gpt_neox_client 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +5 -0
- data/CODE_OF_CONDUCT.md +84 -0
- data/LICENSE.txt +21 -0
- data/README.md +68 -0
- data/ext/gpt_neox_client/extconf.rb +25 -0
- data/ext/gpt_neox_client/gpt_neox_client.cpp +316 -0
- data/ext/gpt_neox_client/gpt_neox_client.h +10 -0
- data/ext/gpt_neox_client/src/LICENSE +21 -0
- data/ext/gpt_neox_client/src/common-ggml.cpp +246 -0
- data/ext/gpt_neox_client/src/common-ggml.h +18 -0
- data/ext/gpt_neox_client/src/common.cpp +809 -0
- data/ext/gpt_neox_client/src/common.h +176 -0
- data/ext/gpt_neox_client/src/dr_wav.h +6434 -0
- data/ext/gpt_neox_client/src/ggml/ggml-alloc.c +594 -0
- data/ext/gpt_neox_client/src/ggml/ggml-alloc.h +26 -0
- data/ext/gpt_neox_client/src/ggml/ggml-cuda.cu +6756 -0
- data/ext/gpt_neox_client/src/ggml/ggml-cuda.h +46 -0
- data/ext/gpt_neox_client/src/ggml/ggml-metal.h +85 -0
- data/ext/gpt_neox_client/src/ggml/ggml-metal.m +1195 -0
- data/ext/gpt_neox_client/src/ggml/ggml-metal.metal +2049 -0
- data/ext/gpt_neox_client/src/ggml/ggml-opencl.cpp +1865 -0
- data/ext/gpt_neox_client/src/ggml/ggml-opencl.h +25 -0
- data/ext/gpt_neox_client/src/ggml/ggml.c +20632 -0
- data/ext/gpt_neox_client/src/ggml/ggml.h +1997 -0
- data/ext/gpt_neox_client/src/main.cpp +814 -0
- data/lib/gpt_neox_client/version.rb +7 -0
- data/lib/gpt_neox_client.rb +4 -0
- metadata +75 -0
@@ -0,0 +1,1195 @@
|
|
1
|
+
#import "ggml-metal.h"
|
2
|
+
|
3
|
+
#import "ggml.h"
|
4
|
+
|
5
|
+
#import <Foundation/Foundation.h>
|
6
|
+
|
7
|
+
#import <Metal/Metal.h>
|
8
|
+
|
9
|
+
#undef MIN
|
10
|
+
#undef MAX
|
11
|
+
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
12
|
+
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
13
|
+
|
14
|
+
#ifdef GGML_METAL_NDEBUG
|
15
|
+
#define metal_printf(...)
|
16
|
+
#else
|
17
|
+
#define metal_printf(...) fprintf(stderr, __VA_ARGS__)
|
18
|
+
#endif
|
19
|
+
|
20
|
+
#define UNUSED(x) (void)(x)
|
21
|
+
|
22
|
+
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
|
23
|
+
|
24
|
+
struct ggml_metal_buffer {
|
25
|
+
const char * name;
|
26
|
+
|
27
|
+
void * data;
|
28
|
+
size_t size;
|
29
|
+
|
30
|
+
id<MTLBuffer> metal;
|
31
|
+
};
|
32
|
+
|
33
|
+
struct ggml_metal_context {
|
34
|
+
int n_cb;
|
35
|
+
|
36
|
+
id<MTLDevice> device;
|
37
|
+
id<MTLCommandQueue> queue;
|
38
|
+
id<MTLLibrary> library;
|
39
|
+
|
40
|
+
id<MTLCommandBuffer> command_buffers [GGML_METAL_MAX_COMMAND_BUFFERS];
|
41
|
+
id<MTLComputeCommandEncoder> command_encoders[GGML_METAL_MAX_COMMAND_BUFFERS];
|
42
|
+
|
43
|
+
dispatch_queue_t d_queue;
|
44
|
+
|
45
|
+
int n_buffers;
|
46
|
+
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
47
|
+
|
48
|
+
int concur_list[GGML_MAX_CONCUR];
|
49
|
+
int concur_list_len;
|
50
|
+
|
51
|
+
// custom kernels
|
52
|
+
#define GGML_METAL_DECL_KERNEL(name) \
|
53
|
+
id<MTLFunction> function_##name; \
|
54
|
+
id<MTLComputePipelineState> pipeline_##name
|
55
|
+
|
56
|
+
GGML_METAL_DECL_KERNEL(add);
|
57
|
+
GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast
|
58
|
+
GGML_METAL_DECL_KERNEL(mul);
|
59
|
+
GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
|
60
|
+
GGML_METAL_DECL_KERNEL(scale);
|
61
|
+
GGML_METAL_DECL_KERNEL(silu);
|
62
|
+
GGML_METAL_DECL_KERNEL(relu);
|
63
|
+
GGML_METAL_DECL_KERNEL(gelu);
|
64
|
+
GGML_METAL_DECL_KERNEL(soft_max);
|
65
|
+
GGML_METAL_DECL_KERNEL(diag_mask_inf);
|
66
|
+
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
67
|
+
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
68
|
+
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
69
|
+
GGML_METAL_DECL_KERNEL(get_rows_q8_0);
|
70
|
+
GGML_METAL_DECL_KERNEL(get_rows_q2_K);
|
71
|
+
GGML_METAL_DECL_KERNEL(get_rows_q3_K);
|
72
|
+
GGML_METAL_DECL_KERNEL(get_rows_q4_K);
|
73
|
+
GGML_METAL_DECL_KERNEL(get_rows_q5_K);
|
74
|
+
GGML_METAL_DECL_KERNEL(get_rows_q6_K);
|
75
|
+
GGML_METAL_DECL_KERNEL(rms_norm);
|
76
|
+
GGML_METAL_DECL_KERNEL(norm);
|
77
|
+
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
78
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
79
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
|
80
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
|
81
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32);
|
82
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32);
|
83
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
|
84
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
|
85
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
|
86
|
+
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
87
|
+
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
88
|
+
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
|
89
|
+
GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32);
|
90
|
+
GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
|
91
|
+
GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
|
92
|
+
GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
|
93
|
+
GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32);
|
94
|
+
GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32);
|
95
|
+
GGML_METAL_DECL_KERNEL(rope);
|
96
|
+
GGML_METAL_DECL_KERNEL(alibi_f32);
|
97
|
+
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
98
|
+
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
99
|
+
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
|
100
|
+
|
101
|
+
#undef GGML_METAL_DECL_KERNEL
