faiss 0.2.0 → 0.2.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +16 -0
- data/LICENSE.txt +1 -1
- data/README.md +7 -7
- data/ext/faiss/extconf.rb +6 -3
- data/ext/faiss/numo.hpp +4 -4
- data/ext/faiss/utils.cpp +1 -1
- data/ext/faiss/utils.h +1 -1
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +292 -291
- data/vendor/faiss/faiss/AutoTune.h +55 -56
- data/vendor/faiss/faiss/Clustering.cpp +365 -194
- data/vendor/faiss/faiss/Clustering.h +102 -35
- data/vendor/faiss/faiss/IVFlib.cpp +171 -195
- data/vendor/faiss/faiss/IVFlib.h +48 -51
- data/vendor/faiss/faiss/Index.cpp +85 -103
- data/vendor/faiss/faiss/Index.h +54 -48
- data/vendor/faiss/faiss/Index2Layer.cpp +126 -224
- data/vendor/faiss/faiss/Index2Layer.h +22 -36
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +407 -0
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.h +195 -0
- data/vendor/faiss/faiss/IndexBinary.cpp +45 -37
- data/vendor/faiss/faiss/IndexBinary.h +140 -132
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +73 -53
- data/vendor/faiss/faiss/IndexBinaryFlat.h +29 -24
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +46 -43
- data/vendor/faiss/faiss/IndexBinaryFromFloat.h +16 -15
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +215 -232
- data/vendor/faiss/faiss/IndexBinaryHNSW.h +25 -24
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +182 -177
- data/vendor/faiss/faiss/IndexBinaryHash.h +41 -34
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +489 -461
- data/vendor/faiss/faiss/IndexBinaryIVF.h +97 -68
- data/vendor/faiss/faiss/IndexFlat.cpp +115 -176
- data/vendor/faiss/faiss/IndexFlat.h +42 -59
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +67 -0
- data/vendor/faiss/faiss/IndexFlatCodes.h +47 -0
- data/vendor/faiss/faiss/IndexHNSW.cpp +372 -348
- data/vendor/faiss/faiss/IndexHNSW.h +57 -41
- data/vendor/faiss/faiss/IndexIVF.cpp +545 -453
- data/vendor/faiss/faiss/IndexIVF.h +169 -118
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +316 -0
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +121 -0
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +247 -252
- data/vendor/faiss/faiss/IndexIVFFlat.h +48 -51
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +459 -517
- data/vendor/faiss/faiss/IndexIVFPQ.h +75 -67
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +406 -372
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +82 -57
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +104 -102
- data/vendor/faiss/faiss/IndexIVFPQR.h +33 -28
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +163 -150
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +38 -25
- data/vendor/faiss/faiss/IndexLSH.cpp +66 -113
- data/vendor/faiss/faiss/IndexLSH.h +20 -38
- data/vendor/faiss/faiss/IndexLattice.cpp +42 -56
- data/vendor/faiss/faiss/IndexLattice.h +11 -16
- data/vendor/faiss/faiss/IndexNNDescent.cpp +229 -0
- data/vendor/faiss/faiss/IndexNNDescent.h +72 -0
- data/vendor/faiss/faiss/IndexNSG.cpp +301 -0
- data/vendor/faiss/faiss/IndexNSG.h +85 -0
- data/vendor/faiss/faiss/IndexPQ.cpp +387 -495
- data/vendor/faiss/faiss/IndexPQ.h +64 -82
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +143 -170
- data/vendor/faiss/faiss/IndexPQFastScan.h +46 -32
- data/vendor/faiss/faiss/IndexPreTransform.cpp +120 -150
- data/vendor/faiss/faiss/IndexPreTransform.h +33 -36
- data/vendor/faiss/faiss/IndexRefine.cpp +139 -127
- data/vendor/faiss/faiss/IndexRefine.h +32 -23
- data/vendor/faiss/faiss/IndexReplicas.cpp +147 -153
- data/vendor/faiss/faiss/IndexReplicas.h +62 -56
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +111 -172
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +41 -59
- data/vendor/faiss/faiss/IndexShards.cpp +256 -240
- data/vendor/faiss/faiss/IndexShards.h +85 -73
- data/vendor/faiss/faiss/MatrixStats.cpp +112 -97
- data/vendor/faiss/faiss/MatrixStats.h +7 -10
- data/vendor/faiss/faiss/MetaIndexes.cpp +135 -157
- data/vendor/faiss/faiss/MetaIndexes.h +40 -34
- data/vendor/faiss/faiss/MetricType.h +7 -7
- data/vendor/faiss/faiss/VectorTransform.cpp +654 -475
- data/vendor/faiss/faiss/VectorTransform.h +64 -89
- data/vendor/faiss/faiss/clone_index.cpp +78 -73
- data/vendor/faiss/faiss/clone_index.h +4 -9
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +33 -38
- data/vendor/faiss/faiss/gpu/GpuAutoTune.h +11 -9
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +198 -171
- data/vendor/faiss/faiss/gpu/GpuCloner.h +53 -35
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.cpp +12 -14
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +27 -25
- data/vendor/faiss/faiss/gpu/GpuDistance.h +116 -112
- data/vendor/faiss/faiss/gpu/GpuFaissAssert.h +1 -2
- data/vendor/faiss/faiss/gpu/GpuIcmEncoder.h +60 -0
- data/vendor/faiss/faiss/gpu/GpuIndex.h +134 -137
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +76 -73
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +173 -162
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +67 -64
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +89 -86
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +150 -141
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +101 -103
- data/vendor/faiss/faiss/gpu/GpuIndicesOptions.h +17 -16
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +116 -128
- data/vendor/faiss/faiss/gpu/GpuResources.h +182 -186
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +433 -422
- data/vendor/faiss/faiss/gpu/StandardGpuResources.h +131 -130
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +468 -456
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.h +25 -19
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +22 -20
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +9 -8
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper-inl.h +39 -44
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper.h +16 -14
- data/vendor/faiss/faiss/gpu/perf/PerfClustering.cpp +77 -71
- data/vendor/faiss/faiss/gpu/perf/PerfIVFPQAdd.cpp +109 -88
- data/vendor/faiss/faiss/gpu/perf/WriteIndex.cpp +75 -64
- data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +230 -215
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +80 -86
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +284 -277
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +416 -416
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +611 -517
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +166 -164
- data/vendor/faiss/faiss/gpu/test/TestGpuMemoryException.cpp +61 -53
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +274 -238
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +73 -57
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +47 -50
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +79 -72
