faiss 0.2.0 → 0.2.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +16 -0
- data/LICENSE.txt +1 -1
- data/README.md +7 -7
- data/ext/faiss/extconf.rb +6 -3
- data/ext/faiss/numo.hpp +4 -4
- data/ext/faiss/utils.cpp +1 -1
- data/ext/faiss/utils.h +1 -1
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +292 -291
- data/vendor/faiss/faiss/AutoTune.h +55 -56
- data/vendor/faiss/faiss/Clustering.cpp +365 -194
- data/vendor/faiss/faiss/Clustering.h +102 -35
- data/vendor/faiss/faiss/IVFlib.cpp +171 -195
- data/vendor/faiss/faiss/IVFlib.h +48 -51
- data/vendor/faiss/faiss/Index.cpp +85 -103
- data/vendor/faiss/faiss/Index.h +54 -48
- data/vendor/faiss/faiss/Index2Layer.cpp +126 -224
- data/vendor/faiss/faiss/Index2Layer.h +22 -36
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +407 -0
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.h +195 -0
- data/vendor/faiss/faiss/IndexBinary.cpp +45 -37
- data/vendor/faiss/faiss/IndexBinary.h +140 -132
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +73 -53
- data/vendor/faiss/faiss/IndexBinaryFlat.h +29 -24
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +46 -43
- data/vendor/faiss/faiss/IndexBinaryFromFloat.h +16 -15
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +215 -232
- data/vendor/faiss/faiss/IndexBinaryHNSW.h +25 -24
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +182 -177
- data/vendor/faiss/faiss/IndexBinaryHash.h +41 -34
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +489 -461
- data/vendor/faiss/faiss/IndexBinaryIVF.h +97 -68
- data/vendor/faiss/faiss/IndexFlat.cpp +115 -176
- data/vendor/faiss/faiss/IndexFlat.h +42 -59
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +67 -0
- data/vendor/faiss/faiss/IndexFlatCodes.h +47 -0
- data/vendor/faiss/faiss/IndexHNSW.cpp +372 -348
- data/vendor/faiss/faiss/IndexHNSW.h +57 -41
- data/vendor/faiss/faiss/IndexIVF.cpp +545 -453
- data/vendor/faiss/faiss/IndexIVF.h +169 -118
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +316 -0
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +121 -0
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +247 -252
- data/vendor/faiss/faiss/IndexIVFFlat.h +48 -51
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +459 -517
- data/vendor/faiss/faiss/IndexIVFPQ.h +75 -67
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +406 -372
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +82 -57
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +104 -102
- data/vendor/faiss/faiss/IndexIVFPQR.h +33 -28
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +163 -150
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +38 -25
- data/vendor/faiss/faiss/IndexLSH.cpp +66 -113
- data/vendor/faiss/faiss/IndexLSH.h +20 -38
- data/vendor/faiss/faiss/IndexLattice.cpp +42 -56
- data/vendor/faiss/faiss/IndexLattice.h +11 -16
- data/vendor/faiss/faiss/IndexNNDescent.cpp +229 -0
- data/vendor/faiss/faiss/IndexNNDescent.h +72 -0
- data/vendor/faiss/faiss/IndexNSG.cpp +301 -0
- data/vendor/faiss/faiss/IndexNSG.h +85 -0
- data/vendor/faiss/faiss/IndexPQ.cpp +387 -495
- data/vendor/faiss/faiss/IndexPQ.h +64 -82
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +143 -170
- data/vendor/faiss/faiss/IndexPQFastScan.h +46 -32
- data/vendor/faiss/faiss/IndexPreTransform.cpp +120 -150
- data/vendor/faiss/faiss/IndexPreTransform.h +33 -36
- data/vendor/faiss/faiss/IndexRefine.cpp +139 -127
- data/vendor/faiss/faiss/IndexRefine.h +32 -23
- data/vendor/faiss/faiss/IndexReplicas.cpp +147 -153
- data/vendor/faiss/faiss/IndexReplicas.h +62 -56
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +111 -172
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +41 -59
- data/vendor/faiss/faiss/IndexShards.cpp +256 -240
- data/vendor/faiss/faiss/IndexShards.h +85 -73
- data/vendor/faiss/faiss/MatrixStats.cpp +112 -97
- data/vendor/faiss/faiss/MatrixStats.h +7 -10
- data/vendor/faiss/faiss/MetaIndexes.cpp +135 -157
- data/vendor/faiss/faiss/MetaIndexes.h +40 -34
- data/vendor/faiss/faiss/MetricType.h +7 -7
- data/vendor/faiss/faiss/VectorTransform.cpp +654 -475
- data/vendor/faiss/faiss/VectorTransform.h +64 -89
- data/vendor/faiss/faiss/clone_index.cpp +78 -73
- data/vendor/faiss/faiss/clone_index.h +4 -9
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +33 -38
- data/vendor/faiss/faiss/gpu/GpuAutoTune.h +11 -9
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +198 -171
- data/vendor/faiss/faiss/gpu/GpuCloner.h +53 -35
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.cpp +12 -14
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +27 -25
- data/vendor/faiss/faiss/gpu/GpuDistance.h +116 -112
- data/vendor/faiss/faiss/gpu/GpuFaissAssert.h +1 -2
- data/vendor/faiss/faiss/gpu/GpuIcmEncoder.h +60 -0
- data/vendor/faiss/faiss/gpu/GpuIndex.h +134 -137
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +76 -73
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +173 -162
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +67 -64
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +89 -86
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +150 -141
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +101 -103
- data/vendor/faiss/faiss/gpu/GpuIndicesOptions.h +17 -16
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +116 -128
- data/vendor/faiss/faiss/gpu/GpuResources.h +182 -186
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +433 -422
- data/vendor/faiss/faiss/gpu/StandardGpuResources.h +131 -130
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +468 -456
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.h +25 -19
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +22 -20
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +9 -8
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper-inl.h +39 -44
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper.h +16 -14
- data/vendor/faiss/faiss/gpu/perf/PerfClustering.cpp +77 -71
- data/vendor/faiss/faiss/gpu/perf/PerfIVFPQAdd.cpp +109 -88
- data/vendor/faiss/faiss/gpu/perf/WriteIndex.cpp +75 -64
- data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +230 -215
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +80 -86