|
102
|
+
};
|
103
|
+
|
104
|
+
// MSL code
|
105
|
+
// TODO: move the contents here when ready
|
106
|
+
// for now it is easier to work in a separate file
|
107
|
+
static NSString * const msl_library_source = @"see metal.metal";
|
108
|
+
|
109
|
+
// Here to assist with NSBundle Path Hack
|
110
|
+
@interface GGMLMetalClass : NSObject
|
111
|
+
@end
|
112
|
+
@implementation GGMLMetalClass
|
113
|
+
@end
|
114
|
+
|
115
|
+
struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
116
|
+
fprintf(stderr, "%s: allocating\n", __func__);
|
117
|
+
|
118
|
+
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
|
119
|
+
|
120
|
+
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
|
121
|
+
ctx->device = MTLCreateSystemDefaultDevice();
|
122
|
+
ctx->queue = [ctx->device newCommandQueue];
|
123
|
+
ctx->n_buffers = 0;
|
124
|
+
ctx->concur_list_len = 0;
|
125
|
+
|
126
|
+
ctx->d_queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
|
127
|
+
|
128
|
+
#if 0
|
129
|
+
// compile from source string and show compile log
|
130
|
+
{
|
131
|
+
NSError * error = nil;
|
132
|
+
|
133
|
+
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
|
134
|
+
if (error) {
|
135
|
+
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
136
|
+
return NULL;
|
137
|
+
}
|
138
|
+
}
|
139
|
+
#else
|
140
|
+
UNUSED(msl_library_source);
|
141
|
+
|
142
|
+
// read the source from "ggml-metal.metal" into a string and use newLibraryWithSource
|
143
|
+
{
|
144
|
+
NSError * error = nil;
|
145
|
+
|
146
|
+
//NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
|
147
|
+
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
148
|
+
NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
149
|
+
fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
|
150
|
+
|
151
|
+
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
|
152
|
+
if (error) {
|
153
|
+
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
154
|
+
return NULL;
|
155
|
+
}
|
156
|
+
|
157
|
+
#ifdef GGML_QKK_64
|
158
|
+
MTLCompileOptions* options = [MTLCompileOptions new];
|
159
|
+
options.preprocessorMacros = @{ @"QK_K" : @(64) };
|
160
|
+
ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];
|
161
|
+
#else
|
162
|
+
ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
|
163
|
+
#endif
|
164
|
+
if (error) {
|
165
|
+
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
166
|
+
return NULL;
|
167
|
+
}
|
168
|
+
}
|
169
|
+
#endif
|
170
|
+
|
171
|
+
// load kernels
|
172
|
+
{
|
173
|
+
NSError * error = nil;
|
174
|
+
#define GGML_METAL_ADD_KERNEL(name) \
|
175
|
+
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
|
176
|
+
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
|
177
|
+
fprintf(stderr, "%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \
|
178
|
+
(int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \
|
179
|
+
(int) ctx->pipeline_##name.threadExecutionWidth); \
|
180
|
+
if (error) { \
|
181
|
+
fprintf(stderr, "%s: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
|
182
|
+
return NULL; \
|
183
|
+
}
|
184
|
+
|
185
|
+
GGML_METAL_ADD_KERNEL(add);
|
186
|
+
GGML_METAL_ADD_KERNEL(add_row);
|
187
|
+
GGML_METAL_ADD_KERNEL(mul);
|
188
|
+
GGML_METAL_ADD_KERNEL(mul_row);
|
189
|
+
GGML_METAL_ADD_KERNEL(scale);
|
190
|
+
GGML_METAL_ADD_KERNEL(silu);
|
191
|
+
GGML_METAL_ADD_KERNEL(relu);
|
192
|
+
GGML_METAL_ADD_KERNEL(gelu);
|
193
|
+
GGML_METAL_ADD_KERNEL(soft_max);
|
194
|
+
GGML_METAL_ADD_KERNEL(diag_mask_inf);
|
195
|
+
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
196
|
+
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
197
|
+
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
198
|
+
GGML_METAL_ADD_KERNEL(get_rows_q8_0);
|
199
|
+
GGML_METAL_ADD_KERNEL(get_rows_q2_K);
|
200
|
+
GGML_METAL_ADD_KERNEL(get_rows_q3_K);
|
201
|
+
GGML_METAL_ADD_KERNEL(get_rows_q4_K);
|
202
|
+
GGML_METAL_ADD_KERNEL(get_rows_q5_K);
|
203
|
+
GGML_METAL_ADD_KERNEL(get_rows_q6_K);
|
204
|
+
GGML_METAL_ADD_KERNEL(rms_norm);
|
205
|
+
GGML_METAL_ADD_KERNEL(norm);
|
206
|
+
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
207
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
208
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
|
209
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
|
210
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32);
|
211
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32);
|
212
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
|
213
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
|
214
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
|
215
|
+
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
216
|
+
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
|
217
|
+
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
|
218
|
+
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
|
219
|
+
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
|
220
|
+
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
|
221
|
+
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
|
222
|
+
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
|
223
|
+
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
|
224
|
+
GGML_METAL_ADD_KERNEL(rope);
|
225
|
+
GGML_METAL_ADD_KERNEL(alibi_f32);
|
226
|
+
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
227
|
+
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
228
|
+
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