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.cpp +140 -146
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.h +69 -71
- data/vendor/faiss/faiss/gpu/utils/StaticUtils.h +21 -16
- data/vendor/faiss/faiss/gpu/utils/Timer.cpp +25 -29
- data/vendor/faiss/faiss/gpu/utils/Timer.h +30 -29
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +503 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +175 -0
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +90 -120
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +81 -65
- data/vendor/faiss/faiss/impl/FaissAssert.h +73 -58
- data/vendor/faiss/faiss/impl/FaissException.cpp +56 -48
- data/vendor/faiss/faiss/impl/FaissException.h +41 -29
- data/vendor/faiss/faiss/impl/HNSW.cpp +606 -617
- data/vendor/faiss/faiss/impl/HNSW.h +179 -200
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +855 -0
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +244 -0
- data/vendor/faiss/faiss/impl/NNDescent.cpp +487 -0
- data/vendor/faiss/faiss/impl/NNDescent.h +154 -0
- data/vendor/faiss/faiss/impl/NSG.cpp +679 -0
- data/vendor/faiss/faiss/impl/NSG.h +199 -0
- data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +484 -454
- data/vendor/faiss/faiss/impl/PolysemousTraining.h +52 -55
- data/vendor/faiss/faiss/impl/ProductQuantizer-inl.h +26 -47
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +469 -459
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +76 -87
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +758 -0
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +188 -0
- data/vendor/faiss/faiss/impl/ResultHandler.h +96 -132
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +647 -707
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +48 -46
- data/vendor/faiss/faiss/impl/ThreadedIndex-inl.h +129 -131
- data/vendor/faiss/faiss/impl/ThreadedIndex.h +61 -55
- data/vendor/faiss/faiss/impl/index_read.cpp +631 -480
- data/vendor/faiss/faiss/impl/index_write.cpp +547 -407
- data/vendor/faiss/faiss/impl/io.cpp +76 -95
- data/vendor/faiss/faiss/impl/io.h +31 -41
- data/vendor/faiss/faiss/impl/io_macros.h +60 -29
- data/vendor/faiss/faiss/impl/kmeans1d.cpp +301 -0
- data/vendor/faiss/faiss/impl/kmeans1d.h +48 -0
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +137 -186
- data/vendor/faiss/faiss/impl/lattice_Zn.h +40 -51
- data/vendor/faiss/faiss/impl/platform_macros.h +29 -8
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +77 -124
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +39 -48
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +41 -52
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +80 -117
- data/vendor/faiss/faiss/impl/simd_result_handlers.h +109 -137
- data/vendor/faiss/faiss/index_factory.cpp +619 -397
- data/vendor/faiss/faiss/index_factory.h +8 -6
- data/vendor/faiss/faiss/index_io.h +23 -26
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +67 -75
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +22 -24
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +96 -112
- data/vendor/faiss/faiss/invlists/DirectMap.h +29 -33
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +307 -364
- data/vendor/faiss/faiss/invlists/InvertedLists.h +151 -151
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.cpp +29 -34
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.h +17 -18
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +257 -293
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.h +50 -45
- data/vendor/faiss/faiss/python/python_callbacks.cpp +23 -26
- data/vendor/faiss/faiss/python/python_callbacks.h +9 -16
- data/vendor/faiss/faiss/utils/AlignedTable.h +79 -44
- data/vendor/faiss/faiss/utils/Heap.cpp +40 -48
- data/vendor/faiss/faiss/utils/Heap.h +186 -209
- data/vendor/faiss/faiss/utils/WorkerThread.cpp +67 -76
- data/vendor/faiss/faiss/utils/WorkerThread.h +32 -33
- data/vendor/faiss/faiss/utils/distances.cpp +305 -312
- data/vendor/faiss/faiss/utils/distances.h +170 -122
- data/vendor/faiss/faiss/utils/distances_simd.cpp +498 -508
- data/vendor/faiss/faiss/utils/extra_distances-inl.h +117 -0
- data/vendor/faiss/faiss/utils/extra_distances.cpp +113 -232
- data/vendor/faiss/faiss/utils/extra_distances.h +30 -29
- data/vendor/faiss/faiss/utils/hamming-inl.h +260 -209
- data/vendor/faiss/faiss/utils/hamming.cpp +375 -469
- data/vendor/faiss/faiss/utils/hamming.h +62 -85
- data/vendor/faiss/faiss/utils/ordered_key_value.h +16 -18
- data/vendor/faiss/faiss/utils/partitioning.cpp +393 -318
- data/vendor/faiss/faiss/utils/partitioning.h +26 -21
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +78 -66
- data/vendor/faiss/faiss/utils/quantize_lut.h +22 -20
- data/vendor/faiss/faiss/utils/random.cpp +39 -63
- data/vendor/faiss/faiss/utils/random.h +13 -16
- data/vendor/faiss/faiss/utils/simdlib.h +4 -2
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +88 -85
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +226 -165
- data/vendor/faiss/faiss/utils/simdlib_neon.h +832 -0
- data/vendor/faiss/faiss/utils/utils.cpp +304 -287
- data/vendor/faiss/faiss/utils/utils.h +54 -49
- metadata +29 -4
@@ -9,44 +9,51 @@
|
|
9
9
|
|
10
10
|
#include <faiss/IndexHNSW.h>
|
11
11
|
|
12
|
-
|
13
|
-
#include <cstdlib>
|
12
|
+
#include <omp.h>
|
14
13
|
#include <cassert>
|
15
|
-
#include <cstring>
|
16
|
-
#include <cstdio>
|
17
14
|
#include <cinttypes>
|
18
15
|
#include <cmath>
|
19
|
-
#include <
|
16
|
+
#include <cstdio>
|
17
|
+
#include <cstdlib>
|
18
|
+
#include <cstring>
|
20
19
|
|
21
|
-
#include <unordered_set>
|
22
20
|
#include <queue>
|
21
|
+
#include <unordered_set>
|
23
22
|
|
24
|
-
#include <sys/types.h>
|
25
|
-
#include <sys/stat.h>
|
26
23
|
#include <stdint.h>
|
24
|
+
#include <sys/stat.h>
|
25
|
+
#include <sys/types.h>
|
27
26
|
|
28
27
|
#ifdef __SSE__
|
29
28
|
#endif
|
30
29
|
|
31
|
-
#include <faiss/
|
32
|
-
#include <faiss/utils/random.h>
|
33
|
-
#include <faiss/utils/Heap.h>
|
34
|
-
#include <faiss/impl/FaissAssert.h>
|
30
|
+
#include <faiss/Index2Layer.h>
|
35
31
|
#include <faiss/IndexFlat.h>
|
36
32
|
#include <faiss/IndexIVFPQ.h>
|
37
|
-
#include <faiss/Index2Layer.h>
|
38
33
|
#include <faiss/impl/AuxIndexStructures.h>
|
39
|
-
|
34
|
+
#include <faiss/impl/FaissAssert.h>
|
35
|
+
#include <faiss/utils/Heap.h>
|
36
|
+
#include <faiss/utils/distances.h>
|
37
|
+
#include <faiss/utils/random.h>
|
40
38
|
|
41
39
|
extern "C" {
|
42
40
|
|
43
41
|
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
|
44
42
|
|
45
|
-
int sgemm_
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
43
|
+
int sgemm_(
|
44
|
+
const char* transa,
|
45
|
+
const char* transb,
|
46
|
+
FINTEGER* m,
|
47
|
+
FINTEGER* n,
|
48
|
+
FINTEGER* k,
|
49
|
+
const float* alpha,
|
50
|
+
const float* a,
