faiss 0.2.0 → 0.2.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +292 -291
- data/vendor/faiss/faiss/AutoTune.h +55 -56
- data/vendor/faiss/faiss/Clustering.cpp +334 -195
- data/vendor/faiss/faiss/Clustering.h +88 -35
- data/vendor/faiss/faiss/IVFlib.cpp +171 -195
- data/vendor/faiss/faiss/IVFlib.h +48 -51
- data/vendor/faiss/faiss/Index.cpp +85 -103
- data/vendor/faiss/faiss/Index.h +54 -48
- data/vendor/faiss/faiss/Index2Layer.cpp +139 -164
- data/vendor/faiss/faiss/Index2Layer.h +22 -22
- data/vendor/faiss/faiss/IndexBinary.cpp +45 -37
- data/vendor/faiss/faiss/IndexBinary.h +140 -132
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +73 -53
- data/vendor/faiss/faiss/IndexBinaryFlat.h +29 -24
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +46 -43
- data/vendor/faiss/faiss/IndexBinaryFromFloat.h +16 -15
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +215 -232
- data/vendor/faiss/faiss/IndexBinaryHNSW.h +25 -24
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +182 -177
- data/vendor/faiss/faiss/IndexBinaryHash.h +41 -34
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +489 -461
- data/vendor/faiss/faiss/IndexBinaryIVF.h +97 -68
- data/vendor/faiss/faiss/IndexFlat.cpp +116 -147
- data/vendor/faiss/faiss/IndexFlat.h +35 -46
- data/vendor/faiss/faiss/IndexHNSW.cpp +372 -348
- data/vendor/faiss/faiss/IndexHNSW.h +57 -41
- data/vendor/faiss/faiss/IndexIVF.cpp +474 -454
- data/vendor/faiss/faiss/IndexIVF.h +146 -113
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +248 -250
- data/vendor/faiss/faiss/IndexIVFFlat.h +48 -51
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +457 -516
- data/vendor/faiss/faiss/IndexIVFPQ.h +74 -66
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +406 -372
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +82 -57
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +104 -102
- data/vendor/faiss/faiss/IndexIVFPQR.h +33 -28
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +125 -133
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +19 -21
- data/vendor/faiss/faiss/IndexLSH.cpp +75 -96
- data/vendor/faiss/faiss/IndexLSH.h +21 -26
- data/vendor/faiss/faiss/IndexLattice.cpp +42 -56
- data/vendor/faiss/faiss/IndexLattice.h +11 -16
- data/vendor/faiss/faiss/IndexNNDescent.cpp +231 -0
- data/vendor/faiss/faiss/IndexNNDescent.h +72 -0
- data/vendor/faiss/faiss/IndexNSG.cpp +303 -0
- data/vendor/faiss/faiss/IndexNSG.h +85 -0
- data/vendor/faiss/faiss/IndexPQ.cpp +405 -464
- data/vendor/faiss/faiss/IndexPQ.h +64 -67
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +143 -170
- data/vendor/faiss/faiss/IndexPQFastScan.h +46 -32
- data/vendor/faiss/faiss/IndexPreTransform.cpp +120 -150
- data/vendor/faiss/faiss/IndexPreTransform.h +33 -36
- data/vendor/faiss/faiss/IndexRefine.cpp +115 -131
- data/vendor/faiss/faiss/IndexRefine.h +22 -23
- data/vendor/faiss/faiss/IndexReplicas.cpp +147 -153
- data/vendor/faiss/faiss/IndexReplicas.h +62 -56
- data/vendor/faiss/faiss/IndexResidual.cpp +291 -0
- data/vendor/faiss/faiss/IndexResidual.h +152 -0
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +120 -155
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +41 -45
- data/vendor/faiss/faiss/IndexShards.cpp +256 -240
- data/vendor/faiss/faiss/IndexShards.h +85 -73
- data/vendor/faiss/faiss/MatrixStats.cpp +112 -97
- data/vendor/faiss/faiss/MatrixStats.h +7 -10
- data/vendor/faiss/faiss/MetaIndexes.cpp +135 -157
- data/vendor/faiss/faiss/MetaIndexes.h +40 -34
- data/vendor/faiss/faiss/MetricType.h +7 -7
- data/vendor/faiss/faiss/VectorTransform.cpp +652 -474
- data/vendor/faiss/faiss/VectorTransform.h +61 -89
- data/vendor/faiss/faiss/clone_index.cpp +77 -73
- data/vendor/faiss/faiss/clone_index.h +4 -9
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +33 -38
- data/vendor/faiss/faiss/gpu/GpuAutoTune.h +11 -9
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +197 -170
- data/vendor/faiss/faiss/gpu/GpuCloner.h +53 -35
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.cpp +12 -14
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +27 -25
- data/vendor/faiss/faiss/gpu/GpuDistance.h +116 -112
- data/vendor/faiss/faiss/gpu/GpuFaissAssert.h +1 -2
- data/vendor/faiss/faiss/gpu/GpuIndex.h +134 -137
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +76 -73
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +173 -162
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +67 -64
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +89 -86
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +150 -141
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +101 -103
- data/vendor/faiss/faiss/gpu/GpuIndicesOptions.h +17 -16
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +116 -128
- data/vendor/faiss/faiss/gpu/GpuResources.h +182 -186
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +433 -422
- data/vendor/faiss/faiss/gpu/StandardGpuResources.h +131 -130
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +468 -456
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.h +25 -19
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +22 -20
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +9 -8
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper-inl.h +39 -44
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper.h +16 -14
- data/vendor/faiss/faiss/gpu/perf/PerfClustering.cpp +77 -71
- data/vendor/faiss/faiss/gpu/perf/PerfIVFPQAdd.cpp +109 -88
- data/vendor/faiss/faiss/gpu/perf/WriteIndex.cpp +75 -64
- data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +230 -215
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +80 -86