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +284 -277
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +416 -416
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +611 -517
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +166 -164
- data/vendor/faiss/faiss/gpu/test/TestGpuMemoryException.cpp +61 -53
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +274 -238
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +73 -57
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +47 -50
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +79 -72
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.cpp +140 -146
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.h +69 -71
- data/vendor/faiss/faiss/gpu/utils/StaticUtils.h +21 -16
- data/vendor/faiss/faiss/gpu/utils/Timer.cpp +25 -29
- data/vendor/faiss/faiss/gpu/utils/Timer.h +30 -29
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +503 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +175 -0
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +90 -120
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +81 -65
- data/vendor/faiss/faiss/impl/FaissAssert.h +73 -58
- data/vendor/faiss/faiss/impl/FaissException.cpp +56 -48
- data/vendor/faiss/faiss/impl/FaissException.h +41 -29
- data/vendor/faiss/faiss/impl/HNSW.cpp +606 -617
- data/vendor/faiss/faiss/impl/HNSW.h +179 -200
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +855 -0
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +244 -0
- data/vendor/faiss/faiss/impl/NNDescent.cpp +487 -0
- data/vendor/faiss/faiss/impl/NNDescent.h +154 -0
- data/vendor/faiss/faiss/impl/NSG.cpp +679 -0
- data/vendor/faiss/faiss/impl/NSG.h +199 -0
- data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +484 -454
- data/vendor/faiss/faiss/impl/PolysemousTraining.h +52 -55
- data/vendor/faiss/faiss/impl/ProductQuantizer-inl.h +26 -47
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +469 -459
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +76 -87
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +758 -0
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +188 -0
- data/vendor/faiss/faiss/impl/ResultHandler.h +96 -132
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +647 -707
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +48 -46
- data/vendor/faiss/faiss/impl/ThreadedIndex-inl.h +129 -131
- data/vendor/faiss/faiss/impl/ThreadedIndex.h +61 -55
- data/vendor/faiss/faiss/impl/index_read.cpp +631 -480
- data/vendor/faiss/faiss/impl/index_write.cpp +547 -407
- data/vendor/faiss/faiss/impl/io.cpp +76 -95
- data/vendor/faiss/faiss/impl/io.h +31 -41
- data/vendor/faiss/faiss/impl/io_macros.h +60 -29
- data/vendor/faiss/faiss/impl/kmeans1d.cpp +301 -0
- data/vendor/faiss/faiss/impl/kmeans1d.h +48 -0
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +137 -186
- data/vendor/faiss/faiss/impl/lattice_Zn.h +40 -51
- data/vendor/faiss/faiss/impl/platform_macros.h +29 -8
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +77 -124
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +39 -48
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +41 -52
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +80 -117
- data/vendor/faiss/faiss/impl/simd_result_handlers.h +109 -137
- data/vendor/faiss/faiss/index_factory.cpp +619 -397
- data/vendor/faiss/faiss/index_factory.h +8 -6
- data/vendor/faiss/faiss/index_io.h +23 -26
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +67 -75
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +22 -24
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +96 -112
- data/vendor/faiss/faiss/invlists/DirectMap.h +29 -33
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +307 -364
- data/vendor/faiss/faiss/invlists/InvertedLists.h +151 -151
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.cpp +29 -34
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.h +17 -18
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +257 -293
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.h +50 -45
- data/vendor/faiss/faiss/python/python_callbacks.cpp +23 -26
- data/vendor/faiss/faiss/python/python_callbacks.h +9 -16
- data/vendor/faiss/faiss/utils/AlignedTable.h +79 -44
- data/vendor/faiss/faiss/utils/Heap.cpp +40 -48
- data/vendor/faiss/faiss/utils/Heap.h +186 -209
- data/vendor/faiss/faiss/utils/WorkerThread.cpp +67 -76
- data/vendor/faiss/faiss/utils/WorkerThread.h +32 -33
- data/vendor/faiss/faiss/utils/distances.cpp +305 -312
- data/vendor/faiss/faiss/utils/distances.h +170 -122
- data/vendor/faiss/faiss/utils/distances_simd.cpp +498 -508
- data/vendor/faiss/faiss/utils/extra_distances-inl.h +117 -0
- data/vendor/faiss/faiss/utils/extra_distances.cpp +113 -232
- data/vendor/faiss/faiss/utils/extra_distances.h +30 -29
- data/vendor/faiss/faiss/utils/hamming-inl.h +260 -209
- data/vendor/faiss/faiss/utils/hamming.cpp +375 -469
- data/vendor/faiss/faiss/utils/hamming.h +62 -85
- data/vendor/faiss/faiss/utils/ordered_key_value.h +16 -18
- data/vendor/faiss/faiss/utils/partitioning.cpp +393 -318
- data/vendor/faiss/faiss/utils/partitioning.h +26 -21
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +78 -66
- data/vendor/faiss/faiss/utils/quantize_lut.h +22 -20
- data/vendor/faiss/faiss/utils/random.cpp +39 -63
- data/vendor/faiss/faiss/utils/random.h +13 -16
- data/vendor/faiss/faiss/utils/simdlib.h +4 -2
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +88 -85
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +226 -165
- data/vendor/faiss/faiss/utils/simdlib_neon.h +832 -0
- data/vendor/faiss/faiss/utils/utils.cpp +304 -287
- data/vendor/faiss/faiss/utils/utils.h +54 -49
- metadata +29 -4
@@ -7,7 +7,6 @@
|
|
7
7
|
|
8
8
|
#pragma once
|
9
9
|
|
10
|
-
|
11
10
|
#include <stdint.h>
|
12
11
|
#include <stdio.h>
|
13
12
|
|
@@ -15,23 +14,27 @@
|
|
15
14
|
|
16
15
|
namespace faiss {
|
17
16
|
|
18
|
-
|
19
17
|
/** partitions the table into 0:q and q:n where all elements above q are >= all
|
20
18
|
* elements below q (for C = CMax, for CMin comparisons are reversed)
|
21
19
|
*
|
22
20
|
* Returns the partition threshold. The elements q:n are destroyed on output.