|
51
|
+
FINTEGER* lda,
|
52
|
+
const float* b,
|
53
|
+
FINTEGER* ldb,
|
54
|
+
float* beta,
|
55
|
+
float* c,
|
56
|
+
FINTEGER* ldc);
|
50
57
|
}
|
51
58
|
|
52
59
|
namespace faiss {
|
@@ -64,42 +71,36 @@ HNSWStats hnsw_stats;
|
|
64
71
|
|
65
72
|
namespace {
|
66
73
|
|
67
|
-
|
68
74
|
/* Wrap the distance computer into one that negates the
|
69
75
|
distances. This makes supporting INNER_PRODUCE search easier */
|
70
76
|
|
71
|
-
struct NegativeDistanceComputer: DistanceComputer {
|
72
|
-
|
77
|
+
struct NegativeDistanceComputer : DistanceComputer {
|
73
78
|
/// owned by this
|
74
|
-
DistanceComputer
|
79
|
+
DistanceComputer* basedis;
|
75
80
|
|
76
|
-
explicit NegativeDistanceComputer(DistanceComputer
|
77
|
-
|
78
|
-
{}
|
81
|
+
explicit NegativeDistanceComputer(DistanceComputer* basedis)
|
82
|
+
: basedis(basedis) {}
|
79
83
|
|
80
|
-
void set_query(const float
|
84
|
+
void set_query(const float* x) override {
|
81
85
|
basedis->set_query(x);
|
82
86
|
}
|
83
87
|
|
84
|
-
|
85
|
-
float operator
|
88
|
+
/// compute distance of vector i to current query
|
89
|
+
float operator()(idx_t i) override {
|
86
90
|
return -(*basedis)(i);
|
87
91
|
}
|
88
92
|
|
89
|
-
|
90
|
-
float symmetric_dis
|
93
|
+
/// compute distance between two stored vectors
|
94
|
+
float symmetric_dis(idx_t i, idx_t j) override {
|
91
95
|
return -basedis->symmetric_dis(i, j);
|
92
96
|
}
|
93
97
|
|
94
|
-
virtual ~NegativeDistanceComputer
|
95
|
-
{
|
98
|
+
virtual ~NegativeDistanceComputer() {
|
96
99
|
delete basedis;
|
97
100
|
}
|
98
|
-
|
99
101
|
};
|
100
102
|
|
101
|
-
DistanceComputer
|
102
|
-
{
|
103
|
+
DistanceComputer* storage_distance_computer(const Index* storage) {
|
103
104
|
if (storage->metric_type == METRIC_INNER_PRODUCT) {
|
104
105
|
return new NegativeDistanceComputer(storage->get_distance_computer());
|
105
106
|
} else {
|
@@ -107,21 +108,23 @@ DistanceComputer *storage_distance_computer(const Index *storage)
|
|
107
108
|
}
|
108
109
|
}
|
109
110
|
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
111
|
+
void hnsw_add_vertices(
|
112
|
+
IndexHNSW& index_hnsw,
|
113
|
+
size_t n0,
|
114
|
+
size_t n,
|
115
|
+
const float* x,
|
116
|
+
bool verbose,
|
117
|
+
bool preset_levels = false) {
|
117
118
|
size_t d = index_hnsw.d;
|
118
|
-
HNSW
|
119
|
+
HNSW& hnsw = index_hnsw.hnsw;
|
119
120
|
size_t ntotal = n0 + n;
|
120
121
|
double t0 = getmillisecs();
|
121
122
|
if (verbose) {
|
122
123
|
printf("hnsw_add_vertices: adding %zd elements on top of %zd "
|
123
124
|
"(preset_levels=%d)\n",
|
124
|
-
n,
|
125
|
+
n,
|
126
|
+
n0,
|
127
|
+
int(preset_levels));
|
125
128
|
}
|
126
129
|
|
127
130
|
if (n == 0) {
|
@@ -135,7 +138,7 @@ void hnsw_add_vertices(IndexHNSW &index_hnsw,
|
|
135
138
|
}
|
136
139
|
|
137
140
|
std::vector<omp_lock_t> locks(ntotal);
|
138
|
-
for(int i = 0; i < ntotal; i++)
|
141
|
+
for (int i = 0; i < ntotal; i++)
|
139
142
|
omp_init_lock(&locks[i]);
|
140
143
|
|
141
144
|
// add vectors from highest to lowest level
|
@@ -150,7 +153,7 @@ void hnsw_add_vertices(IndexHNSW &index_hnsw,
|
|
150
153
|
int pt_level = hnsw.levels[pt_id] - 1;
|
151
154
|
while (pt_level >= hist.size())
|
152
155
|
hist.push_back(0);
|
153
|
-
hist[pt_level]
|
156
|
+
hist[pt_level]++;
|
154
157
|
}
|
155
158
|
|
156
159
|
// accumulate
|
@@ -167,8 +170,8 @@ void hnsw_add_vertices(IndexHNSW &index_hnsw,
|
|
167
170
|
}
|
168
171
|
}
|
169
172
|
|
170
|
-
idx_t check_period = InterruptCallback::get_period_hint
|
171
|
-
|
173
|
+
idx_t check_period = InterruptCallback::get_period_hint(
|
174
|
+
max_level * index_hnsw.d * hnsw.efConstruction);
|
172
175
|
|
173
176
|
{ // perform add
|
174
177
|
RandomGenerator rng2(789);
|
@@ -179,8 +182,7 @@ void hnsw_add_vertices(IndexHNSW &index_hnsw,
|
|
179
182
|
int i0 = i1 - hist[pt_level];
|
180
183
|
|
181
184
|
if (verbose) {
|
182
|
-
printf("Adding %d elements at level %d\n",
|
183
|
-
i1 - i0, pt_level);
|
185
|
+
printf("Adding %d elements at level %d\n", i1 - i0, pt_level);
|
184
186
|
}
|
185
187
|
|
186
188
|
// random permutation to get rid of dataset order bias
|
@@ -189,20 +191,21 @@ void hnsw_add_vertices(IndexHNSW &index_hnsw,
|
|
189
191
|
|
190
192
|
bool interrupt = false;
|
191
193
|
|
192
|
-
#pragma omp parallel if(i1 > i0 + 100)
|
194
|
+
#pragma omp parallel if (i1 > i0 + 100)
|
193
195
|
{
|
194
|
-
VisitedTable vt
|
196
|
+
VisitedTable vt(ntotal);
|
195
197
|
|
196
|
-
DistanceComputer
|
197
|
-
|
198
|
+
DistanceComputer* dis =
|
199
|
+
storage_distance_computer(index_hnsw.storage);
|
198
200
|
ScopeDeleter1<DistanceComputer> del(dis);
|
199
|
-
int prev_display =
|
201
|
+
int prev_display =
|
202
|
+
verbose && omp_get_thread_num() == 0 ? 0 : -1;
|
200
203
|
size_t counter = 0;
|
201
204
|
|
202
|
-
#pragma omp
|
205
|
+
#pragma omp for schedule(dynamic)
|
203
206
|
for (int i = i0; i < i1; i++) {
|
204
207
|
storage_idx_t pt_id = order[i];
|
205
|
-
dis->set_query
|
208
|
+
dis->set_query(x + (pt_id - n0) * d);
|
206
209
|
|
207
210
|
// cannot break
|
208
211
|
if (interrupt) {
|
@@ -218,16 +221,15 @@ void hnsw_add_vertices(IndexHNSW &index_hnsw,
|
|
218
221
|
}
|
219
222
|
|
220
223
|
if (counter % check_period == 0) {
|
221
|
-
if (InterruptCallback::is_interrupted
|
224
|
+
if (InterruptCallback::is_interrupted()) {
|
222
225
|
interrupt = true;
|
223
226
|
}
|
224
227
|
}
|
225
228
|
counter++;
|
226
229
|
}
|
227
|
-
|
228
230
|
}
|
229
231
|
if (interrupt) {
|
230
|
-
FAISS_THROW_MSG
|
232
|
+
FAISS_THROW_MSG("computation interrupted");
|
231
233
|
}
|
232
234
|
i1 = i0;
|
233
235
|
}
|
@@ -237,36 +239,30 @@ void hnsw_add_vertices(IndexHNSW &index_hnsw,
|
|
237
239
|
printf("Done in %.3f ms\n", getmillisecs() - t0);
|
238
240
|
}
|
239
241
|
|
240
|
-
for(int i = 0; i < ntotal; i++) {
|
242
|
+
for (int i = 0; i < ntotal; i++) {
|
241
243
|
omp_destroy_lock(&locks[i]);
|
242
244
|
}
|
243
245
|
}
|
244
246
|
|
245
|
-
|
246
|
-
} // namespace
|
247
|
-
|
248
|
-
|
249
|
-
|
247
|
+
} // namespace
|
250
248
|
|
251
249
|
/**************************************************************
|
252
250
|
* IndexHNSW implementation
|
253
251
|
**************************************************************/
|
254
252
|
|
255
|
-
IndexHNSW::IndexHNSW(int d, int M, MetricType metric)
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
reconstruct_from_neighbors(nullptr)
|
269
|
-
{}
|
253
|
+
IndexHNSW::IndexHNSW(int d, int M, MetricType metric)
|
254
|
+
: Index(d, metric),
|
255
|
+
hnsw(M),
|
256
|
+
own_fields(false),
|
257
|
+
storage(nullptr),
|
258
|
+
reconstruct_from_neighbors(nullptr) {}
|
259
|
+
|
260
|
+
IndexHNSW::IndexHNSW(Index* storage, int M)
|
261
|
+
: Index(storage->d, storage->metric_type),
