gpt_neox_client 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,46 @@
1
+ #pragma once
2
+
3
+ #include "ggml.h"
4
+
5
+ #ifdef GGML_USE_HIPBLAS
6
+ #define GGML_CUDA_NAME "ROCm"
7
+ #define GGML_CUBLAS_NAME "hipBLAS"
8
+ #else
9
+ #define GGML_CUDA_NAME "CUDA"
10
+ #define GGML_CUBLAS_NAME "cuBLAS"
11
+ #endif
12
+
13
+ #ifdef __cplusplus
14
+ extern "C" {
15
+ #endif
16
+
17
+ #define GGML_CUDA_MAX_DEVICES 16
18
+
19
+ GGML_API void ggml_init_cublas(void);
20
+ GGML_API void * ggml_cuda_host_malloc(size_t size);
21
+ GGML_API void ggml_cuda_host_free(void * ptr);
22
+
23
+ GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
24
+ GGML_API void ggml_cuda_set_tensor_split(const float * tensor_split);
25
+ GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
26
+ GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor);
27
+
28
+ GGML_API void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
29
+ GGML_API void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
30
+ GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
31
+
32
+ GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
33
+ GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
34
+
35
+ GGML_API void ggml_cuda_set_main_device(int main_device);
36
+ GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
37
+ GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size);
38
+ GGML_API void ggml_cuda_free_scratch(void);
39
+ GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
40
+
41
+ GGML_API int ggml_cuda_get_device_count(void);
42
+ GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
43
+
44
+ #ifdef __cplusplus
45
+ }
46
+ #endif
@@ -0,0 +1,85 @@
1
+ // An interface allowing to compute ggml_cgraph with Metal
2
+ //
3
+ // This is a fully functional interface that extends ggml with GPU support for Apple devices.
4
+ // A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
5
+ //
6
+ // How it works?
7
+ //
8
+ // As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
9
+ // interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
10
+ // use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
11
+ //
12
+ // You only need to make sure that all memory buffers that you used during the graph creation
13
+ // are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
14
+ // used during the graph evaluation to determine the arguments of the compute kernels.
15
+ //
16
+ // Synchronization between device and host memory (for example for input and output tensors)
17
+ // is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
18
+ //
19
+
20
+ #pragma once
21
+
22
+ #include <stddef.h>
23
+ #include <stdbool.h>
24
+
25
+ // max memory buffers that can be mapped to the device
26
+ #define GGML_METAL_MAX_BUFFERS 16
27
+ #define GGML_METAL_MAX_COMMAND_BUFFERS 32
28
+
29
+ struct ggml_tensor;
30
+ struct ggml_cgraph;
31
+
32
+ #ifdef __cplusplus
33
+ extern "C" {
34
+ #endif
35
+
36
+ struct ggml_metal_context;
37
+
38
+ // number of command buffers to use
39
+ struct ggml_metal_context * ggml_metal_init(int n_cb);
40
+ void ggml_metal_free(struct ggml_metal_context * ctx);
41
+
42
+ void * ggml_metal_host_malloc(size_t n);
43
+ void ggml_metal_host_free (void * data);
44
+
45
+ // set the number of command buffers to use
46
+ void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
47
+
48
+ // creates a mapping between a host memory buffer and a device memory buffer
49
+ // - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
50
+ // - the mapping is used during computation to determine the arguments of the compute kernels
51
+ // - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
52
+ // - max_size specifies the maximum size of a tensor and is used to create shared views such
53
+ // that it is guaranteed that the tensor will fit in at least one of the views
54
+ //
55
+ bool ggml_metal_add_buffer(
56
+ struct ggml_metal_context * ctx,
57
+ const char * name,
58
+ void * data,
59
+ size_t size,
60
+ size_t max_size);
61
+
62
+ // set data from host memory into the device
63
+ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
64
+
65
+ // get data from the device into host memory
66
+ void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
67
+
68
+ // try to find operations that can be run concurrently in the graph
69
+ // you should run it again if the topology of your graph changes
70
+ void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
71
+
72
+ // if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
73
+ int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
74
+
75
+ // output the concur_list for ggml_alloc
76
+ int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
77
+
78
+ // same as ggml_graph_compute but uses Metal
79
+ // creates gf->n_threads command buffers in parallel
80
+ void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
81
+
82
+ #ifdef __cplusplus
83
+ }
84
+ #endif
85
+