|
229
|
+
|
230
|
+
#undef GGML_METAL_ADD_KERNEL
|
231
|
+
}
|
232
|
+
|
233
|
+
fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
234
|
+
fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
235
|
+
if (ctx->device.maxTransferRate != 0) {
|
236
|
+
fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
237
|
+
} else {
|
238
|
+
fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__);
|
239
|
+
}
|
240
|
+
|
241
|
+
return ctx;
|
242
|
+
}
|
243
|
+
|
244
|
+
void ggml_metal_free(struct ggml_metal_context * ctx) {
|
245
|
+
fprintf(stderr, "%s: deallocating\n", __func__);
|
246
|
+
#define GGML_METAL_DEL_KERNEL(name) \
|
247
|
+
[ctx->function_##name release]; \
|
248
|
+
[ctx->pipeline_##name release];
|
249
|
+
|
250
|
+
GGML_METAL_DEL_KERNEL(add);
|
251
|
+
GGML_METAL_DEL_KERNEL(add_row);
|
252
|
+
GGML_METAL_DEL_KERNEL(mul);
|
253
|
+
GGML_METAL_DEL_KERNEL(mul_row);
|
254
|
+
GGML_METAL_DEL_KERNEL(scale);
|
255
|
+
GGML_METAL_DEL_KERNEL(silu);
|
256
|
+
GGML_METAL_DEL_KERNEL(relu);
|
257
|
+
GGML_METAL_DEL_KERNEL(gelu);
|
258
|
+
GGML_METAL_DEL_KERNEL(soft_max);
|
259
|
+
GGML_METAL_DEL_KERNEL(diag_mask_inf);
|
260
|
+
GGML_METAL_DEL_KERNEL(get_rows_f16);
|
261
|
+
GGML_METAL_DEL_KERNEL(get_rows_q4_0);
|
262
|
+
GGML_METAL_DEL_KERNEL(get_rows_q4_1);
|
263
|
+
GGML_METAL_DEL_KERNEL(get_rows_q8_0);
|
264
|
+
GGML_METAL_DEL_KERNEL(get_rows_q2_K);
|
265
|
+
GGML_METAL_DEL_KERNEL(get_rows_q3_K);
|
266
|
+
GGML_METAL_DEL_KERNEL(get_rows_q4_K);
|
267
|
+
GGML_METAL_DEL_KERNEL(get_rows_q5_K);
|
268
|
+
GGML_METAL_DEL_KERNEL(get_rows_q6_K);
|
269
|
+
GGML_METAL_DEL_KERNEL(rms_norm);
|
270
|
+
GGML_METAL_DEL_KERNEL(norm);
|
271
|
+
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
|
272
|
+
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
|
273
|
+
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
|
274
|
+
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
|
275
|
+
GGML_METAL_DEL_KERNEL(mul_mat_q2_K_f32);
|
276
|
+
GGML_METAL_DEL_KERNEL(mul_mat_q3_K_f32);
|
277
|
+
GGML_METAL_DEL_KERNEL(mul_mat_q4_K_f32);
|
278
|
+
GGML_METAL_DEL_KERNEL(mul_mat_q5_K_f32);
|
279
|
+
GGML_METAL_DEL_KERNEL(mul_mat_q6_K_f32);
|
280
|
+
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
|
281
|
+
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
|
282
|
+
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
|
283
|
+
GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
|
284
|
+
GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
|
285
|
+
GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
|
286
|
+
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
|
287
|
+
GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
|
288
|
+
GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
|
289
|
+
GGML_METAL_DEL_KERNEL(rope);
|
290
|
+
GGML_METAL_DEL_KERNEL(alibi_f32);
|
291
|
+
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
|
292
|
+
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
|
293
|
+
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
|
294
|
+
|
295
|
+
#undef GGML_METAL_DEL_KERNEL
|
296
|
+
|
297
|
+
for (int i = 0; i < ctx->n_buffers; ++i) {
|
298
|
+
[ctx->buffers[i].metal release];
|
299
|
+
}
|
300
|
+
|
301
|
+
[ctx->library release];
|
302
|
+
[ctx->queue release];
|
303
|
+
[ctx->device release];
|
304
|
+
|
305
|
+
dispatch_release(ctx->d_queue);
|
306
|
+
|
307
|
+
free(ctx);
|
308
|
+
}
|
309
|
+
|
310
|
+
void * ggml_metal_host_malloc(size_t n) {
|
311
|
+
void * data = NULL;
|
312
|
+
const int result = posix_memalign((void **) &data, getpagesize(), n);
|
313
|
+
if (result != 0) {
|
314
|
+
fprintf(stderr, "%s: error: posix_memalign failed\n", __func__);
|
315
|
+
return NULL;
|
316
|
+
}
|
317
|
+
|
318
|
+
return data;
|
319
|
+
}
|
320
|
+
|
321
|
+
void ggml_metal_host_free(void * data) {
|
322
|
+
free(data);
|
323
|
+
}
|
324
|
+
|
325
|
+
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
|
326
|
+
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
|
327
|
+
}
|
328
|
+
|
329
|
+
int ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
|
330
|
+
return ctx->concur_list_len;
|
331
|
+
}
|
332
|
+
|
333
|
+
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
|
334
|
+
return ctx->concur_list;
|
335
|
+
}
|
336
|
+
|
337
|
+
// finds the Metal buffer that contains the tensor data on the GPU device
|
338
|
+
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
339
|
+
// Metal buffer based on the host memory pointer
|
340
|
+
//
|
341
|
+
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
|
342
|
+
//fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
|
343
|
+
|
344
|
+
const int64_t tsize = ggml_nbytes(t);
|
345
|
+
|
346
|
+
// find the view that contains the tensor fully
|
347
|
+
for (int i = 0; i < ctx->n_buffers; ++i) {
|
348
|
+
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
|
349
|
+
|
350
|
+
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
|
351
|
+
*offs = (size_t) ioffs;
|
352
|
+
|
353
|
+
//fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
|
354
|
+
|
355
|
+
return ctx->buffers[i].metal;
|
356
|
+
}
|
357
|
+
}
|
358
|
+
|
359
|
+
fprintf(stderr, "%s: error: buffer is nil\n", __func__);
|
360
|
+
|
361
|
+
return nil;
|
362
|
+
}
|
363
|
+
|
364
|
+
bool ggml_metal_add_buffer(
|
365
|
+
struct ggml_metal_context * ctx,
|
366
|
+
const char * name,
|
367
|
+
void * data,
|
