gpt_neox_client 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,2049 @@
1
+ #include <metal_stdlib>
2
+
3
+ using namespace metal;
4
+
5
+ #define MAX(x, y) ((x) > (y) ? (x) : (y))
6
+
7
+ #define QK4_0 32
8
+ #define QR4_0 2
9
+ typedef struct {
10
+ half d; // delta
11
+ uint8_t qs[QK4_0 / 2]; // nibbles / quants
12
+ } block_q4_0;
13
+
14
+ #define QK4_1 32
15
+ typedef struct {
16
+ half d; // delta
17
+ half m; // min
18
+ uint8_t qs[QK4_1 / 2]; // nibbles / quants
19
+ } block_q4_1;
20
+
21
+ #define QK8_0 32
22
+ typedef struct {
23
+ half d; // delta
24
+ int8_t qs[QK8_0]; // quants
25
+ } block_q8_0;
26
+
27
+ kernel void kernel_add(
28
+ device const float * src0,
29
+ device const float * src1,
30
+ device float * dst,
31
+ uint tpig[[thread_position_in_grid]]) {
32
+ dst[tpig] = src0[tpig] + src1[tpig];
33
+ }
34
+
35
+ // assumption: src1 is a row
36
+ // broadcast src1 into src0
37
+ kernel void kernel_add_row(
38
+ device const float * src0,
39
+ device const float * src1,
40
+ device float * dst,
41
+ constant int64_t & ne00,
42
+ uint tpig[[thread_position_in_grid]]) {
43
+ dst[tpig] = src0[tpig] + src1[tpig % ne00];
44
+ }
45
+
46
+ kernel void kernel_mul(
47
+ device const float * src0,
48
+ device const float * src1,
49
+ device float * dst,
50
+ uint tpig[[thread_position_in_grid]]) {
51
+ dst[tpig] = src0[tpig] * src1[tpig];
52
+ }
53
+
54
+ // assumption: src1 is a row
55
+ // broadcast src1 into src0
56
+ kernel void kernel_mul_row(
57
+ device const float * src0,
58
+ device const float * src1,
59
+ device float * dst,
60
+ constant int64_t & ne00,
61
+ uint tpig[[thread_position_in_grid]]) {
62
+ dst[tpig] = src0[tpig] * src1[tpig % ne00];
63
+ }
64
+
65
+ kernel void kernel_scale(
66
+ device const float * src0,
67
+ device float * dst,
68
+ constant float & scale,
69
+ uint tpig[[thread_position_in_grid]]) {
70
+ dst[tpig] = src0[tpig] * scale;
71
+ }
72
+
73
+ kernel void kernel_silu(
74
+ device const float * src0,
75
+ device float * dst,
76
+ uint tpig[[thread_position_in_grid]]) {
77
+ float x = src0[tpig];
78
+ dst[tpig] = x / (1.0f + exp(-x));
79
+ }
80
+
81
+ kernel void kernel_relu(
82
+ device const float * src0,
83
+ device float * dst,
84
+ uint tpig[[thread_position_in_grid]]) {
85
+ dst[tpig] = max(0.0f, src0[tpig]);
86
+ }
87
+
88
+ constant float GELU_COEF_A = 0.044715f;
89
+ constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
90
+
91
+ kernel void kernel_gelu(
92
+ device const float * src0,
93
+ device float * dst,
94
+ uint tpig[[thread_position_in_grid]]) {
95
+ float x = src0[tpig];
96
+
97
+ // BEWARE !!!
98
+ // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
99
+ // This was observed with Falcon 7B and 40B models
100
+ //
101
+ dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
102
+ }
103
+
104
+ kernel void kernel_soft_max(
105
+ device const float * src0,
106
+ device float * dst,
107
+ constant int64_t & ne00,
108
+ constant int64_t & ne01,
109
+ constant int64_t & ne02,
110
+ threadgroup float * buf [[threadgroup(0)]],
111
+ uint3 tgpig[[threadgroup_position_in_grid]],
112
+ uint3 tpitg[[thread_position_in_threadgroup]],
113
+ uint3 ntg[[threads_per_threadgroup]]) {
114
+ const int64_t i03 = tgpig[2];
115
+ const int64_t i02 = tgpig[1];
116
+ const int64_t i01 = tgpig[0];
117
+
118
+ device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
119
+ device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
120
+
121
+ // parallel max
122
+ buf[tpitg[0]] = -INFINITY;
123
+ for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
124
+ buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]);
125
+ }
126
+
127
+ // reduce
128
+ threadgroup_barrier(mem_flags::mem_threadgroup);
129
+ for (uint i = ntg[0]/2; i > 0; i /= 2) {
130
+ if (tpitg[0] < i) {
131
+ buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]);
132
+ }
133
+ threadgroup_barrier(mem_flags::mem_threadgroup);
134
+ }
135
+
136
+ // broadcast
137
+ if (tpitg[0] == 0) {
138
+ buf[0] = buf[0];
139
+ }
140
+
141
+ threadgroup_barrier(mem_flags::mem_threadgroup);
142
+
143
+ const float max = buf[0];
144
+
145
+ // parallel sum
146
+ buf[tpitg[0]] = 0.0f;
147
+ for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
148
+ buf[tpitg[0]] += exp(psrc0[i00] - max);
149
+ }
150
+
151
+ // reduce
152
+ threadgroup_barrier(mem_flags::mem_threadgroup);
153
+ for (uint i = ntg[0]/2; i > 0; i /= 2) {
154
+ if (tpitg[0] < i) {
155
+ buf[tpitg[0]] += buf[tpitg[0] + i];
156
+ }
157
+ threadgroup_barrier(mem_flags::mem_threadgroup);
158
+ }
159
+
160
+ // broadcast
161
+ if (tpitg[0] == 0) {
162
+ buf[0] = buf[0];
163
+ }
164
+
165
+ threadgroup_barrier(mem_flags::mem_threadgroup);
166
+
167
+ const float sum = buf[0];
168
+
169
+ for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
170
+ pdst[i00] = exp(psrc0[i00] - max) / sum;
171
+ }
172
+ }
173
+
174
+ kernel void kernel_diag_mask_inf(
175
+ device const float * src0,
176
+ device float * dst,
177
+ constant int64_t & ne00,
178
+ constant int64_t & ne01,
179
+ constant int & n_past,
180
+ uint3 tpig[[thread_position_in_grid]]) {
181
+ const int64_t i02 = tpig[2];
182
+ const int64_t i01 = tpig[1];
183
+ const int64_t i00 = tpig[0];
184
+
185
+ if (i00 > n_past + i01) {
186
+ dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
187
+ } else {
188
+ dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
189
+ }
190
+ }
191
+
192
+ kernel void kernel_norm(
193
+ device const void * src0,
194
+ device float * dst,
195
+ constant int64_t & ne00,
196
+ constant uint64_t & nb01,
197
+ constant float & eps,
198
+ threadgroup float * sum [[threadgroup(0)]],
199
+ uint tgpig[[threadgroup_position_in_grid]],
200
+ uint tpitg[[thread_position_in_threadgroup]],
201
+ uint ntg[[threads_per_threadgroup]]) {
202
+ device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
203
+ // MEAN
204
+ // parallel sum
205
+ sum[tpitg] = 0.0f;
206
+ for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
207
+ sum[tpitg] += x[i00];
208
+ }
209
+ // reduce
210
+ threadgroup_barrier(mem_flags::mem_threadgroup);
211
+ for (uint i = ntg/2; i > 0; i /= 2) {
212
+ if (tpitg < i) {
213
+ sum[tpitg] += sum[tpitg + i];
214
+ }
215
+ threadgroup_barrier(mem_flags::mem_threadgroup);
216
+ }
217
+ // broadcast
218
+ if (tpitg == 0) {
219
+ sum[0] /= ne00;
220
+ }
221
+ threadgroup_barrier(mem_flags::mem_threadgroup);
222
+ const float mean = sum[0];
223
+
224
+ // recenter
225
+ device float * y = dst + tgpig*ne00;
226
+ for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
227
+ y[i00] = x[i00] - mean;
228
+ }
229
+
230
+ // VARIANCE
231
+ // parallel sum
232
+ sum[tpitg] = 0.0f;
233
+ for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
234
+ sum[tpitg] += y[i00] * y[i00];
235
+ }
236
+ // reduce
237
+ threadgroup_barrier(mem_flags::mem_threadgroup);
238
+ for (uint i = ntg/2; i > 0; i /= 2) {
239
+ if (tpitg < i) {
240
+ sum[tpitg] += sum[tpitg + i];
241
+ }
242
+ threadgroup_barrier(mem_flags::mem_threadgroup);
243
+ }
244
+ // broadcast
245
+ if (tpitg == 0) {
246
+ sum[0] /= ne00;
247
+ }
248
+ threadgroup_barrier(mem_flags::mem_threadgroup);
249
+ const float variance = sum[0];
250
+
251
+ const float scale = 1.0f/sqrt(variance + eps);
252
+ for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
253
+ y[i00] = y[i00] * scale;
254
+ }
255
+ }
256
+
257
+
258
+ kernel void kernel_rms_norm(
259
+ device const void * src0,
260
+ device float * dst,
261
+ constant int64_t & ne00,
262
+ constant uint64_t & nb01,
263
+ constant float & eps,
264
+ threadgroup float * sum [[threadgroup(0)]],
265
+ uint tgpig[[threadgroup_position_in_grid]],
266
+ uint tpitg[[thread_position_in_threadgroup]],
267
+ uint sgitg[[simdgroup_index_in_threadgroup]],
268
+ uint tiisg[[thread_index_in_simdgroup]],
269
+ uint ntg[[threads_per_threadgroup]]) {
270
+ device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
