faiss 0.2.0 → 0.2.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +16 -0
- data/LICENSE.txt +1 -1
- data/README.md +7 -7
- data/ext/faiss/extconf.rb +6 -3
- data/ext/faiss/numo.hpp +4 -4
- data/ext/faiss/utils.cpp +1 -1
- data/ext/faiss/utils.h +1 -1
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +292 -291
- data/vendor/faiss/faiss/AutoTune.h +55 -56
- data/vendor/faiss/faiss/Clustering.cpp +365 -194
- data/vendor/faiss/faiss/Clustering.h +102 -35
- data/vendor/faiss/faiss/IVFlib.cpp +171 -195
- data/vendor/faiss/faiss/IVFlib.h +48 -51
- data/vendor/faiss/faiss/Index.cpp +85 -103
- data/vendor/faiss/faiss/Index.h +54 -48
- data/vendor/faiss/faiss/Index2Layer.cpp +126 -224
- data/vendor/faiss/faiss/Index2Layer.h +22 -36
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +407 -0
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.h +195 -0
- data/vendor/faiss/faiss/IndexBinary.cpp +45 -37
- data/vendor/faiss/faiss/IndexBinary.h +140 -132
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +73 -53
- data/vendor/faiss/faiss/IndexBinaryFlat.h +29 -24
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +46 -43
- data/vendor/faiss/faiss/IndexBinaryFromFloat.h +16 -15
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +215 -232
- data/vendor/faiss/faiss/IndexBinaryHNSW.h +25 -24
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +182 -177
- data/vendor/faiss/faiss/IndexBinaryHash.h +41 -34
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +489 -461
- data/vendor/faiss/faiss/IndexBinaryIVF.h +97 -68
- data/vendor/faiss/faiss/IndexFlat.cpp +115 -176
- data/vendor/faiss/faiss/IndexFlat.h +42 -59
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +67 -0
- data/vendor/faiss/faiss/IndexFlatCodes.h +47 -0
- data/vendor/faiss/faiss/IndexHNSW.cpp +372 -348
- data/vendor/faiss/faiss/IndexHNSW.h +57 -41
- data/vendor/faiss/faiss/IndexIVF.cpp +545 -453
- data/vendor/faiss/faiss/IndexIVF.h +169 -118
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +316 -0
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +121 -0
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +247 -252
- data/vendor/faiss/faiss/IndexIVFFlat.h +48 -51
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +459 -517
- data/vendor/faiss/faiss/IndexIVFPQ.h +75 -67
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +406 -372
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +82 -57
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +104 -102
- data/vendor/faiss/faiss/IndexIVFPQR.h +33 -28
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +163 -150
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +38 -25
- data/vendor/faiss/faiss/IndexLSH.cpp +66 -113
- data/vendor/faiss/faiss/IndexLSH.h +20 -38
- data/vendor/faiss/faiss/IndexLattice.cpp +42 -56
- data/vendor/faiss/faiss/IndexLattice.h +11 -16
- data/vendor/faiss/faiss/IndexNNDescent.cpp +229 -0
- data/vendor/faiss/faiss/IndexNNDescent.h +72 -0
- data/vendor/faiss/faiss/IndexNSG.cpp +301 -0
- data/vendor/faiss/faiss/IndexNSG.h +85 -0
- data/vendor/faiss/faiss/IndexPQ.cpp +387 -495
- data/vendor/faiss/faiss/IndexPQ.h +64 -82
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +143 -170
- data/vendor/faiss/faiss/IndexPQFastScan.h +46 -32
- data/vendor/faiss/faiss/IndexPreTransform.cpp +120 -150
- data/vendor/faiss/faiss/IndexPreTransform.h +33 -36
- data/vendor/faiss/faiss/IndexRefine.cpp +139 -127
- data/vendor/faiss/faiss/IndexRefine.h +32 -23
- data/vendor/faiss/faiss/IndexReplicas.cpp +147 -153
- data/vendor/faiss/faiss/IndexReplicas.h +62 -56
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +111 -172
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +41 -59
- data/vendor/faiss/faiss/IndexShards.cpp +256 -240
- data/vendor/faiss/faiss/IndexShards.h +85 -73
- data/vendor/faiss/faiss/MatrixStats.cpp +112 -97
- data/vendor/faiss/faiss/MatrixStats.h +7 -10
- data/vendor/faiss/faiss/MetaIndexes.cpp +135 -157
- data/vendor/faiss/faiss/MetaIndexes.h +40 -34
- data/vendor/faiss/faiss/MetricType.h +7 -7
- data/vendor/faiss/faiss/VectorTransform.cpp +654 -475
- data/vendor/faiss/faiss/VectorTransform.h +64 -89
- data/vendor/faiss/faiss/clone_index.cpp +78 -73
- data/vendor/faiss/faiss/clone_index.h +4 -9
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +33 -38
- data/vendor/faiss/faiss/gpu/GpuAutoTune.h +11 -9
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +198 -171
- data/vendor/faiss/faiss/gpu/GpuCloner.h +53 -35
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.cpp +12 -14
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +27 -25
- data/vendor/faiss/faiss/gpu/GpuDistance.h +116 -112
- data/vendor/faiss/faiss/gpu/GpuFaissAssert.h +1 -2
- data/vendor/faiss/faiss/gpu/GpuIcmEncoder.h +60 -0
- data/vendor/faiss/faiss/gpu/GpuIndex.h +134 -137
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +76 -73
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +173 -162
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +67 -64
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +89 -86
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +150 -141
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +101 -103
- data/vendor/faiss/faiss/gpu/GpuIndicesOptions.h +17 -16
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +116 -128
- data/vendor/faiss/faiss/gpu/GpuResources.h +182 -186
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +433 -422
- data/vendor/faiss/faiss/gpu/StandardGpuResources.h +131 -130
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +468 -456
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.h +25 -19
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +22 -20
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +9 -8
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper-inl.h +39 -44
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper.h +16 -14
- data/vendor/faiss/faiss/gpu/perf/PerfClustering.cpp +77 -71
- data/vendor/faiss/faiss/gpu/perf/PerfIVFPQAdd.cpp +109 -88
- data/vendor/faiss/faiss/gpu/perf/WriteIndex.cpp +75 -64
- data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +230 -215
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +80 -86
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +284 -277
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +416 -416
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +611 -517
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +166 -164
- data/vendor/faiss/faiss/gpu/test/TestGpuMemoryException.cpp +61 -53
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +274 -238
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +73 -57
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +47 -50
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +79 -72
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.cpp +140 -146
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.h +69 -71
- data/vendor/faiss/faiss/gpu/utils/StaticUtils.h +21 -16
- data/vendor/faiss/faiss/gpu/utils/Timer.cpp +25 -29
- data/vendor/faiss/faiss/gpu/utils/Timer.h +30 -29
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +503 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +175 -0
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +90 -120
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +81 -65
- data/vendor/faiss/faiss/impl/FaissAssert.h +73 -58
- data/vendor/faiss/faiss/impl/FaissException.cpp +56 -48
- data/vendor/faiss/faiss/impl/FaissException.h +41 -29
