gpt_neox_client 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,1997 @@
1
+ #pragma once
2
+
3
+ //
4
+ // GGML Tensor Library
5
+ //
6
+ // This documentation is still a work in progress.
7
+ // If you wish some specific topics to be covered, feel free to drop a comment:
8
+ //
9
+ // https://github.com/ggerganov/whisper.cpp/issues/40
10
+ //
11
+ // ## Overview
12
+ //
13
+ // This library implements:
14
+ //
15
+ // - a set of tensor operations
16
+ // - automatic differentiation
17
+ // - basic optimization algorithms
18
+ //
19
+ // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
20
+ // but is not limited to, the following:
21
+ //
22
+ // - linear regression
23
+ // - support vector machines
24
+ // - neural networks
25
+ //
26
+ // The library allows the user to define a certain function using the available tensor operations. This function
27
+ // definition is represented internally via a computation graph. Each tensor operation in the function definition
28
+ // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
29
+ // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
30
+ // using one of the available optimization algorithms.
31
+ //
32
+ // For example, here we define the function: f(x) = a*x^2 + b
33
+ //
34
+ // {
35
+ // struct ggml_init_params params = {
36
+ // .mem_size = 16*1024*1024,
37
+ // .mem_buffer = NULL,
38
+ // };
39
+ //
40
+ // // memory allocation happens here
41
+ // struct ggml_context * ctx = ggml_init(params);
42
+ //
43
+ // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
44
+ //
45
+ // ggml_set_param(ctx, x); // x is an input variable
46
+ //
47
+ // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
48
+ // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
49
+ // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
50
+ // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
51
+ //
52
+ // ...
53
+ // }
54
+ //
55
+ // Notice that the function definition above does not involve any actual computation. The computation is performed only
56
+ // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
57
+ //
58
+ // {
59
+ // ...
60
+ //
61
+ // struct ggml_cgraph gf = ggml_build_forward(f);
62
+ //
63
+ // // set the input variable and parameter values
64
+ // ggml_set_f32(x, 2.0f);
65
+ // ggml_set_f32(a, 3.0f);
66
+ // ggml_set_f32(b, 4.0f);
67
+ //
68
+ // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
69
+ //
70
+ // printf("f = %f\n", ggml_get_f32_1d(f, 0));
71
+ //
72
+ // ...
73
+ // }
74
+ //
75
+ // The actual computation is performed in the ggml_graph_compute() function.
76
+ //
77
+ // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
78
+ // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
79
+ // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
80
+ // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
81
+ // actually needed.
82
+ //
83
+ // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
84
+ // differentiation and optimization algorithms.
85
+ //
86
+ // The described approach allows to define the function graph once and then compute its forward or backward graphs
87
+ // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
88
+ // the user can avoid the memory allocation overhead at runtime.
89
+ //
90
+ // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
91
+ // citizens, but in theory the library can be extended to support FP8 and integer data types.
92
+ //
93
+ // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
94
+ // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
95
+ // clear that the library needs to support more complex operations. The way to support these operations is not clear
96
+ // yet, but a few examples are demonstrated in the following operations:
97
+ //
98
+ // - ggml_permute()
99
+ // - ggml_conv_1d_1s()
100
+ // - ggml_conv_1d_2s()
101
+ //
102
+ // For each tensor operator, the library implements a forward and backward computation function. The forward function
103
+ // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
104
+ // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
105
+ // calculus class, or watch the following video:
106
+ //
107
+ // What is Automatic Differentiation?
108
+ // https://www.youtube.com/watch?v=wG_nF1awSSY
109
+ //
110
+ //
111
+ // ## Tensor data (struct ggml_tensor)
112
+ //
113
+ // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
114
+ // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
115
+ // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
116
+ //
117
+ // {
118
+ // struct ggml_tensor * c = ggml_add(ctx, a, b);
119
+ //
120
+ // assert(c->src[0] == a);
121
+ // assert(c->src[1] == b);
122
+ // }
123
+ //
124
+ // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
125
+ // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
126
+ // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
127
+ // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
128
+ // contiguous in memory.
129
+ //
130
+ // The data of the tensor is accessed via the "data" pointer. For example:
131
+ //
132
+ // {
133
+ // const int nx = 2;
134
+ // const int ny = 3;
135
+ //
136
+ // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
137
+ //
138
+ // for (int y = 0; y < ny; y++) {
139
+ // for (int x = 0; x < nx; x++) {
140
+ // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
141
+ // }
142
+ // }
143
+ //
144
+ // ...
145
+ // }
146
+ //
147
+ // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
148
+ //
149
+ // ## The matrix multiplication operator (ggml_mul_mat)
150
+ //
151
+ // TODO
152
+ //
153
+ //
154
+ // ## Multi-threading
155
+ //
156
+ // TODO
157
+ //
158
+ //
159
+ // ## Overview of ggml.c
160
+ //
161
+ // TODO
162
+ //
163
+ //
164
+ // ## SIMD optimizations
165
+ //
166
+ // TODO
167
+ //
168
+ //
169
+ // ## Debugging ggml
170
+ //
171
+ // TODO
172
+ //
173
+ //
174
+
175
+ #ifdef GGML_SHARED
176
+ # if defined(_WIN32) && !defined(__MINGW32__)
177
+ # ifdef GGML_BUILD
178
+ # define GGML_API __declspec(dllexport)
179
+ # else
180
+ # define GGML_API __declspec(dllimport)
181
+ # endif
182
+ # else
183
+ # define GGML_API __attribute__ ((visibility ("default")))
184
+ # endif
185
+ #else
186
+ # define GGML_API
187
+ #endif
188
+
189
+ // TODO: support for clang
190
+ #ifdef __GNUC__
191
+ # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
192
+ #elif defined(_MSC_VER)
193
+ # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
194
+ #else
195
+ # define GGML_DEPRECATED(func, hint) func
196
+ #endif
197
+
198
+ #include <stdint.h>
199
+ #include <stddef.h>
200
+ #include <stdbool.h>
201
+
202
+ #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
203
+ #define GGML_FILE_VERSION 1
204
+
205
+ #define GGML_QNT_VERSION 2 // bump this on quantization format changes
206
+ #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
207
+
208
+ #define GGML_MAX_DIMS 4
209
+ #define GGML_MAX_NODES 4096
210
+ #define GGML_MAX_PARAMS 256
211
+ #define GGML_MAX_CONTEXTS 64
212
+ #define GGML_MAX_SRC 6
213
+ #define GGML_MAX_NAME 64
214
+ #define GGML_MAX_OP_PARAMS 32
215
+ #define GGML_DEFAULT_N_THREADS 4
216
+
217
+ #if UINTPTR_MAX == 0xFFFFFFFF
218
+ #define GGML_MEM_ALIGN 4
219
+ #else
220
+ #define GGML_MEM_ALIGN 16
221
+ #endif
222
+
223
+ #define GGML_EXIT_SUCCESS 0
224
+ #define GGML_EXIT_ABORTED 1
225
+
226
+ #define GGUF_MAGIC 0x46554747 // "GGUF"
227
+ #define GGUF_VERSION 2
228
+
229
+ #define GGUF_DEFAULT_ALIGNMENT 32
230
+
231
+ #define GGML_UNUSED(x) (void)(x)
232
+
233
+ #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
234
+
235
+ #define GGML_ASSERT(x) \
236
+ do { \
237
+ if (!(x)) { \
238
+ fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
239
+ abort(); \
240
+ } \
241
+ } while (0)
242
+
243
+ // used to copy the number of elements and stride in bytes of tensors into local variables.
244
+ // main purpose is to reduce code duplication and improve readability.