271
+ device const float * x_scalar = (device const float *) x;
272
+ float4 sumf=0;
273
+ float all_sum=0;
274
+
275
+ // parallel sum
276
+ for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
277
+ sumf += x[i00] * x[i00];
278
+ }
279
+ all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
280
+ all_sum = simd_sum(all_sum);
281
+ if (tiisg == 0) {
282
+ sum[sgitg] = all_sum;
283
+ }
284
+
285
+ threadgroup_barrier(mem_flags::mem_threadgroup);
286
+ // broadcast, simd group number is ntg / 32
287
+ for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
288
+ if (tpitg < i) {
289
+ sum[tpitg] += sum[tpitg + i];
290
+ }
291
+ }
292
+ if (tpitg == 0) {
293
+ for (int i = 4 * (ne00 / 4); i < ne00; i++) {sum[0] += x_scalar[i];}
294
+ sum[0] /= ne00;
295
+ }
296
+
297
+ threadgroup_barrier(mem_flags::mem_threadgroup);
298
+
299
+ const float mean = sum[0];
300
+ const float scale = 1.0f/sqrt(mean + eps);
301
+
302
+ device float4 * y = (device float4 *) (dst + tgpig*ne00);
303
+ device float * y_scalar = (device float *) y;
304
+ for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
305
+ y[i00] = x[i00] * scale;
306
+ }
307
+ if (tpitg == 0) {
308
+ for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {y_scalar[i00] = x_scalar[i00] * scale;}
309
+ }
310
+ }
311
+
312
+ // function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
313
+ // il indicates where the q4 quants begin (0 or QK4_0/4)
314
+ // we assume that the yl's have been multiplied with the appropriate scale factor
315
+ // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
316
+ inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
317
+ float d = qb_curr->d;
318
+ float2 acc = 0.f;
319
+ device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
320
+ for (int i = 0; i < 8; i+=2) {
321
+ acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
322
+ + yl[i + 1] * (qs[i / 2] & 0x0F00);
323
+ acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
324
+ + yl[i + 9] * (qs[i / 2] & 0xF000);
325
+ }
326
+ return d * (sumy * -8.f + acc[0] + acc[1]);
327
+ }
328
+
329
+ // function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
330
+ // il indicates where the q4 quants begin (0 or QK4_0/4)
331
+ // we assume that the yl's have been multiplied with the appropriate scale factor
332
+ // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
333
+ inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
334
+ float d = qb_curr->d;
335
+ float m = qb_curr->m;
336
+ device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
337
+ float2 acc = 0.f;
338
+ for (int i = 0; i < 8; i+=2) {
339
+ acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
340
+ + yl[i + 1] * (qs[i / 2] & 0x0F00);
341
+ acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
342
+ + yl[i + 9] * (qs[i / 2] & 0xF000);
343
+ }
344
+ return d * (acc[0] + acc[1]) + sumy * m;
345
+ }
346
+
347
+ // putting them in the kernel cause a significant performance penalty
348
+ #define N_DST 4 // each SIMD group works on 4 rows
349
+ #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
350
+ #define N_SIMDWIDTH 32 // assuming SIMD group size is 32
351
+ //Note: This is a template, but strictly speaking it only applies to
352
+ // quantizations where the block size is 32. It also does not
353
+ // giard against the number of rows not being divisible by
354
+ // N_DST, so this is another explicit assumption of the implementation.
355
+ template<typename block_q_type, int nr, int nsg, int nw>
356
+ void mul_vec_q_n_f32(device const void * src0, device const float * src1, device float * dst,
357
+ int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne10, int64_t ne12, int64_t ne0, int64_t ne1, uint gqa,
358
+ uint3 tgpig, uint tiisg, uint sgitg) {
359
+ const int nb = ne00/QK4_0;
360
+ const int r0 = tgpig.x;
361
+ const int r1 = tgpig.y;
362
+ const int im = tgpig.z;
363
+ const int first_row = (r0 * nsg + sgitg) * nr;
364
+ const uint offset0 = first_row * nb + im/gqa*(nb*ne0);
365
+ device const block_q_type * x = (device const block_q_type *) src0 + offset0;
366
+ device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
367
+ float yl[16]; // src1 vector cache
368
+ float sumf[nr]={0.f};
369
+
370
+ const int ix = tiisg/2;
371
+ const int il = 8*(tiisg%2);
372
+
373
+ device const float * yb = y + ix * QK4_0 + il;
374
+
375
+ // each thread in a SIMD group deals with half a block.
376
+ for (int ib = ix; ib < nb; ib += nw/2) {
377
+ float sumy = 0;
378
+ for (int i = 0; i < 8; i += 2) {
379
+ sumy += yb[i] + yb[i+1];
380
+ yl[i+0] = yb[i+ 0];
381
+ yl[i+1] = yb[i+ 1]/256.f;
382
+ sumy += yb[i+16] + yb[i+17];
383
+ yl[i+8] = yb[i+16]/16.f;
384
+ yl[i+9] = yb[i+17]/4096.f;
385
+ }
386
+
387
+ for (int row = 0; row < nr; row++) {
388
+ sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
389
+ }
390
+
391
+ yb += QK4_0 * 16;
392
+ }
393
+
394
+ for (int row = 0; row < nr; ++row) {
395
+ const float tot = simd_sum(sumf[row]);
396
+ if (tiisg == 0 && first_row + row < ne01) {
397
+ dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
398
+ }
399
+ }
400
+ }
401
+
402
+ kernel void kernel_mul_mat_q4_0_f32(
403
+ device const void * src0,
404
+ device const float * src1,
405
+ device float * dst,
406
+ constant int64_t & ne00,
407
+ constant int64_t & ne01[[buffer(4)]],
408
+ constant int64_t & ne02[[buffer(5)]],
409
+ constant int64_t & ne10[[buffer(9)]],
410
+ constant int64_t & ne12[[buffer(11)]],
411
+ constant int64_t & ne0[[buffer(15)]],
412
+ constant int64_t & ne1[[buffer(16)]],
413
+ constant uint & gqa[[buffer(17)]],
414
+ uint3 tgpig[[threadgroup_position_in_grid]],
415
+ uint tiisg[[thread_index_in_simdgroup]],
416
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
417
+ mul_vec_q_n_f32<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
418
+ }
419
+
420
+ kernel void kernel_mul_mat_q4_1_f32(
421
+ device const void * src0,
422
+ device const float * src1,
423
+ device float * dst,
424
+ constant int64_t & ne00,
425
+ constant int64_t & ne01[[buffer(4)]],
426
+ constant int64_t & ne02[[buffer(5)]],
427
+ constant int64_t & ne10[[buffer(9)]],
428
+ constant int64_t & ne12[[buffer(11)]],
429
+ constant int64_t & ne0[[buffer(15)]],
430
+ constant int64_t & ne1[[buffer(16)]],
431
+ constant uint & gqa[[buffer(17)]],
432
+ uint3 tgpig[[threadgroup_position_in_grid]],
433
+ uint tiisg[[thread_index_in_simdgroup]],
434
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
435
+ mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
436
+ }
437
+
438
+ kernel void kernel_mul_mat_q8_0_f32(
439
+ device const void * src0,
440
+ device const float * src1,
441
+ device float * dst,
442
+ constant int64_t & ne00,
443
+ constant int64_t & ne01[[buffer(4)]],
444
+ constant int64_t & ne02[[buffer(5)]],
445
+ constant int64_t & ne10[[buffer(9)]],
446
+ constant int64_t & ne12[[buffer(11)]],
447
+ constant int64_t & ne0[[buffer(15)]],
448
+ constant int64_t & ne1[[buffer(16)]],
449
+ constant uint & gqa[[buffer(17)]],
450
+ uint3 tgpig[[threadgroup_position_in_grid]],
451
+ uint tiisg[[thread_index_in_simdgroup]],
452
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
453
+ const int nr = N_DST;
454
+ const int nsg = N_SIMDGROUP;
455
+ const int nw = N_SIMDWIDTH;
456
+
457
+ const int nb = ne00/QK8_0;
458
+ const int r0 = tgpig.x;
459
+ const int r1 = tgpig.y;
460
+ const int im = tgpig.z;
461
+ const int first_row = (r0 * nsg + sgitg) * nr;
462
+ const uint offset0 = first_row * nb + im/gqa*(nb*ne0);
463
+ device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
464
+ device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
465
+
466
+ float yl[16];
467
+ float sumf[nr]={0.f};
468
+
469
+ const int ix = tiisg/2;
470
+ const int il = tiisg%2;
471
+
472
+ device const float * yb = y + ix * QK8_0 + 16*il;
473
+
474
+ // each thread in a SIMD group deals with half a block.