- data/vendor/faiss/faiss/impl/HNSW.cpp +606 -617
- data/vendor/faiss/faiss/impl/HNSW.h +179 -200
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +855 -0
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +244 -0
- data/vendor/faiss/faiss/impl/NNDescent.cpp +487 -0
- data/vendor/faiss/faiss/impl/NNDescent.h +154 -0
- data/vendor/faiss/faiss/impl/NSG.cpp +679 -0
- data/vendor/faiss/faiss/impl/NSG.h +199 -0
- data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +484 -454
- data/vendor/faiss/faiss/impl/PolysemousTraining.h +52 -55
- data/vendor/faiss/faiss/impl/ProductQuantizer-inl.h +26 -47
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +469 -459
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +76 -87
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +758 -0
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +188 -0
- data/vendor/faiss/faiss/impl/ResultHandler.h +96 -132
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +647 -707
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +48 -46
- data/vendor/faiss/faiss/impl/ThreadedIndex-inl.h +129 -131
- data/vendor/faiss/faiss/impl/ThreadedIndex.h +61 -55
- data/vendor/faiss/faiss/impl/index_read.cpp +631 -480
- data/vendor/faiss/faiss/impl/index_write.cpp +547 -407
- data/vendor/faiss/faiss/impl/io.cpp +76 -95
- data/vendor/faiss/faiss/impl/io.h +31 -41
- data/vendor/faiss/faiss/impl/io_macros.h +60 -29
- data/vendor/faiss/faiss/impl/kmeans1d.cpp +301 -0
- data/vendor/faiss/faiss/impl/kmeans1d.h +48 -0
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +137 -186
- data/vendor/faiss/faiss/impl/lattice_Zn.h +40 -51
- data/vendor/faiss/faiss/impl/platform_macros.h +29 -8
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +77 -124
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +39 -48
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +41 -52
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +80 -117
- data/vendor/faiss/faiss/impl/simd_result_handlers.h +109 -137
- data/vendor/faiss/faiss/index_factory.cpp +619 -397
- data/vendor/faiss/faiss/index_factory.h +8 -6
- data/vendor/faiss/faiss/index_io.h +23 -26
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +67 -75
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +22 -24
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +96 -112
- data/vendor/faiss/faiss/invlists/DirectMap.h +29 -33
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +307 -364
- data/vendor/faiss/faiss/invlists/InvertedLists.h +151 -151
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.cpp +29 -34
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.h +17 -18
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +257 -293
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.h +50 -45
- data/vendor/faiss/faiss/python/python_callbacks.cpp +23 -26
- data/vendor/faiss/faiss/python/python_callbacks.h +9 -16
- data/vendor/faiss/faiss/utils/AlignedTable.h +79 -44
- data/vendor/faiss/faiss/utils/Heap.cpp +40 -48
- data/vendor/faiss/faiss/utils/Heap.h +186 -209
- data/vendor/faiss/faiss/utils/WorkerThread.cpp +67 -76
- data/vendor/faiss/faiss/utils/WorkerThread.h +32 -33
- data/vendor/faiss/faiss/utils/distances.cpp +305 -312
- data/vendor/faiss/faiss/utils/distances.h +170 -122
- data/vendor/faiss/faiss/utils/distances_simd.cpp +498 -508
- data/vendor/faiss/faiss/utils/extra_distances-inl.h +117 -0
- data/vendor/faiss/faiss/utils/extra_distances.cpp +113 -232
- data/vendor/faiss/faiss/utils/extra_distances.h +30 -29
- data/vendor/faiss/faiss/utils/hamming-inl.h +260 -209
- data/vendor/faiss/faiss/utils/hamming.cpp +375 -469
- data/vendor/faiss/faiss/utils/hamming.h +62 -85
- data/vendor/faiss/faiss/utils/ordered_key_value.h +16 -18
- data/vendor/faiss/faiss/utils/partitioning.cpp +393 -318
- data/vendor/faiss/faiss/utils/partitioning.h +26 -21
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +78 -66
- data/vendor/faiss/faiss/utils/quantize_lut.h +22 -20
- data/vendor/faiss/faiss/utils/random.cpp +39 -63
- data/vendor/faiss/faiss/utils/random.h +13 -16
- data/vendor/faiss/faiss/utils/simdlib.h +4 -2
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +88 -85
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +226 -165
- data/vendor/faiss/faiss/utils/simdlib_neon.h +832 -0
- data/vendor/faiss/faiss/utils/utils.cpp +304 -287
- data/vendor/faiss/faiss/utils/utils.h +54 -49
- metadata +29 -4
@@ -8,70 +8,68 @@
|
|
8
8
|
#include <faiss/IndexIVFPQFastScan.h>
|
9
9
|
|
10
10
|
#include <cassert>
|
11
|
+
#include <cinttypes>
|
11
12
|
#include <cstdio>
|
12
|
-
#include <inttypes.h>
|
13
13
|
|
14
14
|
#include <omp.h>
|
15
15
|
|
16
16
|
#include <memory>
|
17
17
|
|
18
|
+
#include <faiss/impl/AuxIndexStructures.h>
|
18
19
|
#include <faiss/impl/FaissAssert.h>
|
19
|
-
#include <faiss/utils/utils.h>
|
20
20
|
#include <faiss/utils/distances.h>
|
21
21
|
#include <faiss/utils/simdlib.h>
|
22
|
-
#include <faiss/
|
22
|
+
#include <faiss/utils/utils.h>
|
23
23
|
|
24
24
|
#include <faiss/invlists/BlockInvertedLists.h>
|
25
25
|
|
26
|
+
#include <faiss/impl/pq4_fast_scan.h>
|
26
27
|
#include <faiss/impl/simd_result_handlers.h>
|
27
28
|
#include <faiss/utils/quantize_lut.h>
|
28
|
-
#include <faiss/impl/pq4_fast_scan.h>
|
29
29
|
|
30
30
|
namespace faiss {
|
31
31
|
|
32
32
|
using namespace simd_result_handlers;
|
33
33
|
|
34
|
-
|
35
34
|
inline size_t roundup(size_t a, size_t b) {
|
36
35
|
return (a + b - 1) / b * b;
|
37
36
|
}
|
38
37
|
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
38
|
+
IndexIVFPQFastScan::IndexIVFPQFastScan(
|
39
|
+
Index* quantizer,
|
40
|
+
size_t d,
|
41
|
+
size_t nlist,
|
42
|
+
size_t M,
|
43
|
+
size_t nbits_per_idx,
|
44
|
+
MetricType metric,
|
45
|
+
int bbs)
|
46
|
+
: IndexIVF(quantizer, d, nlist, 0, metric),
|
47
|
+
pq(d, M, nbits_per_idx),
|
48
|
+
bbs(bbs) {
|
48
49
|
FAISS_THROW_IF_NOT(nbits_per_idx == 4);
|
49
50
|
M2 = roundup(pq.M, 2);
|
50
51
|
by_residual = false; // set to false by default because it's much faster
|
51
52
|
is_trained = false;
|
52
53
|
code_size = pq.code_size;
|
53
54
|
|
54
|
-
replace_invlists(
|
55
|
-
new BlockInvertedLists(nlist, bbs, bbs * M2 / 2),
|
56
|
-
true
|
57
|
-
);
|
55
|
+
replace_invlists(new BlockInvertedLists(nlist, bbs, bbs * M2 / 2), true);
|
58
56
|
}
|
59
57
|
|
60
|
-
IndexIVFPQFastScan::IndexIVFPQFastScan
|
61
|
-
{
|
58
|
+
IndexIVFPQFastScan::IndexIVFPQFastScan() {
|
62
59
|
by_residual = false;
|
63
60
|
bbs = 0;
|
64
61
|
M2 = 0;
|
65
62
|
}
|
66
63
|
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
64
|
+
IndexIVFPQFastScan::IndexIVFPQFastScan(const IndexIVFPQ& orig, int bbs)
|
65
|
+
: IndexIVF(
|
66
|
+
orig.quantizer,
|
67
|
+
orig.d,
|
68
|
+
orig.nlist,
|
69
|
+
orig.pq.code_size,
|
70
|
+
orig.metric_type),
|
71
|
+
pq(orig.pq),
|
72
|
+
bbs(bbs) {
|
75
73
|
FAISS_THROW_IF_NOT(orig.pq.nbits == 4);
|
76
74
|
|
77
75
|
by_residual = orig.by_residual;
|
@@ -83,69 +81,68 @@ IndexIVFPQFastScan::IndexIVFPQFastScan(const IndexIVFPQ & orig, int bbs):
|
|
83
81
|
M2 = roundup(M, 2);
|
84
82
|
|
85
83
|
replace_invlists(
|
86
|
-
|
87
|
-
true
|
88
|
-
);
|
84
|
+
new BlockInvertedLists(orig.nlist, bbs, bbs * M2 / 2), true);
|
89
85
|
|
90
86
|
precomputed_table.resize(orig.precomputed_table.size());
|
91
87
|
|
92
88
|
if (precomputed_table.nbytes() > 0) {
|
93
|
-
memcpy(precomputed_table.get(),
|
94
|
-
precomputed_table.