245
+ //
246
+ // example:
247
+ //
248
+ // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
249
+ // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
250
+ //
251
+ #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
252
+ const type prefix##0 = (pointer)->array[0]; \
253
+ GGML_UNUSED(prefix##0);
254
+ #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
255
+ GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
256
+ const type prefix##1 = (pointer)->array[1]; \
257
+ GGML_UNUSED(prefix##1);
258
+ #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
259
+ GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
260
+ const type prefix##2 = (pointer)->array[2]; \
261
+ GGML_UNUSED(prefix##2);
262
+ #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
263
+ GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
264
+ const type prefix##3 = (pointer)->array[3]; \
265
+ GGML_UNUSED(prefix##3);
266
+
267
+ #ifdef __cplusplus
268
+ extern "C" {
269
+ #endif
270
+
271
+ #if defined(__ARM_NEON) && defined(__CUDACC__)
272
+ typedef half ggml_fp16_t;
273
+ #elif defined(__ARM_NEON)
274
+ typedef __fp16 ggml_fp16_t;
275
+ #else
276
+ typedef uint16_t ggml_fp16_t;
277
+ #endif
278
+
279
+ // convert FP16 <-> FP32
280
+ GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
281
+ GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
282
+
283
+ GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
284
+ GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
285
+
286
+ struct ggml_object;
287
+ struct ggml_context;
288
+
289
+ enum ggml_type {
290
+ GGML_TYPE_F32 = 0,
291
+ GGML_TYPE_F16 = 1,
292
+ GGML_TYPE_Q4_0 = 2,
293
+ GGML_TYPE_Q4_1 = 3,
294
+ // GGML_TYPE_Q4_2 = 4, support has been removed
295
+ // GGML_TYPE_Q4_3 (5) support has been removed
296
+ GGML_TYPE_Q5_0 = 6,
297
+ GGML_TYPE_Q5_1 = 7,
298
+ GGML_TYPE_Q8_0 = 8,
299
+ GGML_TYPE_Q8_1 = 9,
300
+ // k-quantizations
301
+ GGML_TYPE_Q2_K = 10,
302
+ GGML_TYPE_Q3_K = 11,
303
+ GGML_TYPE_Q4_K = 12,
304
+ GGML_TYPE_Q5_K = 13,
305
+ GGML_TYPE_Q6_K = 14,
306
+ GGML_TYPE_Q8_K = 15,
307
+ GGML_TYPE_I8,
308
+ GGML_TYPE_I16,
309
+ GGML_TYPE_I32,
310
+ GGML_TYPE_COUNT,
311
+ };
312
+
313
+ enum ggml_backend {
314
+ GGML_BACKEND_CPU = 0,
315
+ GGML_BACKEND_GPU = 10,
316
+ GGML_BACKEND_GPU_SPLIT = 20,
317
+ };
318
+
319
+ // model file types
320
+ enum ggml_ftype {
321
+ GGML_FTYPE_UNKNOWN = -1,
322
+ GGML_FTYPE_ALL_F32 = 0,
323
+ GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
324
+ GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
325
+ GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
326
+ GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
327
+ GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
328
+ GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
329
+ GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
330
+ GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
331
+ GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
332
+ GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
333
+ GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
334
+ GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
335
+ };
336
+
337
+ // available tensor operations:
338
+ enum ggml_op {
339
+ GGML_OP_NONE = 0,
340
+
341
+ GGML_OP_DUP,
342
+ GGML_OP_ADD,
343
+ GGML_OP_ADD1,
344
+ GGML_OP_ACC,
345
+ GGML_OP_SUB,
346
+ GGML_OP_MUL,
347
+ GGML_OP_DIV,
348
+ GGML_OP_SQR,
349
+ GGML_OP_SQRT,
350
+ GGML_OP_LOG,
351
+ GGML_OP_SUM,
352
+ GGML_OP_SUM_ROWS,
353
+ GGML_OP_MEAN,
354
+ GGML_OP_ARGMAX,
355
+ GGML_OP_REPEAT,
356
+ GGML_OP_REPEAT_BACK,
357
+ GGML_OP_CONCAT,
358
+ GGML_OP_SILU_BACK,
359
+ GGML_OP_NORM, // normalize
360
+ GGML_OP_RMS_NORM,
361
+ GGML_OP_RMS_NORM_BACK,
362
+ GGML_OP_GROUP_NORM,
363
+
364
+ GGML_OP_MUL_MAT,
365
+ GGML_OP_OUT_PROD,
366
+
367
+ GGML_OP_SCALE,
368
+ GGML_OP_SET,
369
+ GGML_OP_CPY,
370
+ GGML_OP_CONT,
371
+ GGML_OP_RESHAPE,
372
+ GGML_OP_VIEW,
373
+ GGML_OP_PERMUTE,
374
+ GGML_OP_TRANSPOSE,
375
+ GGML_OP_GET_ROWS,
376
+ GGML_OP_GET_ROWS_BACK,
377
+ GGML_OP_DIAG,
378
+ GGML_OP_DIAG_MASK_INF,
379
+ GGML_OP_DIAG_MASK_ZERO,
380
+ GGML_OP_SOFT_MAX,
381
+ GGML_OP_SOFT_MAX_BACK,
382
+ GGML_OP_ROPE,
383
+ GGML_OP_ROPE_BACK,
384
+ GGML_OP_ALIBI,
385
+ GGML_OP_CLAMP,
386
+ GGML_OP_CONV_1D,
387
+ GGML_OP_CONV_2D,
388
+ GGML_OP_CONV_TRANSPOSE_2D,
389
+ GGML_OP_POOL_1D,
390
+ GGML_OP_POOL_2D,
391
+
392
+ GGML_OP_UPSCALE, // nearest interpolate
393
+
394
+ GGML_OP_FLASH_ATTN,
395
+ GGML_OP_FLASH_FF,
396
+ GGML_OP_FLASH_ATTN_BACK,
397
+ GGML_OP_WIN_PART,
398
+ GGML_OP_WIN_UNPART,
399
+ GGML_OP_GET_REL_POS,
400
+ GGML_OP_ADD_REL_POS,
401
+
402
+ GGML_OP_UNARY,
403
+
404
+ GGML_OP_MAP_UNARY,
405
+ GGML_OP_MAP_BINARY,
406
+
407
+ GGML_OP_MAP_CUSTOM1_F32,
408
+ GGML_OP_MAP_CUSTOM2_F32,
409
+ GGML_OP_MAP_CUSTOM3_F32,
410
+
411
+ GGML_OP_MAP_CUSTOM1,
412
+ GGML_OP_MAP_CUSTOM2,
413
+ GGML_OP_MAP_CUSTOM3,
414
+
415
+ GGML_OP_CROSS_ENTROPY_LOSS,
416
+ GGML_OP_CROSS_ENTROPY_LOSS_BACK,
417
+
418
+ GGML_OP_COUNT,
419
+ };
420
+
421
+ enum ggml_unary_op {
422
+ GGML_UNARY_OP_ABS,
423
+ GGML_UNARY_OP_SGN,
424
+ GGML_UNARY_OP_NEG,
425
+ GGML_UNARY_OP_STEP,
426
+ GGML_UNARY_OP_TANH,
427
+ GGML_UNARY_OP_ELU,
428
+ GGML_UNARY_OP_RELU,
429
+ GGML_UNARY_OP_GELU,
430
+ GGML_UNARY_OP_GELU_QUICK,
431
+ GGML_UNARY_OP_SILU,
432
+ };
433
+
434
+ enum ggml_object_type {
435
+ GGML_OBJECT_TENSOR,
436
+ GGML_OBJECT_GRAPH,
437
+ GGML_OBJECT_WORK_BUFFER
438
+ };
439
+
440
+ // ggml object
441
+ struct ggml_object {
442
+ size_t offs;
443
+ size_t size;
444
+
445
+ struct ggml_object * next;
446
+
447
+ enum ggml_object_type type;
448
+
449
+ char padding[4];
450
+ };
451
+
452
+ static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
453
+
454
+ // n-dimensional tensor
455
+ struct ggml_tensor {
456
+ enum ggml_type type;
457
+ enum ggml_backend backend;
458
+
459
+ int n_dims;
460
+ int64_t ne[GGML_MAX_DIMS]; // number of elements
461
+ size_t nb[GGML_MAX_DIMS]; // stride in bytes:
462
+ // nb[0] = sizeof(type)
463
+ // nb[1] = nb[0] * ne[0] + padding
464
+ // nb[i] = nb[i-1] * ne[i-1]
465
+
466
+ // compute data
467
+ enum ggml_op op;
468
+
469
+ // op params - allocated as int32_t for alignment
470
+ int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
471
+
472
+ bool is_param;
473
+
474
+ struct ggml_tensor * grad;
475
+ struct ggml_tensor * src[GGML_MAX_SRC];
476
+
477
+ // performance
478
+ int perf_runs;
479
+ int64_t perf_cycles;
480
+ int64_t perf_time_us;
481
+
482
+ void * data;
483
+
484
+ char name[GGML_MAX_NAME];
485
+
486
+ void * extra; // extra things e.g. for ggml-cuda.cu
487
+
488
+ char padding[4];
489
+ };
490
+
491
+ static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
492
+
493
+ // the compute plan that needs to be prepared for ggml_graph_compute()
494
+ // since https://github.com/ggerganov/ggml/issues/287
495
+ struct ggml_cplan {
496
+ size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
497
+ uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
498
+
499
+ int n_threads;
500
+
501
+ // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
502
+ int n_tasks[GGML_MAX_NODES];
503
+
504
+ // abort ggml_graph_compute when true
505
+ bool (*abort_callback)(void * data);
506
+ void * abort_callback_data;
507
+ };
508
+
509
+ // next prime after GGML_MAX_NODES
510
+ // #define GGML_GRAPH_HASHTABLE_SIZE 4099
511
+ // next prime after GGML_MAX_NODES * 2 (nodes + leafs)
512
+ #define GGML_GRAPH_HASHTABLE_SIZE 8273
513
+
514
+ // computation graph
515
+ struct ggml_cgraph {
516
+ int n_nodes;
517
+ int n_leafs;
518
+
519
+ struct ggml_tensor * nodes[GGML_MAX_NODES];
520
+ struct ggml_tensor * grads[GGML_MAX_NODES];
521
+ struct ggml_tensor * leafs[GGML_MAX_NODES];
522
+
523
+ void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
524
+
525
+ // performance
526
+ int perf_runs;
527
+ int64_t perf_cycles;
528
+ int64_t perf_time_us;
529
+ };
530
+
531