475
+ for (int ib = ix; ib < nb; ib += nw/2) {
476
+ for (int i = 0; i < 16; ++i) {
477
+ yl[i] = yb[i];
478
+ }
479
+
480
+ for (int row = 0; row < nr; row++) {
481
+ device const int8_t * qs = x[ib+row*nb].qs + 16*il;
482
+ float sumq = 0.f;
483
+ for (int iq = 0; iq < 16; ++iq) {
484
+ sumq += qs[iq] * yl[iq];
485
+ }
486
+ sumf[row] += sumq*x[ib+row*nb].d;
487
+ }
488
+
489
+ yb += QK8_0 * 16;
490
+ }
491
+
492
+ for (int row = 0; row < nr; ++row) {
493
+ const float tot = simd_sum(sumf[row]);
494
+ if (tiisg == 0 && first_row + row < ne01) {
495
+ dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
496
+ }
497
+ }
498
+ }
499
+
500
+ kernel void kernel_mul_mat_f16_f32(
501
+ device const char * src0,
502
+ device const char * src1,
503
+ device float * dst,
504
+ constant int64_t & ne00,
505
+ constant int64_t & ne01,
506
+ constant int64_t & ne02,
507
+ constant uint64_t & nb00,
508
+ constant uint64_t & nb01,
509
+ constant uint64_t & nb02,
510
+ constant int64_t & ne10,
511
+ constant int64_t & ne11,
512
+ constant int64_t & ne12,
513
+ constant uint64_t & nb10,
514
+ constant uint64_t & nb11,
515
+ constant uint64_t & nb12,
516
+ constant int64_t & ne0,
517
+ constant int64_t & ne1,
518
+ threadgroup float * sum [[threadgroup(0)]],
519
+ uint3 tgpig[[threadgroup_position_in_grid]],
520
+ uint3 tpig[[thread_position_in_grid]],
521
+ uint3 tpitg[[thread_position_in_threadgroup]],
522
+ uint3 tptg[[threads_per_threadgroup]]) {
523
+
524
+ const int64_t r0 = tgpig.x;
525
+ const int64_t r1 = tgpig.y;
526
+ const int64_t im = tgpig.z;
527
+
528
+ device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
529
+ device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
530
+
531
+ sum[tpitg.x] = 0.0f;
532
+
533
+ for (int i = tpitg.x; i < ne00; i += tptg.x) {
534
+ sum[tpitg.x] += (float) x[i] * (float) y[i];
535
+ }
536
+
537
+ // accumulate the sum from all threads in the threadgroup
538
+ threadgroup_barrier(mem_flags::mem_threadgroup);
539
+ for (uint i = tptg.x/2; i > 0; i /= 2) {
540
+ if (tpitg.x < i) {
541
+ sum[tpitg.x] += sum[tpitg.x + i];
542
+ }
543
+ threadgroup_barrier(mem_flags::mem_threadgroup);
544
+ }
545
+
546
+ if (tpitg.x == 0) {
547
+ dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0];
548
+ }
549
+ }
550
+
551
+ kernel void kernel_alibi_f32(
552
+ device const float * src0,
553
+ device float * dst,
554
+ constant int64_t & ne00,
555
+ constant int64_t & ne01,
556
+ constant int64_t & ne02,
557
+ constant int64_t & ne03,
558
+ constant uint64_t & nb00,
559
+ constant uint64_t & nb01,
560
+ constant uint64_t & nb02,
561
+ constant uint64_t & nb03,
562
+ constant int64_t & ne0,
563
+ constant int64_t & ne1,
564
+ constant int64_t & ne2,
565
+ constant int64_t & ne3,
566
+ constant uint64_t & nb0,
567
+ constant uint64_t & nb1,
568
+ constant uint64_t & nb2,
569
+ constant uint64_t & nb3,
570
+ constant float & m0,
571
+ uint3 tgpig[[threadgroup_position_in_grid]],
572
+ uint3 tpitg[[thread_position_in_threadgroup]],
573
+ uint3 ntg[[threads_per_threadgroup]]) {
574
+ const int64_t i03 = tgpig[2];
575
+ const int64_t i02 = tgpig[1];
576
+ const int64_t i01 = tgpig[0];
577
+
578
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
579
+
580
+ const int64_t i3 = n / (ne2*ne1*ne0);
581
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
582
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
583
+ const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
584
+
585
+ device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
586
+ float m_k = pow(m0, i2 + 1);
587
+ for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
588
+ device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
589
+ dst_data[i00] = src[0] + m_k * (i00 - ne00 + 1);
590
+ }
591
+ }
592
+
593
+ kernel void kernel_rope(
594
+ device const void * src0,
595
+ device float * dst,
596
+ constant int64_t & ne00,
597
+ constant int64_t & ne01,
598
+ constant int64_t & ne02,
599
+ constant int64_t & ne03,
600
+ constant uint64_t & nb00,
601
+ constant uint64_t & nb01,
602
+ constant uint64_t & nb02,
603
+ constant uint64_t & nb03,
604
+ constant int64_t & ne0,
605
+ constant int64_t & ne1,
606
+ constant int64_t & ne2,
607
+ constant int64_t & ne3,
608
+ constant uint64_t & nb0,
609
+ constant uint64_t & nb1,
610
+ constant uint64_t & nb2,
611
+ constant uint64_t & nb3,
612
+ constant int & n_past,
613
+ constant int & n_dims,
614
+ constant int & mode,
615
+ constant float & freq_base,
616
+ constant float & freq_scale,
617
+ uint3 tpig[[thread_position_in_grid]]) {
618
+ const int64_t i3 = tpig[2];
619
+ const int64_t i2 = tpig[1];
620
+ const int64_t i1 = tpig[0];
621
+
622
+ const bool is_neox = mode & 2;
623
+ const float theta_scale = pow(freq_base, -2.0f/n_dims);
624
+
625
+ const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
626
+
627
+ float theta = freq_scale * (float)p;
628
+
629
+ if (!is_neox) {
630
+ for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
631
+ const float cos_theta = cos(theta);
632
+ const float sin_theta = sin(theta);
633
+
634
+ theta *= theta_scale;
635
+
636
+ device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
637
+ device float * dst_data = (device float *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
638
+
639
+ const float x0 = src[0];
640
+ const float x1 = src[1];
641
+
642
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
643
+ dst_data[1] = x0*sin_theta + x1*cos_theta;
644
+ }
645
+ } else {
646
+ for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
647
+ for (int64_t ic = 0; ic < n_dims; ic += 2) {
648
+ const float cos_theta = cos(theta);
649
+ const float sin_theta = sin(theta);
650
+
651
+ theta *= theta_scale;
652
+
653
+ const int64_t i0 = ib*n_dims + ic/2;
654
+
655
+ device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
656
+ device float * dst_data = (device float *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
657
+
658
+ const float x0 = src[0];
659
+ const float x1 = src[n_dims/2];
660
+
661
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
662
+ dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
663
+ }
664
+ }
665
+ }
666
+ }
667
+
668
+ kernel void kernel_cpy_f16_f16(
669
+ device const half * src0,
670
+ device half * dst,
671
+ constant int64_t & ne00,
672
+ constant int64_t & ne01,
673
+ constant int64_t & ne02,
674
+ constant int64_t & ne03,
675
+ constant uint64_t & nb00,
676
+ constant uint64_t & nb01,
677
+ constant uint64_t & nb02,
678
+ constant uint64_t & nb03,
679
+ constant int64_t & ne0,
680
+ constant int64_t & ne1,
681
+ constant int64_t & ne2,
682
+ constant int64_t & ne3,
683
+ constant uint64_t & nb0,
684
+ constant uint64_t & nb1,
685
+ constant uint64_t & nb2,
686
+ constant uint64_t & nb3,
687
+ uint3 tgpig[[threadgroup_position_in_grid]],
688
+ uint3 tpitg[[thread_position_in_threadgroup]],
689
+ uint3 ntg[[threads_per_threadgroup]]) {
690
+ const int64_t i03 = tgpig[2];
691
+ const int64_t i02 = tgpig[1];
692
+ const int64_t i01 = tgpig[0];
693
+
694
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
695
+
696
+ const int64_t i3 = n / (ne2*ne1*ne0);
697
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
698
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
699
+ const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
700
+
701
+ device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
702
+
703
+ for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
704
+ device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
705
+ dst_data[i00] = src[0];
706
+ }
707
+ }
708
+
709
+ kernel void kernel_cpy_f32_f16(
710
+ device const float * src0,
711
+ device half * dst,
712
+ constant int64_t & ne00,
713
+ constant int64_t & ne01,
714
+ constant int64_t & ne02,
715
+ constant int64_t & ne03,
716
+ constant uint64_t & nb00,
717
+ constant uint64_t & nb01,
718
+ constant uint64_t & nb02,
719
+ constant uint64_t & nb03,
720
+ constant int64_t & ne0,
721
+ constant int64_t & ne1,
722
+ constant int64_t & ne2,
723
+ constant int64_t & ne3,
724
+ constant uint64_t & nb0,
725
+ constant uint64_t & nb1,
726
+ constant uint64_t & nb2,
727
+ constant uint64_t & nb3,
728
+ uint3 tgpig[[threadgroup_position_in_grid]],
729
+ uint3 tpitg[[thread_position_in_threadgroup]],
730
+ uint3 ntg[[threads_per_threadgroup]]) {
731
+ const int64_t i03 = tgpig[2];
732
+ const int64_t i02 = tgpig[1];
733
+ const int64_t i01 = tgpig[0];
734
+
735
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
736
+
737
+ const int64_t i3 = n / (ne2*ne1*ne0);
738
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
739
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
740
+ const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
741
+
742
+ device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
743
+
744
+ for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
745
+ device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
746
+
747
+ dst_data[i00] = src[0];
748
+ }
749
+ }
750
+
751
+ kernel void kernel_cpy_f32_f32(
752
+ device const float * src0,
753
+ device float * dst,
754
+ constant int64_t & ne00,
755
+ constant int64_t & ne01,
756
+ constant int64_t & ne02,
757
+ constant int64_t & ne03,
758
+ constant uint64_t & nb00,
759
+ constant uint64_t & nb01,
760
+ constant uint64_t & nb02,
761
+ constant uint64_t & nb03,
762
+ constant int64_t & ne0,
763
+ constant int64_t & ne1,
764
