gpt_neox_client 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +5 -0
- data/CODE_OF_CONDUCT.md +84 -0
- data/LICENSE.txt +21 -0
- data/README.md +68 -0
- data/ext/gpt_neox_client/extconf.rb +25 -0
- data/ext/gpt_neox_client/gpt_neox_client.cpp +316 -0
- data/ext/gpt_neox_client/gpt_neox_client.h +10 -0
- data/ext/gpt_neox_client/src/LICENSE +21 -0
- data/ext/gpt_neox_client/src/common-ggml.cpp +246 -0
- data/ext/gpt_neox_client/src/common-ggml.h +18 -0
- data/ext/gpt_neox_client/src/common.cpp +809 -0
- data/ext/gpt_neox_client/src/common.h +176 -0
- data/ext/gpt_neox_client/src/dr_wav.h +6434 -0
- data/ext/gpt_neox_client/src/ggml/ggml-alloc.c +594 -0
- data/ext/gpt_neox_client/src/ggml/ggml-alloc.h +26 -0
- data/ext/gpt_neox_client/src/ggml/ggml-cuda.cu +6756 -0
- data/ext/gpt_neox_client/src/ggml/ggml-cuda.h +46 -0
- data/ext/gpt_neox_client/src/ggml/ggml-metal.h +85 -0
- data/ext/gpt_neox_client/src/ggml/ggml-metal.m +1195 -0
- data/ext/gpt_neox_client/src/ggml/ggml-metal.metal +2049 -0
- data/ext/gpt_neox_client/src/ggml/ggml-opencl.cpp +1865 -0
- data/ext/gpt_neox_client/src/ggml/ggml-opencl.h +25 -0
- data/ext/gpt_neox_client/src/ggml/ggml.c +20632 -0
- data/ext/gpt_neox_client/src/ggml/ggml.h +1997 -0
- data/ext/gpt_neox_client/src/main.cpp +814 -0
- data/lib/gpt_neox_client/version.rb +7 -0
- data/lib/gpt_neox_client.rb +4 -0
- metadata +75 -0
@@ -0,0 +1,814 @@
|
|
1
|
+
#include "ggml/ggml.h"
|
2
|
+
|
3
|
+
#include "common.h"
|
4
|
+
#include "common-ggml.h"
|
5
|
+
|
6
|
+
#include <cassert>
|
7
|
+
#include <cmath>
|
8
|
+
#include <cstdio>
|
9
|
+
#include <cstring>
|
10
|
+
#include <cinttypes>
|
11
|
+
#include <fstream>
|
12
|
+
#include <map>
|
13
|
+
#include <string>
|
14
|
+
#include <vector>
|
15
|
+
|
16
|
+
#if defined(_MSC_VER)
|
17
|
+
#pragma warning(disable: 4244 4267) // possible loss of data
|
18
|
+
#endif
|
19
|
+
|
20
|
+
// default hparams (StableLM 3B)
|
21
|
+
struct gpt_neox_hparams {
|
22
|
+
int32_t n_vocab = 50257;
|
23
|
+
int32_t n_ctx = 4096;
|
24
|
+
int32_t n_embd = 4096;
|
25
|
+
int32_t n_head = 32;
|
26
|
+
int32_t n_layer = 16;
|
27
|
+
int32_t n_rot = 32; // rotary_pct * (n_embd / n_head)
|
28
|
+
int32_t par_res = 1; // 1 = true, 0 = false
|
29
|
+
int32_t ftype = 1;
|
30
|
+
float eps = 1e-5;
|
31
|
+
};
|
32
|
+
|
33
|
+
struct gpt_neox_layer {
|
34
|
+
// pre normalization
|
35
|
+
struct ggml_tensor * ln_1_g;
|
36
|
+
struct ggml_tensor * ln_1_b;
|
37
|
+
|
38
|
+
// attention
|
39
|
+
struct ggml_tensor * c_attn_attn_w;
|
40
|
+
struct ggml_tensor * c_attn_attn_b;
|
41
|
+
|
42
|
+
struct ggml_tensor * c_attn_proj_w;
|
43
|
+
struct ggml_tensor * c_attn_proj_b;
|
44
|
+
|
45
|
+
// post normalization
|
46
|
+
struct ggml_tensor * ln_2_g;
|
47
|
+
struct ggml_tensor * ln_2_b;
|
48
|
+
|
49
|
+
// ff
|
50
|
+
struct ggml_tensor * c_mlp_fc_w;
|
51
|
+
struct ggml_tensor * c_mlp_fc_b;
|
52
|
+
|
53
|
+
struct ggml_tensor * c_mlp_proj_w;
|
54
|
+
struct ggml_tensor * c_mlp_proj_b;
|
55
|
+
};
|
56
|
+
|
57
|
+
struct gpt_neox_model {
|
58
|
+
gpt_neox_hparams hparams;
|
59
|
+
|
60
|
+
// normalization
|
61
|
+
struct ggml_tensor * ln_f_g;
|
62
|
+
struct ggml_tensor * ln_f_b;
|
63
|
+
|
64
|
+
struct ggml_tensor * wte; // position embedding
|
65
|
+
|
66
|
+
struct ggml_tensor * lmh_g; // language model head
|
67
|
+
//struct ggml_tensor * lmh_b; // language model bias
|
68
|
+
|
69
|
+
std::vector<gpt_neox_layer> layers;
|
70
|
+
|
71
|
+
// key + value memory
|
72
|
+
struct ggml_tensor * memory_k;
|
73
|
+
struct ggml_tensor * memory_v;
|
74
|
+
|
75
|
+
//
|
76
|
+
struct ggml_context * ctx;
|
77
|
+
