H_
30
+
31
+ #include "utils.h"
32
+
33
+ namespace double_conversion {
34
+
35
+ enum BignumDtoaMode {
36
+ // Return the shortest correct representation.
37
+ // For example the output of 0.299999999999999988897 is (the less accurate but
38
+ // correct) 0.3.
39
+ BIGNUM_DTOA_SHORTEST,
40
+ // Same as BIGNUM_DTOA_SHORTEST but for single-precision floats.
41
+ BIGNUM_DTOA_SHORTEST_SINGLE,
42
+ // Return a fixed number of digits after the decimal point.
43
+ // For instance fixed(0.1, 4) becomes 0.1000
44
+ // If the input number is big, the output will be big.
45
+ BIGNUM_DTOA_FIXED,
46
+ // Return a fixed number of digits, no matter what the exponent is.
47
+ BIGNUM_DTOA_PRECISION
48
+ };
49
+
50
+ // Converts the given double 'v' to ascii.
51
+ // The result should be interpreted as buffer * 10^(point-length).
52
+ // The buffer will be null-terminated.
53
+ //
54
+ // The input v must be > 0 and different from NaN, and Infinity.
55
+ //
56
+ // The output depends on the given mode:
57
+ // - SHORTEST: produce the least amount of digits for which the internal
58
+ // identity requirement is still satisfied. If the digits are printed
59
+ // (together with the correct exponent) then reading this number will give
60
+ // 'v' again. The buffer will choose the representation that is closest to
61
+ // 'v'. If there are two at the same distance, than the number is round up.
62
+ // In this mode the 'requested_digits' parameter is ignored.
63
+ // - FIXED: produces digits necessary to print a given number with
64
+ // 'requested_digits' digits after the decimal point. The produced digits
65
+ // might be too short in which case the caller has to fill the gaps with '0's.
66
+ // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
67
+ // Halfway cases are rounded up. The call toFixed(0.15, 2) thus returns
68
+ // buffer="2", point=0.
69
+ // Note: the length of the returned buffer has no meaning wrt the significance
70
+ // of its digits. That is, just because it contains '0's does not mean that
71
+ // any other digit would not satisfy the internal identity requirement.
72
+ // - PRECISION: produces 'requested_digits' where the first digit is not '0'.
73
+ // Even though the length of produced digits usually equals
74
+ // 'requested_digits', the function is allowed to return fewer digits, in
75
+ // which case the caller has to fill the missing digits with '0's.
76
+ // Halfway cases are again rounded up.
77
+ // 'BignumDtoa' expects the given buffer to be big enough to hold all digits
78
+ // and a terminating null-character.
79
+ void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
80
+ Vector<char> buffer, int* length, int* point);
81
+
82
+ } // namespace double_conversion
83
+
84
+ #endif // DOUBLE_CONVERSION_BIGNUM_DTOA_H_
@@ -0,0 +1,766 @@
1
+ // Copyright 2010 the V8 project authors. All rights reserved.
2
+ // Redistribution and use in source and binary forms, with or without
3
+ // modification, are permitted provided that the following conditions are
4
+ // met:
5
+ //
6
+ // * Redistributions of source code must retain the above copyright
7
+ // notice, this list of conditions and the following disclaimer.
8
+ // * Redistributions in binary form must reproduce the above
9
+ // copyright notice, this list of conditions and the following
10
+ // disclaimer in the documentation and/or other materials provided
11
+ // with the distribution.
12
+ // * Neither the name of Google Inc. nor the names of its
13
+ // contributors may be used to endorse or promote products derived
14
+ // from this software without specific prior written permission.
15
+ //
16
+ // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
+ // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
+ // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
+ // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
+ // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
+ // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
+ // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
+ // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
+ // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
+ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
+ // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
+
28
+ #include "bignum.h"
29
+ #include "utils.h"
30
+
31
+ namespace double_conversion {
32
+
33
+ Bignum::Bignum()
34
+ : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
35
+ for (int i = 0; i < kBigitCapacity; ++i) {
36
+ bigits_[i] = 0;
37
+ }
38
+ }
39
+
40
+
41
+ template<typename S>
42
+ static int BitSize(S value) {
43
+ (void) value; // Mark variable as used.