+ constant int64_t & ne2,
765
+ constant int64_t & ne3,
766
+ constant uint64_t & nb0,
767
+ constant uint64_t & nb1,
768
+ constant uint64_t & nb2,
769
+ constant uint64_t & nb3,
770
+ uint3 tgpig[[threadgroup_position_in_grid]],
771
+ uint3 tpitg[[thread_position_in_threadgroup]],
772
+ uint3 ntg[[threads_per_threadgroup]]) {
773
+ const int64_t i03 = tgpig[2];
774
+ const int64_t i02 = tgpig[1];
775
+ const int64_t i01 = tgpig[0];
776
+
777
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
778
+
779
+ const int64_t i3 = n / (ne2*ne1*ne0);
780
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
781
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
782
+ const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
783
+
784
+ device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
785
+
786
+ for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
787
+ device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
788
+
789
+ dst_data[i00] = src[0];
790
+ }
791
+ }
792
+
793
+ //============================================ k-quants ======================================================
794
+
795
+ #ifndef QK_K
796
+ #define QK_K 256
797
+ #else
798
+ static_assert(QK_K == 256 || QK_K == 64, "QK_K must be 256 or 64");
799
+ #endif
800
+
801
+ #if QK_K == 256
802
+ #define K_SCALE_SIZE 12
803
+ #else
804
+ #define K_SCALE_SIZE 4
805
+ #endif
806
+
807
+ typedef struct {
808
+ uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
809
+ uint8_t qs[QK_K/4]; // quants
810
+ half d; // super-block scale for quantized scales
811
+ half dmin; // super-block scale for quantized mins
812
+ } block_q2_K;
813
+ // 84 bytes / block
814
+
815
+ typedef struct {
816
+ uint8_t hmask[QK_K/8]; // quants - high bit
817
+ uint8_t qs[QK_K/4]; // quants - low 2 bits
818
+ #if QK_K == 64
819
+ uint8_t scales[2];
820
+ #else
821
+ uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
822
+ #endif
823
+ half d; // super-block scale
824
+ } block_q3_K;
825
+
826
+ #if QK_K == 64
827
+ typedef struct {
828
+ half d[2]; // super-block scales/mins
829
+ uint8_t scales[2];
830
+ uint8_t qs[QK_K/2]; // 4-bit quants
831
+ } block_q4_K;
832
+ #else
833
+ typedef struct {
834
+ half d; // super-block scale for quantized scales
835
+ half dmin; // super-block scale for quantized mins
836
+ uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
837
+ uint8_t qs[QK_K/2]; // 4--bit quants
838
+ } block_q4_K;
839
+ #endif
840
+
841
+ #if QK_K == 64
842
+ typedef struct {
843
+ half d; // super-block scales/mins
844
+ int8_t scales[QK_K/16]; // 8-bit block scales
845
+ uint8_t qh[QK_K/8]; // quants, high bit
846
+ uint8_t qs[QK_K/2]; // quants, low 4 bits
847
+ } block_q5_K;
848
+ #else
849
+ typedef struct {
850
+ half d; // super-block scale for quantized scales
851
+ half dmin; // super-block scale for quantized mins
852
+ uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
853
+ uint8_t qh[QK_K/8]; // quants, high bit
854
+ uint8_t qs[QK_K/2]; // quants, low 4 bits
855
+ } block_q5_K;
856
+ // 176 bytes / block
857
+ #endif
858
+
859
+ typedef struct {
860
+ uint8_t ql[QK_K/2]; // quants, lower 4 bits
861
+ uint8_t qh[QK_K/4]; // quants, upper 2 bits
862
+ int8_t scales[QK_K/16]; // scales, quantized with 8 bits
863
+ half d; // super-block scale
864
+ } block_q6_K;
865
+ // 210 bytes / block
866
+
867
+ static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
868
+ uchar4 r;
869
+ if (j < 4) {
870
+ r[0] = q[j+0] & 63;
871
+ r[2] = q[j+1] & 63;
872
+ r[1] = q[j+4] & 63;
873
+ r[3] = q[j+5] & 63;
874
+ } else {
875
+ r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
876
+ r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
877
+ r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
878
+ r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4);
879
+ }
880
+ return r;
881
+ }
882
+
883
+ //====================================== dot products =========================
884
+
885
+ kernel void kernel_mul_mat_q2_K_f32(
886
+ device const void * src0,
887
+ device const float * src1,
888
+ device float * dst,
889
+ constant int64_t & ne00,
890
+ constant int64_t & ne01[[buffer(4)]],
891
+ constant int64_t & ne02[[buffer(5)]],
892
+ constant int64_t & ne10[[buffer(9)]],
893
+ constant int64_t & ne12[[buffer(11)]],
894
+ constant int64_t & ne0[[buffer(15)]],
895
+ constant int64_t & ne1[[buffer(16)]],
896
+ constant uint & gqa[[buffer(17)]],
897
+ uint3 tgpig[[threadgroup_position_in_grid]],
898
+ uint tiisg[[thread_index_in_simdgroup]],
899
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
900
+
901
+ const int nb = ne00/QK_K;
902
+ const int r0 = tgpig.x;
903
+ const int r1 = tgpig.y;
904
+ const int r2 = tgpig.z;
905
+
906
+ const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
907
+ const int ib_row = first_row * nb;
908
+ const uint offset0 = r2/gqa*(nb*ne0);
909
+ device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row + offset0;
910
+ device const float * y = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
911
+ float yl[32];
912
+ float sumf[N_DST]={0.f}, all_sum;
913
+
914
+ const int step = sizeof(block_q2_K) * nb;
915
+
916
+ #if QK_K == 256
917
+ const int ix = tiisg/8; // 0...3
918
+ const int it = tiisg%8; // 0...7
919
+ const int im = it/4; // 0 or 1
920
+ const int ir = it%4; // 0...3
921
+ const int is = (8*ir)/16;// 0 or 1
922
+
923
+ device const float * y4 = y + ix * QK_K + 128 * im + 8 * ir;
924
+
925
+ for (int ib = ix; ib < nb; ib += 4) {
926
+
927
+ float4 sumy = {0.f, 0.f, 0.f, 0.f};
928
+ for (int i = 0; i < 8; ++i) {
929
+ yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
930
+ yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
931
+ yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
932
+ yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
933
+ }
934
+
935
+ device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*im + is;
936
+ device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * im + 4 * ir;
937
+ device const half * dh = &x[ib].d;
938
+
939
+ for (int row = 0; row < N_DST; row++) {
940
+
941
+ float4 acc1 = {0.f, 0.f, 0.f, 0.f};
942
+ float4 acc2 = {0.f, 0.f, 0.f, 0.f};
943
+ for (int i = 0; i < 8; i += 2) {
944
+ acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
945
+ acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
946
+ acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
947
+ acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
948
+ acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
949
+ acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
950
+ acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
951
+ acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
952
+ }
953
+ float dall = dh[0];
954
+ float dmin = dh[1] * 1.f/16.f;
955
+ sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
956
+ (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
957
+ (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
958
+ (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
959
+ dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
960
+
961
+ qs += step/2;
962
+ sc += step;
963
+ dh += step/2;
964
+ }
965
+
966
+ y4 += 4 * QK_K;
967
+ }
968
+ #else
969
+ const int ix = tiisg/2; // 0...15
970
+ const int it = tiisg%2; // 0...1
971
+
972
+ device const float * y4 = y + ix * QK_K + 8 * it;
973
+
974
+ for (int ib = ix; ib < nb; ib += 16) {
975
+
976
+ float4 sumy = {0.f, 0.f, 0.f, 0.f};
977
+ for (int i = 0; i < 8; ++i) {
978
+ yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
979
+ yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
980
+ yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
981
+ yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
982
+ }
983
+
984
+ device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
985
+ device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
986
+ device const half * dh = &x[ib].d;
987
+
988
+ for (int row = 0; row < N_DST; row++) {
989
+
990
+ float4 acc1 = {0.f, 0.f, 0.f, 0.f};
991
+ float4 acc2 = {0.f, 0.f, 0.f, 0.f};
992
+ for (int i = 0; i < 8; i += 2) {
993
+ acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
994
+ acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
995
+ acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
996
+ acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
997
+ acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
998
+ acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
999
+ acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
1000
+ acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
1001
+ }
1002
+
1003
+ float dall = dh[0];
1004
+ float dmin = dh[1];
1005
+ sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
1006
+ (acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
1007
+ (acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
1008
+ (acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
1009
+ dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
1010
+
1011
+ qs += step/2;
1012
+ sc += step;
1013
+ dh += step/2;
1014
+ }
1015
+
1016
+ y4 += 16 * QK_K;
1017
+ }
1018
+ #endif
1019
+
1020
+ for (int row = 0; row < N_DST; ++row) {
1021
+ all_sum = simd_sum(sumf[row]);
1022
+ if (tiisg == 0) {
1023
+ dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = all_sum;
1024
+ }
1025
+ }
1026
+ }
1027
+
1028
+ #if QK_K == 256
1029
+ kernel void kernel_mul_mat_q3_K_f32(
1030