+ static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
532
+
533
+ // scratch buffer
534
+ struct ggml_scratch {
535
+ size_t offs;
536
+ size_t size;
537
+ void * data;
538
+ };
539
+
540
+ struct ggml_init_params {
541
+ // memory pool
542
+ size_t mem_size; // bytes
543
+ void * mem_buffer; // if NULL, memory will be allocated internally
544
+ bool no_alloc; // don't allocate memory for the tensor data
545
+ };
546
+
547
+
548
+ // compute types
549
+
550
+ // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
551
+ // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
552
+ enum ggml_task_type {
553
+ GGML_TASK_INIT = 0,
554
+ GGML_TASK_COMPUTE,
555
+ GGML_TASK_FINALIZE,
556
+ };
557
+
558
+ struct ggml_compute_params {
559
+ enum ggml_task_type type;
560
+
561
+ // ith = thread index, nth = number of threads
562
+ int ith, nth;
563
+
564
+ // work buffer for all threads
565
+ size_t wsize;
566
+ void * wdata;
567
+ };
568
+
569
+ // misc
570
+
571
+ GGML_API void ggml_time_init(void); // call this once at the beginning of the program
572
+ GGML_API int64_t ggml_time_ms(void);
573
+ GGML_API int64_t ggml_time_us(void);
574
+ GGML_API int64_t ggml_cycles(void);
575
+ GGML_API int64_t ggml_cycles_per_ms(void);
576
+
577
+ GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
578
+ GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
579
+
580
+ GGML_API void ggml_print_object (const struct ggml_object * obj);
581
+ GGML_API void ggml_print_objects(const struct ggml_context * ctx);
582
+
583
+ GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
584
+ GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
585
+ GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
586
+ GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
587
+ GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
588
+
589
+ GGML_API int ggml_blck_size (enum ggml_type type);
590
+ GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
591
+ GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
592
+
593
+ GGML_API const char * ggml_type_name(enum ggml_type type);
594
+ GGML_API const char * ggml_op_name (enum ggml_op op);
595
+ GGML_API const char * ggml_op_symbol(enum ggml_op op);
596
+
597
+ GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
598
+
599
+ GGML_API bool ggml_is_quantized(enum ggml_type type);
600
+
601
+ // TODO: temporary until model loading of ggml examples is refactored
602
+ GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
603
+
604
+ GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
605
+ GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
606
+ GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
607
+
608
+ GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
609
+
610
+ // use this to compute the memory overhead of a tensor
611
+ GGML_API size_t ggml_tensor_overhead(void);
612
+
613
+ // main
614
+
615
+ GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
616
+ GGML_API void ggml_free(struct ggml_context * ctx);
617
+
618
+ GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
619
+
620
+ GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
621
+ GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
622
+ GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
623
+
624
+ GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
625
+ GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
626
+ GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
627
+
628
+ GGML_API struct ggml_tensor * ggml_new_tensor(
629
+ struct ggml_context * ctx,
630
+ enum ggml_type type,
631
+ int n_dims,
632
+ const int64_t *ne);
633
+
634
+ GGML_API struct ggml_tensor * ggml_new_tensor_1d(
635
+ struct ggml_context * ctx,
636
+ enum ggml_type type,
637
+ int64_t ne0);
638
+
639
+ GGML_API struct ggml_tensor * ggml_new_tensor_2d(
640
+ struct ggml_context * ctx,
641
+ enum ggml_type type,
642
+ int64_t ne0,
643
+ int64_t ne1);
644
+
645
+ GGML_API struct ggml_tensor * ggml_new_tensor_3d(
646
+ struct ggml_context * ctx,
647
+ enum ggml_type type,
648
+ int64_t ne0,
649
+ int64_t ne1,
650
+ int64_t ne2);
651
+
652
+ GGML_API struct ggml_tensor * ggml_new_tensor_4d(
653
+ struct ggml_context * ctx,
654
+ enum ggml_type type,
655
+ int64_t ne0,
656
+ int64_t ne1,
657
+ int64_t ne2,
658
+ int64_t ne3);
659
+
660
+ GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
661
+ GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
662
+
663
+ GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
664
+ GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
665
+
666
+ GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
667
+
668
+ GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
669
+ GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
670
+ GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
671
+
672
+ GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
673
+ GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
674
+
675
+ GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
676
+ GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
677
+
678
+ GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
679
+ GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
680
+
681
+ GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
682
+
683
+ GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
684
+ GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
685
+ GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
686
+
687
+ //
688
+ // operations on tensors with backpropagation
689
+ //
690
+
691
+ GGML_API struct ggml_tensor * ggml_dup(
692
+ struct ggml_context * ctx,
693
+ struct ggml_tensor * a);
694
+
695
+ // in-place, returns view(a)
696
+ GGML_API struct ggml_tensor * ggml_dup_inplace(
697
+ struct ggml_context * ctx,
698
+ struct ggml_tensor * a);
699
+
700
+ GGML_API struct ggml_tensor * ggml_add(
701
+ struct ggml_context * ctx,
702
+ struct ggml_tensor * a,
703
+ struct ggml_tensor * b);
704
+
705
+ GGML_API struct ggml_tensor * ggml_add_inplace(
706
+ struct ggml_context * ctx,
707
+ struct ggml_tensor * a,
708
+ struct ggml_tensor * b);
709
+
710
+ GGML_API struct ggml_tensor * ggml_add1(
711
+ struct ggml_context * ctx,
712
+ struct ggml_tensor * a,
713
+ struct ggml_tensor * b);
714
+
715
+ GGML_API struct ggml_tensor * ggml_add1_inplace(
716
+ struct ggml_context * ctx,
717
+ struct ggml_tensor * a,
718
+ struct ggml_tensor * b);
719
+
720
+ GGML_API struct ggml_tensor * ggml_acc(
721
+ struct ggml_context * ctx,
722
+ struct ggml_tensor * a,
723
+ struct ggml_tensor * b,
724
+ size_t nb1,
725
+ size_t nb2,
726
+ size_t nb3,
727
+ size_t offset);
728
+
729
+ GGML_API struct ggml_tensor * ggml_acc_inplace(
730
+ struct ggml_context * ctx,
731
+ struct ggml_tensor * a,
732
+ struct ggml_tensor * b,
733
+ size_t nb1,
734
+ size_t nb2,
735
+ size_t nb3,
736
+ size_t offset);
737
+
738
+ GGML_API struct ggml_tensor * ggml_sub(
739
+ struct ggml_context * ctx,
740
+ struct ggml_tensor * a,
741
+ struct ggml_tensor * b);
742
+
743
+ GGML_API struct ggml_tensor * ggml_sub_inplace(
744
+ struct ggml_context * ctx,
745
+ struct ggml_tensor * a,
746
+ struct ggml_tensor * b);
747
+
748
+ GGML_API struct ggml_tensor * ggml_mul(
749
+ struct ggml_context * ctx,
750
+ struct ggml_tensor * a,
751
+ struct ggml_tensor * b);
752
+
753
+ GGML_API struct ggml_tensor * ggml_mul_inplace(
754
+ struct ggml_context * ctx,
755
+ struct ggml_tensor * a,
756
+ struct ggml_tensor * b);
757
+
758
+ GGML_API struct ggml_tensor * ggml_div(
759
+ struct ggml_context * ctx,
760
+ struct ggml_tensor * a,
761
+ struct ggml_tensor * b);
762
+
763
+ GGML_API struct ggml_tensor * ggml_div_inplace(
764
+ struct ggml_context * ctx,
765
+ struct ggml_tensor * a,
766
+ struct ggml_tensor * b);
767
+
768
+ GGML_API struct ggml_tensor * ggml_sqr(
769
+ struct ggml_context * ctx,
770
+ struct ggml_tensor * a);
771
+
772
+ GGML_API struct ggml_tensor * ggml_sqr_inplace(
773