std::map<std::string, struct ggml_tensor *> tensors;
|
78
|
+
};
|
79
|
+
|
80
|
+
// load the model's weights from a file
|
81
|
+
bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt_vocab & vocab) {
|
82
|
+
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
83
|
+
|
84
|
+
auto fin = std::ifstream(fname, std::ios::binary);
|
85
|
+
if (!fin) {
|
86
|
+
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
87
|
+
return false;
|
88
|
+
}
|
89
|
+
|
90
|
+
// verify magic
|
91
|
+
{
|
92
|
+
uint32_t magic;
|
93
|
+
fin.read((char *) &magic, sizeof(magic));
|
94
|
+
if (magic != GGML_FILE_MAGIC) {
|
95
|
+
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
96
|
+
return false;
|
97
|
+
}
|
98
|
+
}
|
99
|
+
|
100
|
+
// load hparams
|
101
|
+
{
|
102
|
+
auto & hparams = model.hparams;
|
103
|
+
|
104
|
+
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
105
|
+
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
106
|
+
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
107
|
+
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
108
|
+
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
109
|
+
fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
|
110
|
+
fin.read((char *) &hparams.par_res, sizeof(hparams.par_res));
|
111
|
+
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
|
112
|
+
|
113
|
+
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
|
114
|
+
|
115
|
+
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
116
|
+
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
117
|
+
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
118
|
+
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
119
|
+
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
120
|
+
printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
|
121
|
+
printf("%s: par_res = %d\n", __func__, hparams.par_res);
|
122
|
+
printf("%s: ftype = %d\n", __func__, hparams.ftype);
|
123
|
+
printf("%s: qntvr = %d\n", __func__, qntvr);
|
124
|
+
|
125
|
+
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
|
126
|
+
}
|
127
|
+
|
128
|
+
// load vocab
|
129
|
+
{
|
130
|
+
const int32_t n_vocab = model.hparams.n_vocab;
|
131
|
+
|
132
|
+
std::string word;
|
133
|
+
std::vector<char> buf(128);
|
134
|
+
|
135
|
+
for (int i = 0; i < n_vocab; i++) {
|
136
|
+
uint32_t len;
|
137
|
+
fin.read((char *) &len, sizeof(len));
|
138
|
+
|
139
|
+
buf.resize(len);
|
140
|
+
fin.read((char *) buf.data(), len);
|
141
|
+
word.assign(buf.data(), len);
|
142
|
+
|
143
|
+
vocab.token_to_id[word] = i;
|
144
|
+
vocab.id_to_token[i] = word;
|
145
|
+
}
|
146
|
+
}
|
147
|
+
|
148
|
+
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
149
|
+
// in order to save memory and also to speed up the computation
|
150
|
+
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
|
151
|
+
if (wtype == GGML_TYPE_COUNT) {
|
152
|
+
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
|
153
|
+
__func__, fname.c_str(), model.hparams.ftype);
|
154
|
+
return false;
|
155
|
+
}
|
156
|
+
|
157
|
+
auto & ctx = model.ctx;
|
158
|
+
|
159
|
+
size_t ctx_size = 0;
|
160
|
+
|
161
|
+
{
|
162
|
+
const auto & hparams = model.hparams;
|
163
|
+
|
164
|
+
const size_t n_embd = hparams.n_embd;
|
165
|
+
const size_t n_layer = hparams.n_layer;
|
166
|
+
const size_t n_ctx = hparams.n_ctx;
|
167
|
+
const size_t n_vocab = hparams.n_vocab;
|
168
|
+
|
169
|
+
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
|
170
|
+
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
|
171
|
+
|
172
|
+
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // wte
|
173
|
+
|
174
|
+
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // lmh_g