+ device const void * src0,
1031
+ device const float * src1,
1032
+ device float * dst,
1033
+ constant int64_t & ne00,
1034
+ constant int64_t & ne01[[buffer(4)]],
1035
+ constant int64_t & ne02[[buffer(5)]],
1036
+ constant int64_t & ne10[[buffer(9)]],
1037
+ constant int64_t & ne12[[buffer(11)]],
1038
+ constant int64_t & ne0[[buffer(15)]],
1039
+ constant int64_t & ne1[[buffer(16)]],
1040
+ constant uint & gqa[[buffer(17)]],
1041
+ uint3 tgpig[[threadgroup_position_in_grid]],
1042
+ uint tiisg[[thread_index_in_simdgroup]],
1043
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
1044
+
1045
+ const int nb = ne00/QK_K;
1046
+
1047
+ const int64_t r0 = tgpig.x;
1048
+ const int64_t r1 = tgpig.y;
1049
+ const int64_t r2 = tgpig.z;
1050
+
1051
+ const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
1052
+ const uint offset0 = r2/gqa*(nb*ne0);
1053
+ device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
1054
+ device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
1055
+
1056
+ float yl[16];
1057
+
1058
+ const uint16_t kmask1 = 0x0303;
1059
+ const uint16_t kmask2 = 0x0f0f;
1060
+
1061
+ const int tid = tiisg/2;
1062
+ const int ix = tiisg%2;
1063
+ const int ip = tid/8; // 0 or 1
1064
+ const int il = tid/2 - 4*ip; // 0...3
1065
+ const int ir = tid%2;
1066
+ const int n = 8;
1067
+ const int l0 = n*ir;
1068
+
1069
+ const uint16_t m1 = 1 << (4*ip + il);
1070
+ const uint16_t m2 = m1 << 8;
1071
+
1072
+ const int shift = 2*il;
1073
+ const uint16_t qm1 = 0x0003 << shift;
1074
+ const uint16_t qm2 = 0x0300 << shift;
1075
+ const int32_t v1 = 4 << shift;
1076
+ const int32_t v2 = 1024 << shift;
1077
+
1078
+ const uint16_t s_shift1 = 4*ip;
1079
+ const uint16_t s_shift2 = s_shift1 + 2*(il/2);
1080
+ const int ik = 4 + (il%2);
1081
+
1082
+ const int q_offset = 32*ip + l0;
1083
+ const int y_offset = 128*ip + 32*il + l0;
1084
+
1085
+ const int step = sizeof(block_q3_K) * nb / 2;
1086
+
1087
+ device const float * y1 = yy + ix*QK_K + y_offset;
1088
+
1089
+ float sumf1[2] = {0.f}, sumf2[2] = {0.f};
1090
+ for (int i = ix; i < nb; i += 2) {
1091
+
1092
+ for (int l = 0; l < 8; ++l) {
1093
+ yl[l+0] = y1[l+ 0];
1094
+ yl[l+8] = y1[l+16];
1095
+ }
1096
+
1097
+ device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
1098
+ device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
1099
+ device const uint16_t * a = (device const uint16_t *)(x[i].scales);
1100
+ device const half * dh = &x[i].d;
1101
+
1102
+ for (int row = 0; row < 2; ++row) {
1103
+
1104
+ const float d_all = (float)dh[0];
1105
+ const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
1106
+
1107
+ float s1 = 0, s2 = 0;
1108
+ for (int l = 0; l < n; l += 2) {
1109
+ const uint16_t qs = q[l/2];
1110
+ s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1));
1111
+ s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2));
1112
+ }
1113
+ float d = d_all * (s1 + 1.f/256.f * s2);
1114
+ sumf1[row] += d * scales[0];
1115
+ sumf2[row] += d;
1116
+
1117
+ s1 = s2 = 0;
1118
+ for (int l = 0; l < n; l += 2) {
1119
+ const uint16_t qs = q[l/2+8];
1120
+ s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1));
1121
+ s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2));
1122
+ }
1123
+ d = d_all * (s1 + 1.f/256.f * s2);
1124
+ sumf1[row] += d * scales[1];
1125
+ sumf2[row] += d;
1126
+
1127
+ q += step;
1128
+ h += step;
1129
+ a += step;
1130
+ dh += step;
1131
+
1132
+ }
1133
+
1134
+ y1 += 2 * QK_K;
1135
+
1136
+ }
1137
+
1138
+ for (int row = 0; row < 2; ++row) {
1139
+ const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift);
1140
+ const float tot = simd_sum(sumf);
1141
+ if (tiisg == 0) {
1142
+ dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = tot;
1143
+ }
1144
+ }
1145
+ }
1146
+ #else
1147
+ kernel void kernel_mul_mat_q3_K_f32(
1148
+ device const void * src0,
1149
+ device const float * src1,
1150
+ device float * dst,
1151
+ constant int64_t & ne00,
1152
+ constant int64_t & ne01[[buffer(4)]],
1153
+ constant int64_t & ne02[[buffer(5)]],
1154
+ constant int64_t & ne10[[buffer(9)]],
1155
+ constant int64_t & ne12[[buffer(11)]],
1156
+ constant int64_t & ne0[[buffer(15)]],
1157
+ constant int64_t & ne1[[buffer(16)]],
1158
+ constant uint & gqa[[buffer(17)]],
1159
+ uint3 tgpig[[threadgroup_position_in_grid]],
1160
+ uint tiisg[[thread_index_in_simdgroup]],
1161
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
1162
+
1163
+ const int nb = ne00/QK_K;
1164
+
1165
+ const int64_t r0 = tgpig.x;
1166
+ const int64_t r1 = tgpig.y;
1167
+ const int64_t r2 = tgpig.z;
1168
+
1169
+ const int row = 2 * r0 + sgitg;
1170
+ const uint offset0 = r2/gqa*(nb*ne0);
1171
+ device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0;
1172
+ device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
1173
+ const int ix = tiisg/4;
1174
+ const int il = 4 * (tiisg%4);// 0, 4, 8, 12
1175
+ const int im = il/8; // 0, 0, 1, 1
1176
+ const int in = il%8; // 0, 4, 0, 4
1177
+
1178
+ float2 sum = {0.f, 0.f};
1179
+
1180
+ for (int i = ix; i < nb; i += 8) {
1181
+
1182
+ const float d_all = (float)(x[i].d);
1183
+
1184
+ device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
1185
+ device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
1186
+ device const uint16_t * s = (device const uint16_t *)(x[i].scales);
1187
+ device const float * y = yy + i * QK_K + il;
1188
+
1189
+ const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
1190
+ const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
1191
+ const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
1192
+ const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
1193
+
1194
+ for (int l = 0; l < 4; l += 2) {
1195
+ const uint16_t hm = h[l/2] >> im;
1196
+ sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
1197
+ + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
1198
+ + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
1199
+ + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
1200
+ sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
1201
+ + y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
1202
+ + y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
1203
+ + y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
1204
+ }
1205
+
1206
+ }
1207
+ const float sumf = sum[0] + sum[1] * 1.f/256.f;
1208
+
1209
+ const float tot = simd_sum(sumf);
1210
+ if (tiisg == 0) {
1211
+ dst[r1*ne0 + r2*ne0*ne1 + row] = tot;
1212
+ }
1213
+
1214
+ }
1215
+ #endif
1216
+
1217
+ #if QK_K == 256
1218
+ kernel void kernel_mul_mat_q4_K_f32(
1219
+ device const void * src0,
1220
+ device const float * src1,
1221
+ device float * dst,
1222
+ constant int64_t & ne00,
1223
+ constant int64_t & ne01[[buffer(4)]],
1224
+ constant int64_t & ne02[[buffer(5)]],
1225
+ constant int64_t & ne10[[buffer(9)]],
1226
+ constant int64_t & ne12[[buffer(11)]],
1227
+ constant int64_t & ne0[[buffer(15)]],
1228
+ constant int64_t & ne1[[buffer(16)]],
1229
+ constant uint & gqa[[buffer(17)]],
1230
+ uint3 tgpig[[threadgroup_position_in_grid]],
1231
+ uint tiisg[[thread_index_in_simdgroup]],
1232
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
1233
+
1234
+ const uint16_t kmask1 = 0x3f3f;
1235
+ const uint16_t kmask2 = 0x0f0f;
1236
+ const uint16_t kmask3 = 0xc0c0;
1237
+
1238
+ const int ix = tiisg/8; // 0...3
1239
+ const int it = tiisg%8; // 0...7
1240
+ const int im = it/4; // 0 or 1
1241
+ const int ir = it%4; // 0...3
1242
+
1243
+ const int nb = ne00/QK_K;
1244
+ const int r0 = tgpig.x;
1245
+ const int r1 = tgpig.y;
1246
+ const int r2 = tgpig.z;
1247
+ const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
1248
+ const int ib_row = first_row * nb;
1249
+ const uint offset0 = r2/gqa*(nb*ne0);
1250
+ device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
1251
+ device const float * y = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
1252
+ float yl[16];
1253
+ float yh[16];
1254
+ float sumf[N_DST]={0.f}, all_sum;
1255
+
1256
+ const int step = sizeof(block_q4_K) * nb / 2;
1257
+
1258
+ device const float * y4 = y + ix * QK_K + 64 * im + 8 * ir;
1259
+
1260
+ uint16_t sc16[4];
1261
+ thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
1262
+
1263
+ for (int ib = ix; ib < nb; ib += 4) {
1264
+
1265
+ float4 sumy = {0.f, 0.f, 0.f, 0.f};
1266
+ for (int i = 0; i < 8; ++i) {
1267
+ yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
1268
+ yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
1269
+ yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
1270
+ yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
1271
+ }
1272
+
1273
+ device const uint16_t * sc = (device const uint16_t *)x[ib].scales + im;
1274
+ device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * im + 4 * ir;
1275
+ device const half * dh = &x[ib].d;
1276
+
1277
+ for (int row = 0; row < N_DST; row++) {
1278
+
1279
+ sc16[0] = sc[0] & kmask1;
1280
+ sc16[1] = sc[2] & kmask1;
1281
+ sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
1282
+ sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
1283
+
1284
+ device const uint16_t * q2 = q1 + 32;
1285
+
1286
+ float4 acc1 = {0.f, 0.f, 0.f, 0.f};
1287
+ float4 acc2 = {0.f, 0.f, 0.f, 0.f};
1288
+ for (int i = 0; i < 8; i += 2) {
1289
+ acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
1290
+ acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
1291
+ acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