368
|
+
size_t size,
|
369
|
+
size_t max_size) {
|
370
|
+
if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
|
371
|
+
fprintf(stderr, "%s: too many buffers\n", __func__);
|
372
|
+
return false;
|
373
|
+
}
|
374
|
+
|
375
|
+
if (data) {
|
376
|
+
// verify that the buffer does not overlap with any of the existing buffers
|
377
|
+
for (int i = 0; i < ctx->n_buffers; ++i) {
|
378
|
+
const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
|
379
|
+
|
380
|
+
if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
|
381
|
+
fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
|
382
|
+
return false;
|
383
|
+
}
|
384
|
+
}
|
385
|
+
|
386
|
+
const size_t size_page = getpagesize();
|
387
|
+
|
388
|
+
size_t size_aligned = size;
|
389
|
+
if ((size_aligned % size_page) != 0) {
|
390
|
+
size_aligned += (size_page - (size_aligned % size_page));
|
391
|
+
}
|
392
|
+
|
393
|
+
// the buffer fits into the max buffer size allowed by the device
|
394
|
+
if (size_aligned <= ctx->device.maxBufferLength) {
|
395
|
+
ctx->buffers[ctx->n_buffers].name = name;
|
396
|
+
ctx->buffers[ctx->n_buffers].data = data;
|
397
|
+
ctx->buffers[ctx->n_buffers].size = size;
|
398
|
+
|
399
|
+
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
400
|
+
|
401
|
+
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
402
|
+
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
|
403
|
+
return false;
|
404
|
+
}
|
405
|
+
|
406
|
+
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
|
407
|
+
|
408
|
+
++ctx->n_buffers;
|
409
|
+
} else {
|
410
|
+
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
|
411
|
+
// one of the views
|
412
|
+
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
|
413
|
+
const size_t size_step = ctx->device.maxBufferLength - size_ovlp;
|
414
|
+
const size_t size_view = ctx->device.maxBufferLength;
|
415
|
+
|
416
|
+
for (size_t i = 0; i < size; i += size_step) {
|
417
|
+
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
|
418
|
+
|
419
|
+
ctx->buffers[ctx->n_buffers].name = name;
|
420
|
+
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
|
421
|
+
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
|
422
|
+
|
423
|
+
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
424
|
+
|
425
|
+
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
426
|
+
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
|
427
|
+
return false;
|
428
|
+
}
|
429
|
+
|
430
|
+
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
|
431
|
+
if (i + size_step < size) {
|
432
|
+
fprintf(stderr, "\n");
|
433
|
+
}
|
434
|
+
|
435
|
+
++ctx->n_buffers;
|
436
|
+
}
|
437
|
+
}
|
438
|
+
|
439
|
+
fprintf(stderr, ", (%8.2f / %8.2f)",
|
440
|
+
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
|
441
|
+
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
442
|
+
|
443
|
+
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
|
444
|
+
fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n");
|
445
|
+
} else {
|
446
|
+
fprintf(stderr, "\n");
|
447
|
+
}
|
448
|
+
}
|
449
|
+
|
450
|
+
return true;
|
451
|
+
}
|
452
|
+
|
453
|
+
void ggml_metal_set_tensor(
|
454
|
+
struct ggml_metal_context * ctx,
|
455
|
+
struct ggml_tensor * t) {
|
456
|
+
metal_printf("%s: set input for tensor '%s'\n", __func__, t->name);
|
457
|
+
|
458
|
+
size_t offs;
|
459
|
+
id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
|
460
|
+
|
461
|
+
memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
|
462
|
+
}
|
463
|
+
|
464
|
+
void ggml_metal_get_tensor(
|
465
|
+
struct ggml_metal_context * ctx,
|
466
|
+
struct ggml_tensor * t) {
|
467
|
+
metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name);
|
468
|
+
|
469
|
+
size_t offs;
|
470
|
+
id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
|
471
|
+
|
472
|
+
memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
|
473
|
+
}
|
474
|
+
|
475
|
+
void ggml_metal_graph_find_concurrency(
|
476
|
+
struct ggml_metal_context * ctx,
|
477
|
+
struct ggml_cgraph * gf, bool check_mem) {
|
478
|
+
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
|
479
|
+
int nodes_unused[GGML_MAX_CONCUR];
|
480
|
+
|
481
|
+
for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; }
|
482
|
+
for (int i = 0; i < gf->n_nodes; i++) { nodes_unused[i] = 1; }
|
483
|
+
ctx->concur_list_len = 0;
|
484
|
+
|
485
|
+
int n_left = gf->n_nodes;
|
486
|
+
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
|
487
|
+
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
|
488
|
+
|
489
|
+
while (n_left > 0) {
|
490
|
+
// number of nodes at a layer (that can be issued concurrently)
|
491
|
+
int concurrency = 0;
|
492
|
+
for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
|
493
|
+
if (nodes_unused[i]) {
|
494
|
+
// if the requirements for gf->nodes[i] are satisfied
|
495
|
+
int exe_flag = 1;
|
496
|
+
|
497
|
+
// scan all srcs
|
498
|
+
for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
|
499
|
+
struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
|
500
|
+
if (src_cur) {
|
501
|
+
// if is leaf nodes it's satisfied.
|
502
|
+
// TODO: ggml_is_leaf()
|
503
|
+
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {
|
504
|
+
continue;
|
505
|
+
}
|
506
|
+
|
507
|
+
// otherwise this src should be the output from previous nodes.
|
508
|
+
int is_found = 0;
|
509
|
+
|
510
|
+
// scan 2*search_depth back because we inserted barrier.