|
23
21
|
*/
|
24
|
-
template<class C>
|
22
|
+
template <class C>
|
25
23
|
typename C::T partition_fuzzy(
|
26
|
-
|
27
|
-
|
24
|
+
typename C::T* vals,
|
25
|
+
typename C::TI* ids,
|
26
|
+
size_t n,
|
27
|
+
size_t q_min,
|
28
|
+
size_t q_max,
|
29
|
+
size_t* q_out);
|
28
30
|
|
29
31
|
/** simplified interface for when the parition is not fuzzy */
|
30
|
-
template<class C>
|
32
|
+
template <class C>
|
31
33
|
inline typename C::T partition(
|
32
|
-
|
33
|
-
|
34
|
-
|
34
|
+
typename C::T* vals,
|
35
|
+
typename C::TI* ids,
|
36
|
+
size_t n,
|
37
|
+
size_t q) {
|
35
38
|
return partition_fuzzy<C>(vals, ids, n, q, q, nullptr);
|
36
39
|
}
|
37
40
|
|
@@ -41,29 +44,31 @@ inline typename C::T partition(
|
|
41
44
|
* values outside the range are ignored.
|
42
45
|
* the data table should be aligned on 32 bytes */
|
43
46
|
void simd_histogram_8(
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
+
const uint16_t* data,
|
48
|
+
int n,
|
49
|
+
uint16_t min,
|
50
|
+
int shift,
|
51
|
+
int* hist);
|
47
52
|
|
48
53
|
/** same for 16-bin histogram */
|
49
54
|
void simd_histogram_16(
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
55
|
+
const uint16_t* data,
|
56
|
+
int n,
|
57
|
+
uint16_t min,
|
58
|
+
int shift,
|
59
|
+
int* hist);
|
54
60
|
|
55
61
|
struct PartitionStats {
|
56
62
|
uint64_t bissect_cycles;
|
57
63
|
uint64_t compress_cycles;
|
58
64
|
|
59
|
-
PartitionStats
|
60
|
-
|
65
|
+
PartitionStats() {
|
66
|
+
reset();
|
67
|
+
}
|
68
|
+
void reset();
|
61
69
|
};
|
62
70
|
|
63
71
|
// global var that collects them all
|
64
72
|
FAISS_API extern PartitionStats partition_stats;
|
65
73
|
|
66
|
-
|
67
|
-
|
68
74
|
} // namespace faiss
|
69
|
-
|
@@ -5,150 +5,157 @@
|
|
5
5
|
* LICENSE file in the root directory of this source tree.