|
262
|
+
hnsw(M),
|
263
|
+
own_fields(false),
|
264
|
+
storage(storage),
|
265
|
+
reconstruct_from_neighbors(nullptr) {}
|
270
266
|
|
271
267
|
IndexHNSW::~IndexHNSW() {
|
272
268
|
if (own_fields) {
|
@@ -274,68 +270,75 @@ IndexHNSW::~IndexHNSW() {
|
|
274
270
|
}
|
275
271
|
}
|
276
272
|
|
277
|
-
void IndexHNSW::train(idx_t n, const float* x)
|
278
|
-
|
279
|
-
|
280
|
-
|
273
|
+
void IndexHNSW::train(idx_t n, const float* x) {
|
274
|
+
FAISS_THROW_IF_NOT_MSG(
|
275
|
+
storage,
|
276
|
+
"Please use IndexHNSWFlat (or variants) instead of IndexHNSW directly");
|
281
277
|
// hnsw structure does not require training
|
282
|
-
storage->train
|
278
|
+
storage->train(n, x);
|
283
279
|
is_trained = true;
|
284
280
|
}
|
285
281
|
|
286
|
-
void IndexHNSW::search
|
287
|
-
|
282
|
+
void IndexHNSW::search(
|
283
|
+
idx_t n,
|
284
|
+
const float* x,
|
285
|
+
idx_t k,
|
286
|
+
float* distances,
|
287
|
+
idx_t* labels) const
|
288
288
|
|
289
289
|
{
|
290
|
-
|
291
|
-
|
290
|
+
FAISS_THROW_IF_NOT(k > 0);
|
291
|
+
|
292
|
+
FAISS_THROW_IF_NOT_MSG(
|
293
|
+
storage,
|
294
|
+
"Please use IndexHNSWFlat (or variants) instead of IndexHNSW directly");
|
292
295
|
size_t n1 = 0, n2 = 0, n3 = 0, ndis = 0, nreorder = 0;
|
293
296
|
|
294
|
-
idx_t check_period = InterruptCallback::get_period_hint
|
295
|
-
|
297
|
+
idx_t check_period = InterruptCallback::get_period_hint(
|
298
|
+
hnsw.max_level * d * hnsw.efSearch);
|
296
299
|
|
297
300
|
for (idx_t i0 = 0; i0 < n; i0 += check_period) {
|
298
301
|
idx_t i1 = std::min(i0 + check_period, n);
|
299
302
|
|
300
303
|
#pragma omp parallel
|
301
304
|
{
|
302
|
-
VisitedTable vt
|
305
|
+
VisitedTable vt(ntotal);
|
303
306
|
|
304
|
-
DistanceComputer
|
307
|
+
DistanceComputer* dis = storage_distance_computer(storage);
|
305
308
|
ScopeDeleter1<DistanceComputer> del(dis);
|
306
309
|
|
307
|
-
#pragma omp for reduction
|
308
|
-
for(idx_t i = i0; i < i1; i++) {
|
309
|
-
idx_t
|
310
|
-
float
|
310
|
+
#pragma omp for reduction(+ : n1, n2, n3, ndis, nreorder)
|
311
|
+
for (idx_t i = i0; i < i1; i++) {
|
312
|
+
idx_t* idxi = labels + i * k;
|
313
|
+
float* simi = distances + i * k;
|
311
314
|
dis->set_query(x + i * d);
|
312
315
|
|
313
|
-
maxheap_heapify
|
316
|
+
maxheap_heapify(k, simi, idxi);
|
314
317
|
HNSWStats stats = hnsw.search(*dis, k, idxi, simi, vt);
|
315
318
|
n1 += stats.n1;
|
316
319
|
n2 += stats.n2;
|
317
320
|
n3 += stats.n3;
|
318
321
|
ndis += stats.ndis;
|
319
322
|
nreorder += stats.nreorder;
|
320
|
-
maxheap_reorder
|
323
|
+
maxheap_reorder(k, simi, idxi);
|
321
324
|
|
322
325
|
if (reconstruct_from_neighbors &&
|
323
326
|
reconstruct_from_neighbors->k_reorder != 0) {
|
324
327
|
int k_reorder = reconstruct_from_neighbors->k_reorder;
|
325
|
-
if (k_reorder == -1 || k_reorder > k)
|
328
|
+
if (k_reorder == -1 || k_reorder > k)
|
329
|
+
k_reorder = k;
|
326
330
|
|
327
331
|
nreorder += reconstruct_from_neighbors->compute_distances(
|
328
|
-
|
332
|
+
k_reorder, idxi, x + i * d, simi);
|
329
333
|
|
330
334
|
// sort top k_reorder
|
331
|
-
maxheap_heapify
|
332
|
-
|
335
|
+
maxheap_heapify(
|
336
|
+
k_reorder, simi, idxi, simi, idxi, k_reorder);
|
337
|
+
maxheap_reorder(k_reorder, simi, idxi);
|
333
338
|
}
|
334
|
-
|
335
339
|
}
|
336
|
-
|
337
340
|
}
|
338
|
-
InterruptCallback::check
|
341
|
+
InterruptCallback::check();
|
339
342
|
}
|
340
343
|
|
341
344
|
if (metric_type == METRIC_INNER_PRODUCT) {
|
@@ -348,42 +351,36 @@ void IndexHNSW::search (idx_t n, const float *x, idx_t k,
|
|
348
351
|
hnsw_stats.combine({n1, n2, n3, ndis, nreorder});
|
349
352
|
}
|
350
353
|
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
"Please use IndexHNSWFlat (or variants) instead of IndexHNSW directly");
|
354
|
+
void IndexHNSW::add(idx_t n, const float* x) {
|
355
|
+
FAISS_THROW_IF_NOT_MSG(
|
356
|
+
storage,
|
357
|
+
"Please use IndexHNSWFlat (or variants) instead of IndexHNSW directly");
|
356
358
|
FAISS_THROW_IF_NOT(is_trained);
|
357
359
|
int n0 = ntotal;
|
358
360
|
storage->add(n, x);
|
359
361
|
ntotal = storage->ntotal;
|
360
362
|
|
361
|
-
hnsw_add_vertices
|
362
|
-
hnsw.levels.size() == ntotal);
|
363
|
+
hnsw_add_vertices(*this, n0, n, x, verbose, hnsw.levels.size() == ntotal);
|
363
364
|
}
|
364
365
|
|
365
|
-
void IndexHNSW::reset()
|
366
|
-
{
|
366
|
+
void IndexHNSW::reset() {
|
367
367
|
hnsw.reset();
|
368
368
|
storage->reset();
|
369
369
|
ntotal = 0;
|
370
370
|
}
|
371
371
|
|
372
|
-
void IndexHNSW::reconstruct
|
373
|
-
{
|
372
|
+
void IndexHNSW::reconstruct(idx_t key, float* recons) const {
|
374
373
|
storage->reconstruct(key, recons);
|
375
374
|
}
|
376
375
|
|
377
|
-
void IndexHNSW::shrink_level_0_neighbors(int new_size)
|
378
|
-
{
|
376
|
+
void IndexHNSW::shrink_level_0_neighbors(int new_size) {
|
379
377
|
#pragma omp parallel
|
380
378
|
{
|
381
|
-
DistanceComputer
|
379
|
+
DistanceComputer* dis = storage_distance_computer(storage);
|
382
380
|
ScopeDeleter1<DistanceComputer> del(dis);
|
383
381
|
|
384
382
|
#pragma omp for
|
385
383
|
for (idx_t i = 0; i < ntotal; i++) {
|
386
|
-
|
387
384
|
size_t begin, end;
|
388
385
|
hnsw.neighbor_range(i, 0, &begin, &end);
|
389
386
|
|
@@ -391,15 +388,16 @@ void IndexHNSW::shrink_level_0_neighbors(int new_size)
|
|
391
388
|
|
392
389
|
for (size_t j = begin; j < end; j++) {
|
393
390
|
int v1 = hnsw.neighbors[j];
|
394
|
-
if (v1 < 0)
|
391
|
+
if (v1 < 0)
|
392
|
+
break;
|
395
393
|
initial_list.emplace(dis->symmetric_dis(i, v1), v1);
|
396
394
|
|
397
395
|
// initial_list.emplace(qdis(v1), v1);
|
398
396
|
}
|
399
397
|
|
400
398
|
std::vector<NodeDistFarther> shrunk_list;
|
401
|
-
HNSW::shrink_neighbor_list(
|
402
|
-
|
399
|
+
HNSW::shrink_neighbor_list(
|
400
|
+
*dis, initial_list, shrunk_list, new_size);
|
403
401
|
|
404
402
|
for (size_t j = begin; j < end; j++) {
|
405
403
|
if (j - begin < shrunk_list.size())
|
@@ -409,44 +407,50 @@ void IndexHNSW::shrink_level_0_neighbors(int new_size)
|
|
409
407
|
}
|
410
408
|
}
|
411
409
|
}
|
412
|
-
|
413
410
|
}
|
414
411
|
|
415
412
|
void IndexHNSW::search_level_0(
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
413
|
+
idx_t n,
|
414
|
+
const float* x,
|
415
|
+
idx_t k,
|
416
|
+
const storage_idx_t* nearest,
|
417
|
+
const float* nearest_d,
|
418
|
+
float* distances,
|
419
|
+
idx_t* labels,
|
420
|
+
int nprobe,
|
421
|
+
int search_type) const {
|
422
|
+
FAISS_THROW_IF_NOT(k > 0);
|
423
|
+
FAISS_THROW_IF_NOT(nprobe > 0);
|
421
424
|
|
422
425
|
storage_idx_t ntotal = hnsw.levels.size();
|
423
426
|
size_t n1 = 0, n2 = 0, n3 = 0, ndis = 0, nreorder = 0;
|
424
427
|
|
425
428
|
#pragma omp parallel
|
426
429
|
{
|
427
|
-
DistanceComputer
|
430
|