|
511
|
+
//for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
|
512
|
+
for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) {
|
513
|
+
if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) {
|
514
|
+
is_found = 1;
|
515
|
+
break;
|
516
|
+
}
|
517
|
+
}
|
518
|
+
if (is_found == 0) {
|
519
|
+
exe_flag = 0;
|
520
|
+
break;
|
521
|
+
}
|
522
|
+
}
|
523
|
+
}
|
524
|
+
if (exe_flag && check_mem) {
|
525
|
+
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
|
526
|
+
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
|
527
|
+
int64_t data_start = (int64_t) gf->nodes[i]->data;
|
528
|
+
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
|
529
|
+
for (int j = n_start; j < i; j++) {
|
530
|
+
if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
|
531
|
+
&& gf->nodes[j]->op != GGML_OP_VIEW \
|
532
|
+
&& gf->nodes[j]->op != GGML_OP_TRANSPOSE \
|
533
|
+
&& gf->nodes[j]->op != GGML_OP_PERMUTE) {
|
534
|
+
if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
|
535
|
+
((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
|
536
|
+
continue;
|
537
|
+
}
|
538
|
+
|
539
|
+
exe_flag = 0;
|
540
|
+
}
|
541
|
+
}
|
542
|
+
}
|
543
|
+
if (exe_flag) {
|
544
|
+
ctx->concur_list[level_pos + concurrency] = i;
|
545
|
+
nodes_unused[i] = 0;
|
546
|
+
concurrency++;
|
547
|
+
ctx->concur_list_len++;
|
548
|
+
}
|
549
|
+
}
|
550
|
+
}
|
551
|
+
n_left -= concurrency;
|
552
|
+
// adding a barrier different layer
|
553
|
+
ctx->concur_list[level_pos + concurrency] = -1;
|
554
|
+
ctx->concur_list_len++;
|
555
|
+
// jump all sorted nodes at nodes_bak
|
556
|
+
while (!nodes_unused[n_start]) {
|
557
|
+
n_start++;
|
558
|
+
}
|
559
|
+
level_pos += concurrency + 1;
|
560
|
+
}
|
561
|
+
|
562
|
+
if (ctx->concur_list_len > GGML_MAX_CONCUR) {
|
563
|
+
fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__);
|
564
|
+
}
|
565
|
+
}
|
566
|
+
|
567
|
+
void ggml_metal_graph_compute(
|
568
|
+
struct ggml_metal_context * ctx,
|
569
|
+
struct ggml_cgraph * gf) {
|
570
|
+
metal_printf("%s: evaluating graph\n", __func__);
|
571
|
+
|
572
|
+
@autoreleasepool {
|
573
|
+
|
574
|
+
// if there is ctx->concur_list, dispatch concurrently
|
575
|
+
// else fallback to serial dispatch
|
576
|
+
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
|
577
|
+
|
578
|
+
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR;
|
579
|
+
|
580
|
+
const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
|
581
|
+
edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
|
582
|
+
|
583
|
+
// create multiple command buffers and enqueue them
|
584
|
+
// then, we encode the graph into the command buffers in parallel
|
585
|
+
|
586
|
+
const int n_cb = ctx->n_cb;
|
587
|
+
|
588
|
+
for (int i = 0; i < n_cb; ++i) {
|
589
|
+
ctx->command_buffers[i] = [ctx->queue commandBuffer];
|
590
|
+
|
591
|
+
// enqueue the command buffers in order to specify their execution order
|
592
|
+
[ctx->command_buffers[i] enqueue];
|
593
|
+
|
594
|
+
ctx->command_encoders[i] = [ctx->command_buffers[i] computeCommandEncoderWithDescriptor: edesc];
|
595
|
+
}
|
596
|
+
|
597
|
+
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
598
|
+
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
|
599
|
+
|
600
|
+
dispatch_async(ctx->d_queue, ^{
|
601
|
+
size_t offs_src0 = 0;
|
602
|
+
size_t offs_src1 = 0;
|
603
|
+
size_t offs_dst = 0;
|
604
|
+
|
605
|
+
id<MTLCommandBuffer> command_buffer = ctx->command_buffers[cb_idx];
|
606
|
+
id<MTLComputeCommandEncoder> encoder = ctx->command_encoders[cb_idx];
|
607
|
+
|
608
|
+
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
609
|
+
const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes);
|
610
|
+
|
611
|
+
for (int ind = node_start; ind < node_end; ++ind) {
|
612
|
+
const int i = has_concur ? ctx->concur_list[ind] : ind;
|
613
|
+
|
614
|
+
if (i == -1) {
|
615
|
+
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
|
616
|
+
continue;
|
617
|
+
}
|
618
|
+
|
619
|
+
metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
|
620
|
+
|
621
|
+
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
|
622
|
+
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
|
623
|
+
struct ggml_tensor * dst = gf->nodes[i];
|
624
|
+
|
625
|
+
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
626
|
+
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
627
|
+
const int64_t ne02 = src0 ? src0->ne[2] : 0;
|
628
|
+
const int64_t ne03 = src0 ? src0->ne[3] : 0;
|
629
|
+
|
630
|
+
const uint64_t nb00 = src0 ? src0->nb[0] : 0;
|
631
|
+
const uint64_t nb01 = src0 ? src0->nb[1] : 0;
|
632
|
+
const uint64_t nb02 = src0 ? src0->nb[2] : 0;
|
633
|
+
const uint64_t nb03 = src0 ? src0->nb[3] : 0;
|
634
|
+
|
635
|
+
const int64_t ne10 = src1 ? src1->ne[0] : 0;
|
636
|
+
const int64_t ne11 = src1 ? src1->ne[1] : 0;
|
637
|
+
const int64_t ne12 = src1 ? src1->ne[2] : 0;
|
638
|
+
const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
|
639
|
+
|
640
|
+
const uint64_t nb10 = src1 ? src1->nb[0] : 0;
|
641
|
+
const uint64_t nb11 = src1 ? src1->nb[1] : 0;
|
642
|
+
const uint64_t nb12 = src1 ? src1->nb[2] : 0;
|
643
|
+
const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
|
644
|
+
|
645
|
+
const int64_t ne0 = dst ? dst->ne[0] : 0;
|
646
|
+
const int64_t ne1 = dst ? dst->ne[1] : 0;
|
647
|
+
const int64_t ne2 = dst ? dst->ne[2] : 0;
|
648
|
+
const int64_t ne3 = dst ? dst->ne[3] : 0;
|
649
|
+
|
650
|
+
const uint64_t nb0 = dst ? dst->nb[0] : 0;
|
651
|
+
const uint64_t nb1 = dst ? dst->nb[1] : 0;
|
652
|
+
const uint64_t nb2 = dst ? dst->nb[2] : 0;
|
653
|
+
const uint64_t nb3 = dst ? dst->nb[3] : 0;
|
654
|
+
|
655
|
+
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
|
656
|
+
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
|
657
|
+
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
|
658
|
+
|
659
|
+
id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
|
660
|
+
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
|
661
|
+
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
|
662
|
+
|
663
|
+
//metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
|
664
|
+
//if (src0) {
|
665
|
+
// metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
|
666
|
+
// ggml_is_contiguous(src0), src0->name);
|
667
|
+
//}
|
668
|
+
//if (src1) {
|
669
|
+
// metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
|
670
|
+
// ggml_is_contiguous(src1), src1->name);
|
671
|
+
//}
|
672
|
+
//if (dst) {
|
673
|
+
// metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
|
674
|
+
// dst->name);
|
675
|
+
//}
|
676
|
+
|
677
|
+
switch (dst->op) {
|
678
|
+
case GGML_OP_NONE:
|
679
|
+
case GGML_OP_RESHAPE:
|
680
|
+
case GGML_OP_VIEW:
|
681
|
+
case GGML_OP_TRANSPOSE:
|
682
|
+
case GGML_OP_PERMUTE:
|
683
|
+
{
|
684
|
+
// noop
|
685
|
+
} break;
|
686
|
+
case GGML_OP_ADD:
|
687
|
+
{
|
688
|
+
if (ggml_nelements(src1) == ne10) {
|
689
|
+
// src1 is a row
|
690
|
+