|
95
|
-
|
89
|
+
memcpy(precomputed_table.get(),
|
90
|
+
orig.precomputed_table.data(),
|
91
|
+
precomputed_table.nbytes());
|
96
92
|
}
|
97
93
|
|
98
|
-
for(size_t i = 0; i < nlist; i++) {
|
94
|
+
for (size_t i = 0; i < nlist; i++) {
|
99
95
|
size_t nb = orig.invlists->list_size(i);
|
100
96
|
size_t nb2 = roundup(nb, bbs);
|
101
97
|
AlignedTable<uint8_t> tmp(nb2 * M2 / 2);
|
102
98
|
pq4_pack_codes(
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
99
|
+
InvertedLists::ScopedCodes(orig.invlists, i).get(),
|
100
|
+
nb,
|
101
|
+
M,
|
102
|
+
nb2,
|
103
|
+
bbs,
|
104
|
+
M2,
|
105
|
+
tmp.get());
|
107
106
|
invlists->add_entries(
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
107
|
+
i,
|
108
|
+
nb,
|
109
|
+
InvertedLists::ScopedIds(orig.invlists, i).get(),
|
110
|
+
tmp.get());
|
112
111
|
}
|
113
112
|
|
114
113
|
orig_invlists = orig.invlists;
|
115
114
|
}
|
116
115
|
|
117
|
-
|
118
|
-
|
119
116
|
/*********************************************************
|
120
117
|
* Training
|
121
118
|
*********************************************************/
|
122
119
|
|
123
|
-
void IndexIVFPQFastScan::train_residual
|
124
|
-
|
120
|
+
void IndexIVFPQFastScan::train_residual(idx_t n, const float* x_in) {
|
121
|
+
const float* x = fvecs_maybe_subsample(
|
122
|
+
d,
|
123
|
+
(size_t*)&n,
|
124
|
+
pq.cp.max_points_per_centroid * pq.ksub,
|
125
|
+
x_in,
|
126
|
+
verbose,
|
127
|
+
pq.cp.seed);
|
125
128
|
|
126
|
-
|
127
|
-
d, (size_t*)&n, pq.cp.max_points_per_centroid * pq.ksub,
|
128
|
-
x_in, verbose, pq.cp.seed);
|
129
|
-
|
130
|
-
std::unique_ptr<float []> del_x;
|
129
|
+
std::unique_ptr<float[]> del_x;
|
131
130
|
if (x != x_in) {
|
132
131
|
del_x.reset((float*)x);
|
133
132
|
}
|
134
133
|
|
135
|
-
const float
|
134
|
+
const float* trainset;
|
136
135
|
AlignedTable<float> residuals;
|
137
136
|
|
138
137
|
if (by_residual) {
|
139
|
-
if(verbose)
|
138
|
+
if (verbose)
|
139
|
+
printf("computing residuals\n");
|
140
140
|
std::vector<idx_t> assign(n);
|
141
|
-
quantizer->assign
|
141
|
+
quantizer->assign(n, x, assign.data());
|
142
142
|
residuals.resize(n * d);
|
143
143
|
for (idx_t i = 0; i < n; i++) {
|
144
|
-
|
145
|
-
|
146
|
-
residuals.data() + i * d,
|
147
|
-
assign[i]
|
148
|
-
);
|
144
|
+
quantizer->compute_residual(
|
145
|
+
x + i * d, residuals.data() + i * d, assign[i]);
|
149
146
|
}
|
150
147
|
trainset = residuals.data();
|
151
148
|
} else {
|
@@ -153,82 +150,78 @@ void IndexIVFPQFastScan::train_residual (idx_t n, const float *x_in)
|
|
153
150
|
}
|
154
151
|
|
155
152
|
if (verbose) {
|
156
|
-
printf
|
157
|
-
|
153
|
+
printf("training %zdx%zd product quantizer on "
|
154
|
+
"%" PRId64 " vectors in %dD\n",
|
155
|
+
pq.M,
|
156
|
+
pq.ksub,
|
157
|
+
n,
|
158
|
+
d);
|
158
159
|
}
|
159
160
|
pq.verbose = verbose;
|
160
|
-
pq.train
|
161
|
+
pq.train(n, trainset);
|
161
162
|
|
162
163
|
if (by_residual && metric_type == METRIC_L2) {
|
163
164
|
precompute_table();
|
164
165
|
}
|
165
|
-
|
166
166
|
}
|
167
167
|
|
168
|
-
void IndexIVFPQFastScan::precompute_table
|
169
|
-
{
|
168
|
+
void IndexIVFPQFastScan::precompute_table() {
|
170
169
|
initialize_IVFPQ_precomputed_table(
|
171
|
-
|
172
|
-
quantizer, pq, precomputed_table, verbose
|
173
|
-
);
|
170
|
+
use_precomputed_table, quantizer, pq, precomputed_table, verbose);
|
174
171
|
}
|
175
172
|
|
176
|
-
|
177
173
|
/*********************************************************
|
178
174
|
* Code management functions
|
179
175
|
*********************************************************/
|
180
176
|
|
181
|
-
|
182
|
-
|
183
177
|
void IndexIVFPQFastScan::encode_vectors(
|
184
|
-
idx_t n,
|
185
|
-
|
186
|
-
|
187
|
-
|
178
|
+
idx_t n,
|
179
|
+
const float* x,
|
180
|
+
const idx_t* list_nos,
|
181
|
+
uint8_t* codes,
|
182
|
+
bool include_listnos) const {
|
188
183
|
if (by_residual) {
|
189
|
-
AlignedTable<float> residuals
|
184
|
+
AlignedTable<float> residuals(n * d);
|
190
185
|
for (size_t i = 0; i < n; i++) {
|
191
186
|
if (list_nos[i] < 0) {
|
192
|
-
memset
|
187
|
+
memset(residuals.data() + i * d, 0, sizeof(residuals[0]) * d);
|
193
188
|
} else {
|
194
|
-
quantizer->compute_residual
|
195
|
-
|
189
|
+
quantizer->compute_residual(
|
190
|
+
x + i * d, residuals.data() + i * d, list_nos[i]);
|
196
191
|
}
|
197
192
|
}
|
198
|
-
pq.compute_codes
|
193
|
+
pq.compute_codes(residuals.data(), codes, n);
|
199
194
|
} else {
|
200
|
-
pq.compute_codes
|
195
|
+
pq.compute_codes(x, codes, n);
|
201
196
|
}
|
202
197
|
|
203
198
|
if (include_listnos) {
|
204
199
|
size_t coarse_size = coarse_code_size();
|
205
200
|
for (idx_t i = n - 1; i >= 0; i--) {
|
206
|
-
uint8_t
|
207
|
-
memmove
|
208
|
-
|
209
|
-
encode_listno (list_nos[i], code);
|
201
|
+
uint8_t* code = codes + i * (coarse_size + code_size);
|
202
|
+
memmove(code + coarse_size, codes + i * code_size, code_size);
|
203
|
+
encode_listno(list_nos[i], code);
|
210
204
|
}
|
211
205
|
}
|
212
206
|
}
|
213
207
|
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
208
|
+
void IndexIVFPQFastScan::add_with_ids(
|
209
|
+
idx_t n,
|
210
|
+
const float* x,
|
211
|
+
const idx_t* xids) {
|
219
212
|
// copied from IndexIVF::add_with_ids --->
|
220
213
|
|
221
214
|
// do some blocking to avoid excessive allocs
|
222
215
|
idx_t bs = 65536;
|
223
216
|
if (n > bs) {
|
224
217
|
for (idx_t i0 = 0; i0 < n; i0 += bs) {
|
225
|
-
idx_t i1 = std::min
|
218
|
+
idx_t i1 = std::min(n, i0 + bs);
|
226
219
|
if (verbose) {
|
227
220
|
printf(" IndexIVFPQFastScan::add_with_ids %zd: %zd",
|
228
|
-
size_t(i0),
|
221
|
+
size_t(i0),
|
222
|
+
size_t(i1));
|
229
223
|
}
|
230
|
-
add_with_ids
|
231
|
-
xids ? xids + i0 : nullptr);
|
224
|
+
add_with_ids(i1 - i0, x + i0 * d, xids ? xids + i0 : nullptr);
|
232
225
|
}
|
233
226
|
return;
|
234
227
|
}
|
@@ -236,37 +229,38 @@ void IndexIVFPQFastScan::add_with_ids (
|
|
236
229
|
|
237
230
|
AlignedTable<uint8_t> codes(n * code_size);
|
238
231
|
|
239
|
-
FAISS_THROW_IF_NOT
|
240
|
-
direct_map.check_can_add
|
232
|
+
FAISS_THROW_IF_NOT(is_trained);
|
233
|
+
direct_map.check_can_add(xids);
|
241
234
|
|
242
|
-
std::unique_ptr<idx_t
|
243
|
-
quantizer->assign
|
235
|
+
std::unique_ptr<idx_t[]> idx(new idx_t[n]);
|
236
|
+
quantizer->assign(n, x, idx.get());
|
244
237
|
size_t nadd = 0, nminus1 = 0;
|
245
238
|
|
246
239
|
for (size_t i = 0; i < n; i++) {