+
DistanceComputer* qdis = storage_distance_computer(storage);
|
428
431
|
ScopeDeleter1<DistanceComputer> del(qdis);
|
429
432
|
|
430
|
-
VisitedTable vt
|
433
|
+
VisitedTable vt(ntotal);
|
431
434
|
|
432
|
-
#pragma omp for reduction
|
433
|
-
for(idx_t i = 0; i < n; i++) {
|
434
|
-
idx_t
|
435
|
-
float
|
435
|
+
#pragma omp for reduction(+ : n1, n2, n3, ndis, nreorder)
|
436
|
+
for (idx_t i = 0; i < n; i++) {
|
437
|
+
idx_t* idxi = labels + i * k;
|
438
|
+
float* simi = distances + i * k;
|
436
439
|
|
437
440
|
qdis->set_query(x + i * d);
|
438
|
-
maxheap_heapify
|
441
|
+
maxheap_heapify(k, simi, idxi);
|
439
442
|
|
440
443
|
if (search_type == 1) {
|
441
|
-
|
442
444
|
int nres = 0;
|
443
445
|
|
444
|
-
for(int j = 0; j < nprobe; j++) {
|
446
|
+
for (int j = 0; j < nprobe; j++) {
|
445
447
|
storage_idx_t cj = nearest[i * nprobe + j];
|
446
448
|
|
447
|
-
if (cj < 0)
|
449
|
+
if (cj < 0)
|
450
|
+
break;
|
448
451
|
|
449
|
-
if (vt.get(cj))
|
452
|
+
if (vt.get(cj))
|
453
|
+
continue;
|
450
454
|
|
451
455
|
int candidates_size = std::max(hnsw.efSearch, int(k));
|
452
456
|
MinimaxHeap candidates(candidates_size);
|
@@ -455,45 +459,46 @@ void IndexHNSW::search_level_0(
|
|
455
459
|
|
456
460
|
HNSWStats search_stats;
|
457
461
|
nres = hnsw.search_from_candidates(
|
458
|
-
|
459
|
-
|
460
|
-
|
462
|
+
*qdis,
|
463
|
+
k,
|
464
|
+
idxi,
|
465
|
+
simi,
|
466
|
+
candidates,
|
467
|
+
vt,
|
468
|
+
search_stats,
|
469
|
+
0,
|
470
|
+
nres);
|
461
471
|
n1 += search_stats.n1;
|
462
472
|
n2 += search_stats.n2;
|
463
473
|
n3 += search_stats.n3;
|
464
474
|
ndis += search_stats.ndis;
|
465
475
|
nreorder += search_stats.nreorder;
|
466
|
-
|
467
476
|
}
|
468
477
|
} else if (search_type == 2) {
|
469
|
-
|
470
478
|
int candidates_size = std::max(hnsw.efSearch, int(k));
|
471
479
|
candidates_size = std::max(candidates_size, nprobe);
|
472
480
|
|
473
481
|
MinimaxHeap candidates(candidates_size);
|
474
|
-
for(int j = 0; j < nprobe; j++) {
|
482
|
+
for (int j = 0; j < nprobe; j++) {
|
475
483
|
storage_idx_t cj = nearest[i * nprobe + j];
|
476
484
|
|
477
|
-
if (cj < 0)
|
485
|
+
if (cj < 0)
|
486
|
+
break;
|
478
487
|
candidates.push(cj, nearest_d[i * nprobe + j]);
|
479
488
|
}
|
480
489
|
|
481
490
|
HNSWStats search_stats;
|
482
491
|
hnsw.search_from_candidates(
|
483
|
-
|
484
|
-
candidates, vt, search_stats, 0
|
485
|
-
);
|
492
|
+
*qdis, k, idxi, simi, candidates, vt, search_stats, 0);
|
486
493
|
n1 += search_stats.n1;
|
487
494
|
n2 += search_stats.n2;
|
488
495
|
n3 += search_stats.n3;
|
489
496
|
ndis += search_stats.ndis;
|
490
497
|
nreorder += search_stats.nreorder;
|
491
|
-
|
492
498
|
}
|
493
499
|
vt.advance();
|
494
500
|
|
495
|
-
maxheap_reorder
|
496
|
-
|
501
|
+
maxheap_reorder(k, simi, idxi);
|
497
502
|
}
|
498
503
|
}
|
499
504
|
|
@@ -501,13 +506,14 @@ void IndexHNSW::search_level_0(
|
|
501
506
|
}
|
502
507
|
|
503
508
|
void IndexHNSW::init_level_0_from_knngraph(
|
504
|
-
|
505
|
-
|
506
|
-
|
509
|
+
int k,
|
510
|
+
const float* D,
|
511
|
+
const idx_t* I) {
|
512
|
+
int dest_size = hnsw.nb_neighbors(0);
|
507
513
|
|
508
514
|
#pragma omp parallel for
|
509
515
|
for (idx_t i = 0; i < ntotal; i++) {
|
510
|
-
DistanceComputer
|
516
|
+
DistanceComputer* qdis = storage_distance_computer(storage);
|
511
517
|
std::vector<float> vec(d);
|
512
518
|
storage->reconstruct(i, vec.data());
|
513
519
|
qdis->set_query(vec.data());
|
@@ -516,8 +522,10 @@ void IndexHNSW::init_level_0_from_knngraph(
|
|
516
522
|
|
517
523
|
for (size_t j = 0; j < k; j++) {
|
518
524
|
int v1 = I[i * k + j];
|
519
|
-
if (v1 == i)
|
520
|
-
|
525
|
+
if (v1 == i)
|
526
|
+
continue;
|
527
|
+
if (v1 < 0)
|
528
|
+
break;
|
521
529
|
initial_list.emplace(D[i * k + j], v1);
|
522
530
|
}
|
523
531
|
|
@@ -536,35 +544,31 @@ void IndexHNSW::init_level_0_from_knngraph(
|
|
536
544
|
}
|
537
545
|
}
|
538
546
|
|
539
|
-
|
540
|
-
|
541
547
|
void IndexHNSW::init_level_0_from_entry_points(
|
542
|
-
|
543
|
-
|
544
|
-
{
|
545
|
-
|
548
|
+
int n,
|
549
|
+
const storage_idx_t* points,
|
550
|
+
const storage_idx_t* nearests) {
|
546
551
|
std::vector<omp_lock_t> locks(ntotal);
|
547
|
-
for(int i = 0; i < ntotal; i++)
|
552
|
+
for (int i = 0; i < ntotal; i++)
|
548
553
|
omp_init_lock(&locks[i]);
|
549
554
|
|
550
555
|
#pragma omp parallel
|
551
556
|
{
|
552
|
-
VisitedTable vt
|
557
|
+
VisitedTable vt(ntotal);
|
553
558
|
|
554
|
-
DistanceComputer
|
559
|
+
DistanceComputer* dis = storage_distance_computer(storage);
|
555
560
|
ScopeDeleter1<DistanceComputer> del(dis);
|
556
561
|
std::vector<float> vec(storage->d);
|
557
562
|
|
558
|
-
#pragma omp
|
563
|
+
#pragma omp for schedule(dynamic)
|
559
564
|
for (int i = 0; i < n; i++) {
|
560
565
|
storage_idx_t pt_id = points[i];
|
561
566
|
storage_idx_t nearest = nearests[i];
|
562
|
-
storage->reconstruct
|
563
|
-
dis->set_query
|
567
|
+
storage->reconstruct(pt_id, vec.data());
|
568
|
+
dis->set_query(vec.data());
|
564
569
|
|
565
|
-
hnsw.add_links_starting_from(
|
566
|
-
|
567
|
-
0, locks.data(), vt);
|
570
|
+
hnsw.add_links_starting_from(
|
571
|
+
*dis, pt_id, nearest, (*dis)(nearest), 0, locks.data(), vt);
|
568
572
|
|
569
573
|
if (verbose && i % 10000 == 0) {
|
570
574
|
printf(" %d / %d\r", i, n);
|
@@ -576,25 +580,23 @@ void IndexHNSW::init_level_0_from_entry_points(
|
|
576
580
|
printf("\n");
|
577
581
|
}
|
578
582
|
|
579
|
-
for(int i = 0; i < ntotal; i++)
|
583
|
+
for (int i = 0; i < ntotal; i++)
|
580
584
|
omp_destroy_lock(&locks[i]);
|
581
585
|
}
|
582
586
|
|
583
|
-
void IndexHNSW::reorder_links()
|
584
|
-
{
|
587
|
+
void IndexHNSW::reorder_links() {
|
585
588
|
int M = hnsw.nb_neighbors(0);
|
586
589
|
|
587
590
|
#pragma omp parallel
|
588
591
|
{
|
589
|
-
std::vector<float> distances
|
590
|
-
std::vector<size_t> order
|
591
|
-
std::vector<storage_idx_t> tmp
|
592
|
-
DistanceComputer
|
592
|
+
std::vector<float> distances(M);
|
593
|
+
std::vector<size_t> order(M);
|
594
|
+
std::vector<storage_idx_t> tmp(M);
|
595
|
+
DistanceComputer* dis = storage_distance_computer(storage);
|
593
596
|
ScopeDeleter1<DistanceComputer> del(dis);
|
594
597
|
|
595
598
|
#pragma omp for
|
596
|
-
for(storage_idx_t i = 0; i < ntotal; i++) {
|
597
|
-
|
599
|
+
for (storage_idx_t i = 0; i < ntotal; i++) {
|
598
600
|
size_t begin, end;
|
599
601
|
hnsw.neighbor_range(i, 0, &begin, &end);
|
600
602
|
|
@@ -605,21 +607,18 @@ void IndexHNSW::reorder_links()
|
|
605
607
|
break;
|
606
608
|
}
|
607
609
|
distances[j - begin] = dis->symmetric_dis(i, nj);
|
608
|
-
tmp
|
610
|
+
tmp[j - begin] = nj;
|
609
611
|
}
|
610
612
|
|
611
|
-
fvec_argsort
|
613
|
+
fvec_argsort(end - begin, distances.data(), order.data());