44
+ return 8 * sizeof(value);
45
+ }
46
+
47
+ // Guaranteed to lie in one Bigit.
48
+ void Bignum::AssignUInt16(uint16_t value) {
49
+ ASSERT(kBigitSize >= BitSize(value));
50
+ Zero();
51
+ if (value == 0) return;
52
+
53
+ EnsureCapacity(1);
54
+ bigits_[0] = value;
55
+ used_digits_ = 1;
56
+ }
57
+
58
+
59
+ void Bignum::AssignUInt64(uint64_t value) {
60
+ const int kUInt64Size = 64;
61
+
62
+ Zero();
63
+ if (value == 0) return;
64
+
65
+ int needed_bigits = kUInt64Size / kBigitSize + 1;
66
+ EnsureCapacity(needed_bigits);
67
+ for (int i = 0; i < needed_bigits; ++i) {
68
+ bigits_[i] = value & kBigitMask;
69
+ value = value >> kBigitSize;
70
+ }
71
+ used_digits_ = needed_bigits;
72
+ Clamp();
73
+ }
74
+
75
+
76
+ void Bignum::AssignBignum(const Bignum& other) {
77
+ exponent_ = other.exponent_;
78
+ for (int i = 0; i < other.used_digits_; ++i) {
79
+ bigits_[i] = other.bigits_[i];
80
+ }
81
+ // Clear the excess digits (if there were any).
82
+ for (int i = other.used_digits_; i < used_digits_; ++i) {
83
+ bigits_[i] = 0;
84
+ }
85
+ used_digits_ = other.used_digits_;
86
+ }
87
+
88
+
89
+ static uint64_t ReadUInt64(Vector<const char> buffer,
90
+ int from,
91
+ int digits_to_read) {
92
+ uint64_t result = 0;
93
+ for (int i = from; i < from + digits_to_read; ++i) {
94
+ int digit = buffer[i] - '0';
95
+ ASSERT(0 <= digit && digit <= 9);
96
+ result = result * 10 + digit;
97
+ }
98
+ return result;
99
+ }
100
+
101
+
102
+ void Bignum::AssignDecimalString(Vector<const char> value) {
103
+ // 2^64 = 18446744073709551616 > 10^19
104
+ const int kMaxUint64DecimalDigits = 19;
105
+ Zero();
106
+ int length = value.length();
107
+ unsigned int pos = 0;
108
+ // Let's just say that each digit needs 4 bits.
109
+ while (length >= kMaxUint64DecimalDigits) {
110
+ uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
111
+ pos += kMaxUint64DecimalDigits;
112
+ length -= kMaxUint64DecimalDigits;
113
+ MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
114
+ AddUInt64(digits);
115
+ }
116
+ uint64_t digits = ReadUInt64(value, pos, length);
117
+ MultiplyByPowerOfTen(length);
118
+ AddUInt64(digits);
119
+ Clamp();
120
+ }
121
+
122
+
123
+ static int HexCharValue(char c) {
124
+ if ('0' <= c && c <= '9') return c - '0';
125
+ if ('a' <= c && c <= 'f') return 10 + c - 'a';
126
+ ASSERT('A' <= c && c <= 'F');
127
+ return 10 + c - 'A';
128
+ }
129
+
130
+
131
+ void Bignum::AssignHexString(Vector<const char> value) {
132
+ Zero();
133
+ int length = value.length();
134
+
135
+ int needed_bigits = length * 4 / kBigitSize + 1;
136
+ EnsureCapacity(needed_bigits);
137
+ int string_index = length - 1;
138
+ for (int i = 0; i < needed_bigits - 1; ++i) {
139
+ // These bigits are guaranteed to be "full".