|
247
|
-
if (idx[i] < 0)
|
240
|
+
if (idx[i] < 0)
|
241
|
+
nminus1++;
|
248
242
|
}
|
249
243
|
|
250
244
|
AlignedTable<uint8_t> flat_codes(n * code_size);
|
251
|
-
encode_vectors
|
245
|
+
encode_vectors(n, x, idx.get(), flat_codes.get());
|
252
246
|
|
253
247
|
DirectMapAdd dm_adder(direct_map, n, xids);
|
254
248
|
|
255
249
|
// <---
|
256
250
|
|
257
|
-
BlockInvertedLists
|
258
|
-
FAISS_THROW_IF_NOT_MSG
|
251
|
+
BlockInvertedLists* bil = dynamic_cast<BlockInvertedLists*>(invlists);
|
252
|
+
FAISS_THROW_IF_NOT_MSG(bil, "only block inverted lists supported");
|
259
253
|
|
260
254
|
// prepare batches
|
261
255
|
std::vector<idx_t> order(n);
|
262
|
-
for(idx_t i = 0; i < n
|
256
|
+
for (idx_t i = 0; i < n; i++) {
|
257
|
+
order[i] = i;
|
258
|
+
}
|
263
259
|
|
264
260
|
// TODO should not need stable
|
265
|
-
std::stable_sort(order.begin(), order.end(),
|
266
|
-
[
|
267
|
-
|
268
|
-
}
|
269
|
-
);
|
261
|
+
std::stable_sort(order.begin(), order.end(), [&idx](idx_t a, idx_t b) {
|
262
|
+
return idx[a] < idx[b];
|
263
|
+
});
|
270
264
|
|
271
265
|
// TODO parallelize
|
272
266
|
idx_t i0 = 0;
|
@@ -274,7 +268,7 @@ void IndexIVFPQFastScan::add_with_ids (
|
|
274
268
|
idx_t list_no = idx[order[i0]];
|
275
269
|
idx_t i1 = i0 + 1;
|
276
270
|
while (i1 < n && idx[order[i1]] == list_no) {
|
277
|
-
i1
|
271
|
+
i1++;
|
278
272
|
}
|
279
273
|
|
280
274
|
if (list_no == -1) {
|
@@ -288,58 +282,57 @@ void IndexIVFPQFastScan::add_with_ids (
|
|
288
282
|
|
289
283
|
bil->resize(list_no, list_size + i1 - i0);
|
290
284
|
|
291
|
-
for(idx_t i = i0; i < i1; i++) {
|
285
|
+
for (idx_t i = i0; i < i1; i++) {
|
292
286
|
size_t ofs = list_size + i - i0;
|
293
287
|
idx_t id = xids ? xids[order[i]] : ntotal + order[i];
|
294
|
-
dm_adder.add
|
288
|
+
dm_adder.add(order[i], list_no, ofs);
|
295
289
|
bil->ids[list_no][ofs] = id;
|
296
|
-
memcpy(
|
297
|
-
|
298
|
-
|
299
|
-
code_size
|
300
|
-
);
|
290
|
+
memcpy(list_codes.data() + (i - i0) * code_size,
|
291
|
+
flat_codes.data() + order[i] * code_size,
|
292
|
+
code_size);
|
301
293
|
nadd++;
|
302
294
|
}
|
303
295
|
pq4_pack_codes_range(
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
296
|
+
list_codes.data(),
|
297
|
+
pq.M,
|
298
|
+
list_size,
|
299
|
+
list_size + i1 - i0,
|
300
|
+
bbs,
|
301
|
+
M2,
|
302
|
+
bil->codes[list_no].data());
|
308
303
|
|
309
304
|
i0 = i1;
|
310
305
|
}
|
311
306
|
|
312
307
|
ntotal += n;
|
313
|
-
|
314
308
|
}
|
315
309
|
|
316
|
-
|
317
|
-
|
318
310
|
/*********************************************************
|
319
311
|
* search
|
320
312
|
*********************************************************/
|
321
313
|
|
322
|
-
|
323
314
|
namespace {
|
324
315
|
|
325
316
|
// from impl/ProductQuantizer.cpp
|
326
317
|
template <class C, typename dis_t>
|
327
318
|
void pq_estimators_from_tables_generic(
|
328
|
-
const ProductQuantizer& pq,
|
329
|
-
|
330
|
-
const
|
319
|
+
const ProductQuantizer& pq,
|
320
|
+
size_t nbits,
|
321
|
+
const uint8_t* codes,
|
322
|
+
size_t ncodes,
|
323
|
+
const dis_t* dis_table,
|
324
|
+
const int64_t* ids,
|
331
325
|
float dis0,
|
332
|
-
size_t k,
|
333
|
-
|
326
|
+
size_t k,
|
327
|
+
typename C::T* heap_dis,
|
328
|
+
int64_t* heap_ids) {
|
334
329
|
using accu_t = typename C::T;
|
335
330
|
const size_t M = pq.M;
|
336
331
|
const size_t ksub = pq.ksub;
|
337
332
|
for (size_t j = 0; j < ncodes; ++j) {
|
338
|
-
PQDecoderGeneric decoder(
|
339
|
-
codes + j * pq.code_size, nbits
|
340
|
-
);
|
333
|
+
PQDecoderGeneric decoder(codes + j * pq.code_size, nbits);
|
341
334
|
accu_t dis = dis0;
|
342
|
-
const dis_t
|
335
|
+
const dis_t* dt = dis_table;
|
343
336
|
for (size_t m = 0; m < M; m++) {
|
344
337
|
uint64_t c = decoder.decode();
|
345
338
|
dis += dt[c];
|
@@ -356,17 +349,19 @@ void pq_estimators_from_tables_generic(
|
|
356
349
|
using idx_t = Index::idx_t;
|
357
350
|
using namespace quantize_lut;
|
358
351
|
|
359
|
-
void fvec_madd_avx
|
360
|
-
size_t n,
|
361
|
-
|
362
|
-
|
352
|
+
void fvec_madd_avx(
|
353
|
+
size_t n,
|
354
|
+
const float* a,
|
355
|
+
float bf,
|
356
|
+
const float* b,
|
357
|
+
float* c) {
|
363
358
|
assert(is_aligned_pointer(a));
|
364
359
|
assert(is_aligned_pointer(b));
|
365
360
|
assert(is_aligned_pointer(c));
|
366
361
|
assert(n % 8 == 0);
|
367
362
|
simd8float32 bf8(bf);
|
368
363
|
n /= 8;
|
369
|
-
for(size_t i = 0; i < n; i++) {
|
364
|
+
for (size_t i = 0; i < n; i++) {
|
370
365
|
simd8float32 ai(a);
|
371
366
|
simd8float32 bi(b);
|
372
367
|
|
@@ -376,7 +371,6 @@ void fvec_madd_avx (
|
|
376
371
|
a += 8;
|
377
372
|
b += 8;
|
378
373
|
}
|
379
|
-
|
380
374
|
}
|
381
375
|
|
382
376
|
} // anonymous namespace
|
@@ -385,23 +379,20 @@ void fvec_madd_avx (
|
|
385
379
|
* Look-Up Table functions
|
386
380
|
*********************************************************/
|
387
381
|
|
388
|
-
|
389
382
|
void IndexIVFPQFastScan::compute_LUT(
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
{
|
396
|
-
const IndexIVFPQFastScan
|
383
|
+
size_t n,
|
384
|
+
const float* x,
|
385
|
+
const idx_t* coarse_ids,
|
386
|
+
const float* coarse_dis,
|
387
|
+
AlignedTable<float>& dis_tables,
|
388
|
+
AlignedTable<float>& biases) const {
|
389
|
+
const IndexIVFPQFastScan& ivfpq = *this;
|
397
390
|
size_t dim12 = pq.ksub * pq.M;
|
398
391
|
size_t d = pq.d;
|
399
392
|
size_t nprobe = ivfpq.nprobe;
|
400
393
|
|
401
394
|
if (ivfpq.by_residual) {
|
402
|
-
|
403
395
|
if (ivfpq.metric_type == METRIC_L2) {
|
404
|
-
|
405
396
|
dis_tables.resize(n * nprobe * dim12);
|
406
397
|
|
407
398
|
if (ivfpq.use_precomputed_table == 1) {
|
@@ -409,57 +400,54 @@ void IndexIVFPQFastScan::compute_LUT(
|
|
409
400
|
memcpy(biases.get(), coarse_dis, sizeof(float) * n * nprobe);
|
410
401
|
|
411
402
|
AlignedTable<float> ip_table(n * dim12);
|
412
|
-
pq.compute_inner_prod_tables
|
403
|
+
pq.compute_inner_prod_tables(n, x, ip_table.get());
|
413
404
|
|
414
405
|
#pragma omp parallel for if (n * nprobe > 8000)
|
415
|
-
for(idx_t ij = 0; ij < n * nprobe; ij++) {
|
406
|
+
for (idx_t ij = 0; ij < n * nprobe; ij++) {
|
416
407
|
idx_t i = ij / nprobe;
|
417
|
-
float
|
408
|
+
float* tab = dis_tables.get() + ij * dim12;
|
418
409
|
idx_t cij = coarse_ids[ij];
|
419
410
|
|
420
411
|
if (cij >= 0) {
|
421
|
-
fvec_madd_avx
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
412
|
+
fvec_madd_avx(
|
413