|
6
6
|
*/
|
7
7
|
|
8
|
-
|
9
8
|
#include <faiss/utils/quantize_lut.h>
|
10
9
|
|
10
|
+
#include <algorithm>
|
11
11
|
#include <cmath>
|
12
12
|
#include <cstring>
|
13
13
|
#include <vector>
|
14
|
-
#include <algorithm>
|
15
14
|
|
16
15
|
#include <faiss/impl/FaissAssert.h>
|
17
16
|
|
18
|
-
|
19
17
|
namespace faiss {
|
20
18
|
|
21
|
-
|
22
19
|
namespace quantize_lut {
|
23
20
|
|
24
|
-
|
25
21
|
/******************************************************
|
26
22
|
* Quantize look-up tables
|
27
23
|
******************************************************/
|
28
24
|
|
29
25
|
namespace {
|
30
26
|
|
31
|
-
float round_uint8_and_mul(float
|
27
|
+
float round_uint8_and_mul(float* tab, size_t n) {
|
32
28
|
float max = 0;
|
33
|
-
for(int i = 0; i < n; i++) {
|
34
|
-
if(fabs(tab[i]) > max) {
|
29
|
+
for (int i = 0; i < n; i++) {
|
30
|
+
if (fabs(tab[i]) > max) {
|
35
31
|
max = fabs(tab[i]);
|
36
32
|
}
|
37
33
|
}
|
38
34
|
float multiplier = 127 / max;
|
39
|
-
for(int i = 0; i < n; i++) {
|
35
|
+
for (int i = 0; i < n; i++) {
|
40
36
|
tab[i] = floorf(tab[i] * multiplier + 128);
|
41
37
|
}
|
42
38
|
return multiplier;
|
43
39
|
}
|
44
40
|
|
45
41
|
// there can be NaNs in tables, they should be ignored
|
46
|
-
float tab_min(const float
|
42
|
+
float tab_min(const float* tab, size_t n) {
|
47
43
|
float min = HUGE_VAL;
|
48
|
-
for(int i = 0; i < n; i++) {
|
49
|
-
if (tab[i] < min)
|
44
|
+
for (int i = 0; i < n; i++) {
|
45
|
+
if (tab[i] < min)
|
46
|
+
min = tab[i];
|
50
47
|
}
|
51
48
|
return min;
|
52
49
|
}
|
53
50
|
|
54
|
-
float tab_max(const float
|
51
|
+
float tab_max(const float* tab, size_t n) {
|
55
52
|
float max = -HUGE_VAL;
|
56
|
-
for(int i = 0; i < n; i++) {
|
57
|
-
if (tab[i] > max)
|
53
|
+
for (int i = 0; i < n; i++) {
|
54
|
+
if (tab[i] > max)
|
55
|
+
max = tab[i];
|
58
56
|
}
|
59
57
|
return max;
|
60
58
|
}
|
61
59
|
|
62
|
-
void round_tab(float
|
63
|
-
for(int i = 0; i < n; i++) {
|
60
|
+
void round_tab(float* tab, size_t n, float a, float bi) {
|
61
|
+
for (int i = 0; i < n; i++) {
|
64
62
|
tab[i] = floorf((tab[i] - bi) * a + 0.5);
|
65
63
|
}
|
66
64
|
}
|
67
65
|
|
68
|
-
template<typename T>
|
69
|
-
void round_tab(const float
|
70
|
-
for(int i = 0; i < n; i++) {
|
66
|
+
template <typename T>
|
67
|
+
void round_tab(const float* tab, size_t n, float a, float bi, T* tab_out) {
|
68
|
+
for (int i = 0; i < n; i++) {
|
71
69
|
tab_out[i] = (T)floorf((tab[i] - bi) * a + 0.5);
|
72
70
|
}
|
73
71
|
}
|
74
72
|
|
75
|
-
|
76
|
-
|
77
73
|
} // anonymous namespace
|
78
74
|
|
79
75
|
void round_uint8_per_column(
|
80
|
-
float
|
81
|
-
|
82
|
-
|
76
|
+
float* tab,
|
77
|
+
size_t n,
|
78
|
+
size_t d,
|
79
|
+
float* a_out,
|
80
|
+
float* b_out) {
|
83
81
|
float max_span = 0;
|
84
82
|
std::vector<float> mins(n);
|
85
|
-
for(int i = 0; i < n; i++) {
|
83
|
+
for (int i = 0; i < n; i++) {
|
86
84
|
mins[i] = tab_min(tab + i * d, d);
|
87
85
|
float span = tab_max(tab + i * d, d) - mins[i];
|
88
|
-
if(span > max_span) {
|
86
|
+
if (span > max_span) {
|
89
87
|
max_span = span;
|
90
88
|
}
|
91
89
|
}
|
92
90
|
float a = 255 / max_span;
|
93
91
|
float b = 0;
|
94
|
-
for(int i = 0; i < n; i++) {
|
92
|
+
for (int i = 0; i < n; i++) {
|
95
93
|
b += mins[i];
|
96
94
|
round_tab(tab + i * d, d, a, mins[i]);
|
97
95
|
}
|
98
|
-
if (a_out)
|
99
|
-
|
96
|
+
if (a_out)
|
97
|
+
*a_out = a;
|
98
|
+
if (b_out)
|
99
|
+
*b_out = b;
|
100
100
|
}
|
101
101
|
|
102
102
|
void round_uint8_per_column_multi(
|
103
|
-
float
|
104
|
-
|
105
|
-
|
103
|
+
float* tab,
|
104
|
+
size_t m,
|
105
|
+
size_t n,
|
106
|
+
size_t d,
|
107
|
+
float* a_out,
|
108
|
+
float* b_out) {
|
106
109
|
float max_span = 0;
|