140
+ Chunk current_bigit = 0;
141
+ for (int j = 0; j < kBigitSize / 4; j++) {
142
+ current_bigit += HexCharValue(value[string_index--]) << (j * 4);
143
+ }
144
+ bigits_[i] = current_bigit;
145
+ }
146
+ used_digits_ = needed_bigits - 1;
147
+
148
+ Chunk most_significant_bigit = 0; // Could be = 0;
149
+ for (int j = 0; j <= string_index; ++j) {
150
+ most_significant_bigit <<= 4;
151
+ most_significant_bigit += HexCharValue(value[j]);
152
+ }
153
+ if (most_significant_bigit != 0) {
154
+ bigits_[used_digits_] = most_significant_bigit;
155
+ used_digits_++;
156
+ }
157
+ Clamp();
158
+ }
159
+
160
+
161
+ void Bignum::AddUInt64(uint64_t operand) {
162
+ if (operand == 0) return;
163
+ Bignum other;
164
+ other.AssignUInt64(operand);
165
+ AddBignum(other);
166
+ }
167
+
168
+
169
+ void Bignum::AddBignum(const Bignum& other) {
170
+ ASSERT(IsClamped());
171
+ ASSERT(other.IsClamped());
172
+
173
+ // If this has a greater exponent than other append zero-bigits to this.
174
+ // After this call exponent_ <= other.exponent_.
175
+ Align(other);
176
+
177
+ // There are two possibilities:
178
+ // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
179
+ // bbbbb 00000000
180
+ // ----------------
181
+ // ccccccccccc 0000
182
+ // or
183
+ // aaaaaaaaaa 0000
184
+ // bbbbbbbbb 0000000
185
+ // -----------------
186
+ // cccccccccccc 0000
187
+ // In both cases we might need a carry bigit.
188
+
189
+ EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
190
+ Chunk carry = 0;
191
+ int bigit_pos = other.exponent_ - exponent_;
192
+ ASSERT(bigit_pos >= 0);
193
+ for (int i = 0; i < other.used_digits_; ++i) {
194
+ Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
195
+ bigits_[bigit_pos] = sum & kBigitMask;
196
+ carry = sum >> kBigitSize;
197
+ bigit_pos++;
198
+ }
199
+
200
+ while (carry != 0) {
201
+ Chunk sum = bigits_[bigit_pos] + carry;
202
+ bigits_[bigit_pos] = sum & kBigitMask;
203
+ carry = sum >> kBigitSize;
204
+ bigit_pos++;
205
+ }
206
+ used_digits_ = Max(bigit_pos, used_digits_);
207
+ ASSERT(IsClamped());
208
+ }
209
+
210
+
211
+ void Bignum::SubtractBignum(const Bignum& other) {
212
+ ASSERT(IsClamped());
213
+ ASSERT(other.IsClamped());
214
+ // We require this to be bigger than other.
215
+ ASSERT(LessEqual(other, *this));
216
+
217
+ Align(other);
218
+
219
+ int offset = other.exponent_ - exponent_;
220
+ Chunk borrow = 0;
221
+ int i;
222
+ for (i = 0; i < other.used_digits_; ++i) {
223
+ ASSERT((borrow == 0) || (borrow == 1));
224
+ Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
225
+ bigits_[i + offset] = difference & kBigitMask;
226
+ borrow = difference >> (kChunkSize - 1);
227
+ }
228
+ while (borrow != 0) {
229
+ Chunk difference = bigits_[i + offset] - borrow;
230
+ bigits_[i + offset] = difference & kBigitMask;
231
+ borrow = difference >> (kChunkSize - 1);
232
+ ++i;
233
+ }
234
+ Clamp();
235
+ }
236
+
237
+
238
+ void Bignum::ShiftLeft(int shift_amount) {
239
+ if (used_digits_ == 0) return;
240
+ exponent_ += shift_amount / kBigitSize;
241
+ int local_shift = shift_amount % kBigitSize;
242
+ EnsureCapacity(used_digits_ + 1);
243
+ BigitsShiftLeft(local_shift);
244
+ }
245
+
246
+
247
+ void Bignum::MultiplyByUInt32(uint32_t factor) {
248
+ if (factor == 1) return;
249
+ if (factor == 0) {
250
+ Zero();
251
+ return;
252
+ }
253
+ if (used_digits_ == 0) return;
254
+
255
+ // The product of a bigit with the factor is of size kBigitSize + 32.