|
175
|
+
//ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b
|
176
|
+
|
177
|
+
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
|
178
|
+
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
|
179
|
+
|
180
|
+
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
|
181
|
+
ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
|
182
|
+
|
183
|
+
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
|
184
|
+
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
|
185
|
+
|
186
|
+
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
|
187
|
+
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
|
188
|
+
|
189
|
+
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
|
190
|
+
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
|
191
|
+
|
192
|
+
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
|
193
|
+
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
|
194
|
+
|
195
|
+
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
|
196
|
+
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
|
197
|
+
|
198
|
+
ctx_size += (6 + 16*n_layer)*1024; // object overhead
|
199
|
+
|
200
|
+
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
201
|
+
}
|
202
|
+
|
203
|
+
// create the ggml context
|
204
|
+
{
|
205
|
+
struct ggml_init_params params = {
|
206
|
+
/*.mem_size =*/ ctx_size,
|
207
|
+
/*.mem_buffer =*/ NULL,
|
208
|
+
/*.no_alloc =*/ false,
|
209
|
+
};
|
210
|
+
|
211
|
+
model.ctx = ggml_init(params);
|
212
|
+
if (!model.ctx) {
|
213
|
+
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
214
|
+
return false;
|
215
|
+
}
|
216
|
+
}
|
217
|
+
|
218
|
+
// prepare memory for the weights
|
219
|
+
{
|
220
|
+
const auto & hparams = model.hparams;
|
221
|
+
|
222
|
+
const int n_embd = hparams.n_embd;
|
223
|
+
const int n_layer = hparams.n_layer;
|
224
|
+
const int n_vocab = hparams.n_vocab;
|
225
|
+
|
226
|
+
model.layers.resize(n_layer);
|
227
|
+
|
228
|
+
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
229
|
+
|
230
|
+
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
231
|
+
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
232
|
+
|
233
|
+
model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
234
|
+
//model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab);
|
235
|
+
|
236
|
+
// map by name
|
237
|
+
model.tensors["gpt_neox.embed_in.weight"] = model.wte;
|
238
|
+
|
239
|
+
model.tensors["gpt_neox.final_layer_norm.weight"] = model.ln_f_g;
|
240
|
+
model.tensors["gpt_neox.final_layer_norm.bias"] = model.ln_f_b;
|
241
|
+
|
242
|
+
model.tensors["embed_out.weight"] = model.lmh_g;
|
243
|
+
//model.tensors["lm_head.bias"] = model.lmh_b;
|
244
|
+
|
245
|
+
for (int i = 0; i < n_layer; ++i) {
|
246
|
+
auto & layer = model.layers[i];
|
247
|
+
|
248
|
+
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
249
|
+
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
250
|
+
|
251
|
+
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
|
252
|
+
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
|
253
|
+
|
254
|
+
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
255
|
+
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
256
|
+
|
257
|
+
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
258
|
+
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
259
|
+
|
260
|
+
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
|
261
|
+
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
262
|
+
|
263
|
+
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
264
|
+
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
265
|
+
|
266
|
+
// map by name
|
267