107
110
|
std::vector<float> mins(n);
|
108
|
-
for(int i = 0; i < n; i++) {
|
111
|
+
for (int i = 0; i < n; i++) {
|
109
112
|
float min_i = HUGE_VAL;
|
110
113
|
float max_i = -HUGE_VAL;
|
111
|
-
for(int j = 0; j < m; j++) {
|
114
|
+
for (int j = 0; j < m; j++) {
|
112
115
|
min_i = std::min(min_i, tab_min(tab + (j * n + i) * d, d));
|
113
116
|
max_i = std::max(max_i, tab_max(tab + (j * n + i) * d, d));
|
114
117
|
}
|
115
118
|
mins[i] = min_i;
|
116
119
|
float span = max_i - min_i;
|
117
|
-
if(span > max_span) {
|
120
|
+
if (span > max_span) {
|
118
121
|
max_span = span;
|
119
122
|
}
|
120
123
|
}
|
121
124
|
float a = 255 / max_span;
|
122
125
|
float b = 0;
|
123
|
-
for(int i = 0; i < n; i++) {
|
126
|
+
for (int i = 0; i < n; i++) {
|
124
127
|
b += mins[i];
|
125
|
-
for(int j = 0; j < m; j++) {
|
128
|
+
for (int j = 0; j < m; j++) {
|
126
129
|
round_tab(tab + (j * n + i) * d, d, a, mins[i]);
|
127
130
|
}
|
128
131
|
}
|
129
|
-
if (a_out)
|
130
|
-
|
132
|
+
if (a_out)
|
133
|
+
*a_out = a;
|
134
|
+
if (b_out)
|
135
|
+
*b_out = b;
|
131
136
|
}
|
132
137
|
|
133
|
-
|
134
138
|
// translation of
|
135
139
|
// https://github.com/fairinternal/faiss_improvements/blob/7122c3cc6ddb0a371d8aa6f1309cd8bcf2335e61/LUT_quantization.ipynb
|
136
140
|
void quantize_LUT_and_bias(
|
137
|
-
size_t nprobe,
|
141
|
+
size_t nprobe,
|
142
|
+
size_t M,
|
143
|
+
size_t ksub,
|
138
144
|
bool lut_is_3d,
|
139
|
-
const float
|
140
|
-
const float
|
141
|
-
uint8_t
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
+
const float* LUT,
|
146
|
+
const float* bias,
|
147
|
+
uint8_t* LUTq,
|
148
|
+
size_t M2,
|
149
|
+
uint16_t* biasq,
|
150
|
+
float* a_out,
|
151
|
+
float* b_out) {
|
145
152
|
float a, b;
|
146
153
|
if (!bias) {
|
147
154
|
FAISS_THROW_IF_NOT(!lut_is_3d);
|
148
155
|
std::vector<float> mins(M);
|
149
156
|
float max_span_LUT = -HUGE_VAL, max_span_dis = 0;
|
150
157
|
b = 0;
|
151
|
-
for(int i = 0; i < M; i++) {
|
158
|
+
for (int i = 0; i < M; i++) {
|
152
159
|
mins[i] = tab_min(LUT + i * ksub, ksub);
|
153
160
|
float span = tab_max(LUT + i * ksub, ksub) - mins[i];
|
154
161
|
max_span_LUT = std::max(max_span_LUT, span);
|
@@ -157,7 +164,7 @@ void quantize_LUT_and_bias(
|
|
157
164
|
}
|
158
165
|
a = std::min(255 / max_span_LUT, 65535 / max_span_dis);
|
159
166
|
|
160
|
-
for(int i = 0; i < M; i++) {
|
167
|
+
for (int i = 0; i < M; i++) {
|
161
168
|
round_tab(LUT + i * ksub, ksub, a, mins[i], LUTq + i * ksub);
|
162
169
|
}
|
163
170
|
memset(LUTq + M * ksub, 0, ksub * (M2 - M));
|
@@ -168,7 +175,7 @@ void quantize_LUT_and_bias(
|
|
168
175
|
float bias_max = tab_max(bias, nprobe);
|
169
176
|
max_span_dis = bias_max - bias_min;
|
170
177
|
b = 0;
|
171
|
-
for(int i = 0; i < M; i++) {
|
178
|
+
for (int i = 0; i < M; i++) {
|
172
179
|
mins[i] = tab_min(LUT + i * ksub, ksub);
|
173
180
|
float span = tab_max(LUT + i * ksub, ksub) - mins[i];
|
174
181
|
max_span_LUT = std::max(max_span_LUT, span);
|
@@ -178,7 +185,7 @@ void quantize_LUT_and_bias(
|
|
178
185
|
a = std::min(255 / max_span_LUT, 65535 / max_span_dis);
|
179
186
|
b += bias_min;
|
180
187
|
|
181
|
-
for(int i = 0; i < M; i++) {
|
188
|
+
for (int i = 0; i < M; i++) {
|
182
189
|
round_tab(LUT + i * ksub, ksub, a, mins[i], LUTq + i * ksub);
|
183
190
|
}
|
184
191
|
memset(LUTq + M * ksub, 0, ksub * (M2 - M));
|
@@ -196,7 +203,7 @@ void quantize_LUT_and_bias(
|
|
196
203
|
for (int j = 0; j < nprobe; j++) {
|
197
204
|
float max_span_dis_j = bias[j] - bias_min;
|
198
205
|
float b2j = bias[j];
|
199
|
-
for(int i = 0; i < M; i++) {
|
206
|
+
for (int i = 0; i < M; i++) {
|
200
207
|
mins[ij] = tab_min(LUT + ij * ksub, ksub);
|
201
208
|