[encoder setComputePipelineState:ctx->pipeline_add_row];
|
691
|
+
} else {
|
692
|
+
[encoder setComputePipelineState:ctx->pipeline_add];
|
693
|
+
}
|
694
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
695
|
+
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
696
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
697
|
+
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
698
|
+
|
699
|
+
const int64_t n = ggml_nelements(dst);
|
700
|
+
|
701
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
702
|
+
} break;
|
703
|
+
case GGML_OP_MUL:
|
704
|
+
{
|
705
|
+
if (ggml_nelements(src1) == ne10) {
|
706
|
+
// src1 is a row
|
707
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_row];
|
708
|
+
} else {
|
709
|
+
[encoder setComputePipelineState:ctx->pipeline_mul];
|
710
|
+
}
|
711
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
712
|
+
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
713
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
714
|
+
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
715
|
+
|
716
|
+
const int64_t n = ggml_nelements(dst);
|
717
|
+
|
718
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
719
|
+
} break;
|
720
|
+
case GGML_OP_SCALE:
|
721
|
+
{
|
722
|
+
const float scale = *(const float *) src1->data;
|
723
|
+
|
724
|
+
[encoder setComputePipelineState:ctx->pipeline_scale];
|
725
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
726
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
727
|
+
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
728
|
+
|
729
|
+
const int64_t n = ggml_nelements(dst);
|
730
|
+
|
731
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
732
|
+
} break;
|
733
|
+
case GGML_OP_UNARY:
|
734
|
+
switch (ggml_get_unary_op(gf->nodes[i])) {
|
735
|
+
case GGML_UNARY_OP_SILU:
|
736
|
+
{
|
737
|
+
[encoder setComputePipelineState:ctx->pipeline_silu];
|
738
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
739
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
740
|
+
|
741
|
+
const int64_t n = ggml_nelements(dst);
|
742
|
+
|
743
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
744
|
+
} break;
|
745
|
+
case GGML_UNARY_OP_RELU:
|
746
|
+
{
|
747
|
+
[encoder setComputePipelineState:ctx->pipeline_relu];
|
748
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
749
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
750
|
+
|
751
|
+
const int64_t n = ggml_nelements(dst);
|
752
|
+
|
753
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
754
|
+
} break;
|
755
|
+
case GGML_UNARY_OP_GELU:
|
756
|
+
{
|
757
|
+
[encoder setComputePipelineState:ctx->pipeline_gelu];
|
758
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
759
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
760
|
+
|
761
|
+
const int64_t n = ggml_nelements(dst);
|
762
|
+
|
763
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
764
|
+
} break;
|
765
|
+
default:
|
766
|
+
{
|
767
|
+
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
768
|
+
GGML_ASSERT(false);
|
769
|
+
}
|
770
|
+
} break;
|
771
|
+
case GGML_OP_SOFT_MAX:
|
772
|
+
{
|
773
|
+
const int nth = 32;
|
774
|
+
|
775
|
+
[encoder setComputePipelineState:ctx->pipeline_soft_max];
|
776
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
777
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
778
|
+
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
779
|
+
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
780
|
+
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
781
|
+
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
|
782
|
+
|
783
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
784
|
+
} break;
|
785
|
+
case GGML_OP_DIAG_MASK_INF:
|
786
|
+
{
|
787
|
+
const int n_past = ((int32_t *)(dst->op_params))[0];
|
788
|
+
|
789
|
+
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
790
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
791
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
792
|
+
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
793
|
+
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
794
|
+
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
|
795
|
+
|
796
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
797
|
+
} break;
|
798
|
+
case GGML_OP_MUL_MAT:
|
799
|
+
{
|
800
|
+
// TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
|
801
|
+
|
802
|
+
GGML_ASSERT(ne00 == ne10);
|
803
|
+
// GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
|
804
|
+
uint gqa = ne12/ne02;
|
805
|
+
GGML_ASSERT(ne03 == ne13);
|
806
|
+
|
807
|
+
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
808
|
+
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
809
|
+
if (ggml_is_contiguous(src0) &&
|
810
|
+
ggml_is_contiguous(src1) &&
|
811
|
+
src1t == GGML_TYPE_F32 &&
|
812
|
+
[ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
813
|
+
ne00%32 == 0 &&
|
814
|
+
ne11 > 1) {
|
815
|
+
switch (src0->type) {
|
816
|
+
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
|
817
|
+
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
|
818
|
+
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
|
819
|
+
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break;
|
820
|
+
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
|
821
|
+
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
|
822
|
+
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break;
|
823
|
+
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break;
|
824
|
+
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break;
|
825
|
+
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
826
|
+
}
|
827
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
828
|
+
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
829
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
830
|
+
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
831
|
+
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
832
|
+
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
|
833
|
+
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
|
834
|
+
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
|
835
|
+
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:8];
|
836
|
+
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:9];
|
837
|
+
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:10];
|
838
|
+
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
839
|
+
[encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
840
|
+
} else {
|
841
|
+
int nth0 = 32;
|
842
|
+
int nth1 = 1;
|
843
|
+
|
844
|
+
// use custom matrix x vector kernel
|
845
|
+
switch (src0t) {
|
846
|
+
case GGML_TYPE_F16:
|
847
|
+
{
|
848
|
+
nth0 = 64;
|
849
|
+
nth1 = 1;
|
850
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
|
851
|
+
} break;
|
852
|
+
case GGML_TYPE_Q4_0:
|
853
|
+
{
|
854
|
+
GGML_ASSERT(ne02 == 1);
|
855
|
+
GGML_ASSERT(ne12 == 1);
|
856
|
+
|
857
|
+
nth0 = 8;
|
858
|
+
nth1 = 8;
|
859
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
|
860
|
+
} break;
|
861
|
+