+ struct ggml_context * ctx,
774
+ struct ggml_tensor * a);
775
+
776
+ GGML_API struct ggml_tensor * ggml_sqrt(
777
+ struct ggml_context * ctx,
778
+ struct ggml_tensor * a);
779
+
780
+ GGML_API struct ggml_tensor * ggml_sqrt_inplace(
781
+ struct ggml_context * ctx,
782
+ struct ggml_tensor * a);
783
+
784
+ GGML_API struct ggml_tensor * ggml_log(
785
+ struct ggml_context * ctx,
786
+ struct ggml_tensor * a);
787
+
788
+ GGML_API struct ggml_tensor * ggml_log_inplace(
789
+ struct ggml_context * ctx,
790
+ struct ggml_tensor * a);
791
+
792
+ // return scalar
793
+ GGML_API struct ggml_tensor * ggml_sum(
794
+ struct ggml_context * ctx,
795
+ struct ggml_tensor * a);
796
+
797
+ // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
798
+ GGML_API struct ggml_tensor * ggml_sum_rows(
799
+ struct ggml_context * ctx,
800
+ struct ggml_tensor * a);
801
+
802
+ // mean along rows
803
+ GGML_API struct ggml_tensor * ggml_mean(
804
+ struct ggml_context * ctx,
805
+ struct ggml_tensor * a);
806
+
807
+ // argmax along rows
808
+ GGML_API struct ggml_tensor * ggml_argmax(
809
+ struct ggml_context * ctx,
810
+ struct ggml_tensor * a);
811
+
812
+ // if a is the same shape as b, and a is not parameter, return a
813
+ // otherwise, return a new tensor: repeat(a) to fit in b
814
+ GGML_API struct ggml_tensor * ggml_repeat(
815
+ struct ggml_context * ctx,
816
+ struct ggml_tensor * a,
817
+ struct ggml_tensor * b);
818
+
819
+ GGML_API struct ggml_tensor * ggml_repeat_back(
820
+ struct ggml_context * ctx,
821
+ struct ggml_tensor * a,
822
+ struct ggml_tensor * b);
823
+
824
+ // concat a and b on dim 2
825
+ // used in stable-diffusion
826
+ GGML_API struct ggml_tensor * ggml_concat(
827
+ struct ggml_context * ctx,
828
+ struct ggml_tensor * a,
829
+ struct ggml_tensor * b);
830
+
831
+ GGML_API struct ggml_tensor * ggml_abs(
832
+ struct ggml_context * ctx,
833
+ struct ggml_tensor * a);
834
+
835
+ GGML_API struct ggml_tensor * ggml_abs_inplace(
836
+ struct ggml_context * ctx,
837
+ struct ggml_tensor * a);
838
+
839
+ GGML_API struct ggml_tensor * ggml_sgn(
840
+ struct ggml_context * ctx,
841
+ struct ggml_tensor * a);
842
+
843
+ GGML_API struct ggml_tensor * ggml_sgn_inplace(
844
+ struct ggml_context * ctx,
845
+ struct ggml_tensor * a);
846
+
847
+ GGML_API struct ggml_tensor * ggml_neg(
848
+ struct ggml_context * ctx,
849
+ struct ggml_tensor * a);
850
+
851
+ GGML_API struct ggml_tensor * ggml_neg_inplace(
852
+ struct ggml_context * ctx,
853
+ struct ggml_tensor * a);
854
+
855
+ GGML_API struct ggml_tensor * ggml_step(
856
+ struct ggml_context * ctx,
857
+ struct ggml_tensor * a);
858
+
859
+ GGML_API struct ggml_tensor * ggml_step_inplace(
860
+ struct ggml_context * ctx,
861
+ struct ggml_tensor * a);
862
+
863
+ GGML_API struct ggml_tensor * ggml_tanh(
864
+ struct ggml_context * ctx,
865
+ struct ggml_tensor * a);
866
+
867
+ GGML_API struct ggml_tensor * ggml_tanh_inplace(
868
+ struct ggml_context * ctx,
869
+ struct ggml_tensor * a);
870
+
871
+ GGML_API struct ggml_tensor * ggml_elu(
872
+ struct ggml_context * ctx,
873
+ struct ggml_tensor * a);
874
+
875
+ GGML_API struct ggml_tensor * ggml_elu_inplace(
876
+ struct ggml_context * ctx,
877
+ struct ggml_tensor * a);
878
+
879
+ GGML_API struct ggml_tensor * ggml_relu(
880
+ struct ggml_context * ctx,
881
+ struct ggml_tensor * a);
882
+
883
+ GGML_API struct ggml_tensor * ggml_relu_inplace(
884
+ struct ggml_context * ctx,
885
+ struct ggml_tensor * a);
886
+
887
+ // TODO: double-check this computation is correct
888
+ GGML_API struct ggml_tensor * ggml_gelu(
889
+ struct ggml_context * ctx,
890
+ struct ggml_tensor * a);
891
+
892
+ GGML_API struct ggml_tensor * ggml_gelu_inplace(
893
+ struct ggml_context * ctx,
894
+ struct ggml_tensor * a);
895
+
896
+ GGML_API struct ggml_tensor * ggml_gelu_quick(
897
+ struct ggml_context * ctx,
898
+ struct ggml_tensor * a);
899
+
900
+ GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
901
+ struct ggml_context * ctx,
902
+ struct ggml_tensor * a);
903
+
904
+ GGML_API struct ggml_tensor * ggml_silu(
905
+ struct ggml_context * ctx,
906
+ struct ggml_tensor * a);
907
+
908
+ GGML_API struct ggml_tensor * ggml_silu_inplace(
909
+ struct ggml_context * ctx,
910
+ struct ggml_tensor * a);
911
+
912
+ // a - x
913
+ // b - dy
914
+ GGML_API struct ggml_tensor * ggml_silu_back(
915
+ struct ggml_context * ctx,
916
+ struct ggml_tensor * a,
917
+ struct ggml_tensor * b);
918
+
919
+ // normalize along rows
920
+ GGML_API struct ggml_tensor * ggml_norm(
921
+ struct ggml_context * ctx,
922
+ struct ggml_tensor * a,
923
+ float eps);
924
+
925
+ GGML_API struct ggml_tensor * ggml_norm_inplace(
926
+ struct ggml_context * ctx,
927
+ struct ggml_tensor * a,
928
+ float eps);
929
+
930
+ GGML_API struct ggml_tensor * ggml_rms_norm(
931
+ struct ggml_context * ctx,
932
+ struct ggml_tensor * a,
933
+ float eps);
934
+
935
+ GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
936
+ struct ggml_context * ctx,
937
+ struct ggml_tensor * a,
938
+ float eps);
939
+
940
+ // group normalize along ne0*ne1*n_groups
941
+ // used in stable-diffusion
942
+ // TODO: eps is hardcoded to 1e-6 for now
943
+ GGML_API struct ggml_tensor * ggml_group_norm(
944
+ struct ggml_context * ctx,
945
+ struct ggml_tensor * a,
946
+ int n_groups);
947
+
948
+ GGML_API struct ggml_tensor * ggml_group_norm_inplace(
949
+ struct ggml_context * ctx,
950
+ struct ggml_tensor * a,
951
+ int n_groups);
952
+
953
+ // a - x
954
+ // b - dy
955
+ // TODO: update with configurable eps
956
+ GGML_API struct ggml_tensor * ggml_rms_norm_back(
957
+ struct ggml_context * ctx,
958
+ struct ggml_tensor * a,
959
+ struct ggml_tensor * b);
960
+
961
+ // A: n columns, m rows
962
+ // B: n columns, p rows (i.e. we transpose it internally)
963
+ // result is m columns, p rows
964
+ GGML_API struct ggml_tensor * ggml_mul_mat(
965
+ struct ggml_context * ctx,
966
+ struct ggml_tensor * a,
967
+ struct ggml_tensor * b);
968
+
969
+ // A: m columns, n rows,
970
+ // B: p columns, n rows,
971
+ // result is m columns, p rows
972
+ GGML_API struct ggml_tensor * ggml_out_prod(
973
+ struct ggml_context * ctx,
974
+ struct ggml_tensor * a,
975
+ struct ggml_tensor * b);
976
+
977
+ //
978
+ // operations on tensors without backpropagation
979
+ //
980
+
981
+ GGML_API struct ggml_tensor * ggml_scale(
982
+ struct ggml_context * ctx,
983
+ struct ggml_tensor * a,
984
+ struct ggml_tensor * b);
985
+
986
+ // in-place, returns view(a)
987
+ GGML_API struct ggml_tensor * ggml_scale_inplace(
988
+ struct ggml_context * ctx,
989
+ struct ggml_tensor * a,
990
+ struct ggml_tensor * b);
991
+
992
+ // b -> view(a,offset,nb1,nb2,3), return modified a
993
+ GGML_API struct ggml_tensor * ggml_set(
994
+ struct ggml_context * ctx,
995
+ struct ggml_tensor * a,
996
+ struct ggml_tensor * b,
997
+ size_t nb1,
998
+ size_t nb2,
999
+ size_t nb3,
1000
+ size_t offset);
1001
+
1002
+ // b -> view(a,offset,nb1,nb2,3), return view(a)
1003
+ GGML_API struct ggml_tensor * ggml_set_inplace(
1004
+ struct ggml_context * ctx,
1005
+ struct ggml_tensor * a,
1006
+ struct ggml_tensor * b,
1007
+ size_t nb1,
1008
+ size_t nb2,
1009
+ size_t nb3,
1010
+ size_t offset);
1011
+
1012
+ GGML_API struct ggml_tensor * ggml_set_1d(
1013
+ struct ggml_context * ctx,
1014
+ struct ggml_tensor * a,
1015
+ struct ggml_tensor * b,
1016
+ size_t offset);
1017
+
1018
+ GGML_API struct ggml_tensor * ggml_set_1d_inplace(
1019
+ struct ggml_context * ctx,
1020
+ struct ggml_tensor * a,
1021
+ struct ggml_tensor * b,
1022
+ size_t offset);
1023
+
1024
+ // b -> view(a,offset,nb1,nb2,3), return modified a
1025
+ GGML_API struct ggml_tensor * ggml_set_2d(
1026
+ struct ggml_context * ctx,
1027
+ struct ggml_tensor * a,
1028
+ struct ggml_tensor * b,
1029
+ size_t nb1,
1030
+ size_t offset);
1031
+
1032
+ // b -> view(a,offset,nb1,nb2,3), return view(a)
1033