|
612
614
|
for (size_t j = begin; j < end; j++) {
|
613
615
|
hnsw.neighbors[j] = tmp[order[j - begin]];
|
614
616
|
}
|
615
617
|
}
|
616
|
-
|
617
618
|
}
|
618
619
|
}
|
619
620
|
|
620
|
-
|
621
|
-
void IndexHNSW::link_singletons()
|
622
|
-
{
|
621
|
+
void IndexHNSW::link_singletons() {
|
623
622
|
printf("search for singletons\n");
|
624
623
|
|
625
624
|
std::vector<bool> seen(ntotal);
|
@@ -629,7 +628,8 @@ void IndexHNSW::link_singletons()
|
|
629
628
|
hnsw.neighbor_range(i, 0, &begin, &end);
|
630
629
|
for (size_t j = begin; j < end; j++) {
|
631
630
|
storage_idx_t ni = hnsw.neighbors[j];
|
632
|
-
if (ni >= 0)
|
631
|
+
if (ni >= 0)
|
632
|
+
seen[ni] = true;
|
633
633
|
}
|
634
634
|
}
|
635
635
|
|
@@ -645,27 +645,25 @@ void IndexHNSW::link_singletons()
|
|
645
645
|
}
|
646
646
|
|
647
647
|
printf(" Found %d / %" PRId64 " singletons (%d appear in a level above)\n",
|
648
|
-
n_sing,
|
648
|
+
n_sing,
|
649
|
+
ntotal,
|
650
|
+
n_sing_l1);
|
649
651
|
|
650
|
-
std::vector<float>recons(singletons.size() * d);
|
652
|
+
std::vector<float> recons(singletons.size() * d);
|
651
653
|
for (int i = 0; i < singletons.size(); i++) {
|
652
|
-
|
653
654
|
FAISS_ASSERT(!"not implemented");
|
654
|
-
|
655
655
|
}
|
656
|
-
|
657
|
-
|
658
656
|
}
|
659
657
|
|
660
|
-
|
661
658
|
/**************************************************************
|
662
659
|
* ReconstructFromNeighbors implementation
|
663
660
|
**************************************************************/
|
664
661
|
|
665
|
-
|
666
662
|
ReconstructFromNeighbors::ReconstructFromNeighbors(
|
667
|
-
|
668
|
-
|
663
|
+
const IndexHNSW& index,
|
664
|
+
size_t k,
|
665
|
+
size_t nsq)
|
666
|
+
: index(index), k(k), nsq(nsq) {
|
669
667
|
M = index.hnsw.nb_neighbors(0);
|
670
668
|
FAISS_ASSERT(k <= 256);
|
671
669
|
code_size = k == 1 ? 0 : nsq;
|
@@ -676,16 +674,16 @@ ReconstructFromNeighbors::ReconstructFromNeighbors(
|
|
676
674
|
k_reorder = -1;
|
677
675
|
}
|
678
676
|
|
679
|
-
void ReconstructFromNeighbors::reconstruct(
|
680
|
-
|
681
|
-
|
682
|
-
|
683
|
-
const HNSW
|
677
|
+
void ReconstructFromNeighbors::reconstruct(
|
678
|
+
storage_idx_t i,
|
679
|
+
float* x,
|
680
|
+
float* tmp) const {
|
681
|
+
const HNSW& hnsw = index.hnsw;
|
684
682
|
size_t begin, end;
|
685
683
|
hnsw.neighbor_range(i, 0, &begin, &end);
|
686
684
|
|
687
685
|
if (k == 1 || nsq == 1) {
|
688
|
-
const float
|
686
|
+
const float* beta;
|
689
687
|
if (k == 1) {
|
690
688
|
beta = codebook.data();
|
691
689
|
} else {
|
@@ -700,9 +698,9 @@ void ReconstructFromNeighbors::reconstruct(storage_idx_t i, float *x, float *tmp
|
|
700
698
|
x[l] = w0 * tmp[l];
|
701
699
|
|
702
700
|
for (size_t j = begin; j < end; j++) {
|
703
|
-
|
704
701
|
storage_idx_t ji = hnsw.neighbors[j];
|
705
|
-
if (ji < 0)
|
702
|
+
if (ji < 0)
|
703
|
+
ji = i;
|
706
704
|
float w = beta[j - begin + 1];
|
707
705
|
index.storage->reconstruct(ji, tmp);
|
708
706
|
for (int l = 0; l < d; l++)
|
@@ -712,8 +710,8 @@ void ReconstructFromNeighbors::reconstruct(storage_idx_t i, float *x, float *tmp
|
|
712
710
|
int idx0 = codes[2 * i];
|
713
711
|
int idx1 = codes[2 * i + 1];
|
714
712
|
|
715
|
-
const float
|
716
|
-
const float
|
713
|
+
const float* beta0 = codebook.data() + idx0 * (M + 1);
|
714
|
+
const float* beta1 = codebook.data() + (idx1 + k) * (M + 1);
|
717
715
|
|
718
716
|
index.storage->reconstruct(i, tmp);
|
719
717
|
|
@@ -729,7 +727,8 @@ void ReconstructFromNeighbors::reconstruct(storage_idx_t i, float *x, float *tmp
|
|
729
727
|
|
730
728
|
for (size_t j = begin; j < end; j++) {
|
731
729
|
storage_idx_t ji = hnsw.neighbors[j];
|
732
|
-
if (ji < 0)
|
730
|
+
if (ji < 0)
|
731
|
+
ji = i;
|
733
732
|
index.storage->reconstruct(ji, tmp);
|
734
733
|
float w;
|
735
734
|
w = beta0[j - begin + 1];
|
@@ -741,10 +740,10 @@ void ReconstructFromNeighbors::reconstruct(storage_idx_t i, float *x, float *tmp
|
|
741
740
|
x[l] += w * tmp[l];
|
742
741
|
}
|
743
742
|
} else {
|
744
|
-
std::vector<const float
|
743
|
+
std::vector<const float*> betas(nsq);
|
745
744
|
{
|
746
|
-
const float
|
747
|
-
const uint8_t
|
745
|
+
const float* b = codebook.data();
|
746
|
+
const uint8_t* c = &codes[i * code_size];
|
748
747
|
for (int sq = 0; sq < nsq; sq++) {
|
749
748
|
betas[sq] = b + (*c++) * (M + 1);
|
750
749
|
b += (M + 1) * k;
|
@@ -766,7 +765,8 @@ void ReconstructFromNeighbors::reconstruct(storage_idx_t i, float *x, float *tmp
|
|
766
765
|
|
767
766
|
for (size_t j = begin; j < end; j++) {
|
768
767
|
storage_idx_t ji = hnsw.neighbors[j];
|
769
|
-
if (ji < 0)
|
768
|
+
if (ji < 0)
|
769
|
+
ji = i;
|
770
770
|
|
771
771
|
index.storage->reconstruct(ji, tmp);
|
772
772
|
int d0 = 0;
|
@@ -782,10 +782,10 @@ void ReconstructFromNeighbors::reconstruct(storage_idx_t i, float *x, float *tmp
|
|
782
782
|
}
|
783
783
|
}
|
784
784
|
|
785
|
-
void ReconstructFromNeighbors::reconstruct_n(
|
786
|
-
|
787
|
-
|
788
|
-
{
|
785
|
+
void ReconstructFromNeighbors::reconstruct_n(
|
786
|
+
storage_idx_t n0,
|
787
|
+
storage_idx_t ni,
|
788
|
+
float* x) const {
|
789
789
|
#pragma omp parallel
|
790
790
|
{
|
791
791
|
std::vector<float> tmp(index.d);
|
@@ -797,13 +797,15 @@ void ReconstructFromNeighbors::reconstruct_n(storage_idx_t n0,
|
|
797
797
|
}
|
798
798
|
|
799
799
|
size_t ReconstructFromNeighbors::compute_distances(
|
800
|
-
|
801
|
-
|
802
|
-
|
800
|
+
size_t n,
|
801
|
+
const idx_t* shortlist,
|
802
|
+
const float* query,
|
803
|
+
float* distances) const {
|
803
804
|
std::vector<float> tmp(2 * index.d);
|
804
805
|
size_t ncomp = 0;
|
805
806
|
for (int i = 0; i < n; i++) {
|
806
|
-
if (shortlist[i] < 0)
|
807
|
+
if (shortlist[i] < 0)
|
808
|
+
break;
|
807
809
|
reconstruct(shortlist[i], tmp.data(), tmp.data() + index.d);
|
808
810
|
distances[i] = fvec_L2sqr(query, tmp.data(), index.d);
|
809
811
|
ncomp++;
|
@@ -811,9 +813,9 @@ size_t ReconstructFromNeighbors::compute_distances(
|
|
811
813
|
return ncomp;
|
812
814
|
}
|
813
815
|
|
814
|
-
void ReconstructFromNeighbors::get_neighbor_table(storage_idx_t i, float
|
815
|
-
{
|
816
|
-
const HNSW
|
816
|
+
void ReconstructFromNeighbors::get_neighbor_table(storage_idx_t i, float* tmp1)
|
817
|
+
const {
|
818
|
+
const HNSW& hnsw = index.hnsw;
|
817
819
|
size_t begin, end;
|
818
820
|
hnsw.neighbor_range(i, 0, &begin, &end);
|
819
821
|
size_t d = index.d;
|
@@ -822,25 +824,24 @@ void ReconstructFromNeighbors::get_neighbor_table(storage_idx_t i, float *tmp1)
|
|
822
824
|
|
823
825
|
for (size_t j = begin; j < end; j++) {
|
824
826
|
storage_idx_t ji = hnsw.neighbors[j];
|
825
|
-
if (ji < 0)
|
827
|
+
if (ji < 0)
|
828
|
+
ji = i;
|
826
829
|
index.storage->reconstruct(ji, tmp1 + (j - begin + 1) * d);