|
+
dim12,
|
414
|
+
precomputed_table.get() + cij * dim12,
|
415
|
+
-2,
|
416
|
+
ip_table.get() + i * dim12,
|
417
|
+
tab);
|
427
418
|
} else {
|
428
419
|
// fill with NaNs so that they are ignored during
|
429
420
|
// LUT quantization
|
430
|
-
memset
|
421
|
+
memset(tab, -1, sizeof(float) * dim12);
|
431
422
|
}
|
432
423
|
}
|
433
424
|
|
434
425
|
} else {
|
435
|
-
|
436
426
|
std::unique_ptr<float[]> xrel(new float[n * nprobe * d]);
|
437
427
|
biases.resize(n * nprobe);
|
438
428
|
memset(biases.get(), 0, sizeof(float) * n * nprobe);
|
439
429
|
|
440
430
|
#pragma omp parallel for if (n * nprobe > 8000)
|
441
|
-
for(idx_t ij = 0; ij < n * nprobe; ij++) {
|
431
|
+
for (idx_t ij = 0; ij < n * nprobe; ij++) {
|
442
432
|
idx_t i = ij / nprobe;
|
443
|
-
float
|
433
|
+
float* xij = &xrel[ij * d];
|
444
434
|
idx_t cij = coarse_ids[ij];
|
445
435
|
|
446
436
|
if (cij >= 0) {
|
447
|
-
ivfpq.quantizer->compute_residual(
|
448
|
-
x + i * d, xij, cij);
|
437
|
+
ivfpq.quantizer->compute_residual(x + i * d, xij, cij);
|
449
438
|
} else {
|
450
439
|
// will fill with NaNs
|
451
440
|
memset(xij, -1, sizeof(float) * d);
|
452
441
|
}
|
453
442
|
}
|
454
443
|
|
455
|
-
pq.compute_distance_tables
|
444
|
+
pq.compute_distance_tables(
|
456
445
|
n * nprobe, xrel.get(), dis_tables.get());
|
457
|
-
|
458
446
|
}
|
459
447
|
|
460
448
|
} else if (ivfpq.metric_type == METRIC_INNER_PRODUCT) {
|
461
449
|
dis_tables.resize(n * dim12);
|
462
|
-
pq.compute_inner_prod_tables
|
450
|
+
pq.compute_inner_prod_tables(n, x, dis_tables.get());
|
463
451
|
// compute_inner_prod_tables(pq, n, x, dis_tables.get());
|
464
452
|
|
465
453
|
biases.resize(n * nprobe);
|
@@ -471,33 +459,29 @@ void IndexIVFPQFastScan::compute_LUT(
|
|
471
459
|
} else {
|
472
460
|
dis_tables.resize(n * dim12);
|
473
461
|
if (ivfpq.metric_type == METRIC_L2) {
|
474
|
-
pq.compute_distance_tables
|
462
|
+
pq.compute_distance_tables(n, x, dis_tables.get());
|
475
463
|
} else if (ivfpq.metric_type == METRIC_INNER_PRODUCT) {
|
476
|
-
pq.compute_inner_prod_tables
|
464
|
+
pq.compute_inner_prod_tables(n, x, dis_tables.get());
|
477
465
|
} else {
|
478
466
|
FAISS_THROW_FMT("metric %d not supported", ivfpq.metric_type);
|
479
467
|
}
|
480
468
|
}
|
481
|
-
|
482
469
|
}
|
483
470
|
|
484
471
|
void IndexIVFPQFastScan::compute_LUT_uint8(
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
|
472
|
+
size_t n,
|
473
|
+
const float* x,
|
474
|
+
const idx_t* coarse_ids,
|
475
|
+
const float* coarse_dis,
|
476
|
+
AlignedTable<uint8_t>& dis_tables,
|
477
|
+
AlignedTable<uint16_t>& biases,
|
478
|
+
float* normalizers) const {
|
479
|
+
const IndexIVFPQFastScan& ivfpq = *this;
|
492
480
|
AlignedTable<float> dis_tables_float;
|
493
481
|
AlignedTable<float> biases_float;
|
494
482
|
|
495
483
|
uint64_t t0 = get_cy();
|
496
|
-
compute_LUT(
|
497
|
-
n, x,
|
498
|
-
coarse_ids, coarse_dis,
|
499
|
-
dis_tables_float, biases_float
|
500
|
-
);
|
484
|
+
compute_LUT(n, x, coarse_ids, coarse_dis, dis_tables_float, biases_float);
|
501
485
|
IVFFastScan_stats.t_compute_distance_tables += get_cy() - t0;
|
502
486
|
|
503
487
|
bool lut_is_3d = ivfpq.by_residual && ivfpq.metric_type == METRIC_L2;
|
@@ -514,45 +498,52 @@ void IndexIVFPQFastScan::compute_LUT_uint8(
|
|
514
498
|
uint64_t t1 = get_cy();
|
515
499
|
|
516
500
|
#pragma omp parallel for if (n > 100)
|
517
|
-
for(int64_t i = 0; i < n; i++) {
|
518
|
-
const float
|
519
|
-
const float
|
520
|
-
uint8_t
|
521
|
-
uint16_t
|
501
|
+
for (int64_t i = 0; i < n; i++) {
|
502
|
+
const float* t_in = dis_tables_float.get() + i * dim123;
|
503
|
+
const float* b_in = nullptr;
|
504
|
+
uint8_t* t_out = dis_tables.get() + i * dim123_2;
|
505
|
+
uint16_t* b_out = nullptr;
|
522
506
|
if (biases_float.get()) {
|
523
507
|
b_in = biases_float.get() + i * nprobe;
|
524
508
|
b_out = biases.get() + i * nprobe;
|
525
509
|
}
|
526
510
|
|
527
511
|
quantize_LUT_and_bias(
|
528
|
-
|
529
|
-
|
530
|
-
|
531
|
-
|
532
|
-
|
512
|
+
nprobe,
|
513
|
+
pq.M,
|
514
|
+
pq.ksub,
|
515
|
+
lut_is_3d,
|
516
|
+
t_in,
|
517
|
+
b_in,
|
518
|
+
t_out,
|
519
|
+
M2,
|
520
|
+
b_out,
|
521
|
+
normalizers + 2 * i,
|
522
|
+
normalizers + 2 * i + 1);
|
533
523
|
}
|
534
524
|
IVFFastScan_stats.t_round += get_cy() - t1;
|
535
|
-
|
536
525
|
}
|
537
526
|
|
538
|
-
|
539
527
|
/*********************************************************
|
540
528
|
* Search functions
|
541
529
|
*********************************************************/
|
542
530
|
|
543
|
-
template<bool is_max>
|
531
|
+
template <bool is_max>
|
544
532
|
void IndexIVFPQFastScan::search_dispatch_implem(
|
545
|
-
|
546
|
-
|
547
|
-
|
548
|
-
|
549
|
-
|
550
|
-
|
551
|
-
|
552
|
-
|
553
|
-
|
554
|
-
|
555
|
-
|
533
|
+
idx_t n,
|
534
|
+
const float* x,
|
535
|
+
idx_t k,
|
536
|
+
float* distances,
|
537
|
+
idx_t* labels) const {
|
538
|
+
using Cfloat = typename std::conditional<
|
539
|
+
is_max,
|
540
|
+
CMax<float, int64_t>,
|
541
|
+
CMin<float, int64_t>>::type;
|
542
|
+
|
543
|
+
using C = typename std::conditional<
|
544
|
+
is_max,
|
545
|
+
CMax<uint16_t, int64_t>,
|
546
|
+
CMin<uint16_t, int64_t>>::type;
|
556
547
|
|
557
548
|
if (n == 0) {
|
558
549
|
return;
|
@@ -568,7 +559,7 @@ void IndexIVFPQFastScan::search_dispatch_implem(
|
|
568
559
|
impl = 10;
|
569
560
|
}
|
570
561
|
if (k > 20) {
|
571
|
-
impl
|
562
|
+
impl++;
|
572
563
|
}
|
573
564
|
}
|
574
565
|
|
@@ -582,11 +573,25 @@ void IndexIVFPQFastScan::search_dispatch_implem(
|
|
582
573
|
|
583
574
|
if (n < 2) {
|
584
575
|
if (impl == 12 || impl == 13) {
|
585
|
-
search_implem_12<C>
|
586
|
-
|
576
|
+
search_implem_12<C>(
|
577
|
+
n,
|
578
|
+
x,
|
579
|
+
k,
|
580
|
+
distances,
|
581
|
+
labels,
|
582
|
+
impl,
|
583
|
+
&ndis,
|
584
|
+
&nlist_visited);
|
587
585
|
} else {
|
588
|
-
search_implem_10<C>
|
589
|
-
|
586
|
+
search_implem_10<C>(
|
587
|
+
n,
|
588
|
+
x,
|
589
|
+
k,
|
590
|
+
distances,
|
591
|
+
labels,
|
592
|
+
impl,
|
593
|
+
&ndis,
|
594
|
+
&nlist_visited);
|
590
595
|
}
|
591
596
|
} else {
|
592
597
|
// explicitly slice over threads
|
@@ -595,34 +600,47 @@ void IndexIVFPQFastScan::search_dispatch_implem(
|
|
595
600
|
nslice = n;
|
596
601
|
} else if (by_residual && metric_type == METRIC_L2) {
|
597
602
|
// make sure we don't make too big LUT tables
|
598
|
-
size_t lut_size_per_query =
|
599
|
-
|
603