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.weight"] = layer.ln_1_g;
|
268
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.bias"] = layer.ln_1_b;
|
269
|
+
|
270
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.weight"] = layer.c_attn_attn_w;
|
271
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.bias"] = layer.c_attn_attn_b;
|
272
|
+
|
273
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.weight"] = layer.c_attn_proj_w;
|
274
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.bias"] = layer.c_attn_proj_b;
|
275
|
+
|
276
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.weight"] = layer.ln_2_g;
|
277
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.bias"] = layer.ln_2_b;
|
278
|
+
|
279
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.weight"] = layer.c_mlp_fc_w;
|
280
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.bias"] = layer.c_mlp_fc_b;
|
281
|
+
|
282
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.weight"] = layer.c_mlp_proj_w;
|
283
|
+
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.bias"] = layer.c_mlp_proj_b;
|
284
|
+
}
|
285
|
+
}
|
286
|
+
|
287
|
+
// key + value memory
|
288
|
+
{
|
289
|
+
const auto & hparams = model.hparams;
|
290
|
+
|
291
|
+
const int n_embd = hparams.n_embd;
|
292
|
+
const int n_layer = hparams.n_layer;
|
293
|
+
const int n_ctx = hparams.n_ctx;
|
294
|
+
|
295
|
+
const int64_t n_mem = n_layer*n_ctx;
|
296
|
+
const int64_t n_elements = n_embd*n_mem;
|
297
|
+
|
298
|
+
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
299
|
+
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
300
|
+
|
301
|
+
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
302
|
+
|
303
|
+
printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
304
|
+
}
|
305
|
+
|
306
|
+
// load weights
|
307
|
+
{
|
308
|
+
int n_tensors = 0;
|
309
|
+
size_t total_size = 0;
|
310
|
+
|
311
|
+
printf("%s: ", __func__);
|
312
|
+
|
313
|
+
while (true) {
|
314
|
+
int32_t n_dims;
|
315
|
+
int32_t length;
|
316
|
+
int32_t ttype;
|
317
|
+
|
318
|
+
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
319
|
+
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
320
|
+
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
|
321
|
+
|
322
|
+
if (fin.eof()) {
|
323
|
+
break;
|
324
|
+
}
|
325
|
+
|
326
|
+
int32_t nelements = 1;
|
327
|
+
int32_t ne[2] = { 1, 1 };
|
328
|
+
for (int i = 0; i < n_dims; ++i) {
|
329
|
+
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
330
|
+
nelements *= ne[i];
|
331
|
+
}
|
332
|
+
|
333
|
+
std::string name(length, 0);
|
334
|
+
fin.read(&name[0], length);
|
335
|
+
|
336
|
+
if (model.tensors.find(name) == model.tensors.end()) {
|
337
|
+
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
|
338
|
+
return false;
|
339
|
+
}
|
340
|
+
|
341
|
+
auto tensor = model.tensors[name];
|
342
|
+
if (ggml_nelements(tensor) != nelements) {
|
343
|
+
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
|
344
|
+
return false;
|
345
|
+
}
|
346
|
+
|
347
|
+
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
348
|
+
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%5d, %5d], expected [%5d, %5d]\n",
|
349
|
+
__func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
|
350
|
+
return false;
|
351
|
+
}
|
352
|
+
|
353
|
+
// for debugging
|
354
|
+
if (0) {
|
355
|
+
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
|
356
|
+
}
|
357
|
+
|
358
|
+
const size_t bpe = ggml_type_size(ggml_type(ttype));
|
359
|
+
|
360
|
+
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
361
|
+
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
362
|
+
__func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
|