|
827
830
|
}
|
828
|
-
|
829
831
|
}
|
830
832
|
|
831
|
-
|
832
833
|
/// called by add_codes
|
833
834
|
void ReconstructFromNeighbors::estimate_code(
|
834
|
-
|
835
|
-
|
836
|
-
|
835
|
+
const float* x,
|
836
|
+
storage_idx_t i,
|
837
|
+
uint8_t* code) const {
|
837
838
|
// fill in tmp table with the neighbor values
|
838
|
-
float
|
839
|
-
float
|
839
|
+
float* tmp1 = new float[d * (M + 1) + (d * k)];
|
840
|
+
float* tmp2 = tmp1 + d * (M + 1);
|
840
841
|
ScopeDeleter<float> del(tmp1);
|
841
842
|
|
842
843
|
// collect coordinates of base
|
843
|
-
get_neighbor_table
|
844
|
+
get_neighbor_table(i, tmp1);
|
844
845
|
|
845
846
|
for (size_t sq = 0; sq < nsq; sq++) {
|
846
847
|
int d0 = sq * dsub;
|
@@ -850,10 +851,19 @@ void ReconstructFromNeighbors::estimate_code(
|
|
850
851
|
FINTEGER dsubi = dsub;
|
851
852
|
float zero = 0, one = 1;
|
852
853
|
|
853
|
-
sgemm_
|
854
|
-
|
855
|
-
|
856
|
-
|
854
|
+
sgemm_("N",
|
855
|
+
"N",
|
856
|
+
&dsubi,
|
857
|
+
&ki,
|
858
|
+
&m1,
|
859
|
+
&one,
|
860
|
+
tmp1 + d0,
|
861
|
+
&di,
|
862
|
+
codebook.data() + sq * (m1 * k),
|
863
|
+
&m1,
|
864
|
+
&zero,
|
865
|
+
tmp2,
|
866
|
+
&dsubi);
|
857
867
|
}
|
858
868
|
|
859
869
|
float min = HUGE_VAL;
|
@@ -867,11 +877,9 @@ void ReconstructFromNeighbors::estimate_code(
|
|
867
877
|
}
|
868
878
|
code[sq] = argmin;
|
869
879
|
}
|
870
|
-
|
871
880
|
}
|
872
881
|
|
873
|
-
void ReconstructFromNeighbors::add_codes(size_t n, const float
|
874
|
-
{
|
882
|
+
void ReconstructFromNeighbors::add_codes(size_t n, const float* x) {
|
875
883
|
if (k == 1) { // nothing to encode
|
876
884
|
ntotal += n;
|
877
885
|
return;
|
@@ -879,98 +887,94 @@ void ReconstructFromNeighbors::add_codes(size_t n, const float *x)
|
|
879
887
|
codes.resize(codes.size() + code_size * n);
|
880
888
|
#pragma omp parallel for
|
881
889
|
for (int i = 0; i < n; i++) {
|
882
|
-
estimate_code(
|
883
|
-
|
890
|
+
estimate_code(
|
891
|
+
x + i * index.d,
|
892
|
+
ntotal + i,
|
893
|
+
codes.data() + (ntotal + i) * code_size);
|
884
894
|
}
|
885
895
|
ntotal += n;
|
886
|
-
FAISS_ASSERT
|
896
|
+
FAISS_ASSERT(codes.size() == ntotal * code_size);
|
887
897
|
}
|
888
898
|
|
889
|
-
|
890
899
|
/**************************************************************
|
891
900
|
* IndexHNSWFlat implementation
|
892
901
|
**************************************************************/
|
893
902
|
|
894
|
-
|
895
|
-
IndexHNSWFlat::IndexHNSWFlat()
|
896
|
-
{
|
903
|
+
IndexHNSWFlat::IndexHNSWFlat() {
|
897
904
|
is_trained = true;
|
898
905
|
}
|
899
906
|
|
900
|
-
IndexHNSWFlat::IndexHNSWFlat(int d, int M, MetricType metric)
|
901
|
-
|
902
|
-
{
|
907
|
+
IndexHNSWFlat::IndexHNSWFlat(int d, int M, MetricType metric)
|
908
|
+
: IndexHNSW(new IndexFlat(d, metric), M) {
|
903
909
|
own_fields = true;
|
904
910
|
is_trained = true;
|
905
911
|
}
|
906
912
|
|
907
|
-
|
908
913
|
/**************************************************************
|
909
914
|
* IndexHNSWPQ implementation
|
910
915
|
**************************************************************/
|
911
916
|
|
912
|
-
|
913
917
|
IndexHNSWPQ::IndexHNSWPQ() {}
|
914
918
|
|
915
|
-
IndexHNSWPQ::IndexHNSWPQ(int d, int pq_m, int M)
|
916
|
-
|
917
|
-
{
|
919
|
+
IndexHNSWPQ::IndexHNSWPQ(int d, int pq_m, int M)
|
920
|
+
: IndexHNSW(new IndexPQ(d, pq_m, 8), M) {
|
918
921
|
own_fields = true;
|
919
922
|
is_trained = false;
|
920
923
|
}
|
921
924
|
|
922
|
-
void IndexHNSWPQ::train(idx_t n, const float* x)
|
923
|
-
|
924
|
-
|
925
|
-
(dynamic_cast<IndexPQ*> (storage))->pq.compute_sdc_table();
|
925
|
+
void IndexHNSWPQ::train(idx_t n, const float* x) {
|
926
|
+
IndexHNSW::train(n, x);
|
927
|
+
(dynamic_cast<IndexPQ*>(storage))->pq.compute_sdc_table();
|
926
928
|
}
|
927
929
|
|
928
|
-
|
929
930
|
/**************************************************************
|
930
931
|
* IndexHNSWSQ implementation
|
931
932
|
**************************************************************/
|
932
933
|
|
933
|
-
|
934
|
-
|
935
|
-
|
936
|
-
|
937
|
-
|
934
|
+
IndexHNSWSQ::IndexHNSWSQ(
|
935
|
+
int d,
|
936
|
+
ScalarQuantizer::QuantizerType qtype,
|
937
|
+
int M,
|
938
|
+
MetricType metric)
|
939
|
+
: IndexHNSW(new IndexScalarQuantizer(d, qtype, metric), M) {
|
938
940
|
is_trained = false;
|
939
941
|
own_fields = true;
|
940
942
|
}
|
941
943
|
|
942
944
|
IndexHNSWSQ::IndexHNSWSQ() {}
|
943
945
|
|
944
|
-
|
945
946
|
/**************************************************************
|
946
947
|
* IndexHNSW2Level implementation
|
947
948
|
**************************************************************/
|
948
949
|
|
949
|
-
|
950
|
-
|
951
|
-
|
952
|
-
|
950
|
+
IndexHNSW2Level::IndexHNSW2Level(
|
951
|
+
Index* quantizer,
|
952
|
+
size_t nlist,
|
953
|
+
int m_pq,
|
954
|
+
int M)
|
955
|
+
: IndexHNSW(new Index2Layer(quantizer, nlist, m_pq), M) {
|
953
956
|
own_fields = true;
|
954
957
|
is_trained = false;
|
955
958
|
}
|
956
959
|
|
957
960
|
IndexHNSW2Level::IndexHNSW2Level() {}
|
958
961
|
|
959
|
-
|
960
962
|
namespace {
|
961
963
|
|
962
|
-
|
963
964
|
// same as search_from_candidates but uses v
|
964
965
|
// visno -> is in result list
|
965
966
|
// visno + 1 -> in result list + in candidates
|
966
|
-
int search_from_candidates_2(
|
967
|
-
|
968
|
-
|
969
|
-
|
970
|
-
|
971
|
-
|
972
|
-
|
973
|
-
|
967
|
+
int search_from_candidates_2(
|
968
|
+
const HNSW& hnsw,
|
969
|
+
DistanceComputer& qdis,
|
970
|
+
int k,
|
971
|
+
idx_t* I,
|
972
|
+
float* D,
|
973
|
+
MinimaxHeap& candidates,
|
974
|
+
VisitedTable& vt,
|
975
|
+
HNSWStats& stats,
|
976
|
+
int level,
|
977
|
+
int nres_in = 0) {
|
974
978
|
int nres = nres_in;
|
975
979
|
int ndis = 0;
|
976
980
|
for (int i = 0; i < candidates.size(); i++) {
|
@@ -990,7 +994,8 @@ int search_from_candidates_2(const HNSW & hnsw,
|
|
990
994
|
|
991
995
|
for (size_t j = begin; j < end; j++) {
|
992
996
|
int v1 = hnsw.neighbors[j];
|
993
|
-
if (v1 < 0)
|
997
|
+
if (v1 < 0)
|
998
|
+
break;
|
994
999
|
if (vt.visited[v1] == vt.visno + 1) {
|
995
1000
|
// nothing to do
|
996
1001
|
} else {
|
@@ -1001,9 +1006,9 @@ int search_from_candidates_2(const HNSW & hnsw,
|
|
1001
1006
|
// never seen before --> add to heap
|
1002
1007
|
if (vt.visited[v1] < vt.visno) {
|
1003
1008
|
if (nres < k) {
|
1004
|
-
faiss::maxheap_push
|
1009
|
+
faiss::maxheap_push(++nres, D, I, d, v1);
|
1005
1010
|
} else if (d < D[0]) {
|
1006
|
-
faiss::maxheap_replace_top
|
1011
|
+
faiss::maxheap_replace_top(nres, D, I, d, v1);
|
1007
1012
|
}
|
1008
1013
|
}
|
1009
1014
|
vt.visited[v1] = vt.visno + 1;
|
@@ -1016,65 +1021,76 @@ int search_from_candidates_2(const HNSW & hnsw,
|
|
1016
1021
|
}
|
1017
1022
|
}
|
1018