case GGML_TYPE_Q4_1:
|
862
|
+
{
|
863
|
+
GGML_ASSERT(ne02 == 1);
|
864
|
+
GGML_ASSERT(ne12 == 1);
|
865
|
+
|
866
|
+
nth0 = 8;
|
867
|
+
nth1 = 8;
|
868
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
|
869
|
+
} break;
|
870
|
+
case GGML_TYPE_Q8_0:
|
871
|
+
{
|
872
|
+
GGML_ASSERT(ne02 == 1);
|
873
|
+
GGML_ASSERT(ne12 == 1);
|
874
|
+
|
875
|
+
nth0 = 8;
|
876
|
+
nth1 = 8;
|
877
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q8_0_f32];
|
878
|
+
} break;
|
879
|
+
case GGML_TYPE_Q2_K:
|
880
|
+
{
|
881
|
+
GGML_ASSERT(ne02 == 1);
|
882
|
+
GGML_ASSERT(ne12 == 1);
|
883
|
+
|
884
|
+
nth0 = 2;
|
885
|
+
nth1 = 32;
|
886
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32];
|
887
|
+
} break;
|
888
|
+
case GGML_TYPE_Q3_K:
|
889
|
+
{
|
890
|
+
GGML_ASSERT(ne02 == 1);
|
891
|
+
GGML_ASSERT(ne12 == 1);
|
892
|
+
|
893
|
+
nth0 = 2;
|
894
|
+
nth1 = 32;
|
895
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
|
896
|
+
} break;
|
897
|
+
case GGML_TYPE_Q4_K:
|
898
|
+
{
|
899
|
+
GGML_ASSERT(ne02 == 1);
|
900
|
+
GGML_ASSERT(ne12 == 1);
|
901
|
+
|
902
|
+
nth0 = 2;
|
903
|
+
nth1 = 32;
|
904
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32];
|
905
|
+
} break;
|
906
|
+
case GGML_TYPE_Q5_K:
|
907
|
+
{
|
908
|
+
GGML_ASSERT(ne02 == 1);
|
909
|
+
GGML_ASSERT(ne12 == 1);
|
910
|
+
|
911
|
+
nth0 = 2;
|
912
|
+
nth1 = 32;
|
913
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32];
|
914
|
+
} break;
|
915
|
+
case GGML_TYPE_Q6_K:
|
916
|
+
{
|
917
|
+
GGML_ASSERT(ne02 == 1);
|
918
|
+
GGML_ASSERT(ne12 == 1);
|
919
|
+
|
920
|
+
nth0 = 2;
|
921
|
+
nth1 = 32;
|
922
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32];
|
923
|
+
} break;
|
924
|
+
default:
|
925
|
+
{
|
926
|
+
fprintf(stderr, "Asserting on type %d\n",(int)src0t);
|
927
|
+
GGML_ASSERT(false && "not implemented");
|
928
|
+
}
|
929
|
+
};
|
930
|
+
|
931
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
932
|
+
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
933
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
934
|
+
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
935
|
+
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
936
|
+
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
937
|
+
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
938
|
+
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
939
|
+
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
940
|
+
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
|
941
|
+
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
|
942
|
+
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
|
943
|
+
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
|
944
|
+
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
|
945
|
+
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
|
946
|
+
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
|
947
|
+
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
|
948
|
+
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
949
|
+
|
950
|
+
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
|
951
|
+
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
|
952
|
+
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
953
|
+
}
|
954
|
+
else if (src0t == GGML_TYPE_Q3_K) {
|
955
|
+
#ifdef GGML_QKK_64
|
956
|
+
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
957
|
+
#else
|
958
|
+
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
959
|
+
#endif
|
960
|
+
}
|
961
|
+
else if (src0t == GGML_TYPE_Q5_K) {
|
962
|
+
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
963
|
+
}
|
964
|
+
else if (src0t == GGML_TYPE_Q6_K) {
|
965
|
+
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
966
|
+
} else {
|
967
|
+
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
968
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
969
|
+
}
|
970
|
+
}
|
971
|
+
} break;
|
972
|
+
case GGML_OP_GET_ROWS:
|
973
|
+
{
|
974
|
+
switch (src0->type) {
|
975
|
+
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
976
|
+
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
977
|
+
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
|
978
|
+
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break;
|
979
|
+
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
|
980
|
+
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
|
981
|
+
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break;
|
982
|
+
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break;
|
983
|
+
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break;
|
984
|
+
default: GGML_ASSERT(false && "not implemented");
|
985
|
+
}
|
986
|
+
|
987
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
988
|
+
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
989
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
990
|
+
[encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
|
991
|
+
[encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
|
992
|
+
[encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5];
|
993
|
+
|
994
|
+
const int64_t n = ggml_nelements(src1);
|
995
|
+
|
996
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
997
|
+
} break;
|
998
|
+
case GGML_OP_RMS_NORM:
|
999
|
+
{
|
1000
|
+
float eps;
|
1001
|
+
memcpy(&eps, dst->op_params, sizeof(float));
|
1002
|
+
|
1003
|
+
const int nth = 512;
|
1004
|
+
|
1005
|
+
[encoder setComputePipelineState:ctx->pipeline_rms_norm];
|
1006
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1007
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1008
|
+
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
1009
|
+
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
1010
|
+
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
1011
|
+
[encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
|
1012
|
+
|
1013
|
+
const int64_t nrows = ggml_nrows(src0);
|
1014
|
+
|
1015
|
+
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
1016
|
+
} break;
|
1017
|
+
case GGML_OP_NORM:
|
1018
|
+
{
|
1019
|
+
float eps;
|
1020
|
+
memcpy(&eps, dst->op_params, sizeof(float));
|
1021
|
+
|
1022
|
+
const int nth = 256;
|
1023
|
+
|
1024
|
+
[encoder setComputePipelineState:ctx->pipeline_norm];
|
1025
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1026
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1027
|
+
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
1028
|
+
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
1029
|
+
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
1030
|
+
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
|
1031
|
+
|
1032
|
+
const int64_t nrows = ggml_nrows(src0);
|
1033
|
+
|
1034
|
+
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
1035
|
+
} break;
|
1036
|
+
case GGML_OP_ALIBI:
|
1037
|
+
{
|
1038
|
+
GGML_ASSERT((src0t == GGML_TYPE_F32));
|
1039
|
+
|
1040
|
+
const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
|
1041
|
+
const int n_head = ((int32_t *) dst->op_params)[1];
|
1042
|
+
float max_bias;
|
1043