363
|
+
return false;
|
364
|
+
}
|
365
|
+
|
366
|
+
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
367
|
+
|
368
|
+
total_size += ggml_nbytes(tensor);
|
369
|
+
if (++n_tensors % 8 == 0) {
|
370
|
+
printf(".");
|
371
|
+
fflush(stdout);
|
372
|
+
}
|
373
|
+
}
|
374
|
+
|
375
|
+
printf(" done\n");
|
376
|
+
|
377
|
+
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
|
378
|
+
}
|
379
|
+
|
380
|
+
fin.close();
|
381
|
+
|
382
|
+
return true;
|
383
|
+
}
|
384
|
+
|
385
|
+
|
386
|
+
// feed-forward network
|
387
|
+
ggml_tensor * gpt_neox_ff(
|
388
|
+
const gpt_neox_layer & layer,
|
389
|
+
ggml_context * ctx0,
|
390
|
+
ggml_tensor * inp,
|
391
|
+
float eps) {
|
392
|
+
ggml_tensor * cur = ggml_norm(ctx0, inp, eps);
|
393
|
+
|
394
|
+
cur = ggml_add(ctx0,
|
395
|
+
ggml_mul(ctx0,
|
396
|
+
ggml_repeat(ctx0, layer.ln_2_g, cur),
|
397
|
+
cur),
|
398
|
+
ggml_repeat(ctx0, layer.ln_2_b, cur));
|
399
|
+
|
400
|
+
cur = ggml_mul_mat(ctx0,
|
401
|
+
layer.c_mlp_fc_w,
|
402
|
+
cur);
|
403
|
+
|
404
|
+
cur = ggml_add(ctx0,
|
405
|
+
ggml_repeat(ctx0, layer.c_mlp_fc_b, cur),
|
406
|
+
cur);
|
407
|
+
|
408
|
+
// GELU activation
|
409
|
+
cur = ggml_gelu(ctx0, cur);
|
410
|
+
|
411
|
+
// projection
|
412
|
+
// cur = proj_w*cur + proj_b
|
413
|
+
cur = ggml_mul_mat(ctx0,
|
414
|
+
layer.c_mlp_proj_w,
|
415
|
+
cur);
|
416
|
+
|
417
|
+
cur = ggml_add(ctx0,
|
418
|
+
ggml_repeat(ctx0, layer.c_mlp_proj_b, cur),
|
419
|
+
cur);
|
420
|
+
return cur;
|
421
|
+
}
|
422
|
+
|
423
|
+
// evaluate the transformer
|
424
|
+
//
|
425
|
+
// - model: the model
|
426
|
+
// - n_threads: number of threads to use
|
427
|
+
// - n_past: the context size so far
|
428
|
+
// - embd_inp: the embeddings of the tokens in the context
|
429
|
+
// - embd_w: the predicted logits for the next token
|
430
|
+
//
|
431
|
+
bool gpt_neox_eval(
|
432
|
+
const gpt_neox_model & model,
|
433
|
+
const int n_threads,
|
434
|
+
const int n_past,
|
435
|
+
const std::vector<gpt_vocab::id> & embd_inp,
|
436
|
+
std::vector<float> & embd_w,
|
437
|
+
size_t & mem_per_token) {
|
438
|
+
const int N = embd_inp.size();
|
439
|
+
|
440
|
+
const auto & hparams = model.hparams;
|
441
|
+
|
442
|
+
const int n_embd = hparams.n_embd;
|
443
|
+
const int n_layer = hparams.n_layer;
|
444
|
+
const int n_ctx = hparams.n_ctx;
|
445
|
+
const int n_head = hparams.n_head;
|
446
|
+
const int n_vocab = hparams.n_vocab;
|
447
|
+
const int n_rot = hparams.n_rot;
|
448
|
+
|
449
|
+
static size_t buf_size = 256u*1024*1024;
|
450
|
+
static void * buf = malloc(buf_size);
|
451
|
+
|
452
|
+
// use 2 scratch buffers
|
453
|
+
// TODO: very hacky solution - reimplement in a more elegant way
|
454
|
+
static size_t scr0_size = 256u*1024*1024;
|
455
|
+
static void * scr0 = malloc(scr0_size);
|
456
|
+
|
457
|
+
static size_t scr1_size = 256u*1024*1024;
|
458
|
+
static void * scr1 = malloc(scr1_size);
|
459
|
+
|
460
|
+
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
461
|
+
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
462
|
+
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
463
|
+
|
464
|
+
// reallocate
|
465
|
+
buf_size = buf_size_new;
|
466
|
+
buf = realloc(buf, buf_size);
|
467
|
+
if (buf == nullptr) {
|
468
|
+
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
469
|
+
return false;
|
470
|
+
}
|
471
|
+
}
|
472
|
+
|
473
|
+
struct ggml_init_params params = {
|
474
|
+
/*.mem_size =*/ buf_size,
|
475
|
+
/*.mem_buffer =*/ buf,
|
476
|
+
/*.no_alloc =*/ false,
|
477
|
+
};
|
478
|
+
|
479
|
+
struct ggml_context * ctx0 = ggml_init(params);
|
480
|
+
struct ggml_cgraph gf = {};