256
+ // Assert that this number + 1 (for the carry) fits into double chunk.
257
+ ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
258
+ DoubleChunk carry = 0;
259
+ for (int i = 0; i < used_digits_; ++i) {
260
+ DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
261
+ bigits_[i] = static_cast<Chunk>(product & kBigitMask);
262
+ carry = (product >> kBigitSize);
263
+ }
264
+ while (carry != 0) {
265
+ EnsureCapacity(used_digits_ + 1);
266
+ bigits_[used_digits_] = carry & kBigitMask;
267
+ used_digits_++;
268
+ carry >>= kBigitSize;
269
+ }
270
+ }
271
+
272
+
273
+ void Bignum::MultiplyByUInt64(uint64_t factor) {
274
+ if (factor == 1) return;
275
+ if (factor == 0) {
276
+ Zero();
277
+ return;
278
+ }
279
+ ASSERT(kBigitSize < 32);
280
+ uint64_t carry = 0;
281
+ uint64_t low = factor & 0xFFFFFFFF;
282
+ uint64_t high = factor >> 32;
283
+ for (int i = 0; i < used_digits_; ++i) {
284
+ uint64_t product_low = low * bigits_[i];
285
+ uint64_t product_high = high * bigits_[i];
286
+ uint64_t tmp = (carry & kBigitMask) + product_low;
287
+ bigits_[i] = tmp & kBigitMask;
288
+ carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
289
+ (product_high << (32 - kBigitSize));
290
+ }
291
+ while (carry != 0) {
292
+ EnsureCapacity(used_digits_ + 1);
293
+ bigits_[used_digits_] = carry & kBigitMask;
294
+ used_digits_++;
295
+ carry >>= kBigitSize;
296
+ }
297
+ }
298
+
299
+
300
+ void Bignum::MultiplyByPowerOfTen(int exponent) {
301
+ const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
302
+ const uint16_t kFive1 = 5;
303
+ const uint16_t kFive2 = kFive1 * 5;
304
+ const uint16_t kFive3 = kFive2 * 5;
305
+ const uint16_t kFive4 = kFive3 * 5;
306
+ const uint16_t kFive5 = kFive4 * 5;
307
+ const uint16_t kFive6 = kFive5 * 5;
308
+ const uint32_t kFive7 = kFive6 * 5;
309
+ const uint32_t kFive8 = kFive7 * 5;
310
+ const uint32_t kFive9 = kFive8 * 5;
311
+ const uint32_t kFive10 = kFive9 * 5;
312
+ const uint32_t kFive11 = kFive10 * 5;
313
+ const uint32_t kFive12 = kFive11 * 5;
314
+ const uint32_t kFive13 = kFive12 * 5;
315
+ const uint32_t kFive1_to_12[] =
316
+ { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
317
+ kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
318
+
319
+ ASSERT(exponent >= 0);
320
+ if (exponent == 0) return;
321
+ if (used_digits_ == 0) return;
322
+
323
+ // We shift by exponent at the end just before returning.
324
+ int remaining_exponent = exponent;
325
+ while (remaining_exponent >= 27) {
326
+ MultiplyByUInt64(kFive27);
327
+ remaining_exponent -= 27;
328
+ }
329
+ while (remaining_exponent >= 13) {
330
+ MultiplyByUInt32(kFive13);
331
+ remaining_exponent -= 13;
332
+ }
333
+ if (remaining_exponent > 0) {
334
+ MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
335
+ }
336
+ ShiftLeft(exponent);
337
+ }
338
+
339
+
340
+ void Bignum::Square() {
341
+ ASSERT(IsClamped());
342
+ int product_length = 2 * used_digits_;
343
+ EnsureCapacity(product_length);
344
+
345
+ // Comba multiplication: compute each column separately.
346
+ // Example: r = a2a1a0 * b2b1b0.