+ GGML_API struct ggml_tensor * ggml_set_2d_inplace(
1034
+ struct ggml_context * ctx,
1035
+ struct ggml_tensor * a,
1036
+ struct ggml_tensor * b,
1037
+ size_t nb1,
1038
+ size_t offset);
1039
+
1040
+
1041
+ // a -> b, return view(b)
1042
+ GGML_API struct ggml_tensor * ggml_cpy(
1043
+ struct ggml_context * ctx,
1044
+ struct ggml_tensor * a,
1045
+ struct ggml_tensor * b);
1046
+
1047
+ // a -> b, in-place, return view(b)
1048
+ GGML_API struct ggml_tensor * ggml_cpy_inplace(
1049
+ struct ggml_context * ctx,
1050
+ struct ggml_tensor * a,
1051
+ struct ggml_tensor * b);
1052
+
1053
+ // make contiguous
1054
+ GGML_API struct ggml_tensor * ggml_cont(
1055
+ struct ggml_context * ctx,
1056
+ struct ggml_tensor * a);
1057
+
1058
+ // make contiguous, in-place
1059
+ GGML_API struct ggml_tensor * ggml_cont_inplace(
1060
+ struct ggml_context * ctx,
1061
+ struct ggml_tensor * a);
1062
+
1063
+ // return view(a), b specifies the new shape
1064
+ // TODO: when we start computing gradient, make a copy instead of view
1065
+ GGML_API struct ggml_tensor * ggml_reshape(
1066
+ struct ggml_context * ctx,
1067
+ struct ggml_tensor * a,
1068
+ struct ggml_tensor * b);
1069
+
1070
+ // return view(a)
1071
+ // TODO: when we start computing gradient, make a copy instead of view
1072
+ GGML_API struct ggml_tensor * ggml_reshape_1d(
1073
+ struct ggml_context * ctx,
1074
+ struct ggml_tensor * a,
1075
+ int64_t ne0);
1076
+
1077
+ GGML_API struct ggml_tensor * ggml_reshape_2d(
1078
+ struct ggml_context * ctx,
1079
+ struct ggml_tensor * a,
1080
+ int64_t ne0,
1081
+ int64_t ne1);
1082
+
1083
+ // return view(a)
1084
+ // TODO: when we start computing gradient, make a copy instead of view
1085
+ GGML_API struct ggml_tensor * ggml_reshape_3d(
1086
+ struct ggml_context * ctx,
1087
+ struct ggml_tensor * a,
1088
+ int64_t ne0,
1089
+ int64_t ne1,
1090
+ int64_t ne2);
1091
+
1092
+ GGML_API struct ggml_tensor * ggml_reshape_4d(
1093
+ struct ggml_context * ctx,
1094
+ struct ggml_tensor * a,
1095
+ int64_t ne0,
1096
+ int64_t ne1,
1097
+ int64_t ne2,
1098
+ int64_t ne3);
1099
+
1100
+ // offset in bytes
1101
+ GGML_API struct ggml_tensor * ggml_view_1d(
1102
+ struct ggml_context * ctx,
1103
+ struct ggml_tensor * a,
1104
+ int64_t ne0,
1105
+ size_t offset);
1106
+
1107
+ GGML_API struct ggml_tensor * ggml_view_2d(
1108
+ struct ggml_context * ctx,
1109
+ struct ggml_tensor * a,
1110
+ int64_t ne0,
1111
+ int64_t ne1,
1112
+ size_t nb1, // row stride in bytes
1113
+ size_t offset);
1114
+
1115
+ GGML_API struct ggml_tensor * ggml_view_3d(
1116
+ struct ggml_context * ctx,
1117
+ struct ggml_tensor * a,
1118
+ int64_t ne0,
1119
+ int64_t ne1,
1120
+ int64_t ne2,
1121
+ size_t nb1, // row stride in bytes
1122
+ size_t nb2, // slice stride in bytes
1123
+ size_t offset);
1124
+
1125
+ GGML_API struct ggml_tensor * ggml_view_4d(
1126
+ struct ggml_context * ctx,
1127
+ struct ggml_tensor * a,
1128
+ int64_t ne0,
1129
+ int64_t ne1,
1130
+ int64_t ne2,
1131
+ int64_t ne3,
1132
+ size_t nb1, // row stride in bytes
1133
+ size_t nb2, // slice stride in bytes
1134
+ size_t nb3,
1135
+ size_t offset);
1136
+
1137
+ GGML_API struct ggml_tensor * ggml_permute(
1138
+ struct ggml_context * ctx,
1139
+ struct ggml_tensor * a,
1140
+ int axis0,
1141
+ int axis1,
1142
+ int axis2,
1143
+ int axis3);
1144
+
1145
+ // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
1146
+ GGML_API struct ggml_tensor * ggml_transpose(
1147
+ struct ggml_context * ctx,
1148
+ struct ggml_tensor * a);
1149
+
1150
+ GGML_API struct ggml_tensor * ggml_get_rows(
1151
+ struct ggml_context * ctx,
1152
+ struct ggml_tensor * a,
1153
+ struct ggml_tensor * b);
1154
+
1155
+ GGML_API struct ggml_tensor * ggml_get_rows_back(
1156
+ struct ggml_context * ctx,
1157
+ struct ggml_tensor * a,
1158
+ struct ggml_tensor * b,
1159
+ struct ggml_tensor * c);
1160
+
1161
+ GGML_API struct ggml_tensor * ggml_diag(
1162
+ struct ggml_context * ctx,
1163
+ struct ggml_tensor * a);
1164
+
1165
+ // set elements above the diagonal to -INF
1166
+ GGML_API struct ggml_tensor * ggml_diag_mask_inf(
1167
+ struct ggml_context * ctx,
1168
+ struct ggml_tensor * a,
1169
+ int n_past);
1170
+
1171
+ // in-place, returns view(a)
1172
+ GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
1173
+ struct ggml_context * ctx,
1174
+ struct ggml_tensor * a,
1175
+ int n_past);
1176
+
1177
+ // set elements above the diagonal to 0
1178
+ GGML_API struct ggml_tensor * ggml_diag_mask_zero(
1179
+ struct ggml_context * ctx,
1180
+ struct ggml_tensor * a,
1181
+ int n_past);
1182
+
1183
+ // in-place, returns view(a)
1184
+ GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
1185
+ struct ggml_context * ctx,
1186
+ struct ggml_tensor * a,
1187
+ int n_past);
1188
+
1189
+ GGML_API struct ggml_tensor * ggml_soft_max(
1190
+ struct ggml_context * ctx,
1191
+ struct ggml_tensor * a);
1192
+
1193
+ // in-place, returns view(a)
1194
+ GGML_API struct ggml_tensor * ggml_soft_max_inplace(
1195
+ struct ggml_context * ctx,
1196
+ struct ggml_tensor * a);
1197
+
1198
+ GGML_API struct ggml_tensor * ggml_soft_max_back(
1199
+ struct ggml_context * ctx,
1200
+ struct ggml_tensor * a,
1201
+ struct ggml_tensor * b);
1202
+
1203
+ // in-place, returns view(a)
1204
+ GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
1205
+ struct ggml_context * ctx,
1206
+ struct ggml_tensor * a,
1207
+ struct ggml_tensor * b);
1208
+
1209
+ // rotary position embedding
1210
+ // if mode & 1 == 1, skip n_past elements
1211
+ // if mode & 2 == 1, GPT-NeoX style
1212
+ // if mode & 4 == 1, ChatGLM style
1213
+ // TODO: avoid creating a new tensor every time
1214
+ GGML_API struct ggml_tensor * ggml_rope(
1215
+ struct ggml_context * ctx,
1216
+ struct ggml_tensor * a,
1217
+ int n_past,
1218
+ int n_dims,
1219
+ int mode,
1220
+ int n_ctx);
1221
+
1222
+ // in-place, returns view(a)
1223
+ GGML_API struct ggml_tensor * ggml_rope_inplace(
1224
+ struct ggml_context * ctx,
1225
+ struct ggml_tensor * a,
1226
+ int n_past,
1227
+ int n_dims,
1228
+ int mode,
1229
+ int n_ctx);
1230
+
1231
+ // custom RoPE
1232
+ GGML_API struct ggml_tensor * ggml_rope_custom(
1233
+ struct ggml_context * ctx,
1234
+ struct ggml_tensor * a,
1235
+ int n_past,
1236
+ int n_dims,
1237
+ int mode,
1238
+ int n_ctx,
1239
+ float freq_base,
1240
+ float freq_scale);
1241
+
1242
+ // in-place, returns view(a)
1243
+ GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
1244
+ struct ggml_context * ctx,
1245
+ struct ggml_tensor * a,
1246
+ int n_past,
1247
+ int n_dims,
1248
+ int mode,
1249
+ int n_ctx,
1250
+ float freq_base,
1251
+ float freq_scale);
1252
+
1253
+ // xPos RoPE, in-place, returns view(a)
1254
+ GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
1255
+ struct ggml_context * ctx,
1256
+ struct ggml_tensor * a,
1257
+ int n_past,
1258
+ int n_dims,
1259
+ float base,
1260
+ bool down);
1261
+
1262
+ // rotary position embedding backward, i.e compute dx from dy
1263
+ // a - dy
1264
+ GGML_API struct ggml_tensor * ggml_rope_back(
1265
+ struct ggml_context * ctx,
1266
+ struct ggml_tensor * a,
1267
+ int n_past,
1268
+ int n_dims,
1269
+ int mode,
1270
+ int n_ctx,
1271
+ float freq_base,
1272
+ float freq_scale,
1273
+ float xpos_base,
1274
+ bool xpos_down);
1275
+
1276
+ // alibi position embedding
1277
+ // in-place, returns view(a)
1278
+ struct ggml_tensor * ggml_alibi(
1279
+ struct ggml_context * ctx,
1280
+ struct ggml_tensor * a,
1281
+ int n_past,
1282
+ int n_head,
1283
+ float bias_max);
1284
+
1285
+ // clamp
1286
+ // in-place, returns view(a)
1287
+ struct ggml_tensor * ggml_clamp(
1288
+ struct ggml_context * ctx,
1289
+ struct ggml_tensor * a,
1290
+ float min,
1291
+ float max);
1292
+
1293
+ GGML_API struct ggml_tensor * ggml_conv_1d(
1294
+ struct ggml_context * ctx,
1295
+ struct ggml_tensor * a,
1296
+ struct ggml_tensor * b,
1297
+ int s0, // stride
1298
+ int p0, // padding
1299