|
481
|
+
|
482
|
+
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
483
|
+
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
484
|
+
|
485
|
+
// wte
|
486
|
+
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
|
487
|
+
|
488
|
+
for (int il = 0; il < n_layer; ++il) {
|
489
|
+
struct ggml_tensor * cur;
|
490
|
+
|
491
|
+
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
|
492
|
+
|
493
|
+
// self-attention
|
494
|
+
{
|
495
|
+
{
|
496
|
+
cur = ggml_norm(ctx0, inpL, hparams.eps);
|
497
|
+
|
498
|
+
cur = ggml_add(ctx0,
|
499
|
+
ggml_mul(ctx0,
|
500
|
+
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
|
501
|
+
cur),
|
502
|
+
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
|
503
|
+
}
|
504
|
+
|
505
|
+
// compute QKV
|
506
|
+
{
|
507
|
+
cur = ggml_mul_mat(ctx0,
|
508
|
+
model.layers[il].c_attn_attn_w,
|
509
|
+
cur);
|
510
|
+
|
511
|
+
cur = ggml_add(ctx0,
|
512
|
+
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
|
513
|
+
cur);
|
514
|
+
}
|
515
|
+
|
516
|
+
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 0*sizeof(float)*n_embd/n_head));
|
517
|
+
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 1*sizeof(float)*n_embd/n_head));
|
518
|
+
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 2*sizeof(float)*n_embd/n_head));
|
519
|
+
|
520
|
+
// using mode = 2 for GPT-NeoX mode
|
521
|
+
Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2, 0);
|
522
|
+
Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2, 0);
|
523
|
+
|
524
|
+
// store key and value to memory
|
525
|
+
{
|
526
|
+
Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N));
|
527
|
+
|
528
|
+
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
529
|
+
struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd,
|
530
|
+
( n_ctx)*ggml_element_size(model.memory_v),
|
531
|
+
(il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v));
|
532
|
+
|
533
|
+
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
534
|
+
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
535
|
+
}
|
536
|
+
|
537
|
+
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
538
|
+
struct ggml_tensor * Q =
|
539
|
+
ggml_permute(ctx0,
|
540
|
+
Qcur,
|
541
|
+
0, 2, 1, 3);
|
542
|
+
|
543
|
+
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
544
|
+
struct ggml_tensor * K =
|
545
|
+
ggml_permute(ctx0,
|
546
|
+
ggml_reshape_3d(ctx0,
|
547
|
+
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
|
548
|
+
n_embd/n_head, n_head, n_past + N),
|
549
|
+
0, 2, 1, 3);
|
550
|
+
|
551
|
+
// K * Q
|
552
|
+
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
553
|
+
|
554
|
+
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
555
|
+
struct ggml_tensor * KQ_scaled =
|
556
|
+
ggml_scale_inplace(ctx0,
|
557
|
+
KQ,
|
558
|
+
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
|
559
|
+
);
|
560
|
+
|
561
|
+
// KQ_masked = mask_past(KQ_scaled)
|
562
|
+
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
|
563
|
+
|
564
|
+
// KQ = soft_max(KQ_masked)
|
565
|
+
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
|
566
|
+
|
567
|
+
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
568
|
+
struct ggml_tensor * V =
|
569
|
+
ggml_view_3d(ctx0, model.memory_v,
|
570
|
+
n_past + N, n_embd/n_head, n_head,
|
571
|
+
n_ctx*ggml_element_size(model.memory_v),
|
572
|
+
n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head,
|
573
|
+
il*n_ctx*ggml_element_size(model.memory_v)*n_embd);
|
574
|
+
|
575
|
+
// KQV = transpose(V) * KQ_soft_max
|
576
|
+
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
577
|
+
|
578
|
+
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