float span = tab_max(LUT + ij * ksub, ksub) - mins[ij];
|
202
209
|
max_span_LUT = std::max(max_span_LUT, span);
|
@@ -214,9 +221,11 @@ void quantize_LUT_and_bias(
|
|
214
221
|
ij = 0;
|
215
222
|
size_t ij_2 = 0;
|
216
223
|
for (int j = 0; j < nprobe; j++) {
|
217
|
-
for(int i = 0; i < M; i++) {
|
218
|
-
round_tab(
|
219
|
-
|
224
|
+
for (int i = 0; i < M; i++) {
|
225
|
+
round_tab(
|
226
|
+
LUT + ij * ksub, ksub, a, mins[ij], LUTq + ij_2 * ksub);
|
227
|
+
ij++;
|
228
|
+
ij_2++;
|
220
229
|
}
|
221
230
|
memset(LUTq + ij_2 * ksub, 0, ksub * (M2 - M));
|
222
231
|
ij_2 += M2 - M;
|
@@ -227,11 +236,11 @@ void quantize_LUT_and_bias(
|
|
227
236
|
} else { // !biasq
|
228
237
|
// then we integrate the bias into the LUTs
|
229
238
|
std::vector<float> LUT2_storage(nprobe * M * ksub);
|
230
|
-
float
|
239
|
+
float* LUT2 = LUT2_storage.data();
|
231
240
|
size_t ijc = 0;
|
232
241
|
for (int j = 0; j < nprobe; j++) {
|
233
242
|
float bias_j = bias[j] / M;
|
234
|
-
for(int i = 0; i < M; i++) {
|
243
|
+
for (int i = 0; i < M; i++) {
|
235
244
|
for (int c = 0; c < ksub; c++) {
|
236
245
|
LUT2[ijc] = LUT[ijc] + bias_j;
|
237
246
|
ijc++;
|
@@ -241,7 +250,7 @@ void quantize_LUT_and_bias(
|
|
241
250
|
std::vector<float> mins(M, HUGE_VAL), maxs(M, -HUGE_VAL);
|
242
251
|
size_t ij = 0;
|
243
252
|
for (int j = 0; j < nprobe; j++) {
|
244
|
-
for(int i = 0; i < M; i++) {
|
253
|
+
for (int i = 0; i < M; i++) {
|
245
254
|
mins[i] = std::min(mins[i], tab_min(LUT2 + ij * ksub, ksub));
|
246
255
|
maxs[i] = std::max(maxs[i], tab_max(LUT2 + ij * ksub, ksub));
|
247
256
|
ij++;
|
@@ -250,7 +259,7 @@ void quantize_LUT_and_bias(
|
|
250
259
|
|
251
260
|
float max_span = -HUGE_VAL;
|
252
261
|
b = 0;
|
253
|
-
for(int i = 0; i < M; i++) {
|
262
|
+
for (int i = 0; i < M; i++) {
|
254
263
|
float span = maxs[i] - mins[i];
|
255
264
|
max_span = std::max(max_span, span);
|
256
265
|
b += mins[i];
|
@@ -259,19 +268,22 @@ void quantize_LUT_and_bias(
|
|
259
268
|
ij = 0;
|
260
269
|
size_t ij_2 = 0;
|
261
270
|
for (int j = 0; j < nprobe; j++) {
|
262
|
-
for(int i = 0; i < M; i++) {
|
263
|
-
round_tab(
|
264
|
-
|
271
|
+
for (int i = 0; i < M; i++) {
|
272
|
+
round_tab(
|
273
|
+
LUT2 + ij * ksub, ksub, a, mins[i], LUTq + ij_2 * ksub);
|
274
|
+
ij++;
|
275
|
+
ij_2++;
|
265
276
|
}
|
266
277
|
memset(LUTq + ij_2 * ksub, 0, ksub * (M2 - M));
|
267
278
|
ij_2 += M2 - M;
|
268
279
|
}
|
269
280
|
}
|
270
|
-
if (a_out)
|
271
|
-
|
281
|
+
if (a_out)
|
282
|
+
*a_out = a;
|
283
|
+
if (b_out)
|
284
|
+
*b_out = b;
|
272
285
|
}
|
273
286
|
|
274
|
-
|
275
287
|
} // namespace quantize_lut
|
276
288
|
|
277
289
|
} // namespace faiss
|
@@ -5,12 +5,10 @@
|
|
5
5
|
* LICENSE file in the root directory of this source tree.
|
6
6
|
*/
|
7
7
|
|
8
|
-
|
9
8
|
#pragma once
|
10
9
|
|
11
|
-
|
12
|
-
#include <cstdio>
|
13
10
|
#include <cstdint>
|
11
|
+
#include <cstdio>
|
14
12
|
|
15
13
|
namespace faiss {
|
16
14
|
|
@@ -32,19 +30,23 @@ namespace quantize_lut {
|
|
32
30
|
* @param tab input/output, size (n, d)
|
33
31
|
*/
|
34
32
|
void round_uint8_per_column(
|
35
|
-
float
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
33
|
+
float* tab,
|
34
|
+
size_t n,
|
35
|
+
size_t d,
|
36
|
+
float* a_out = nullptr,
|
37
|
+
float* b_out = nullptr);
|
40
38
|
|
41
39
|
/* affine quantizer, a and b are the affine coefficients
|
42
40
|
*
|
43
41
|
* @param tab input/output, size (m, n, d)
|
44
42
|
*/
|
45
43
|
void round_uint8_per_column_multi(
|
46
|
-
float
|
47
|
-
|
44
|
+
float* tab,
|
45
|
+
size_t m,
|
46
|
+
size_t n,
|
47
|
+
size_t d,
|
48
|
+
float* a_out = nullptr,
|
49
|
+
float* b_out = nullptr);
|
48
50
|
|
49
51
|
/** LUT quantization to uint8 and bias to uint16.