|
+
size_t lut_size_per_query = pq.M * pq.ksub * nprobe *
|
604
|
+
(sizeof(float) + sizeof(uint8_t));
|
600
605
|
|
601
606
|
size_t max_lut_size = precomputed_table_max_bytes;
|
602
607
|
// how many queries we can handle within mem budget
|
603
|
-
size_t nq_ok =
|
604
|
-
|
608
|
+
size_t nq_ok =
|
609
|
+
std::max(max_lut_size / lut_size_per_query, size_t(1));
|
610
|
+
nslice =
|
611
|
+
roundup(std::max(size_t(n / nq_ok), size_t(1)),
|
612
|
+
omp_get_max_threads());
|
605
613
|
} else {
|
606
614
|
// LUTs unlikely to be a limiting factor
|
607
615
|
nslice = omp_get_max_threads();
|
608
616
|
}
|
609
617
|
|
610
|
-
#pragma omp parallel for reduction(
|
618
|
+
#pragma omp parallel for reduction(+ : ndis, nlist_visited)
|
611
619
|
for (int slice = 0; slice < nslice; slice++) {
|
612
620
|
idx_t i0 = n * slice / nslice;
|
613
621
|
idx_t i1 = n * (slice + 1) / nslice;
|
614
|
-
float
|
615
|
-
idx_t
|
622
|
+
float* dis_i = distances + i0 * k;
|
623
|
+
idx_t* lab_i = labels + i0 * k;
|
616
624
|
if (impl == 12 || impl == 13) {
|
617
625
|
search_implem_12<C>(
|
618
|
-
|
619
|
-
|
620
|
-
|
626
|
+
i1 - i0,
|
627
|
+
x + i0 * d,
|
628
|
+
k,
|
629
|
+
dis_i,
|
630
|
+
lab_i,
|
631
|
+
impl,
|
632
|
+
&ndis,
|
633
|
+
&nlist_visited);
|
621
634
|
} else {
|
622
635
|
search_implem_10<C>(
|
623
|
-
|
624
|
-
|
625
|
-
|
636
|
+
i1 - i0,
|
637
|
+
x + i0 * d,
|
638
|
+
k,
|
639
|
+
dis_i,
|
640
|
+
lab_i,
|
641
|
+
impl,
|
642
|
+
&ndis,
|
643
|
+
&nlist_visited);
|
626
644
|
}
|
627
645
|
}
|
628
646
|
}
|
@@ -632,14 +650,16 @@ void IndexIVFPQFastScan::search_dispatch_implem(
|
|
632
650
|
} else {
|
633
651
|
FAISS_THROW_FMT("implem %d does not exist", implem);
|
634
652
|
}
|
635
|
-
|
636
653
|
}
|
637
654
|
|
638
|
-
|
639
655
|
void IndexIVFPQFastScan::search(
|
640
|
-
|
641
|
-
|
642
|
-
|
656
|
+
idx_t n,
|
657
|
+
const float* x,
|
658
|
+
idx_t k,
|
659
|
+
float* distances,
|
660
|
+
idx_t* labels) const {
|
661
|
+
FAISS_THROW_IF_NOT(k > 0);
|
662
|
+
|
643
663
|
if (metric_type == METRIC_L2) {
|
644
664
|
search_dispatch_implem<true>(n, x, k, distances, labels);
|
645
665
|
} else {
|
@@ -647,133 +667,150 @@ void IndexIVFPQFastScan::search(
|
|
647
667
|
}
|
648
668
|
}
|
649
669
|
|
650
|
-
template<class C>
|
670
|
+
template <class C>
|
651
671
|
void IndexIVFPQFastScan::search_implem_1(
|
652
|
-
|
653
|
-
|
654
|
-
|
672
|
+
idx_t n,
|
673
|
+
const float* x,
|
674
|
+
idx_t k,
|
675
|
+
float* distances,
|
676
|
+
idx_t* labels) const {
|
655
677
|
FAISS_THROW_IF_NOT(orig_invlists);
|
656
678
|
|
657
679
|
std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
|
658
680
|
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
|
659
681
|
|
660
|
-
quantizer->search
|
682
|
+
quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
|
661
683
|
|
662
684
|
size_t dim12 = pq.ksub * pq.M;
|
663
685
|
AlignedTable<float> dis_tables;
|
664
686
|
AlignedTable<float> biases;
|
665
687
|
|
666
|
-
compute_LUT (
|
667
|
-
n, x,
|
668
|
-
coarse_ids.get(), coarse_dis.get(),
|
669
|
-
dis_tables, biases
|
670
|
-
);
|
688
|
+
compute_LUT(n, x, coarse_ids.get(), coarse_dis.get(), dis_tables, biases);
|
671
689
|
|
672
690
|
bool single_LUT = !(by_residual && metric_type == METRIC_L2);
|
673
691
|
|
674
692
|
size_t ndis = 0, nlist_visited = 0;
|
675
693
|
|
676
|
-
#pragma omp parallel for reduction(
|
677
|
-
for(idx_t i = 0; i < n; i++) {
|
678
|
-
int64_t
|
679
|
-
float
|
680
|
-
heap_heapify<C>
|
681
|
-
float
|
694
|
+
#pragma omp parallel for reduction(+ : ndis, nlist_visited)
|
695
|
+
for (idx_t i = 0; i < n; i++) {
|
696
|
+
int64_t* heap_ids = labels + i * k;
|
697
|
+
float* heap_dis = distances + i * k;
|
698
|
+
heap_heapify<C>(k, heap_dis, heap_ids);
|
699
|
+
float* LUT = nullptr;
|
682
700
|
|
683
701
|
if (single_LUT) {
|
684
702
|
LUT = dis_tables.get() + i * dim12;
|
685
703
|
}
|
686
|
-
for(idx_t j = 0; j < nprobe; j++) {
|
704
|
+
for (idx_t j = 0; j < nprobe; j++) {
|
687
705
|
if (!single_LUT) {
|
688
706
|
LUT = dis_tables.get() + (i * nprobe + j) * dim12;
|
689
707
|
}
|
690
708
|
idx_t list_no = coarse_ids[i * nprobe + j];
|
691
|
-
if (list_no < 0)
|
709
|
+
if (list_no < 0)
|
710
|
+
continue;
|
692
711
|
size_t ls = orig_invlists->list_size(list_no);
|
693
|
-
if (ls == 0)
|
712
|
+
if (ls == 0)
|
713
|
+
continue;
|
694
714
|
InvertedLists::ScopedCodes codes(orig_invlists, list_no);
|
695
715
|
InvertedLists::ScopedIds ids(orig_invlists, list_no);
|
696
716
|
|
697
717
|
float bias = biases.get() ? biases[i * nprobe + j] : 0;
|
698
718
|
|
699
719
|
pq_estimators_from_tables_generic<C>(
|
700
|
-
|
701
|
-
|
702
|
-
|
703
|
-
|
704
|
-
|
705
|
-
|
720
|
+
pq,
|
721
|
+
pq.nbits,
|
722
|
+
codes.get(),
|
723
|
+
ls,
|
724
|
+
LUT,
|
725
|
+
ids.get(),
|
726
|
+
bias,
|
727
|
+
k,
|
728
|
+
heap_dis,
|
729
|
+
heap_ids);
|
730
|
+
nlist_visited++;
|
731
|
+
ndis++;
|
706
732
|
}
|
707
|
-
heap_reorder<C>
|
733
|
+
heap_reorder<C>(k, heap_dis, heap_ids);
|
708
734
|
}
|
709
735
|
indexIVF_stats.nq += n;
|
710
736
|
indexIVF_stats.ndis += ndis;
|
711
737
|
indexIVF_stats.nlist += nlist_visited;
|
712
738
|
}
|
713
739
|
|
714
|
-
template<class C>
|
740
|
+
template <class C>
|
715
741
|
void IndexIVFPQFastScan::search_implem_2(
|
716
|
-
|
717
|
-
|
718
|
-
|
742
|
+
idx_t n,
|
743
|
+
const float* x,
|
744
|
+
idx_t k,
|
745
|
+
float* distances,
|
746
|
+
idx_t* labels) const {
|
719
747
|
FAISS_THROW_IF_NOT(orig_invlists);
|
720
748
|
|
721
749
|
std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
|
722
750
|
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
|
723
751
|
|
724
|
-
quantizer->search
|
752
|
+
quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
|
725
753
|
|
726
754
|
size_t dim12 = pq.ksub * M2;
|
727
755
|
AlignedTable<uint8_t> dis_tables;
|
728
756
|
AlignedTable<uint16_t> biases;
|
729
757
|
std::unique_ptr<float[]> normalizers(new float[2 * n]);
|
730
758
|
|
731
|
-
compute_LUT_uint8
|
732
|
-
|
733
|
-
|
734
|
-
|
735
|
-
|
736
|
-
|
737
|
-
|
759
|
+
compute_LUT_uint8(
|
760
|
+
n,
|
761
|
+
x,
|
762
|
+
coarse_ids.get(),
|
763
|
+
coarse_dis.get(),
|
764
|
+
dis_tables,
|
765
|
+
biases,
|
766
|
+
normalizers.get());
|
738
767
|
|
739
768
|
bool single_LUT = !(by_residual && metric_type == METRIC_L2);
|
740
769
|
|
741
770
|
size_t ndis = 0, nlist_visited = 0;
|
742
771
|
|
743
|
-
#pragma omp parallel for reduction(