347
+ // r = 1 * a0b0 +
348
+ // 10 * (a1b0 + a0b1) +
349
+ // 100 * (a2b0 + a1b1 + a0b2) +
350
+ // 1000 * (a2b1 + a1b2) +
351
+ // 10000 * a2b2
352
+ //
353
+ // In the worst case we have to accumulate nb-digits products of digit*digit.
354
+ //
355
+ // Assert that the additional number of bits in a DoubleChunk are enough to
356
+ // sum up used_digits of Bigit*Bigit.
357
+ if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
358
+ UNIMPLEMENTED();
359
+ }
360
+ DoubleChunk accumulator = 0;
361
+ // First shift the digits so we don't overwrite them.
362
+ int copy_offset = used_digits_;
363
+ for (int i = 0; i < used_digits_; ++i) {
364
+ bigits_[copy_offset + i] = bigits_[i];
365
+ }
366
+ // We have two loops to avoid some 'if's in the loop.
367
+ for (int i = 0; i < used_digits_; ++i) {
368
+ // Process temporary digit i with power i.
369
+ // The sum of the two indices must be equal to i.
370
+ int bigit_index1 = i;
371
+ int bigit_index2 = 0;
372
+ // Sum all of the sub-products.
373
+ while (bigit_index1 >= 0) {
374
+ Chunk chunk1 = bigits_[copy_offset + bigit_index1];
375
+ Chunk chunk2 = bigits_[copy_offset + bigit_index2];
376
+ accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
377
+ bigit_index1--;
378
+ bigit_index2++;
379
+ }
380
+ bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
381
+ accumulator >>= kBigitSize;
382
+ }
383
+ for (int i = used_digits_; i < product_length; ++i) {
384
+ int bigit_index1 = used_digits_ - 1;
385
+ int bigit_index2 = i - bigit_index1;
386
+ // Invariant: sum of both indices is again equal to i.
387
+ // Inner loop runs 0 times on last iteration, emptying accumulator.
388
+ while (bigit_index2 < used_digits_) {
389
+ Chunk chunk1 = bigits_[copy_offset + bigit_index1];
390
+ Chunk chunk2 = bigits_[copy_offset + bigit_index2];
391
+ accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
392
+ bigit_index1--;
393
+ bigit_index2++;
394
+ }
395
+ // The overwritten bigits_[i] will never be read in further loop iterations,
396
+ // because bigit_index1 and bigit_index2 are always greater
397
+ // than i - used_digits_.
398
+ bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
399
+ accumulator >>= kBigitSize;
400
+ }
401
+ // Since the result was guaranteed to lie inside the number the
402
+ // accumulator must be 0 now.
403
+ ASSERT(accumulator == 0);
404
+
405
+ // Don't forget to update the used_digits and the exponent.
406
+ used_digits_ = product_length;
407
+ exponent_ *= 2;
408
+ Clamp();
409
+ }
410
+
411
+
412
+ void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
413
+ ASSERT(base != 0);
414
+ ASSERT(power_exponent >= 0);
415
+ if (power_exponent == 0) {
416
+ AssignUInt16(1);
417
+ return;
418
+ }
419
+ Zero();
420
+ int shifts = 0;
421
+ // We expect base to be in range 2-32, and most often to be 10.
422
+ // It does not make much sense to implement different algorithms for counting
423
+ // the bits.
424
+ while ((base & 1) == 0) {
425
+ base >>= 1;
426
+ shifts++;
427
+ }
428
+ int bit_size = 0;
429
+ int tmp_base = base;
430
+ while (tmp_base != 0) {
431
+ tmp_base >>= 1;
432
+ bit_size++;
433
+ }
434
+ int final_size = bit_size * power_exponent;
435
+ // 1 extra bigit for the shifting, and one for rounded final_size.
436
+ EnsureCapacity(final_size / kBigitSize + 2);
437
+
438
+ // Left to Right exponentiation.
439
+ int mask = 1;
440
+ while (power_exponent >= mask) mask <<= 1;
441
+
442
+ // The mask is now pointing to the bit above the most significant 1-bit of
443
+ // power_exponent.