|
50
52
|
*
|
@@ -63,18 +65,18 @@ void round_uint8_per_column_multi(
|
|
63
65
|
*/
|
64
66
|
|
65
67
|
void quantize_LUT_and_bias(
|
66
|
-
size_t nprobe,
|
68
|
+
size_t nprobe,
|
69
|
+
size_t M,
|
70
|
+
size_t ksub,
|
67
71
|
bool lut_is_3d,
|
68
|
-
const float
|
69
|
-
const float
|
70
|
-
uint8_t
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
72
|
+
const float* LUT,
|
73
|
+
const float* bias,
|
74
|
+
uint8_t* LUTq,
|
75
|
+
size_t M2,
|
76
|
+
uint16_t* biasq,
|
77
|
+
float* a_out = nullptr,
|
78
|
+
float* b_out = nullptr);
|
75
79
|
|
76
80
|
} // namespace quantize_lut
|
77
81
|
|
78
82
|
} // namespace faiss
|
79
|
-
|
80
|
-
|
@@ -15,79 +15,67 @@ namespace faiss {
|
|
15
15
|
* Random data generation functions
|
16
16
|
**************************************************/
|
17
17
|
|
18
|
-
RandomGenerator::RandomGenerator
|
19
|
-
: mt((unsigned int)seed) {}
|
18
|
+
RandomGenerator::RandomGenerator(int64_t seed) : mt((unsigned int)seed) {}
|
20
19
|
|
21
|
-
int RandomGenerator::rand_int
|
22
|
-
{
|
20
|
+
int RandomGenerator::rand_int() {
|
23
21
|
return mt() & 0x7fffffff;
|
24
22
|
}
|
25
23
|
|
26
|
-
int64_t RandomGenerator::rand_int64
|
27
|
-
{
|
24
|
+
int64_t RandomGenerator::rand_int64() {
|
28
25
|
return int64_t(rand_int()) | int64_t(rand_int()) << 31;
|
29
26
|
}
|
30
27
|
|
31
|
-
int RandomGenerator::rand_int
|
32
|
-
{
|
28
|
+
int RandomGenerator::rand_int(int max) {
|
33
29
|
return mt() % max;
|
34
30
|
}
|
35
31
|
|
36
|
-
float RandomGenerator::rand_float
|
37
|
-
{
|
32
|
+
float RandomGenerator::rand_float() {
|
38
33
|
return mt() / float(mt.max());
|
39
34
|
}
|
40
35
|
|
41
|
-
double RandomGenerator::rand_double
|
42
|
-
{
|
36
|
+
double RandomGenerator::rand_double() {
|
43
37
|
return mt() / double(mt.max());
|
44
38
|
}
|
45
39
|
|
46
|
-
|
47
40
|
/***********************************************************************
|
48
41
|
* Random functions in this C file only exist because Torch
|
49
42
|
* counterparts are slow and not multi-threaded. Typical use is for
|
50
43
|
* more than 1-100 billion values. */
|
51
44
|
|
52
|
-
|
53
45
|
/* Generate a set of random floating point values such that x[i] in [0,1]
|
54
46
|
multi-threading. For this reason, we rely on re-entreant functions. */
|
55
|
-
void float_rand
|
56
|
-
{
|
47
|
+
void float_rand(float* x, size_t n, int64_t seed) {
|
57
48
|
// only try to parallelize on large enough arrays
|
58
49
|
const size_t nblock = n < 1024 ? 1 : 1024;
|
59
50
|
|
60
|
-
RandomGenerator rng0
|
61
|
-
int a0 = rng0.rand_int
|
51
|
+
RandomGenerator rng0(seed);
|
52
|
+
int a0 = rng0.rand_int(), b0 = rng0.rand_int();
|
62
53
|
|
63
54
|
#pragma omp parallel for
|
64
55
|
for (int64_t j = 0; j < nblock; j++) {
|
65
|
-
|
66
|
-
RandomGenerator rng (a0 + j * b0);
|
56
|
+
RandomGenerator rng(a0 + j * b0);
|
67
57
|
|
68
58
|
const size_t istart = j * n / nblock;
|
69
59
|
const size_t iend = (j + 1) * n / nblock;
|
70
60
|
|
71
61
|
for (size_t i = istart; i < iend; i++)
|
72
|
-
x[i] = rng.rand_float
|
62
|
+
x[i] = rng.rand_float();
|
73
63
|
}
|
74
64
|
}
|
75
65
|
|
76
|
-
|
77
|
-
void float_randn (float * x, size_t n, int64_t seed)
|
78
|
-
{
|
66
|
+
void float_randn(float* x, size_t n, int64_t seed) {
|
79
67
|
// only try to parallelize on large enough arrays
|
80
68
|
const size_t nblock = n < 1024 ? 1 : 1024;
|
81
69
|
|
82
|
-
RandomGenerator rng0
|
83
|
-
int a0 = rng0.rand_int
|
70
|
+
RandomGenerator rng0(seed);
|
71
|
+
int a0 = rng0.rand_int(), b0 = rng0.rand_int();
|
84
72
|
|
85
73
|
#pragma omp parallel for
|
86
74
|
for (int64_t j = 0; j < nblock; j++) {
|
87
|
-
RandomGenerator rng
|
75
|
+
RandomGenerator rng(a0 + j * b0);
|
88
76
|
|
89
77
|
double a = 0, b = 0, s = 0;
|
90
|
-
int state = 0;
|
78
|
+
int state = 0; /* generate two number per "do-while" loop */
|
91
79
|
|
92
80
|
const size_t istart = j * n / nblock;
|
93
81
|