|
744
|
-
for(idx_t i = 0; i < n; i++) {
|
772
|
+
#pragma omp parallel for reduction(+ : ndis, nlist_visited)
|
773
|
+
for (idx_t i = 0; i < n; i++) {
|
745
774
|
std::vector<uint16_t> tmp_dis(k);
|
746
|
-
int64_t
|
747
|
-
uint16_t
|
748
|
-
heap_heapify<C>
|
749
|
-
const uint8_t
|
775
|
+
int64_t* heap_ids = labels + i * k;
|
776
|
+
uint16_t* heap_dis = tmp_dis.data();
|
777
|
+
heap_heapify<C>(k, heap_dis, heap_ids);
|
778
|
+
const uint8_t* LUT = nullptr;
|
750
779
|
|
751
780
|
if (single_LUT) {
|
752
781
|
LUT = dis_tables.get() + i * dim12;
|
753
782
|
}
|
754
|
-
for(idx_t j = 0; j < nprobe; j++) {
|
783
|
+
for (idx_t j = 0; j < nprobe; j++) {
|
755
784
|
if (!single_LUT) {
|
756
785
|
LUT = dis_tables.get() + (i * nprobe + j) * dim12;
|
757
786
|
}
|
758
787
|
idx_t list_no = coarse_ids[i * nprobe + j];
|
759
|
-
if (list_no < 0)
|
788
|
+
if (list_no < 0)
|
789
|
+
continue;
|
760
790
|
size_t ls = orig_invlists->list_size(list_no);
|
761
|
-
if (ls == 0)
|
791
|
+
if (ls == 0)
|
792
|
+
continue;
|
762
793
|
InvertedLists::ScopedCodes codes(orig_invlists, list_no);
|
763
794
|
InvertedLists::ScopedIds ids(orig_invlists, list_no);
|
764
795
|
|
765
796
|
uint16_t bias = biases.get() ? biases[i * nprobe + j] : 0;
|
766
797
|
|
767
798
|
pq_estimators_from_tables_generic<C>(
|
768
|
-
|
769
|
-
|
770
|
-
|
771
|
-
|
799
|
+
pq,
|
800
|
+
pq.nbits,
|
801
|
+
codes.get(),
|
802
|
+
ls,
|
803
|
+
LUT,
|
804
|
+
ids.get(),
|
805
|
+
bias,
|
806
|
+
k,
|
807
|
+
heap_dis,
|
808
|
+
heap_ids);
|
772
809
|
|
773
810
|
nlist_visited++;
|
774
811
|
ndis += ls;
|
775
812
|
}
|
776
|
-
heap_reorder<C>
|
813
|
+
heap_reorder<C>(k, heap_dis, heap_ids);
|
777
814
|
// convert distances to float
|
778
815
|
{
|
779
816
|
float one_a = 1 / normalizers[2 * i], b = normalizers[2 * i + 1];
|
@@ -781,7 +818,7 @@ void IndexIVFPQFastScan::search_implem_2(
|
|
781
818
|
one_a = 1;
|
782
819
|
b = 0;
|
783
820
|
}
|
784
|
-
float
|
821
|
+
float* heap_dis_float = distances + i * k;
|
785
822
|
for (int j = 0; j < k; j++) {
|
786
823
|
heap_dis_float[j] = b + heap_dis[j] * one_a;
|
787
824
|
}
|
@@ -792,14 +829,16 @@ void IndexIVFPQFastScan::search_implem_2(
|
|
792
829
|
indexIVF_stats.nlist += nlist_visited;
|
793
830
|
}
|
794
831
|
|
795
|
-
|
796
|
-
|
797
|
-
template<class C>
|
832
|
+
template <class C>
|
798
833
|
void IndexIVFPQFastScan::search_implem_10(
|
799
|
-
|
800
|
-
|
801
|
-
|
802
|
-
|
834
|
+
idx_t n,
|
835
|
+
const float* x,
|
836
|
+
idx_t k,
|
837
|
+
float* distances,
|
838
|
+
idx_t* labels,
|
839
|
+
int impl,
|
840
|
+
size_t* ndis_out,
|
841
|
+
size_t* nlist_out) const {
|
803
842
|
memset(distances, -1, sizeof(float) * k * n);
|
804
843
|
memset(labels, -1, sizeof(idx_t) * k * n);
|
805
844
|
|
@@ -807,7 +846,6 @@ void IndexIVFPQFastScan::search_implem_10(
|
|
807
846
|
using ReservoirHC = ReservoirHandler<C, true>;
|
808
847
|
using SingleResultHC = SingleResultHandler<C, true>;
|
809
848
|
|
810
|
-
|
811
849
|
std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
|
812
850
|
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
|
813
851
|
|
@@ -817,20 +855,23 @@ void IndexIVFPQFastScan::search_implem_10(
|
|
817
855
|
#define TIC times[ti++] = get_cy()
|
818
856
|
TIC;
|
819
857
|
|
820
|
-
quantizer->search
|
858
|
+
quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
|
821
859
|
|
822
860
|
TIC;
|
823
861
|
|
824
862
|
size_t dim12 = pq.ksub * M2;
|
825
863
|
AlignedTable<uint8_t> dis_tables;
|
826
864
|
AlignedTable<uint16_t> biases;
|
827
|
-
std::unique_ptr<float[]> normalizers
|
865
|
+
std::unique_ptr<float[]> normalizers(new float[2 * n]);
|
828
866
|
|
829
|
-
compute_LUT_uint8
|
830
|
-
n,
|
831
|
-
|
832
|
-
|
833
|
-
|
867
|
+
compute_LUT_uint8(
|
868
|
+
n,
|
869
|
+
x,
|
870
|
+
coarse_ids.get(),
|
871
|
+
coarse_dis.get(),
|
872
|
+
dis_tables,
|
873
|
+
biases,
|
874
|
+
normalizers.get());
|
834
875
|
|
835
876
|
TIC;
|
836
877
|
|
@@ -841,15 +882,16 @@ void IndexIVFPQFastScan::search_implem_10(
|
|
841
882
|
|
842
883
|
{
|
843
884
|
AlignedTable<uint16_t> tmp_distances(k);
|
844
|
-
for(idx_t i = 0; i < n; i++) {
|
845
|
-
const uint8_t
|
885
|
+
for (idx_t i = 0; i < n; i++) {
|
886
|
+
const uint8_t* LUT = nullptr;
|
846
887
|
int qmap1[1] = {0};
|
847
|
-
std::unique_ptr<SIMDResultHandler<C, true
|
888
|
+
std::unique_ptr<SIMDResultHandler<C, true>> handler;
|
848
889
|
|
849
890
|
if (k == 1) {
|
850
891
|
handler.reset(new SingleResultHC(1, 0));
|
851
892
|
} else if (impl == 10) {
|
852
|
-
handler.reset(new HeapHC(
|
893
|
+
handler.reset(new HeapHC(
|
894
|
+
1, tmp_distances.get(), labels + i * k, k, 0));
|
853
895
|
} else if (impl == 11) {
|
854
896
|
handler.reset(new ReservoirHC(1, 0, k, 2 * k));
|
855
897
|
} else {
|
@@ -861,7 +903,7 @@ void IndexIVFPQFastScan::search_implem_10(
|
|
861
903
|
if (single_LUT) {
|
862
904
|
LUT = dis_tables.get() + i * dim12;
|
863
905
|
}
|
864
|
-
for(idx_t j = 0; j < nprobe; j++) {
|
906
|
+
for (idx_t j = 0; j < nprobe; j++) {
|
865
907
|
size_t ij = i * nprobe + j;
|
866
908
|
if (!single_LUT) {
|
867
909
|
LUT = dis_tables.get() + ij * dim12;
|
@@ -871,9 +913,11 @@ void IndexIVFPQFastScan::search_implem_10(
|
|
871
913
|
}
|
872
914
|
|
873
915
|
idx_t list_no = coarse_ids[ij];
|
874
|
-
if (list_no < 0)
|
916
|
+
if (list_no < 0)
|
917
|
+
continue;
|
875
918
|
size_t ls = invlists->list_size(list_no);
|
876
|
-
if (ls == 0)
|
919
|
+
if (ls == 0)
|
920
|
+
continue;
|
877
921
|
|
878
922
|
InvertedLists::ScopedCodes codes(invlists, list_no);
|
879
923
|
InvertedLists::ScopedIds ids(invlists, list_no);
|
@@ -881,41 +925,40 @@ void IndexIVFPQFastScan::search_implem_10(
|
|
881
925
|
handler->ntotal = ls;
|
882
926
|
handler->id_map = ids.get();
|
883
927
|
|
884
|
-
#define DISPATCH(classHC)
|
885
|
-
|
886
|
-
|
887
|
-
|
888
|
-
|
889
|
-
|
890
|
-
); \
|
891
|
-
}
|
928
|
+
#define DISPATCH(classHC) \
|
929
|
+
if (dynamic_cast<classHC*>(handler.get())) { \
|
930
|
+
auto* res = static_cast<classHC*>(handler.get()); \
|
931
|
+
pq4_accumulate_loop( \
|
932
|
+
1, roundup(ls, bbs), bbs, M2, codes.get(), LUT, *res); \
|
933
|
+
}
|
892
934
|
DISPATCH(HeapHC)
|
893
|
-
else DISPATCH(ReservoirHC)
|
894
|
-
else DISPATCH(SingleResultHC)
|
935
|
+
else DISPATCH(ReservoirHC) else DISPATCH(SingleResultHC)
|
895
936
|
#undef DISPATCH
|
896
937
|
|
897
|
-
|
898
|
-
ndis
|