579
|
+
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
580
|
+
|
581
|
+
// cur = KQV_merged.contiguous().view(n_embd, N)
|
582
|
+
cur = ggml_cpy(ctx0,
|
583
|
+
KQV_merged,
|
584
|
+
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
585
|
+
|
586
|
+
// projection
|
587
|
+
{
|
588
|
+
cur = ggml_mul_mat(ctx0,
|
589
|
+
model.layers[il].c_attn_proj_w,
|
590
|
+
cur);
|
591
|
+
|
592
|
+
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), cur);
|
593
|
+
}
|
594
|
+
}
|
595
|
+
|
596
|
+
ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
|
597
|
+
|
598
|
+
if (hparams.par_res == 0) {
|
599
|
+
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL);
|
600
|
+
|
601
|
+
cur = gpt_neox_ff(model.layers[il], ctx0, inpFF, hparams.eps);
|
602
|
+
|
603
|
+
// input for next layer
|
604
|
+
inpL = ggml_add(ctx0, cur, inpFF);
|
605
|
+
} else {
|
606
|
+
struct ggml_tensor * inpFF = cur;
|
607
|
+
|
608
|
+
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
|
609
|
+
// note here we pass inpL instead of cur
|
610
|
+
cur = gpt_neox_ff(model.layers[il], ctx0, inpL, hparams.eps);
|
611
|
+
|
612
|
+
// layer input + FF
|
613
|
+
cur = ggml_add(ctx0, cur, inpFF);
|
614
|
+
|
615
|
+
// input for next layer
|
616
|
+
inpL = ggml_add(ctx0, cur, inpL);
|
617
|
+
}
|
618
|
+
}
|
619
|
+
|
620
|
+
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
|
621
|
+
|
622
|
+
// norm
|
623
|
+
{
|
624
|
+
inpL = ggml_norm(ctx0, inpL, hparams.eps);
|
625
|
+
|
626
|
+
// inpL = ln_f_g*inpL + ln_f_b
|
627
|
+
inpL = ggml_add(ctx0,
|
628
|
+
ggml_mul(ctx0,
|
629
|
+
ggml_repeat(ctx0, model.ln_f_g, inpL),
|
630
|
+
inpL),
|
631
|
+
ggml_repeat(ctx0, model.ln_f_b, inpL));
|
632
|
+
}
|
633
|
+
|
634
|
+
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
|
635
|
+
|
636
|
+
// lm_head
|
637
|
+
{
|
638
|
+
inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
|
639
|
+
|
640
|
+
//inpL = ggml_add(ctx0,
|
641
|
+
// ggml_repeat(ctx0, model.lmh_b, inpL),
|
642
|
+
// inpL);
|
643
|
+
}
|
644
|
+
|
645
|
+
// logits -> probs
|
646
|
+
//inpL = ggml_soft_max_inplace(ctx0, inpL);
|
647
|
+
|
648
|
+
// run the computation
|
649
|
+
ggml_build_forward_expand(&gf, inpL);
|
650
|
+
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
651
|
+
|
652
|
+
//if (n_past%100 == 0) {
|
653
|
+
// ggml_graph_print (&gf);
|
654
|
+
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
655
|
+
//}
|
656
|
+
|
657
|
+
//embd_w.resize(n_vocab*N);
|
658
|
+
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
659
|
+
|
660
|
+
// return result for just the last token
|
661
|
+
embd_w.resize(n_vocab);
|
662
|
+
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
663
|
+
|
664
|
+
if (mem_per_token == 0) {
|
665
|
+
mem_per_token = ggml_used_mem(ctx0)/N;
|
666
|
+
}
|
667
|
+
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
|
668
|
+
|
669
|
+
ggml_free(ctx0);
|
670
|
+
|
671
|
+
return true;
|
672
|
+
}
|
673
|
+
|
674
|
+
int main(int argc, char ** argv) {
|
675
|
+
ggml_time_init();
|
676
|
+
|
677
|
+
const int64_t t_main_start_us = ggml_time_us();
|
678
|
+
|
679
|
+
gpt_params params;
|
680
|
+
params.model = "models/stablelm-base-alpha-3b/ggml-model-f16.bin";
|
681
|
+
|
682
|
+
if (gpt_params_parse(argc, argv, params) == false) {
|
683
|
+
return 1;
|
684
|
+
}
|
685
|
+
|
686
|
+
if (params.seed < 0) {
|
687
|
+
params.seed = time(NULL);
|
688
|
+
}
|
689
|
+
|
690
|
+
printf("%s: seed = %d\n", __func__, params.seed);
|
691
|
+
|
692
|
+
std::mt19937 rng(params.seed);
|
693
|
+
if (params.prompt.empty()) {
|
694
|
+
params.prompt = gpt_random_prompt(rng);
|
695
|
+
}
|
696