444
+ // Get rid of first 1-bit;
445
+ mask >>= 2;
446
+ uint64_t this_value = base;
447
+
448
+ bool delayed_multipliciation = false;
449
+ const uint64_t max_32bits = 0xFFFFFFFF;
450
+ while (mask != 0 && this_value <= max_32bits) {
451
+ this_value = this_value * this_value;
452
+ // Verify that there is enough space in this_value to perform the
453
+ // multiplication. The first bit_size bits must be 0.
454
+ if ((power_exponent & mask) != 0) {
455
+ uint64_t base_bits_mask =
456
+ ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
457
+ bool high_bits_zero = (this_value & base_bits_mask) == 0;
458
+ if (high_bits_zero) {
459
+ this_value *= base;
460
+ } else {
461
+ delayed_multipliciation = true;
462
+ }
463
+ }
464
+ mask >>= 1;
465
+ }
466
+ AssignUInt64(this_value);
467
+ if (delayed_multipliciation) {
468
+ MultiplyByUInt32(base);
469
+ }
470
+
471
+ // Now do the same thing as a bignum.
472
+ while (mask != 0) {
473
+ Square();
474
+ if ((power_exponent & mask) != 0) {
475
+ MultiplyByUInt32(base);
476
+ }
477
+ mask >>= 1;
478
+ }
479
+
480
+ // And finally add the saved shifts.
481
+ ShiftLeft(shifts * power_exponent);
482
+ }
483
+
484
+
485
+ // Precondition: this/other < 16bit.
486
+ uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
487
+ ASSERT(IsClamped());
488
+ ASSERT(other.IsClamped());
489
+ ASSERT(other.used_digits_ > 0);
490
+
491
+ // Easy case: if we have less digits than the divisor than the result is 0.
492
+ // Note: this handles the case where this == 0, too.
493
+ if (BigitLength() < other.BigitLength()) {
494
+ return 0;
495
+ }
496
+
497
+ Align(other);
498
+
499
+ uint16_t result = 0;
500
+
501
+ // Start by removing multiples of 'other' until both numbers have the same
502
+ // number of digits.
503
+ while (BigitLength() > other.BigitLength()) {
504
+ // This naive approach is extremely inefficient if `this` divided by other
505
+ // is big. This function is implemented for doubleToString where
506
+ // the result should be small (less than 10).
507
+ ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
508
+ ASSERT(bigits_[used_digits_ - 1] < 0x10000);
509
+ // Remove the multiples of the first digit.
510
+ // Example this = 23 and other equals 9. -> Remove 2 multiples.
511
+ result += static_cast<uint16_t>(bigits_[used_digits_ - 1]);
512
+ SubtractTimes(other, bigits_[used_digits_ - 1]);
513
+ }
514
+
515
+ ASSERT(BigitLength() == other.BigitLength());
516
+
517
+ // Both bignums are at the same length now.
518
+ // Since other has more than 0 digits we know that the access to
519
+ // bigits_[used_digits_ - 1] is safe.
520
+ Chunk this_bigit = bigits_[used_digits_ - 1];
521
+ Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
522
+
523
+ if (other.used_digits_ == 1) {
524
+ // Shortcut for easy (and common) case.
525
+ int quotient = this_bigit / other_bigit;
526
+ bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
527
+ ASSERT(quotient < 0x10000);
528
+ result += static_cast<uint16_t>(quotient);
529
+ Clamp();
530
+ return result;
531
+ }
532
+
533
+ int division_estimate = this_bigit / (other_bigit + 1);
534
+ ASSERT(division_estimate < 0x10000);
535
+ result += static_cast<uint16_t>(division_estimate);
536
+ SubtractTimes(other, division_estimate);
537
+
538
+ if (other_bigit * (division_estimate + 1) > this_bigit) {
539
+ // No need to even try to subtract. Even if other's remaining digits were 0
540
+ // another subtraction would be too much.