const size_t iend = (j + 1) * n / nblock;
|
@@ -96,96 +84,84 @@ void float_randn (float * x, size_t n, int64_t seed)
|
|
96
84
|
/* Marsaglia's method (see Knuth) */
|
97
85
|
if (state == 0) {
|
98
86
|
do {
|
99
|
-
a = 2.0 * rng.rand_double
|
100
|
-
b = 2.0 * rng.rand_double
|
87
|
+
a = 2.0 * rng.rand_double() - 1;
|
88
|
+
b = 2.0 * rng.rand_double() - 1;
|
101
89
|
s = a * a + b * b;
|
102
90
|
} while (s >= 1.0);
|
103
91
|
x[i] = a * sqrt(-2.0 * log(s) / s);
|
104
|
-
}
|
105
|
-
else
|
92
|
+
} else
|
106
93
|
x[i] = b * sqrt(-2.0 * log(s) / s);
|
107
94
|
state = 1 - state;
|
108
95
|
}
|
109
96
|
}
|
110
97
|
}
|
111
98
|
|
112
|
-
|
113
99
|
/* Integer versions */
|
114
|
-
void int64_rand
|
115
|
-
{
|
100
|
+
void int64_rand(int64_t* x, size_t n, int64_t seed) {
|
116
101
|
// only try to parallelize on large enough arrays
|
117
102
|
const size_t nblock = n < 1024 ? 1 : 1024;
|
118
103
|
|
119
|
-
RandomGenerator rng0
|
120
|
-
int a0 = rng0.rand_int
|
104
|
+
RandomGenerator rng0(seed);
|
105
|
+
int a0 = rng0.rand_int(), b0 = rng0.rand_int();
|
121
106
|
|
122
107
|
#pragma omp parallel for
|
123
108
|
for (int64_t j = 0; j < nblock; j++) {
|
124
|
-
|
125
|
-
RandomGenerator rng (a0 + j * b0);
|
109
|
+
RandomGenerator rng(a0 + j * b0);
|
126
110
|
|
127
111
|
const size_t istart = j * n / nblock;
|
128
112
|
const size_t iend = (j + 1) * n / nblock;
|
129
113
|
for (size_t i = istart; i < iend; i++)
|
130
|
-
x[i] = rng.rand_int64
|
114
|
+
x[i] = rng.rand_int64();
|
131
115
|
}
|
132
116
|
}
|
133
117
|
|
134
|
-
void int64_rand_max
|
135
|
-
{
|
118
|
+
void int64_rand_max(int64_t* x, size_t n, uint64_t max, int64_t seed) {
|
136
119
|
// only try to parallelize on large enough arrays
|
137
120
|
const size_t nblock = n < 1024 ? 1 : 1024;
|
138
121
|
|
139
|
-
RandomGenerator rng0
|
140
|
-
int a0 = rng0.rand_int
|
122
|
+
RandomGenerator rng0(seed);
|
123
|
+
int a0 = rng0.rand_int(), b0 = rng0.rand_int();
|
141
124
|
|
142
125
|
#pragma omp parallel for
|
143
126
|
for (int64_t j = 0; j < nblock; j++) {
|
144
|
-
|
145
|
-
RandomGenerator rng (a0 + j * b0);
|
127
|
+
RandomGenerator rng(a0 + j * b0);
|
146
128
|
|
147
129
|
const size_t istart = j * n / nblock;
|
148
130
|
const size_t iend = (j + 1) * n / nblock;
|
149
131
|
for (size_t i = istart; i < iend; i++)
|
150
|
-
x[i] = rng.rand_int64
|
132
|
+
x[i] = rng.rand_int64() % max;
|
151
133
|
}
|
152
134
|
}
|
153
135
|
|
136
|
+
void rand_perm(int* perm, size_t n, int64_t seed) {
|
137
|
+
for (size_t i = 0; i < n; i++)
|
138
|
+
perm[i] = i;
|
154
139
|
|
155
|
-
|
156
|
-
{
|
157
|
-
for (size_t i = 0; i < n; i++) perm[i] = i;
|
158
|
-
|
159
|
-
RandomGenerator rng (seed);
|
140
|
+
RandomGenerator rng(seed);
|
160
141
|
|
161
142
|
for (size_t i = 0; i + 1 < n; i++) {
|
162
|
-
int i2 = i + rng.rand_int
|
143
|
+
int i2 = i + rng.rand_int(n - i);
|
163
144
|
std::swap(perm[i], perm[i2]);
|
164
145
|
}
|
165
146
|
}
|
166
147
|
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
void byte_rand (uint8_t * x, size_t n, int64_t seed)
|
171
|
-
{
|
148
|
+
void byte_rand(uint8_t* x, size_t n, int64_t seed) {
|
172
149
|
// only try to parallelize on large enough arrays
|
173
150
|
const size_t nblock = n < 1024 ? 1 : 1024;
|
174
151
|
|
175
|
-
RandomGenerator rng0
|
176
|
-
int a0 = rng0.rand_int
|
152
|
+
RandomGenerator rng0(seed);
|
153
|
+
int a0 = rng0.rand_int(), b0 = rng0.rand_int();
|
177
154
|
|
178
155
|
#pragma omp parallel for
|
179
156
|
for (int64_t j = 0; j < nblock; j++) {
|
180
|
-
|
181
|
-
RandomGenerator rng (a0 + j * b0);
|
157
|
+
RandomGenerator rng(a0 + j * b0);
|
182
158
|
|
183
159
|
const size_t istart = j * n / nblock;
|
184
160
|
const size_t iend = (j + 1) * n / nblock;
|
185
161
|
|
186
162
|
size_t i;
|
187
163
|
for (i = istart; i < iend; i++)
|
188
|
-
x[i] = rng.rand_int64
|
164
|
+
x[i] = rng.rand_int64();
|
189
165
|
}
|
190
166
|
}
|
191
167
|
|