+ int d0); // dilation
1300
+
1301
+ // conv_1d with padding = half
1302
+ // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
1303
+ GGML_API struct ggml_tensor* ggml_conv_1d_ph(
1304
+ struct ggml_context * ctx,
1305
+ struct ggml_tensor * a,
1306
+ struct ggml_tensor * b,
1307
+ int s,
1308
+ int d);
1309
+
1310
+ GGML_API struct ggml_tensor * ggml_conv_2d(
1311
+ struct ggml_context * ctx,
1312
+ struct ggml_tensor * a,
1313
+ struct ggml_tensor * b,
1314
+ int s0,
1315
+ int s1,
1316
+ int p0,
1317
+ int p1,
1318
+ int d0,
1319
+ int d1);
1320
+
1321
+
1322
+ // kernel size is a->ne[0] x a->ne[1]
1323
+ // stride is equal to kernel size
1324
+ // padding is zero
1325
+ // example:
1326
+ // a: 16 16 3 768
1327
+ // b: 1024 1024 3 1
1328
+ // res: 64 64 768 1
1329
+ // used in sam
1330
+ GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
1331
+ struct ggml_context * ctx,
1332
+ struct ggml_tensor * a,
1333
+ struct ggml_tensor * b);
1334
+
1335
+ // kernel size is a->ne[0] x a->ne[1]
1336
+ // stride is 1
1337
+ // padding is half
1338
+ // example:
1339
+ // a: 3 3 256 256
1340
+ // b: 64 64 256 1
1341
+ // res: 64 64 256 1
1342
+ // used in sam
1343
+ GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
1344
+ struct ggml_context * ctx,
1345
+ struct ggml_tensor * a,
1346
+ struct ggml_tensor * b);
1347
+
1348
+ GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
1349
+ struct ggml_context * ctx,
1350
+ struct ggml_tensor * a,
1351
+ struct ggml_tensor * b,
1352
+ int stride);
1353
+
1354
+ enum ggml_op_pool {
1355
+ GGML_OP_POOL_MAX,
1356
+ GGML_OP_POOL_AVG,
1357
+ GGML_OP_POOL_COUNT,
1358
+ };
1359
+
1360
+ GGML_API struct ggml_tensor * ggml_pool_1d(
1361
+ struct ggml_context * ctx,
1362
+ struct ggml_tensor * a,
1363
+ enum ggml_op_pool op,
1364
+ int k0, // kernel size
1365
+ int s0, // stride
1366
+ int p0); // padding
1367
+
1368
+ GGML_API struct ggml_tensor * ggml_pool_2d(
1369
+ struct ggml_context * ctx,
1370
+ struct ggml_tensor * a,
1371
+ enum ggml_op_pool op,
1372
+ int k0,
1373
+ int k1,
1374
+ int s0,
1375
+ int s1,
1376
+ int p0,
1377
+ int p1);
1378
+
1379
+ // nearest interpolate
1380
+ // used in stable-diffusion
1381
+ GGML_API struct ggml_tensor * ggml_upscale(
1382
+ struct ggml_context * ctx,
1383
+ struct ggml_tensor * a,
1384
+ int scale_factor);
1385
+
1386
+ GGML_API struct ggml_tensor * ggml_flash_attn(
1387
+ struct ggml_context * ctx,
1388
+ struct ggml_tensor * q,
1389
+ struct ggml_tensor * k,
1390
+ struct ggml_tensor * v,
1391
+ bool masked);
1392
+
1393
+ GGML_API struct ggml_tensor * ggml_flash_attn_back(
1394
+ struct ggml_context * ctx,
1395
+ struct ggml_tensor * q,
1396
+ struct ggml_tensor * k,
1397
+ struct ggml_tensor * v,
1398
+ struct ggml_tensor * d,
1399
+ bool masked);
1400
+
1401
+ GGML_API struct ggml_tensor * ggml_flash_ff(
1402
+ struct ggml_context * ctx,
1403
+ struct ggml_tensor * a,
1404
+ struct ggml_tensor * b0,
1405
+ struct ggml_tensor * b1,
1406
+ struct ggml_tensor * c0,
1407
+ struct ggml_tensor * c1);
1408
+
1409
+ // partition into non-overlapping windows with padding if needed
1410
+ // example:
1411
+ // a: 768 64 64 1
1412
+ // w: 14
1413
+ // res: 768 14 14 25
1414
+ // used in sam
1415
+ GGML_API struct ggml_tensor * ggml_win_part(
1416
+ struct ggml_context * ctx,
1417
+ struct ggml_tensor * a,
1418
+ int w);
1419
+
1420
+ // reverse of ggml_win_part
1421
+ // used in sam
1422
+ GGML_API struct ggml_tensor * ggml_win_unpart(
1423
+ struct ggml_context * ctx,
1424
+ struct ggml_tensor * a,
1425
+ int w0,
1426
+ int h0,
1427
+ int w);
1428
+
1429
+ GGML_API struct ggml_tensor * ggml_unary(
1430
+ struct ggml_context * ctx,
1431
+ struct ggml_tensor * a,
1432
+ enum ggml_unary_op op);
1433
+
1434
+ GGML_API struct ggml_tensor * ggml_unary_inplace(
1435
+ struct ggml_context * ctx,
1436
+ struct ggml_tensor * a,
1437
+ enum ggml_unary_op op);
1438
+
1439
+ // used in sam
1440
+ GGML_API struct ggml_tensor * ggml_get_rel_pos(
1441
+ struct ggml_context * ctx,
1442
+ struct ggml_tensor * a,
1443
+ int qh,
1444
+ int kh);
1445
+
1446
+ // used in sam
1447
+
1448
+ GGML_API struct ggml_tensor * ggml_add_rel_pos(
1449
+ struct ggml_context * ctx,
1450
+ struct ggml_tensor * a,
1451
+ struct ggml_tensor * pw,
1452
+ struct ggml_tensor * ph);
1453
+
1454
+ GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
1455
+ struct ggml_context * ctx,
1456
+ struct ggml_tensor * a,
1457
+ struct ggml_tensor * pw,
1458
+ struct ggml_tensor * ph);
1459
+
1460
+ // custom operators
1461
+
1462
+ typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
1463
+ typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
1464
+
1465
+ typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
1466
+ typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
1467
+ typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
1468
+
1469
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
1470
+ struct ggml_context * ctx,
1471
+ struct ggml_tensor * a,
1472
+ ggml_unary_op_f32_t fun),
1473
+ "use ggml_map_custom1 instead");
1474
+
1475
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
1476
+ struct ggml_context * ctx,
1477
+ struct ggml_tensor * a,
1478
+ ggml_unary_op_f32_t fun),
1479
+ "use ggml_map_custom1_inplace instead");
1480
+
1481
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
1482
+ struct ggml_context * ctx,
1483
+ struct ggml_tensor * a,
1484
+ struct ggml_tensor * b,
1485
+ ggml_binary_op_f32_t fun),
1486
+ "use ggml_map_custom2 instead");
1487
+
1488
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
1489
+ struct ggml_context * ctx,
1490
+ struct ggml_tensor * a,
1491
+ struct ggml_tensor * b,
1492
+ ggml_binary_op_f32_t fun),
1493
+ "use ggml_map_custom2_inplace instead");
1494
+
1495
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
1496
+ struct ggml_context * ctx,
1497
+ struct ggml_tensor * a,
1498
+ ggml_custom1_op_f32_t fun),
1499
+ "use ggml_map_custom1 instead");
1500
+
1501
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
1502
+ struct ggml_context * ctx,
1503
+ struct ggml_tensor * a,
1504
+ ggml_custom1_op_f32_t fun),
1505
+ "use ggml_map_custom1_inplace instead");
1506
+
1507
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
1508
+ struct ggml_context * ctx,
1509
+ struct ggml_tensor * a,
1510
+ struct ggml_tensor * b,
1511
+ ggml_custom2_op_f32_t fun),
1512
+ "use ggml_map_custom2 instead");
1513
+
1514
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
1515
+ struct ggml_context * ctx,
1516
+ struct ggml_tensor * a,
1517
+ struct ggml_tensor * b,
1518
+ ggml_custom2_op_f32_t fun),
1519
+ "use ggml_map_custom2_inplace instead");
1520
+
1521
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
1522
+ struct ggml_context * ctx,
1523
+ struct ggml_tensor * a,
1524
+ struct ggml_tensor * b,
1525
+ struct ggml_tensor * c,
1526
+ ggml_custom3_op_f32_t fun),
1527
+ "use ggml_map_custom3 instead");
1528
+
1529
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
1530
+ struct ggml_context * ctx,
1531
+ struct ggml_tensor * a,
1532
+ struct ggml_tensor * b,
1533
+ struct ggml_tensor * c,
1534
+ ggml_custom3_op_f32_t fun),
1535
+ "use ggml_map_custom3_inplace instead");
1536
+
1537
+ // custom operators v2
1538
+
1539
+ typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
1540
+ typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
1541
+ typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
1542
+
1543
+ #define GGML_N_TASKS_MAX -1
1544
+
1545
+ GGML_API struct ggml_tensor * ggml_map_custom1(
1546
+ struct ggml_context * ctx,
1547
+ struct ggml_tensor * a,
1548
+ ggml_custom1_op_t fun,
1549
+ int n_tasks,
1550
+ void * userdata);
1551
+
1552
+ GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
1553
+ struct ggml_context * ctx,
1554
+ struct ggml_tensor * a,
1555
+ ggml_custom1_op_t fun,
1556
+ int n_tasks,
1557
+ void * userdata);
1558
+
1559