|
+
|
697
|
+
int64_t t_load_us = 0;
|
698
|
+
|
699
|
+
gpt_vocab vocab;
|
700
|
+
gpt_neox_model model;
|
701
|
+
|
702
|
+
// load the model
|
703
|
+
{
|
704
|
+
const int64_t t_start_us = ggml_time_us();
|
705
|
+
|
706
|
+
if (!gpt_neox_model_load(params.model, model, vocab)) {
|
707
|
+
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
708
|
+
return 1;
|
709
|
+
}
|
710
|
+
|
711
|
+
t_load_us = ggml_time_us() - t_start_us;
|
712
|
+
|
713
|
+
test_gpt_tokenizer(vocab, params.token_test);
|
714
|
+
}
|
715
|
+
|
716
|
+
int n_past = 0;
|
717
|
+
|
718
|
+
int64_t t_sample_us = 0;
|
719
|
+
int64_t t_predict_us = 0;
|
720
|
+
|
721
|
+
std::vector<float> logits;
|
722
|
+
|
723
|
+
// tokenize the prompt
|
724
|
+
std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
|
725
|
+
|
726
|
+
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
|
727
|
+
|
728
|
+
printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
729
|
+
for (size_t i = 0; i < embd_inp.size(); i++) {
|
730
|
+
printf("%s: token[%zu] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
|
731
|
+
}
|
732
|
+
printf("\n");
|
733
|
+
|
734
|
+
std::vector<gpt_vocab::id> embd;
|
735
|
+
|
736
|
+
// determine the required inference memory per token:
|
737
|
+
size_t mem_per_token = 0;
|
738
|
+
gpt_neox_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
739
|
+
|
740
|
+
for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
|
741
|
+
// predict
|
742
|
+
if (embd.size() > 0) {
|
743
|
+
const int64_t t_start_us = ggml_time_us();
|
744
|
+
|
745
|
+
if (!gpt_neox_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
|
746
|
+
printf("Failed to predict\n");
|
747
|
+
return 1;
|
748
|
+
}
|
749
|
+
|
750
|
+
t_predict_us += ggml_time_us() - t_start_us;
|
751
|
+
}
|
752
|
+
|
753
|
+
n_past += embd.size();
|
754
|
+
embd.clear();
|
755
|
+
|
756
|
+
if (i >= embd_inp.size()) {
|
757
|
+
// sample next token
|
758
|
+
const int top_k = params.top_k;
|
759
|
+
const float top_p = params.top_p;
|
760
|
+
const float temp = params.temp;
|
761
|
+
|
762
|
+
const int n_vocab = model.hparams.n_vocab;
|
763
|
+
|
764
|
+
gpt_vocab::id id = 0;
|
765
|
+
|
766
|
+
{
|
767
|
+
const int64_t t_start_sample_us = ggml_time_us();
|
768
|
+
|
769
|
+
id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);
|
770
|
+
|
771
|
+
t_sample_us += ggml_time_us() - t_start_sample_us;
|
772
|
+
}
|
773
|
+
|
774
|
+
// add it to the context
|
775
|
+
embd.push_back(id);
|
776
|
+
} else {
|
777
|
+
// if here, it means we are still processing the input prompt
|
778
|
+
for (size_t k = i; k < embd_inp.size(); k++) {
|
779
|
+
embd.push_back(embd_inp[k]);
|
780
|
+
if (int32_t(embd.size()) > params.n_batch) {
|
781
|
+
break;
|
782
|
+
}
|
783
|
+
}
|
784
|
+
i += embd.size() - 1;
|
785
|
+
}
|
786
|
+
|
787
|
+
// display text
|
788
|
+
for (auto id : embd) {
|
789
|
+
printf("%s", vocab.id_to_token[id].c_str());
|
790
|
+
}
|
791
|
+
fflush(stdout);
|
792
|
+
|
793
|
+
// end of text token
|
794
|
+
if (embd.back() == 0) {
|
795
|
+
break;
|
796
|
+
}
|
797
|
+
}
|
798
|
+
|
799
|
+
// report timing
|
800
|
+
{
|
801
|
+
const int64_t t_main_end_us = ggml_time_us();
|
802
|
+
|
803
|
+
printf("\n\n");
|
804
|
+
printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
|
805
|
+
printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
806
|
+
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
807
|
+
printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
|
808
|
+
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
809
|
+
}
|
810
|
+
|
811
|
+
ggml_free(model.ctx);
|
812
|
+
|
813
|
+
return 0;
|
814
|
+
}
|