1292
+ acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
1293
+ acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
1294
+ acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
1295
+ acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
1296
+ acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
1297
+ }
1298
+
1299
+ float dall = dh[0];
1300
+ float dmin = dh[1];
1301
+ sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
1302
+ (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
1303
+ (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
1304
+ (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
1305
+ dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
1306
+
1307
+ q1 += step;
1308
+ sc += step;
1309
+ dh += step;
1310
+ }
1311
+
1312
+ y4 += 4 * QK_K;
1313
+ }
1314
+
1315
+ for (int row = 0; row < N_DST; ++row) {
1316
+ all_sum = simd_sum(sumf[row]);
1317
+ if (tiisg == 0) {
1318
+ dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = all_sum;
1319
+ }
1320
+ }
1321
+ }
1322
+ #else
1323
+ kernel void kernel_mul_mat_q4_K_f32(
1324
+ device const void * src0,
1325
+ device const float * src1,
1326
+ device float * dst,
1327
+ constant int64_t & ne00,
1328
+ constant int64_t & ne01[[buffer(4)]],
1329
+ constant int64_t & ne02[[buffer(5)]],
1330
+ constant int64_t & ne10[[buffer(9)]],
1331
+ constant int64_t & ne12[[buffer(11)]],
1332
+ constant int64_t & ne0[[buffer(15)]],
1333
+ constant int64_t & ne1[[buffer(16)]],
1334
+ constant uint & gqa[[buffer(17)]],
1335
+ uint3 tgpig[[threadgroup_position_in_grid]],
1336
+ uint tiisg[[thread_index_in_simdgroup]],
1337
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
1338
+
1339
+ const int ix = tiisg/4; // 0...7
1340
+ const int it = tiisg%4; // 0...3
1341
+
1342
+ const int nb = ne00/QK_K;
1343
+ const int r0 = tgpig.x;
1344
+ const int r1 = tgpig.y;
1345
+ const int r2 = tgpig.z;
1346
+ const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
1347
+ const int ib_row = first_row * nb;
1348
+ const uint offset0 = r2/gqa*(nb*ne0);
1349
+ device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
1350
+ device const float * y = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
1351
+ float yl[8];
1352
+ float yh[8];
1353
+ float sumf[N_DST]={0.f}, all_sum;
1354
+
1355
+ const int step = sizeof(block_q4_K) * nb / 2;
1356
+
1357
+ device const float * y4 = y + ix * QK_K + 8 * it;
1358
+
1359
+ uint16_t sc16[4];
1360
+
1361
+ for (int ib = ix; ib < nb; ib += 8) {
1362
+
1363
+ float2 sumy = {0.f, 0.f};
1364
+ for (int i = 0; i < 8; ++i) {
1365
+ yl[i] = y4[i+ 0]; sumy[0] += yl[i];
1366
+ yh[i] = y4[i+32]; sumy[1] += yh[i];
1367
+ }
1368
+
1369
+ device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
1370
+ device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
1371
+ device const half * dh = x[ib].d;
1372
+
1373
+ for (int row = 0; row < N_DST; row++) {
1374
+
1375
+ sc16[0] = sc[0] & 0x000f;
1376
+ sc16[1] = sc[0] & 0x0f00;
1377
+ sc16[2] = sc[0] & 0x00f0;
1378
+ sc16[3] = sc[0] & 0xf000;
1379
+
1380
+ float2 acc1 = {0.f, 0.f};
1381
+ float2 acc2 = {0.f, 0.f};
1382
+ for (int i = 0; i < 8; i += 2) {
1383
+ acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
1384
+ acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
1385
+ acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
1386
+ acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
1387
+ }
1388
+
1389
+ float dall = dh[0];
1390
+ float dmin = dh[1];
1391
+ sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
1392
+ (acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
1393
+ dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
1394
+
1395
+ qs += step;
1396
+ sc += step;
1397
+ dh += step;
1398
+ }
1399
+
1400
+ y4 += 8 * QK_K;
1401
+ }
1402
+
1403
+ for (int row = 0; row < N_DST; ++row) {
1404
+ all_sum = simd_sum(sumf[row]);
1405
+ if (tiisg == 0) {
1406
+ dst[r1*ne0+ r2*ne0*ne1 + first_row + row] = all_sum;
1407
+ }
1408
+ }
1409
+ }
1410
+ #endif
1411
+
1412
+ kernel void kernel_mul_mat_q5_K_f32(
1413
+ device const void * src0,
1414
+ device const float * src1,
1415
+ device float * dst,
1416
+ constant int64_t & ne00,
1417
+ constant int64_t & ne01[[buffer(4)]],
1418
+ constant int64_t & ne02[[buffer(5)]],
1419
+ constant int64_t & ne10[[buffer(9)]],
1420
+ constant int64_t & ne12[[buffer(11)]],
1421
+ constant int64_t & ne0[[buffer(15)]],
1422
+ constant int64_t & ne1[[buffer(16)]],
1423
+ constant uint & gqa[[buffer(17)]],
1424
+ uint3 tgpig[[threadgroup_position_in_grid]],
1425
+ uint tiisg[[thread_index_in_simdgroup]],
1426
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
1427
+
1428
+ const int nb = ne00/QK_K;
1429
+
1430
+ const int64_t r0 = tgpig.x;
1431
+ const int64_t r1 = tgpig.y;
1432
+ const int r2 = tgpig.z;
1433
+
1434
+ const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
1435
+ const uint offset0 = r2/gqa*(nb*ne0);
1436
+ device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb + offset0;
1437
+ device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
1438
+
1439
+ float sumf[2]={0.f};
1440
+
1441
+ const int step = sizeof(block_q5_K) * nb;
1442
+
1443
+ #if QK_K == 256
1444
+ #
1445
+ float yl[16], yh[16];
1446
+
1447
+ const uint16_t kmask1 = 0x3f3f;
1448
+ const uint16_t kmask2 = 0x0f0f;
1449
+ const uint16_t kmask3 = 0xc0c0;
1450
+
1451
+ const int tid = tiisg/4;
1452
+ const int ix = tiisg%4;
1453
+ const int im = tid/4;
1454
+ const int ir = tid%4;
1455
+ const int n = 8;
1456
+
1457
+ const int l0 = n*ir;
1458
+ const int q_offset = 32*im + l0;
1459
+ const int y_offset = 64*im + l0;
1460
+
1461
+ const uint8_t hm1 = 1u << (2*im);
1462
+ const uint8_t hm2 = hm1 << 1;
1463
+ const uint8_t hm3 = hm1 << 4;
1464
+ const uint8_t hm4 = hm2 << 4;
1465
+
1466
+ uint16_t sc16[4];
1467
+ thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
1468
+
1469
+ device const float * y1 = yy + ix*QK_K + y_offset;
1470
+
1471
+ for (int i = ix; i < nb; i += 4) {
1472
+
1473
+ device const uint8_t * q1 = x[i].qs + q_offset;
1474
+ device const uint8_t * qh = x[i].qh + l0;
1475
+ device const half * dh = &x[i].d;
1476
+ device const uint16_t * a = (device const uint16_t *)x[i].scales + im;
1477
+
1478
+ device const float * y2 = y1 + 128;
1479
+ float4 sumy = {0.f, 0.f, 0.f, 0.f};
1480
+ for (int l = 0; l < 8; ++l) {
1481
+ yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
1482
+ yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
1483
+ yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
1484
+ yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
1485
+ }
1486
+
1487
+ for (int row = 0; row < 2; ++row) {
1488
+
1489
+ device const uint8_t * q2 = q1 + 64;
1490
+
1491
+ sc16[0] = a[0] & kmask1;
1492
+ sc16[1] = a[2] & kmask1;
1493
+ sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
1494
+ sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
1495
+
1496
+ float4 acc = {0.f, 0.f, 0.f, 0.f};
1497
+ for (int l = 0; l < n; ++l) {
1498
+ uint8_t h = qh[l];
1499
+ acc[0] += yl[l+0] * ((uint16_t)(q1[l] & 0x0F) + (h & hm1 ? 16 : 0));
1500
+ acc[1] += yl[l+8] * ((uint16_t)(q1[l] & 0xF0) + (h & hm2 ? 256 : 0));
1501
+ acc[2] += yh[l+0] * ((uint16_t)(q2[l] & 0x0F) + (h & hm3 ? 16 : 0));
1502
+ acc[3] += yh[l+8] * ((uint16_t)(q2[l] & 0xF0) + (h & hm4 ? 256 : 0));
1503
+ }
1504
+ const float dall = dh[0];
1505
+ const float dmin = dh[1];
1506
+ sumf[row] += dall * (acc[0] * sc8[0] + acc[1] * sc8[1] * 1.f/16.f + acc[2] * sc8[4] + acc[3] * sc8[5] * 1.f/16.f) -
1507
+ dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
1508
+
1509
+ q1 += step;
1510
+ qh += step;
1511
+ dh += step/2;
1512
+ a += step/2;
1513
+
1514
+ }
1515
+
1516
+ y1 += 4 * QK_K;
1517
+
1518
+ }
1519
+ #else
1520
+ float yl[8], yh[8];
1521
+
1522
+ const int il = 4 * (tiisg/8); // 0, 4, 8, 12
1523
+ const int ix = tiisg%8;
1524
+ const int im = il/8; // 0, 0, 1, 1
1525
+ const int in = il%8; // 0, 4, 0, 4
1526
+
1527
+ device const float * y = yy + ix*QK_K + il;
1528
+
1529
+ for (int i = ix; i < nb; i += 8) {
1530
+
1531
+ for (int l = 0; l < 4; ++l) {
1532
+ yl[l+0] = y[l+ 0];
1533
+ yl[l+4] = y[l+16];
1534
+ yh[l+0] = y[l+32];
1535
+ yh[l+4] = y[l+48];
1536
+ }
1537
+
1538
+ device const half * dh = &x[i].d;
1539
+ device const uint8_t * q = x[i].qs + il;
1540
+ device const uint8_t * h = x[i].qh + in;
1541
+ device const int8_t * s = x[i].scales;
1542
+
1543
+ for (int row = 0; row < 2; ++row) {
1544
+
1545
+ const float d = dh[0];
1546
+
1547
+ float2 acc = {0.f, 0.f};
1548
+ for (int l = 0; l < 4; ++l) {
1549
+ const uint8_t hl = h[l] >> im;
1550
+ acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
1551
+ + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
1552
+ acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
1553
+ + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
1554
+ }
1555
+ sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
1556
+
1557
+ q += step;
1558
+ h += step;
1559
+ s += step;
1560
+ dh += step/2;
1561
+
1562
+ }
1563
+
1564
+ y += 8 * QK_K;
1565
+ }
1566
+ #endif
1567
+
1568
+ for (int row = 0; row < 2; ++row) {
1569
+ const float tot = simd_sum(sumf[row]);
1570
+ if (tiisg == 0) {
1571
+ dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = tot;
1572
+ }
1573
+ }
1574
+
1575
+ }
1576
+
1577
+ kernel void kernel_mul_mat_q6_K_f32(
1578
+ device const void * src0,
1579