+ GGML_API struct ggml_tensor * ggml_map_custom2(
1560
+ struct ggml_context * ctx,
1561
+ struct ggml_tensor * a,
1562
+ struct ggml_tensor * b,
1563
+ ggml_custom2_op_t fun,
1564
+ int n_tasks,
1565
+ void * userdata);
1566
+
1567
+ GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
1568
+ struct ggml_context * ctx,
1569
+ struct ggml_tensor * a,
1570
+ struct ggml_tensor * b,
1571
+ ggml_custom2_op_t fun,
1572
+ int n_tasks,
1573
+ void * userdata);
1574
+
1575
+ GGML_API struct ggml_tensor * ggml_map_custom3(
1576
+ struct ggml_context * ctx,
1577
+ struct ggml_tensor * a,
1578
+ struct ggml_tensor * b,
1579
+ struct ggml_tensor * c,
1580
+ ggml_custom3_op_t fun,
1581
+ int n_tasks,
1582
+ void * userdata);
1583
+
1584
+ GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
1585
+ struct ggml_context * ctx,
1586
+ struct ggml_tensor * a,
1587
+ struct ggml_tensor * b,
1588
+ struct ggml_tensor * c,
1589
+ ggml_custom3_op_t fun,
1590
+ int n_tasks,
1591
+ void * userdata);
1592
+
1593
+ // loss function
1594
+
1595
+ GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
1596
+ struct ggml_context * ctx,
1597
+ struct ggml_tensor * a,
1598
+ struct ggml_tensor * b);
1599
+
1600
+ GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
1601
+ struct ggml_context * ctx,
1602
+ struct ggml_tensor * a,
1603
+ struct ggml_tensor * b,
1604
+ struct ggml_tensor * c);
1605
+
1606
+ //
1607
+ // automatic differentiation
1608
+ //
1609
+
1610
+ GGML_API void ggml_set_param(
1611
+ struct ggml_context * ctx,
1612
+ struct ggml_tensor * tensor);
1613
+
1614
+
1615
+ GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
1616
+
1617
+ GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
1618
+ GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
1619
+
1620
+ // graph allocation in a context
1621
+ GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
1622
+ GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
1623
+ GGML_API size_t ggml_graph_overhead(void);
1624
+
1625
+ // ggml_graph_plan() has to be called before ggml_graph_compute()
1626
+ // when plan.work_size > 0, caller must allocate memory for plan.work_data
1627
+ GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
1628
+ GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
1629
+ GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
1630
+
1631
+ // same as ggml_graph_compute() but the work data is allocated as a part of the context
1632
+ // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
1633
+ GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
1634
+
1635
+ GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
1636
+
1637
+ GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
1638
+ GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
1639
+
1640
+ // print info and performance information for the graph
1641
+ GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
1642
+
1643
+ // dump the graph into a file using the dot format
1644
+ GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
1645
+
1646
+ //
1647
+ // optimization
1648
+ //
1649
+
1650
+ // optimization methods
1651
+ enum ggml_opt_type {
1652
+ GGML_OPT_ADAM,
1653
+ GGML_OPT_LBFGS,
1654
+ };
1655
+
1656
+ // linesearch methods
1657
+ enum ggml_linesearch {
1658
+ GGML_LINESEARCH_DEFAULT = 1,
1659
+
1660
+ GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
1661
+ GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
1662
+ GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
1663
+ };
1664
+
1665
+ // optimization return values
1666
+ enum ggml_opt_result {
1667
+ GGML_OPT_OK = 0,
1668
+ GGML_OPT_DID_NOT_CONVERGE,
1669
+ GGML_OPT_NO_CONTEXT,
1670
+ GGML_OPT_INVALID_WOLFE,
1671
+ GGML_OPT_FAIL,
1672
+
1673
+ GGML_LINESEARCH_FAIL = -128,
1674
+ GGML_LINESEARCH_MINIMUM_STEP,
1675
+ GGML_LINESEARCH_MAXIMUM_STEP,
1676
+ GGML_LINESEARCH_MAXIMUM_ITERATIONS,
1677
+ GGML_LINESEARCH_INVALID_PARAMETERS,
1678
+ };
1679
+
1680
+ // optimization parameters
1681
+ //
1682
+ // see ggml.c (ggml_opt_default_params) for default values
1683
+ //
1684
+ struct ggml_opt_params {
1685
+ enum ggml_opt_type type;
1686
+
1687
+ int n_threads;
1688
+
1689
+ // delta-based convergence test
1690
+ //
1691
+ // if past == 0 - disabled
1692
+ // if past > 0:
1693
+ // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
1694
+ //
1695
+ int past;
1696
+ float delta;
1697
+
1698
+ // maximum number of iterations without improvement
1699
+ //
1700
+ // if 0 - disabled
1701
+ // if > 0:
1702
+ // assume convergence if no cost improvement in this number of iterations
1703
+ //
1704
+ int max_no_improvement;
1705
+
1706
+ bool print_forward_graph;
1707
+ bool print_backward_graph;
1708
+
1709
+ // ADAM parameters
1710
+ struct {
1711
+ int n_iter;
1712
+
1713
+ float sched; // schedule multiplier (fixed, decay or warmup)
1714
+ float decay; // weight decay for AdamW, use 0.0f to disable
1715
+ float alpha; // learning rate
1716
+ float beta1;
1717
+ float beta2;
1718
+ float eps; // epsilon for numerical stability
1719
+ float eps_f; // epsilon for convergence test
1720
+ float eps_g; // epsilon for convergence test
1721
+ } adam;
1722
+
1723
+ // LBFGS parameters
1724
+ struct {
1725
+ int m; // number of corrections to approximate the inv. Hessian
1726
+ int n_iter;
1727
+ int max_linesearch;
1728
+
1729
+ float eps; // convergence tolerance
1730
+ float ftol; // line search tolerance
1731
+ float wolfe;
1732
+ float min_step;
1733
+ float max_step;
1734
+
1735
+ enum ggml_linesearch linesearch;
1736
+ } lbfgs;
1737
+ };
1738
+
1739
+ struct ggml_opt_context {
1740
+ struct ggml_context * ctx;
1741
+ struct ggml_opt_params params;
1742
+
1743
+ int iter;
1744
+ int64_t nx; // number of parameter elements
1745
+
1746
+ bool just_initialized;
1747
+
1748
+ struct {
1749
+ struct ggml_tensor * x; // view of the parameters
1750
+ struct ggml_tensor * g1; // gradient
1751
+ struct ggml_tensor * g2; // gradient squared
1752
+ struct ggml_tensor * m; // first moment
1753
+ struct ggml_tensor * v; // second moment
1754
+ struct ggml_tensor * mh; // first moment hat
1755
+ struct ggml_tensor * vh; // second moment hat
1756
+ struct ggml_tensor * pf; // past function values
1757
+ float fx_best;
1758
+ float fx_prev;
1759
+ int n_no_improvement;
1760
+ } adam;
1761
+
1762
+ struct {
1763
+ struct ggml_tensor * x; // current parameters
1764
+ struct ggml_tensor * xp; // previous parameters
1765
+ struct ggml_tensor * g; // current gradient
1766
+ struct ggml_tensor * gp; // previous gradient
1767
+ struct ggml_tensor * d; // search direction
1768
+ struct ggml_tensor * pf; // past function values
1769
+ struct ggml_tensor * lmal; // the L-BFGS memory alpha
1770
+ struct ggml_tensor * lmys; // the L-BFGS memory ys
1771
+ struct ggml_tensor * lms; // the L-BFGS memory s
1772
+ struct ggml_tensor * lmy; // the L-BFGS memory y
1773
+ float fx_best;
1774
+ float step;
1775
+ int j;
1776
+ int k;
1777
+ int end;
1778
+ int n_no_improvement;
1779
+ } lbfgs;
1780
+ };
1781
+
1782
+ GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
1783
+
1784
+ // optimize the function defined by the tensor f
1785
+ GGML_API enum ggml_opt_result ggml_opt(
1786
+ struct ggml_context * ctx,
1787
+ struct ggml_opt_params params,
1788
+ struct ggml_tensor * f);
1789
+
1790
+ // initialize optimizer context
1791
+ GGML_API void ggml_opt_init(
1792
+ struct ggml_context * ctx,
1793
+ struct ggml_opt_context * opt,
1794
+ struct ggml_opt_params params,
1795
+ int64_t nx);
1796
+
1797
+ // continue optimizing the function defined by the tensor f
1798
+ GGML_API enum ggml_opt_result ggml_opt_resume(
1799
+ struct ggml_context * ctx,
1800
+ struct ggml_opt_context * opt,
1801
+ struct ggml_tensor * f);
1802
+
1803
+ // continue optimizing the function defined by the tensor f
1804
+ GGML_API enum ggml_opt_result ggml_opt_resume_g(
1805
+ struct ggml_context * ctx,
1806
+ struct ggml_opt_context * opt,