541
+ return result;
542
+ }
543
+
544
+ while (LessEqual(other, *this)) {
545
+ SubtractBignum(other);
546
+ result++;
547
+ }
548
+ return result;
549
+ }
550
+
551
+
552
+ template<typename S>
553
+ static int SizeInHexChars(S number) {
554
+ ASSERT(number > 0);
555
+ int result = 0;
556
+ while (number != 0) {
557
+ number >>= 4;
558
+ result++;
559
+ }
560
+ return result;
561
+ }
562
+
563
+
564
+ static char HexCharOfValue(int value) {
565
+ ASSERT(0 <= value && value <= 16);
566
+ if (value < 10) return static_cast<char>(value + '0');
567
+ return static_cast<char>(value - 10 + 'A');
568
+ }
569
+
570
+
571
+ bool Bignum::ToHexString(char* buffer, int buffer_size) const {
572
+ ASSERT(IsClamped());
573
+ // Each bigit must be printable as separate hex-character.
574
+ ASSERT(kBigitSize % 4 == 0);
575
+ const int kHexCharsPerBigit = kBigitSize / 4;
576
+
577
+ if (used_digits_ == 0) {
578
+ if (buffer_size < 2) return false;
579
+ buffer[0] = '0';
580
+ buffer[1] = '\0';
581
+ return true;
582
+ }
583
+ // We add 1 for the terminating '\0' character.
584
+ int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
585
+ SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
586
+ if (needed_chars > buffer_size) return false;
587
+ int string_index = needed_chars - 1;
588
+ buffer[string_index--] = '\0';
589
+ for (int i = 0; i < exponent_; ++i) {
590
+ for (int j = 0; j < kHexCharsPerBigit; ++j) {
591
+ buffer[string_index--] = '0';
592
+ }
593
+ }
594
+ for (int i = 0; i < used_digits_ - 1; ++i) {
595
+ Chunk current_bigit = bigits_[i];
596
+ for (int j = 0; j < kHexCharsPerBigit; ++j) {
597
+ buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
598
+ current_bigit >>= 4;
599
+ }
600
+ }
601
+ // And finally the last bigit.
602
+ Chunk most_significant_bigit = bigits_[used_digits_ - 1];
603
+ while (most_significant_bigit != 0) {
604
+ buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
605
+ most_significant_bigit >>= 4;
606
+ }
607
+ return true;
608
+ }
609
+
610
+
611
+ Bignum::Chunk Bignum::BigitAt(int index) const {
612
+ if (index >= BigitLength()) return 0;
613
+ if (index < exponent_) return 0;
614
+ return bigits_[index - exponent_];
615
+ }
616
+
617
+
618
+ int Bignum::Compare(const Bignum& a, const Bignum& b) {
619
+ ASSERT(a.IsClamped());
620
+ ASSERT(b.IsClamped());
621
+ int bigit_length_a = a.BigitLength();
622
+ int bigit_length_b = b.BigitLength();
623
+ if (bigit_length_a < bigit_length_b) return -1;
624
+ if (bigit_length_a > bigit_length_b) return +1;
625
+ for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
626
+ Chunk bigit_a = a.BigitAt(i);
627
+ Chunk bigit_b = b.BigitAt(i);
628
+ if (bigit_a < bigit_b) return -1;
629
+ if (bigit_a > bigit_b) return +1;
630
+ // Otherwise they are equal up to this digit. Try the next digit.
631
+ }
632
+ return 0;
633
+ }
634
+
635
+
636
+ int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
637
+ ASSERT(a.IsClamped());
638
+ ASSERT(b.IsClamped());
639
+ ASSERT(c.IsClamped());
640
+ if (a.BigitLength() < b.BigitLength()) {
641
+ return PlusCompare(b, a, c);
642
+ }
643
+ if (a.BigitLength() + 1 < c.BigitLength()) return -1;
644
+ if (a.BigitLength() > c.BigitLength()) return +1;
645
+ // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
646
+ // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
647
+ // of 'a'.
648
+ if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
649
+ return -1;
650
+ }
651
+
652
+ Chunk borrow = 0;
653
+ // Starting at min_exponent all digits are == 0. So no need to compare them.