+ device const float * src1,
1580
+ device float * dst,
1581
+ constant int64_t & ne00,
1582
+ constant int64_t & ne01[[buffer(4)]],
1583
+ constant int64_t & ne02[[buffer(5)]],
1584
+ constant int64_t & ne10[[buffer(9)]],
1585
+ constant int64_t & ne12[[buffer(11)]],
1586
+ constant int64_t & ne0[[buffer(15)]],
1587
+ constant int64_t & ne1[[buffer(16)]],
1588
+ constant uint & gqa[[buffer(17)]],
1589
+ uint3 tgpig[[threadgroup_position_in_grid]],
1590
+ uint tiisg[[thread_index_in_simdgroup]],
1591
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
1592
+
1593
+ const uint8_t kmask1 = 0x03;
1594
+ const uint8_t kmask2 = 0x0C;
1595
+ const uint8_t kmask3 = 0x30;
1596
+ const uint8_t kmask4 = 0xC0;
1597
+
1598
+ const int nb = ne00/QK_K;
1599
+
1600
+ const int64_t r0 = tgpig.x;
1601
+ const int64_t r1 = tgpig.y;
1602
+ const int r2 = tgpig.z;
1603
+
1604
+ const int row = 2 * r0 + sgitg;
1605
+ const uint offset0 = r2/gqa*(nb*ne0);
1606
+ device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb + offset0;
1607
+ device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
1608
+
1609
+ float sumf = 0;
1610
+
1611
+ #if QK_K == 256
1612
+ const int tid = tiisg/2;
1613
+ const int ix = tiisg%2;
1614
+ const int ip = tid/8; // 0 or 1
1615
+ const int il = tid%8;
1616
+ const int n = 4;
1617
+ const int l0 = n*il;
1618
+ const int is = 8*ip + l0/16;
1619
+
1620
+ const int y_offset = 128*ip + l0;
1621
+ const int q_offset_l = 64*ip + l0;
1622
+ const int q_offset_h = 32*ip + l0;
1623
+
1624
+ for (int i = ix; i < nb; i += 2) {
1625
+
1626
+ device const uint8_t * q1 = x[i].ql + q_offset_l;
1627
+ device const uint8_t * q2 = q1 + 32;
1628
+ device const uint8_t * qh = x[i].qh + q_offset_h;
1629
+ device const int8_t * sc = x[i].scales + is;
1630
+
1631
+ device const float * y = yy + i * QK_K + y_offset;
1632
+
1633
+ const float dall = x[i].d;
1634
+
1635
+ float4 sums = {0.f, 0.f, 0.f, 0.f};
1636
+ for (int l = 0; l < n; ++l) {
1637
+ sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
1638
+ sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
1639
+ sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
1640
+ sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
1641
+ }
1642
+
1643
+ sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
1644
+
1645
+ }
1646
+
1647
+ #else
1648
+ const int ix = tiisg/4;
1649
+ const int il = 4*(tiisg%4);
1650
+
1651
+ for (int i = ix; i < nb; i += 8) {
1652
+ device const float * y = yy + i * QK_K + il;
1653
+ device const uint8_t * ql = x[i].ql + il;
1654
+ device const uint8_t * qh = x[i].qh + il;
1655
+ device const int8_t * s = x[i].scales;
1656
+
1657
+ const float d = x[i].d;
1658
+
1659
+ float4 sums = {0.f, 0.f, 0.f, 0.f};
1660
+ for (int l = 0; l < 4; ++l) {
1661
+ sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
1662
+ sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
1663
+ sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
1664
+ sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
1665
+ }
1666
+ sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
1667
+ }
1668
+
1669
+ #endif
1670
+
1671
+ const float tot = simd_sum(sumf);
1672
+ if (tiisg == 0) {
1673
+ dst[r1*ne0 + r2*ne0*ne1 + row] = tot;
1674
+ }
1675
+ }
1676
+
1677
+ //============================= templates and their specializations =============================
1678
+
1679
+ template <typename type4x4>
1680
+ void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
1681
+ half4x4 temp = *(((device half4x4 *)src));
1682
+ for (int i = 0; i < 16; i++){
1683
+ reg[i/4][i%4] = temp[i/4][i%4];
1684
+ }
1685
+ }
1686
+
1687
+ template <typename type4x4>
1688
+ void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
1689
+ device const uint16_t * qs = ((device const uint16_t *)xb + 1);
1690
+ const half d = il ? (xb->d / 16.h) : xb->d;
1691
+ const half m = il ? ( -8.h * 16.h) : -8.h;
1692
+ const ushort mask0 = il ? 0x00F0 : 0x000F;
1693
+ const ushort mask1 = il ? 0xF000 : 0x0F00;
1694
+
1695
+ for (int i=0;i<8;i++) {
1696
+ reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) + m) * d;
1697
+ reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) + m) * d;
1698
+ }
1699
+ }
1700
+
1701
+ template <typename type4x4>
1702
+ void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
1703
+ device const uint16_t * qs = ((device const uint16_t *)xb + 2);
1704
+ const half d = il ? (xb->d / 16.h) : xb->d;
1705
+ const half m = xb->m;
1706
+ const ushort mask0 = il ? 0x00F0 : 0x000F;
1707
+ const ushort mask1 = il ? 0xF000 : 0x0F00;
1708
+
1709
+ for (int i=0;i<8;i++) {
1710
+ reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) * d) + m;
1711
+ reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) * d) + m;
1712
+ }
1713
+ }
1714
+
1715
+ template <typename type4x4>
1716
+ void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
1717
+ device const int8_t * qs = ((device const int8_t *)xb->qs);
1718
+ const half d = xb->d;
1719
+
1720
+ for (int i=0;i<16;i++) {
1721
+ reg[i/4][i%4] = (qs[i + 16*il] * d);
1722
+ }
1723
+ }
1724
+
1725
+ template <typename type4x4>
1726
+ void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
1727
+ const half d = xb->d;
1728
+ const half min = xb->dmin;
1729
+ device const uint8_t * q = (device const uint8_t *)xb->qs;
1730
+ half dl, ml;
1731
+ uint8_t sc = xb->scales[il];
1732
+
1733
+ #if QK_K == 256
1734
+ q = q + 32*(il/8) + 16*(il&1);
1735
+ il = (il/2)%4;
1736
+ #endif
1737
+ half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
1738
+ uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
1739
+ dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
1740
+ for (int i = 0; i < 16; ++i) {
1741
+ reg[i/4][i%4] = dl * (q[i] & mask) - ml;
1742
+ }
1743
+ }
1744
+
1745
+ template <typename type4x4>
1746
+ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
1747
+ const float d_all = (float)(xb->d);
1748
+ device const uint8_t * q = (device const uint8_t *)xb->qs;
1749
+ device const uint8_t * h = (device const uint8_t *)xb->hmask;
1750
+ device const int8_t * scales = (device const int8_t *)xb->scales;
1751
+
1752
+ #if QK_K == 256
1753
+ q = q + 32 * (il/8) + 16 * (il&1);
1754
+ h = h + 16 * (il&1);
1755
+ uint8_t m = 1 << (il/2);
1756
+ uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
1757
+ ((il/4)>0 ? 12 : 3);
1758
+ uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
1759
+ uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
1760
+ int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2) : \
1761
+ (scale_2&kmask2) | ((scale_1&kmask1) << 4);
1762
+ float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f);
1763
+
1764
+ il = (il/2)%4;
1765
+ float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
1766
+ uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
1767
+
1768
+ for (int i = 0; i < 16; ++i) {
1769
+ reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i] & m) ? 0 : 4.f/coef));
1770
+ }
1771
+ #else
1772
+ float kcoef = il&1 ? 1.f/16.f : 1.f;
1773
+ uint16_t kmask = il&1 ? 0xF0 : 0x0F;
1774
+ float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8);
1775
+ float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
1776
+ uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
1777
+ uint8_t m = 1<<(il*2);
1778
+ for (int i = 0; i < 16; ++i) {
1779
+ reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef));
1780
+ }
1781
+ #endif
1782
+ }
1783
+
1784
+ template <typename type4x4>
1785
+ void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
1786
+ device const uint8_t * q = xb->qs;
1787
+
1788
+ #if QK_K == 256
1789
+ const float d = (float)(xb->d);
1790
+ const float min = (float)(xb->dmin);
1791
+ short is = (il/4) * 2;
1792
+ q = q + (il/4) * 32 + 16 * (il&1);
1793
+ il = il%4;
1794
+ const uchar4 sc = get_scale_min_k4(is, xb->scales);
1795
+ const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h;
1796
+ const float ml = il<2 ? min * sc[1] : min * sc[3];
1797
+ #else
1798
+ q = q + 16 * (il&1);
1799
+ device const uint8_t * s = xb->scales;
1800
+ device const half2 * dh = (device const half2 *)xb->d;
1801
+ const float2 d = (float2)dh[0];
1802
+ const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
1803
+ const float ml = il<2 ? d[1] * (s[0]>>4) : d[1 ]* (s[1]>>4);
1804
+ #endif
1805
+ const ushort mask = il<2 ? 0x0F : 0xF0;
1806
+ for (int i = 0; i < 16; ++i) {
1807
+ reg[i/4][i%4] = dl * (q[i] & mask) - ml;
1808
+ }
1809
+ }
1810
+
1811
+ template <typename type4x4>
1812
+ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
1813
+ device const uint8_t * q = xb->qs;
1814
+ device const uint8_t * qh = xb->qh;
1815
+
1816
+ #if QK_K == 256
1817
+ const float d = (float)(xb->d);
1818
+ const float min = (float)(xb->dmin);
1819
+ short is = (il/4) * 2;
1820
+ q = q + 32 * (il/4) + 16 * (il&1);
1821
+ qh = qh + 16 * (il&1);
1822
+ uint8_t ul = 1 << (il/2);
1823
+ il = il%4;
1824
+ const uchar4 sc = get_scale_min_k4(is, xb->scales);
1825
+ const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h;
1826
+ const float ml = il<2 ? min * sc[1] : min * sc[3];
1827
+
1828
+ const ushort mask = il<2 ? 0x0F : 0xF0;
1829
+ const float qh_val = il<2 ? 16.f : 256.f;
1830
+ for (int i = 0; i < 16; ++i) {
1831
+ reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
1832
+ }
1833
+ #else
1834
+ q = q + 16 * (il&1);
1835
+ device const int8_t * s = xb->scales;
1836
+ const float dl = xb->d * s[il];