|
+
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
1044
|
+
|
1045
|
+
if (__builtin_popcount(n_head) != 1) {
|
1046
|
+
GGML_ASSERT(false && "only power-of-two n_head implemented");
|
1047
|
+
}
|
1048
|
+
|
1049
|
+
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
1050
|
+
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
1051
|
+
|
1052
|
+
[encoder setComputePipelineState:ctx->pipeline_alibi_f32];
|
1053
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1054
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1055
|
+
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
1056
|
+
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
1057
|
+
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
1058
|
+
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
1059
|
+
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
1060
|
+
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
1061
|
+
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
1062
|
+
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
1063
|
+
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
1064
|
+
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
1065
|
+
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
1066
|
+
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
1067
|
+
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
1068
|
+
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
1069
|
+
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
1070
|
+
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
1071
|
+
[encoder setBytes:&m0 length:sizeof( float) atIndex:18];
|
1072
|
+
|
1073
|
+
const int nth = 32;
|
1074
|
+
|
1075
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
1076
|
+
} break;
|
1077
|
+
case GGML_OP_ROPE:
|
1078
|
+
{
|
1079
|
+
const int n_past = ((int32_t *) dst->op_params)[0];
|
1080
|
+
const int n_dims = ((int32_t *) dst->op_params)[1];
|
1081
|
+
const int mode = ((int32_t *) dst->op_params)[2];
|
1082
|
+
|
1083
|
+
float freq_base;
|
1084
|
+
float freq_scale;
|
1085
|
+
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
|
1086
|
+
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
1087
|
+
|
1088
|
+
[encoder setComputePipelineState:ctx->pipeline_rope];
|
1089
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1090
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1091
|
+
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
1092
|
+
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
1093
|
+
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
1094
|
+
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
1095
|
+
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
1096
|
+
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
1097
|
+
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
1098
|
+
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
1099
|
+
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
1100
|
+
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
1101
|
+
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
1102
|
+
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
1103
|
+
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
1104
|
+
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
1105
|
+
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
1106
|
+
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
1107
|
+
[encoder setBytes:&n_past length:sizeof( int) atIndex:18];
|
1108
|
+
[encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
|
1109
|
+
[encoder setBytes:&mode length:sizeof( int) atIndex:20];
|
1110
|
+
[encoder setBytes:&freq_base length:sizeof(float) atIndex:21];
|
1111
|
+
[encoder setBytes:&freq_scale length:sizeof(float) atIndex:22];
|
1112
|
+
|
1113
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1114
|
+
} break;
|
1115
|
+
case GGML_OP_DUP:
|
1116
|
+
case GGML_OP_CPY:
|
1117
|
+
case GGML_OP_CONT:
|
1118
|
+
{
|
1119
|
+
const int nth = 32;
|
1120
|
+
|
1121
|
+
switch (src0t) {
|
1122
|
+
case GGML_TYPE_F32:
|
1123
|
+
{
|
1124
|
+
switch (dstt) {
|
1125
|
+
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
|
1126
|
+
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
|
1127
|
+
default: GGML_ASSERT(false && "not implemented");
|
1128
|
+
};
|
1129
|
+
} break;
|
1130
|
+
case GGML_TYPE_F16:
|
1131
|
+
{
|
1132
|
+
switch (dstt) {
|
1133
|
+
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break;
|
1134
|
+
case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break;
|
1135
|
+
default: GGML_ASSERT(false && "not implemented");
|
1136
|
+
};
|
1137
|
+
} break;
|
1138
|
+
default: GGML_ASSERT(false && "not implemented");
|
1139
|
+
}
|
1140
|
+
|
1141
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1142
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1143
|
+
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
1144
|
+
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
1145
|
+
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
1146
|
+
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
1147
|
+
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
1148
|
+
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
1149
|
+
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
1150
|
+
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
1151
|
+
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
1152
|
+
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
1153
|
+
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
1154
|
+
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
1155
|
+
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
1156
|
+
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
1157
|
+
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
1158
|
+
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
1159
|
+
|
1160
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
1161
|
+
} break;
|
1162
|
+
default:
|
1163
|
+
{
|
1164
|
+
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
1165
|
+
GGML_ASSERT(false);
|
1166
|
+
}
|
1167
|
+
}
|
1168
|
+
}
|
1169
|
+
|
1170
|
+
if (encoder != nil) {
|
1171
|
+
[encoder endEncoding];
|
1172
|
+
encoder = nil;
|
1173
|
+
}
|
1174
|
+
|
1175
|
+
[command_buffer commit];
|
1176
|
+
});
|
1177
|
+
}
|
1178
|
+
|
1179
|
+
// wait for all threads to finish
|
1180
|
+
dispatch_barrier_sync(ctx->d_queue, ^{});
|
1181
|
+
|
1182
|
+
// check status of command buffers
|
1183
|
+
// needed to detect if the device ran out-of-memory for example (#1881)
|
1184
|
+
for (int i = 0; i < n_cb; i++) {
|
1185
|
+
[ctx->command_buffers[i] waitUntilCompleted];
|
1186
|
+
|
1187
|
+
MTLCommandBufferStatus status = (MTLCommandBufferStatus) [ctx->command_buffers[i] status];
|
1188
|
+
if (status != MTLCommandBufferStatusCompleted) {
|
1189
|
+
fprintf(stderr, "%s: command buffer %d failed with status %lu\n", __func__, i, status);
|
1190
|
+
GGML_ASSERT(false);
|
1191
|
+
}
|
1192
|
+
}
|
1193
|
+
|
1194
|
+
}
|
1195
|
+
}
|