1807
+ struct ggml_tensor * f,
1808
+ struct ggml_cgraph * gf,
1809
+ struct ggml_cgraph * gb);
1810
+
1811
+ //
1812
+ // quantization
1813
+ //
1814
+
1815
+ GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
1816
+ GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
1817
+ GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
1818
+ GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
1819
+ GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
1820
+
1821
+ GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
1822
+
1823
+ //
1824
+ // gguf
1825
+ //
1826
+
1827
+ enum gguf_type {
1828
+ GGUF_TYPE_UINT8 = 0,
1829
+ GGUF_TYPE_INT8 = 1,
1830
+ GGUF_TYPE_UINT16 = 2,
1831
+ GGUF_TYPE_INT16 = 3,
1832
+ GGUF_TYPE_UINT32 = 4,
1833
+ GGUF_TYPE_INT32 = 5,
1834
+ GGUF_TYPE_FLOAT32 = 6,
1835
+ GGUF_TYPE_BOOL = 7,
1836
+ GGUF_TYPE_STRING = 8,
1837
+ GGUF_TYPE_ARRAY = 9,
1838
+ GGUF_TYPE_UINT64 = 10,
1839
+ GGUF_TYPE_INT64 = 11,
1840
+ GGUF_TYPE_FLOAT64 = 12,
1841
+ GGUF_TYPE_COUNT, // marks the end of the enum
1842
+ };
1843
+
1844
+ struct gguf_context;
1845
+
1846
+ struct gguf_init_params {
1847
+ bool no_alloc;
1848
+
1849
+ // if not NULL, create a ggml_context and allocate the tensor data in it
1850
+ struct ggml_context ** ctx;
1851
+ };
1852
+
1853
+ GGML_API struct gguf_context * gguf_init_empty(void);
1854
+ GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
1855
+ //GGML_API struct gguf_context * gguf_init_from_buffer(..);
1856
+
1857
+ GGML_API void gguf_free(struct gguf_context * ctx);
1858
+
1859
+ GGML_API const char * gguf_type_name(enum gguf_type type);
1860
+
1861
+ GGML_API int gguf_get_version (struct gguf_context * ctx);
1862
+ GGML_API size_t gguf_get_alignment (struct gguf_context * ctx);
1863
+ GGML_API size_t gguf_get_data_offset(struct gguf_context * ctx);
1864
+ GGML_API void * gguf_get_data (struct gguf_context * ctx);
1865
+
1866
+ GGML_API int gguf_get_n_kv(struct gguf_context * ctx);
1867
+ GGML_API int gguf_find_key(struct gguf_context * ctx, const char * key);
1868
+ GGML_API const char * gguf_get_key (struct gguf_context * ctx, int i);
1869
+
1870
+ GGML_API enum gguf_type gguf_get_kv_type (struct gguf_context * ctx, int i);
1871
+ GGML_API enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i);
1872
+
1873
+ // results are undefined if the wrong type is used for the key
1874
+ GGML_API uint8_t gguf_get_val_u8 (struct gguf_context * ctx, int i);
1875
+ GGML_API int8_t gguf_get_val_i8 (struct gguf_context * ctx, int i);
1876
+ GGML_API uint16_t gguf_get_val_u16 (struct gguf_context * ctx, int i);
1877
+ GGML_API int16_t gguf_get_val_i16 (struct gguf_context * ctx, int i);
1878
+ GGML_API uint32_t gguf_get_val_u32 (struct gguf_context * ctx, int i);
1879
+ GGML_API int32_t gguf_get_val_i32 (struct gguf_context * ctx, int i);
1880
+ GGML_API float gguf_get_val_f32 (struct gguf_context * ctx, int i);
1881
+ GGML_API uint64_t gguf_get_val_u64 (struct gguf_context * ctx, int i);
1882
+ GGML_API int64_t gguf_get_val_i64 (struct gguf_context * ctx, int i);
1883
+ GGML_API double gguf_get_val_f64 (struct gguf_context * ctx, int i);
1884
+ GGML_API bool gguf_get_val_bool(struct gguf_context * ctx, int i);
1885
+ GGML_API const char * gguf_get_val_str (struct gguf_context * ctx, int i);
1886
+ GGML_API int gguf_get_arr_n (struct gguf_context * ctx, int i);
1887
+ GGML_API const void * gguf_get_arr_data(struct gguf_context * ctx, int i);
1888
+ GGML_API const char * gguf_get_arr_str (struct gguf_context * ctx, int key_id, int i);
1889
+
1890
+ GGML_API int gguf_get_n_tensors (struct gguf_context * ctx);
1891
+ GGML_API int gguf_find_tensor (struct gguf_context * ctx, const char * name);
1892
+ GGML_API size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i);
1893
+ GGML_API char * gguf_get_tensor_name (struct gguf_context * ctx, int i);
1894
+
1895
+ // overrides existing values or adds a new one
1896
+ GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
1897
+ GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
1898
+ GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
1899
+ GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
1900
+ GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
1901
+ GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
1902
+ GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
1903
+ GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
1904
+ GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
1905
+ GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
1906
+ GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
1907
+ GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
1908
+ GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
1909
+ GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
1910
+
1911
+ // set or add KV pairs from another context
1912
+ GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
1913
+
1914
+ // manage tensor info
1915
+ GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
1916
+ GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
1917
+ GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
1918
+
1919
+ // writing gguf files can be done in 2 ways:
1920
+ //
1921
+ // - write the entire gguf_context to a binary file in a single pass:
1922
+ //
1923
+ // gguf_write_to_file(ctx, fname);
1924
+ //
1925
+ // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
1926
+ //
1927
+ // FILE * f = fopen(fname, "wb");
1928
+ // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
1929
+ // fwrite(f, ...);
1930
+ // void * data = gguf_meta_get_meta_data(ctx);
1931
+ // fseek(f, 0, SEEK_SET);
1932
+ // fwrite(f, data, gguf_get_meta_size(ctx));
1933
+ // free(data);
1934
+ // fclose(f);
1935
+ //
1936
+
1937
+ // write the entire context to a binary file
1938
+ GGML_API void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta);
1939
+
1940
+ // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
1941
+ GGML_API size_t gguf_get_meta_size(struct gguf_context * ctx);
1942
+ GGML_API void gguf_get_meta_data(struct gguf_context * ctx, void * data);
1943
+
1944
+ //
1945
+ // system info
1946
+ //
1947
+
1948
+ GGML_API int ggml_cpu_has_avx (void);
1949
+ GGML_API int ggml_cpu_has_avx2 (void);
1950
+ GGML_API int ggml_cpu_has_avx512 (void);
1951
+ GGML_API int ggml_cpu_has_avx512_vbmi(void);
1952
+ GGML_API int ggml_cpu_has_avx512_vnni(void);
1953
+ GGML_API int ggml_cpu_has_fma (void);
1954
+ GGML_API int ggml_cpu_has_neon (void);
1955
+ GGML_API int ggml_cpu_has_arm_fma (void);
1956
+ GGML_API int ggml_cpu_has_f16c (void);
1957
+ GGML_API int ggml_cpu_has_fp16_va (void);
1958
+ GGML_API int ggml_cpu_has_wasm_simd (void);
1959
+ GGML_API int ggml_cpu_has_blas (void);
1960
+ GGML_API int ggml_cpu_has_cublas (void);
1961
+ GGML_API int ggml_cpu_has_clblast (void);
1962
+ GGML_API int ggml_cpu_has_gpublas (void);
1963
+ GGML_API int ggml_cpu_has_sse3 (void);
1964
+ GGML_API int ggml_cpu_has_ssse3 (void);
1965
+ GGML_API int ggml_cpu_has_vsx (void);
1966
+
1967
+ //
1968
+ // Internal types and functions exposed for tests and benchmarks
1969
+ //
1970
+
1971
+ #ifdef __cplusplus
1972
+ // restrict not standard in C++
1973
+ #define GGML_RESTRICT
1974
+ #else
1975
+ #define GGML_RESTRICT restrict
1976
+ #endif
1977
+ typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
1978
+ typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
1979
+ typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
1980
+
1981
+ typedef struct {
1982
+ const char * type_name;
1983
+ int blck_size;
1984
+ size_t type_size;
1985
+ bool is_quantized;
1986
+ ggml_to_float_t to_float;
1987
+ ggml_from_float_t from_float;
1988
+ ggml_from_float_t from_float_reference;
1989
+ ggml_vec_dot_t vec_dot;
1990
+ enum ggml_type vec_dot_type;
1991
+ } ggml_type_traits_t;
1992
+
1993
+ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
1994
+
1995
+ #ifdef __cplusplus
1996
+ }
1997
+ #endif