1837
+ uint8_t m = 1<<(il*2);
1838
+ const float coef = il<2 ? 1.f : 1.f/16.f;
1839
+ const ushort mask = il<2 ? 0x0F : 0xF0;
1840
+ for (int i = 0; i < 16; ++i) {
1841
+ reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef));
1842
+ }
1843
+ #endif
1844
+ }
1845
+
1846
+ template <typename type4x4>
1847
+ void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
1848
+ const float d_all = (float)(xb->d);
1849
+ device const uint8_t * ql = (device const uint8_t *)xb->ql;
1850
+ device const uint8_t * qh = (device const uint8_t *)xb->qh;
1851
+ device const int8_t * scales = (device const int8_t *)xb->scales;
1852
+
1853
+ #if QK_K == 256
1854
+ ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
1855
+ qh = qh + 32*(il/8) + 16*(il&1);
1856
+ float sc = scales[(il%2) + 2 * ((il/2))];
1857
+ il = (il/2)%4;
1858
+ #else
1859
+ ql = ql + 16 * (il&1);
1860
+ float sc = scales[il];
1861
+ #endif
1862
+ for (int i = 0; i < 16; ++i) {
1863
+ uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
1864
+ uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
1865
+ const float coef = il>1 ? 1.f/16.f : 1.f;
1866
+ float q = il&1 ? ((ql[i]&kmask2)|((qh[i]&kmask1)<<2)) - 32.f/coef : \
1867
+ ((ql[i]&kmask2)|((qh[i]&kmask1)<<4)) - 32.f/coef;
1868
+ reg[i/4][i%4] = d_all * sc * q * coef;
1869
+ }
1870
+ }
1871
+
1872
+ template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
1873
+ kernel void kernel_get_rows(
1874
+ device const void * src0,
1875
+ device const int * src1,
1876
+ device float * dst,
1877
+ constant int64_t & ne00,
1878
+ constant uint64_t & nb01,
1879
+ constant uint64_t & nb1,
1880
+ uint tgpig[[threadgroup_position_in_grid]],
1881
+ uint tiitg[[thread_index_in_threadgroup]],
1882
+ uint tptg[[threads_per_threadgroup]]) {
1883
+ const int i = tgpig;
1884
+ const int r = ((device int32_t *) src1)[i];
1885
+
1886
+ for (int ind = tiitg; ind < ne00/16; ind += tptg) {
1887
+ float4x4 temp;
1888
+ dequantize_func(
1889
+ ((device const block_q *) ((device char *) src0 + r*nb01)) + ind/nl, ind%nl, temp);
1890
+ *(((device float4x4 *) ((device char *) dst + i*nb1)) + ind) = temp;
1891
+ }
1892
+ }
1893
+
1894
+ #define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
1895
+ #define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix A
1896
+ #define BLOCK_SIZE_K 32
1897
+ #define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
1898
+ #define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
1899
+ #define THREAD_PER_BLOCK 128
1900
+ #define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
1901
+ #define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
1902
+ #define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
1903
+ #define SG_MAT_ROW 8
1904
+
1905
+ // each block_q contains 16*nl weights
1906
+ template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
1907
+ kernel void kernel_mul_mm(device const uchar * src0,
1908
+ device const float * src1,
1909
+ device float * dst,
1910
+ constant int64_t & ne00,
1911
+ constant int64_t & ne02,
1912
+ constant int64_t & nb01,
1913
+ constant int64_t & nb02,
1914
+ constant int64_t & ne12,
1915
+ constant int64_t & ne0,
1916
+ constant int64_t & ne1,
1917
+ constant uint & gqa,
1918
+ threadgroup uchar * shared_memory [[threadgroup(0)]],
1919
+ uint3 tgpig[[threadgroup_position_in_grid]],
1920
+ uint tiitg[[thread_index_in_threadgroup]],
1921
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
1922
+
1923
+ threadgroup half * sa = ((threadgroup half *)shared_memory);
1924
+ threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
1925
+
1926
+ const uint r0 = tgpig.y;
1927
+ const uint r1 = tgpig.x;
1928
+ const uint im = tgpig.z;
1929
+ // if this block is of 64x32 shape or smaller
1930
+ short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
1931
+ short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
1932
+ // a thread shouldn't load data outside of the matrix
1933
+ short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
1934
+ short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
1935
+
1936
+ simdgroup_half8x8 ma[4];
1937
+ simdgroup_float8x8 mb[2];
1938
+ simdgroup_float8x8 c_res[8];
1939
+ for (int i = 0; i < 8; i++){
1940
+ c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
1941
+ }
1942
+
1943
+ short il = (tiitg % THREAD_PER_ROW);
1944
+ uint offset0 = im/gqa*nb02; ushort offset1 = il/nl;
1945
+ device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
1946
+ device const float * y = src1 + (r1 * BLOCK_SIZE_N + thread_col) * ne00 \
1947
+ + BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL) + im * ne00 * ne1;
1948
+
1949
+ for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
1950
+ //load data and store to threadgroup memory
1951
+ half4x4 temp_a;
1952
+ dequantize_func(x, il, temp_a);
1953
+ threadgroup_barrier(mem_flags::mem_threadgroup);
1954
+ #pragma unroll(16)
1955
+ for (int i = 0; i < 16; i++) {
1956
+ *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
1957
+ + 16 * (tiitg % THREAD_PER_ROW) + 8 * (i / 8)) \
1958
+ + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
1959
+ }
1960
+ *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) \
1961
+ = *((device float2x4 *)y);
1962
+ il = (il + 2 < nl) ? il + 2 : il % 2;
1963
+ x = (il < 2) ? x + (2+nl-1)/nl : x;
1964
+ y += BLOCK_SIZE_K;
1965
+
1966
+ threadgroup_barrier(mem_flags::mem_threadgroup);
1967
+ //load matrices from threadgroup memory and conduct outer products
1968
+ threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
1969
+ threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
1970
+ #pragma unroll(4)
1971
+ for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
1972
+ #pragma unroll(4)
1973
+ for (int i = 0; i < 4; i++) {
1974
+ simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
1975
+ }
1976
+ simdgroup_barrier(mem_flags::mem_none);
1977
+ #pragma unroll(2)
1978
+ for (int i = 0; i < 2; i++) {
1979
+ simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
1980
+ }
1981
+
1982
+ lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
1983
+ lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
1984
+ #pragma unroll(8)
1985
+ for (int i = 0; i < 8; i++){
1986
+ simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
1987
+ }
1988
+ }
1989
+ }
1990
+
1991
+ if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
1992
+ device float *C = dst + BLOCK_SIZE_M * r0 + 32 * (sgitg&1) \
1993
+ + (BLOCK_SIZE_N * r1 + 16 * (sgitg>>1)) * ne0 + im*ne1*ne0;
1994
+ for (int i = 0; i < 8; i++) {
1995
+ simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
1996
+ }
1997
+ } else {
1998
+ // block is smaller than 64x32, we should avoid writing data outside of the matrix
1999
+ threadgroup_barrier(mem_flags::mem_threadgroup);
2000
+ threadgroup float *temp_str = ((threadgroup float *)shared_memory) \
2001
+ + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
2002
+ for (int i = 0; i < 8; i++) {
2003
+ simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
2004
+ }
2005
+
2006
+ threadgroup_barrier(mem_flags::mem_threadgroup);
2007
+ device float *C = dst + BLOCK_SIZE_M * r0 + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
2008
+ if (sgitg==0) {
2009
+ for (int i = 0; i < n_rows; i++) {
2010
+ for (int j = tiitg; j< n_cols; j += BLOCK_SIZE_N) {
2011
+ *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
2012
+ }
2013
+ }
2014
+ }
2015
+ }
2016
+ }
2017
+
2018
+ #if QK_K == 256
2019
+ #define QK_NL 16
2020
+ #else
2021
+ #define QK_NL 4
2022
+ #endif
2023
+
2024
+ typedef void (get_rows_t)(device const void *, device const int *, device float *, constant int64_t &, \
2025
+ constant uint64_t &, constant uint64_t &, uint, uint, uint);
2026
+
2027
+ template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
2028
+ template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
2029
+ template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
2030
+ template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
2031
+ template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
2032
+ template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
2033
+ template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows<block_q4_K, QK_NL, dequantize_q4_K>;
2034
+ template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows<block_q5_K, QK_NL, dequantize_q5_K>;
2035
+ template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
2036
+
2037
+ typedef void (mat_mm_t)(device const uchar *, device const float *, device float *, constant int64_t &,\
2038
+ constant int64_t &, constant int64_t &, constant int64_t &, constant int64_t &, \
2039
+ constant int64_t &, constant int64_t &, constant uint &, threadgroup uchar *, uint3, uint, uint);
2040
+
2041
+ template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
2042
+ template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
2043
+ template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
2044
+ template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
2045
+ template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
2046
+ template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
2047
+ template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
2048
+ template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_K, QK_NL, dequantize_q5_K>;
2049
+ template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;