1023
|
|
1019
|
-
stats.n1
|
1024
|
+
stats.n1++;
|
1020
1025
|
if (candidates.size() == 0)
|
1021
|
-
stats.n2
|
1026
|
+
stats.n2++;
|
1022
1027
|
|
1023
1028
|
return nres;
|
1024
1029
|
}
|
1025
1030
|
|
1031
|
+
} // namespace
|
1026
1032
|
|
1027
|
-
|
1033
|
+
void IndexHNSW2Level::search(
|
1034
|
+
idx_t n,
|
1035
|
+
const float* x,
|
1036
|
+
idx_t k,
|
1037
|
+
float* distances,
|
1038
|
+
idx_t* labels) const {
|
1039
|
+
FAISS_THROW_IF_NOT(k > 0);
|
1028
1040
|
|
1029
|
-
void IndexHNSW2Level::search (idx_t n, const float *x, idx_t k,
|
1030
|
-
float *distances, idx_t *labels) const
|
1031
|
-
{
|
1032
1041
|
if (dynamic_cast<const Index2Layer*>(storage)) {
|
1033
|
-
IndexHNSW::search
|
1042
|
+
IndexHNSW::search(n, x, k, distances, labels);
|
1034
1043
|
|
1035
1044
|
} else { // "mixed" search
|
1036
1045
|
size_t n1 = 0, n2 = 0, n3 = 0, ndis = 0, nreorder = 0;
|
1037
1046
|
|
1038
|
-
const IndexIVFPQ
|
1039
|
-
|
1047
|
+
const IndexIVFPQ* index_ivfpq =
|
1048
|
+
dynamic_cast<const IndexIVFPQ*>(storage);
|
1040
1049
|
|
1041
1050
|
int nprobe = index_ivfpq->nprobe;
|
1042
1051
|
|
1043
1052
|
std::unique_ptr<idx_t[]> coarse_assign(new idx_t[n * nprobe]);
|
1044
1053
|
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
|
1045
1054
|
|
1046
|
-
index_ivfpq->quantizer->search
|
1047
|
-
|
1055
|
+
index_ivfpq->quantizer->search(
|
1056
|
+
n, x, nprobe, coarse_dis.get(), coarse_assign.get());
|
1048
1057
|
|
1049
|
-
index_ivfpq->search_preassigned
|
1050
|
-
|
1051
|
-
|
1058
|
+
index_ivfpq->search_preassigned(
|
1059
|
+
n,
|
1060
|
+
x,
|
1061
|
+
k,
|
1062
|
+
coarse_assign.get(),
|
1063
|
+
coarse_dis.get(),
|
1064
|
+
distances,
|
1065
|
+
labels,
|
1066
|
+
false);
|
1052
1067
|
|
1053
1068
|
#pragma omp parallel
|
1054
1069
|
{
|
1055
|
-
VisitedTable vt
|
1056
|
-
DistanceComputer
|
1070
|
+
VisitedTable vt(ntotal);
|
1071
|
+
DistanceComputer* dis = storage_distance_computer(storage);
|
1057
1072
|
ScopeDeleter1<DistanceComputer> del(dis);
|
1058
1073
|
|
1059
1074
|
int candidates_size = hnsw.upper_beam;
|
1060
1075
|
MinimaxHeap candidates(candidates_size);
|
1061
1076
|
|
1062
|
-
#pragma omp for reduction
|
1063
|
-
for(idx_t i = 0; i < n; i++) {
|
1064
|
-
idx_t
|
1065
|
-
float
|
1077
|
+
#pragma omp for reduction(+ : n1, n2, n3, ndis, nreorder)
|
1078
|
+
for (idx_t i = 0; i < n; i++) {
|
1079
|
+
idx_t* idxi = labels + i * k;
|
1080
|
+
float* simi = distances + i * k;
|
1066
1081
|
dis->set_query(x + i * d);
|
1067
1082
|
|
1068
1083
|
// mark all inverted list elements as visited
|
1069
1084
|
|
1070
1085
|
for (int j = 0; j < nprobe; j++) {
|
1071
1086
|
idx_t key = coarse_assign[j + i * nprobe];
|
1072
|
-
if (key < 0)
|
1073
|
-
|
1074
|
-
|
1087
|
+
if (key < 0)
|
1088
|
+
break;
|
1089
|
+
size_t list_length = index_ivfpq->get_list_size(key);
|
1090
|
+
const idx_t* ids = index_ivfpq->invlists->get_ids(key);
|
1075
1091
|
|
1076
1092
|
for (int jj = 0; jj < list_length; jj++) {
|
1077
|
-
vt.set
|
1093
|
+
vt.set(ids[jj]);
|
1078
1094
|
}
|
1079
1095
|
}
|
1080
1096
|
|
@@ -1084,23 +1100,29 @@ void IndexHNSW2Level::search (idx_t n, const float *x, idx_t k,
|
|
1084
1100
|
int search_policy = 2;
|
1085
1101
|
|
1086
1102
|
if (search_policy == 1) {
|
1087
|
-
|
1088
|
-
|
1089
|
-
|
1090
|
-
candidates.push
|
1103
|
+
for (int j = 0; j < hnsw.upper_beam && j < k; j++) {
|
1104
|
+
if (idxi[j] < 0)
|
1105
|
+
break;
|
1106
|
+
candidates.push(idxi[j], simi[j]);
|
1091
1107
|
// search_from_candidates adds them back
|
1092
1108
|
idxi[j] = -1;
|
1093
1109
|
simi[j] = HUGE_VAL;
|
1094
1110
|
}
|
1095
1111
|
|
1096
1112
|
// reorder from sorted to heap
|
1097
|
-
maxheap_heapify
|
1113
|
+
maxheap_heapify(k, simi, idxi, simi, idxi, k);
|
1098
1114
|
|
1099
1115
|
HNSWStats search_stats;
|
1100
1116
|
hnsw.search_from_candidates(
|
1101
|
-
|
1102
|
-
|
1103
|
-
|
1117
|
+
*dis,
|
1118
|
+
k,
|
1119
|
+
idxi,
|
1120
|
+
simi,
|
1121
|
+
candidates,
|
1122
|
+
vt,
|
1123
|
+
search_stats,
|
1124
|
+
0,
|
1125
|
+
k);
|
1104
1126
|
n1 += search_stats.n1;
|
1105
1127
|
n2 += search_stats.n2;
|
1106
1128
|
n3 += search_stats.n3;
|
@@ -1110,63 +1132,65 @@ void IndexHNSW2Level::search (idx_t n, const float *x, idx_t k,
|
|
1110
1132
|
vt.advance();
|
1111
1133
|
|
1112
1134
|
} else if (search_policy == 2) {
|
1113
|
-
|
1114
|
-
|
1115
|
-
|
1116
|
-
candidates.push
|
1135
|
+
for (int j = 0; j < hnsw.upper_beam && j < k; j++) {
|
1136
|
+
if (idxi[j] < 0)
|
1137
|
+
break;
|
1138
|
+
candidates.push(idxi[j], simi[j]);
|
1117
1139
|
}
|
1118
1140
|
|
1119
1141
|
// reorder from sorted to heap
|
1120
|
-
maxheap_heapify
|
1142
|
+
maxheap_heapify(k, simi, idxi, simi, idxi, k);
|
1121
1143
|
|
1122
1144
|
HNSWStats search_stats;
|
1123
|
-
search_from_candidates_2
|
1124
|
-
|
1125
|
-
|
1145
|
+
search_from_candidates_2(
|
1146
|
+
hnsw,
|
1147
|
+
*dis,
|
1148
|
+
k,
|
1149
|
+
idxi,
|
1150
|
+
simi,
|
1151
|
+
candidates,
|
1152
|
+
vt,
|
1153
|
+
search_stats,
|
1154
|
+
0,
|
1155
|
+
k);
|
1126
1156
|
n1 += search_stats.n1;
|
1127
1157
|
n2 += search_stats.n2;
|
1128
1158
|
n3 += search_stats.n3;
|
1129
1159
|
ndis += search_stats.ndis;
|
1130
1160
|
nreorder += search_stats.nreorder;
|
1131
1161
|
|
1132
|
-
vt.advance
|
1133
|
-
vt.advance
|
1134
|
-
|
1162
|
+
vt.advance();
|
1163
|
+
vt.advance();
|
1135
1164
|
}
|
1136
1165
|
|
1137
|
-
maxheap_reorder
|
1166
|
+
maxheap_reorder(k, simi, idxi);
|
1138
1167
|
}
|
1139
1168
|
}
|
1140
1169
|
|
1141
1170
|
hnsw_stats.combine({n1, n2, n3, ndis, nreorder});
|
1142
1171
|
}
|
1143
|
-
|
1144
|
-
|
1145
1172
|
}
|
1146
1173
|
|
1174
|
+
void IndexHNSW2Level::flip_to_ivf() {
|
1175
|
+
Index2Layer* storage2l = dynamic_cast<Index2Layer*>(storage);
|
1147
1176
|
|
1148
|
-
|
1149
|
-
{
|
1150
|
-
Index2Layer *storage2l =
|
1151
|
-
dynamic_cast<Index2Layer*>(storage);
|
1177
|
+
FAISS_THROW_IF_NOT(storage2l);
|
1152
1178
|
|
1153
|
-
|
1154
|
-
|
1155
|
-
|
1156
|
-
|
1157
|
-
|
1158
|
-
|
1179
|
+
IndexIVFPQ* index_ivfpq = new IndexIVFPQ(
|
1180
|
+
storage2l->q1.quantizer,
|
1181
|
+
d,
|
1182
|
+
storage2l->q1.nlist,
|
1183
|
+
storage2l->pq.M,
|
1184
|
+
8);
|
1159
1185
|
index_ivfpq->pq = storage2l->pq;
|
1160
1186
|
index_ivfpq->is_trained = storage2l->is_trained;
|
1161
1187
|
index_ivfpq->precompute_table();
|
1162
1188
|
index_ivfpq->own_fields = storage2l->q1.own_fields;
|
1163
1189
|
storage2l->transfer_to_IVFPQ(*index_ivfpq);
|
1164
|
-
index_ivfpq->make_direct_map
|
1190
|
+
index_ivfpq->make_direct_map(true);
|
1165
1191
|
|
1166
1192
|
storage = index_ivfpq;
|
1167
1193
|
delete storage2l;
|
1168
|
-
|
1169
1194
|
}
|
1170
1195
|
|
1171
|
-
|
1172
|
-
} // namespace faiss
|
1196
|
+
} // namespace faiss
|