938
|
+
nlist_visited++;
|
939
|
+
ndis++;
|
899
940
|
}
|
900
941
|
|
901
942
|
handler->to_flat_arrays(
|
902
|
-
|
903
|
-
|
904
|
-
|
943
|
+
distances + i * k,
|
944
|
+
labels + i * k,
|
945
|
+
skip & 16 ? nullptr : normalizers.get() + i * 2);
|
905
946
|
}
|
906
947
|
}
|
907
948
|
*ndis_out = ndis;
|
908
949
|
*nlist_out = nlist;
|
909
950
|
}
|
910
951
|
|
911
|
-
|
912
|
-
|
913
|
-
template<class C>
|
952
|
+
template <class C>
|
914
953
|
void IndexIVFPQFastScan::search_implem_12(
|
915
|
-
|
916
|
-
|
917
|
-
|
918
|
-
|
954
|
+
idx_t n,
|
955
|
+
const float* x,
|
956
|
+
idx_t k,
|
957
|
+
float* distances,
|
958
|
+
idx_t* labels,
|
959
|
+
int impl,
|
960
|
+
size_t* ndis_out,
|
961
|
+
size_t* nlist_out) const {
|
919
962
|
if (n == 0) { // does not work well with reservoir
|
920
963
|
return;
|
921
964
|
}
|
@@ -930,53 +973,53 @@ void IndexIVFPQFastScan::search_implem_12(
|
|
930
973
|
#define TIC times[ti++] = get_cy()
|
931
974
|
TIC;
|
932
975
|
|
933
|
-
quantizer->search
|
976
|
+
quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
|
934
977
|
|
935
978
|
TIC;
|
936
979
|
|
937
980
|
size_t dim12 = pq.ksub * M2;
|
938
981
|
AlignedTable<uint8_t> dis_tables;
|
939
982
|
AlignedTable<uint16_t> biases;
|
940
|
-
std::unique_ptr<float[]> normalizers
|
983
|
+
std::unique_ptr<float[]> normalizers(new float[2 * n]);
|
941
984
|
|
942
|
-
compute_LUT_uint8
|
943
|
-
n,
|
944
|
-
|
945
|
-
|
946
|
-
|
985
|
+
compute_LUT_uint8(
|
986
|
+
n,
|
987
|
+
x,
|
988
|
+
coarse_ids.get(),
|
989
|
+
coarse_dis.get(),
|
990
|
+
dis_tables,
|
991
|
+
biases,
|
992
|
+
normalizers.get());
|
947
993
|
|
948
994
|
TIC;
|
949
995
|
|
950
996
|
struct QC {
|
951
|
-
int qno;
|
952
|
-
int list_no;
|
953
|
-
int rank;
|
997
|
+
int qno; // sequence number of the query
|
998
|
+
int list_no; // list to visit
|
999
|
+
int rank; // this is the rank'th result of the coarse quantizer
|
954
1000
|
};
|
955
1001
|
bool single_LUT = !(by_residual && metric_type == METRIC_L2);
|
956
1002
|
|
957
1003
|
std::vector<QC> qcs;
|
958
1004
|
{
|
959
1005
|
int ij = 0;
|
960
|
-
for(int i = 0; i < n; i++) {
|
961
|
-
for(int j = 0; j < nprobe; j++) {
|
1006
|
+
for (int i = 0; i < n; i++) {
|
1007
|
+
for (int j = 0; j < nprobe; j++) {
|
962
1008
|
if (coarse_ids[ij] >= 0) {
|
963
1009
|
qcs.push_back(QC{i, int(coarse_ids[ij]), int(j)});
|
964
1010
|
}
|
965
1011
|
ij++;
|
966
1012
|
}
|
967
1013
|
}
|
968
|
-
std::sort(
|
969
|
-
|
970
|
-
|
971
|
-
return a.list_no < b.list_no;
|
972
|
-
}
|
973
|
-
);
|
1014
|
+
std::sort(qcs.begin(), qcs.end(), [](const QC& a, const QC& b) {
|
1015
|
+
return a.list_no < b.list_no;
|
1016
|
+
});
|
974
1017
|
}
|
975
1018
|
TIC;
|
976
1019
|
|
977
1020
|
// prepare the result handlers
|
978
1021
|
|
979
|
-
std::unique_ptr<SIMDResultHandler<C, true
|
1022
|
+
std::unique_ptr<SIMDResultHandler<C, true>> handler;
|
980
1023
|
AlignedTable<uint16_t> tmp_distances;
|
981
1024
|
|
982
1025
|
using HeapHC = HeapHandler<C, true>;
|
@@ -1012,7 +1055,7 @@ void IndexIVFPQFastScan::search_implem_12(
|
|
1012
1055
|
int list_no = qcs[i0].list_no;
|
1013
1056
|
size_t i1 = i0 + 1;
|
1014
1057
|
|
1015
|
-
while(i1 < qcs.size() && i1 < i0 + qbs2) {
|
1058
|
+
while (i1 < qcs.size() && i1 < i0 + qbs2) {
|
1016
1059
|
if (qcs[i1].list_no != list_no) {
|
1017
1060
|
break;
|
1018
1061
|
}
|
@@ -1034,8 +1077,8 @@ void IndexIVFPQFastScan::search_implem_12(
|
|
1034
1077
|
memset(LUT.get(), -1, nc * dim12);
|
1035
1078
|
int qbs = pq4_preferred_qbs(nc);
|
1036
1079
|
|
1037
|
-
for(size_t i = i0; i < i1; i++) {
|
1038
|
-
const QC
|
1080
|
+
for (size_t i = i0; i < i1; i++) {
|
1081
|
+
const QC& qc = qcs[i];
|
1039
1082
|
q_map[i - i0] = qc.qno;
|
1040
1083
|
int ij = qc.qno * nprobe + qc.rank;
|
1041
1084
|
lut_entries[i - i0] = single_LUT ? qc.qno : ij;
|
@@ -1044,9 +1087,7 @@ void IndexIVFPQFastScan::search_implem_12(
|
|
1044
1087
|
}
|
1045
1088
|
}
|
1046
1089
|
pq4_pack_LUT_qbs_q_map(
|
1047
|
-
|
1048
|
-
LUT.get()
|
1049
|
-
);
|
1090
|
+
qbs, M2, dis_tables.get(), lut_entries.data(), LUT.get());
|
1050
1091
|
|
1051
1092
|
// access the inverted list
|
1052
1093
|
|
@@ -1062,20 +1103,17 @@ void IndexIVFPQFastScan::search_implem_12(
|
|
1062
1103
|
handler->id_map = ids.get();
|
1063
1104
|
uint64_t tt1 = get_cy();
|
1064
1105
|
|
1065
|
-
#define DISPATCH(classHC)
|
1066
|
-
|
1067
|
-
|
1068
|
-
|
1069
|
-
|
1070
|
-
|
1071
|
-
); \
|
1072
|
-
}
|
1106
|
+
#define DISPATCH(classHC) \
|
1107
|
+
if (dynamic_cast<classHC*>(handler.get())) { \
|
1108
|
+
auto* res = static_cast<classHC*>(handler.get()); \
|
1109
|
+
pq4_accumulate_loop_qbs( \
|
1110
|
+
qbs, list_size, M2, codes.get(), LUT.get(), *res); \
|
1111
|
+
}
|
1073
1112
|
DISPATCH(HeapHC)
|
1074
|
-
else DISPATCH(ReservoirHC)
|
1075
|
-
else DISPATCH(SingleResultHC)
|
1113
|
+
else DISPATCH(ReservoirHC) else DISPATCH(SingleResultHC)
|
1076
1114
|
|
1077
|
-
|
1078
|
-
|
1115
|
+
// prepare for next loop
|
1116
|
+
i0 = i1;
|
1079
1117
|
|
1080
1118
|
uint64_t tt2 = get_cy();
|
1081
1119
|
t_copy_pack += tt1 - tt0;
|
@@ -1085,21 +1123,19 @@ void IndexIVFPQFastScan::search_implem_12(
|
|
1085
1123
|
|
1086
1124
|
// labels is in-place for HeapHC
|
1087
1125
|
handler->to_flat_arrays(
|
1088
|
-
distances, labels,
|
1089
|
-
skip & 16 ? nullptr : normalizers.get()
|
1090
|
-
);
|
1126
|
+
distances, labels, skip & 16 ? nullptr : normalizers.get());
|
1091
1127
|
|
1092
1128
|
TIC;
|
1093
1129
|
|
1094
1130
|
// these stats are not thread-safe
|
1095
1131
|
|
1096
|
-
for(int i = 1; i < ti; i++) {
|
1097
|
-
IVFFastScan_stats.times[i] += times[i] - times[i-1];
|
1132
|
+
for (int i = 1; i < ti; i++) {
|
1133
|
+
IVFFastScan_stats.times[i] += times[i] - times[i - 1];
|
1098
1134
|
}
|
1099
1135
|
IVFFastScan_stats.t_copy_pack += t_copy_pack;
|
1100
1136
|
IVFFastScan_stats.t_scan += t_scan;
|
1101
1137
|
|
1102
|
-
if (auto
|
1138
|
+
if (auto* rh = dynamic_cast<ReservoirHC*>(handler.get())) {
|
1103
1139
|
for (int i = 0; i < 4; i++) {
|
1104
1140
|
IVFFastScan_stats.reservoir_times[i] += rh->times[i];
|
1105
1141
|
}
|
@@ -1107,10 +1143,8 @@ void IndexIVFPQFastScan::search_implem_12(
|
|
1107
1143
|
|
1108
1144
|
*ndis_out = ndis;
|
1109
1145
|
*nlist_out = nlist;
|
1110
|
-
|
1111
1146
|
}
|
1112
1147
|
|
1113
|
-
|
1114
1148
|
IVFFastScanStats IVFFastScan_stats;
|
1115
1149
|
|
1116
1150
|
} // namespace faiss
|