654
+ int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
655
+ for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
656
+ Chunk chunk_a = a.BigitAt(i);
657
+ Chunk chunk_b = b.BigitAt(i);
658
+ Chunk chunk_c = c.BigitAt(i);
659
+ Chunk sum = chunk_a + chunk_b;
660
+ if (sum > chunk_c + borrow) {
661
+ return +1;
662
+ } else {
663
+ borrow = chunk_c + borrow - sum;
664
+ if (borrow > 1) return -1;
665
+ borrow <<= kBigitSize;
666
+ }
667
+ }
668
+ if (borrow == 0) return 0;
669
+ return -1;
670
+ }
671
+
672
+
673
+ void Bignum::Clamp() {
674
+ while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
675
+ used_digits_--;
676
+ }
677
+ if (used_digits_ == 0) {
678
+ // Zero.
679
+ exponent_ = 0;
680
+ }
681
+ }
682
+
683
+
684
+ bool Bignum::IsClamped() const {
685
+ return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
686
+ }
687
+
688
+
689
+ void Bignum::Zero() {
690
+ for (int i = 0; i < used_digits_; ++i) {
691
+ bigits_[i] = 0;
692
+ }
693
+ used_digits_ = 0;
694
+ exponent_ = 0;
695
+ }
696
+
697
+
698
+ void Bignum::Align(const Bignum& other) {
699
+ if (exponent_ > other.exponent_) {
700
+ // If "X" represents a "hidden" digit (by the exponent) then we are in the
701
+ // following case (a == this, b == other):
702
+ // a: aaaaaaXXXX or a: aaaaaXXX
703
+ // b: bbbbbbX b: bbbbbbbbXX
704
+ // We replace some of the hidden digits (X) of a with 0 digits.
705
+ // a: aaaaaa000X or a: aaaaa0XX
706
+ int zero_digits = exponent_ - other.exponent_;
707
+ EnsureCapacity(used_digits_ + zero_digits);
708
+ for (int i = used_digits_ - 1; i >= 0; --i) {
709
+ bigits_[i + zero_digits] = bigits_[i];
710
+ }
711
+ for (int i = 0; i < zero_digits; ++i) {
712
+ bigits_[i] = 0;
713
+ }
714
+ used_digits_ += zero_digits;
715
+ exponent_ -= zero_digits;
716
+ ASSERT(used_digits_ >= 0);
717
+ ASSERT(exponent_ >= 0);
718
+ }
719
+ }
720
+
721
+
722
+ void Bignum::BigitsShiftLeft(int shift_amount) {
723
+ ASSERT(shift_amount < kBigitSize);
724
+ ASSERT(shift_amount >= 0);
725
+ Chunk carry = 0;
726
+ for (int i = 0; i < used_digits_; ++i) {
727
+ Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
728
+ bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
729
+ carry = new_carry;
730
+ }
731
+ if (carry != 0) {
732
+ bigits_[used_digits_] = carry;
733
+ used_digits_++;
734
+ }
735
+ }
736
+
737
+
738
+ void Bignum::SubtractTimes(const Bignum& other, int factor) {
739
+ ASSERT(exponent_ <= other.exponent_);
740
+ if (factor < 3) {
741
+ for (int i = 0; i < factor; ++i) {
742
+ SubtractBignum(other);
743
+ }
744
+ return;
745
+ }
746
+ Chunk borrow = 0;
747
+ int exponent_diff = other.exponent_ - exponent_;
748
+ for (int i = 0; i < other.used_digits_; ++i) {
749
+ DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
750
+ DoubleChunk remove = borrow + product;
751
+ Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask);
752
+ bigits_[i + exponent_diff] = difference & kBigitMask;
753
+ borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
754
+ (remove >> kBigitSize));
755
+ }
756
+ for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
757
+ if (borrow == 0) return;
758
+ Chunk difference = bigits_[i] - borrow;
759
+ bigits_[i] = difference & kBigitMask;
760
+ borrow = difference >> (kChunkSize - 1);
761
+ }
762
+ Clamp();
763
+ }
764
+
765
+
766
+ } // namespace double_conversion