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +284 -277
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +416 -416
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +611 -517
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +166 -164
- data/vendor/faiss/faiss/gpu/test/TestGpuMemoryException.cpp +61 -53
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +274 -238
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +73 -57
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +47 -50
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +79 -72
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.cpp +140 -146
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.h +69 -71
- data/vendor/faiss/faiss/gpu/utils/StaticUtils.h +21 -16
- data/vendor/faiss/faiss/gpu/utils/Timer.cpp +25 -29
- data/vendor/faiss/faiss/gpu/utils/Timer.h +30 -29
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +270 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +115 -0
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +90 -120
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +81 -65
- data/vendor/faiss/faiss/impl/FaissAssert.h +73 -58
- data/vendor/faiss/faiss/impl/FaissException.cpp +56 -48
- data/vendor/faiss/faiss/impl/FaissException.h +41 -29
- data/vendor/faiss/faiss/impl/HNSW.cpp +595 -611
- data/vendor/faiss/faiss/impl/HNSW.h +179 -200
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +672 -0
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +172 -0
- data/vendor/faiss/faiss/impl/NNDescent.cpp +487 -0
- data/vendor/faiss/faiss/impl/NNDescent.h +154 -0
- data/vendor/faiss/faiss/impl/NSG.cpp +682 -0
- data/vendor/faiss/faiss/impl/NSG.h +199 -0
- data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +484 -454
- data/vendor/faiss/faiss/impl/PolysemousTraining.h +52 -55
- data/vendor/faiss/faiss/impl/ProductQuantizer-inl.h +26 -47
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +469 -459
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +76 -87
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +448 -0
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +130 -0
- data/vendor/faiss/faiss/impl/ResultHandler.h +96 -132
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +648 -701
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +48 -46
- data/vendor/faiss/faiss/impl/ThreadedIndex-inl.h +129 -131
- data/vendor/faiss/faiss/impl/ThreadedIndex.h +61 -55
- data/vendor/faiss/faiss/impl/index_read.cpp +547 -479
- data/vendor/faiss/faiss/impl/index_write.cpp +497 -407
- data/vendor/faiss/faiss/impl/io.cpp +75 -94
- data/vendor/faiss/faiss/impl/io.h +31 -41
- data/vendor/faiss/faiss/impl/io_macros.h +40 -29
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +137 -186
- data/vendor/faiss/faiss/impl/lattice_Zn.h +40 -51
- data/vendor/faiss/faiss/impl/platform_macros.h +29 -8
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +77 -124
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +39 -48
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +41 -52
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +80 -117
- data/vendor/faiss/faiss/impl/simd_result_handlers.h +109 -137
- data/vendor/faiss/faiss/index_factory.cpp +269 -218
- data/vendor/faiss/faiss/index_factory.h +6 -7
- data/vendor/faiss/faiss/index_io.h +23 -26
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +67 -75
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +22 -24
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +96 -112
- data/vendor/faiss/faiss/invlists/DirectMap.h +29 -33
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +307 -364
- data/vendor/faiss/faiss/invlists/InvertedLists.h +151 -151
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.cpp +29 -34
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.h +17 -18
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +257 -293
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.h +50 -45
- data/vendor/faiss/faiss/python/python_callbacks.cpp +23 -26
- data/vendor/faiss/faiss/python/python_callbacks.h +9 -16
- data/vendor/faiss/faiss/utils/AlignedTable.h +79 -44
- data/vendor/faiss/faiss/utils/Heap.cpp +40 -48
- data/vendor/faiss/faiss/utils/Heap.h +186 -209
- data/vendor/faiss/faiss/utils/WorkerThread.cpp +67 -76
- data/vendor/faiss/faiss/utils/WorkerThread.h +32 -33
- data/vendor/faiss/faiss/utils/distances.cpp +301 -310
- data/vendor/faiss/faiss/utils/distances.h +133 -118
- data/vendor/faiss/faiss/utils/distances_simd.cpp +456 -516
- data/vendor/faiss/faiss/utils/extra_distances-inl.h +117 -0
- data/vendor/faiss/faiss/utils/extra_distances.cpp +113 -232
- data/vendor/faiss/faiss/utils/extra_distances.h +30 -29
- data/vendor/faiss/faiss/utils/hamming-inl.h +260 -209
- data/vendor/faiss/faiss/utils/hamming.cpp +375 -469
- data/vendor/faiss/faiss/utils/hamming.h +62 -85
- data/vendor/faiss/faiss/utils/ordered_key_value.h +16 -18
- data/vendor/faiss/faiss/utils/partitioning.cpp +393 -318
- data/vendor/faiss/faiss/utils/partitioning.h +26 -21
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +78 -66
- data/vendor/faiss/faiss/utils/quantize_lut.h +22 -20
- data/vendor/faiss/faiss/utils/random.cpp +39 -63
- data/vendor/faiss/faiss/utils/random.h +13 -16
- data/vendor/faiss/faiss/utils/simdlib.h +4 -2
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +88 -85
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +226 -165
- data/vendor/faiss/faiss/utils/simdlib_neon.h +832 -0
- data/vendor/faiss/faiss/utils/utils.cpp +304 -287
- data/vendor/faiss/faiss/utils/utils.h +53 -48
- metadata +20 -2
@@ -5,9 +5,8 @@
|
|
5
5
|
* LICENSE file in the root directory of this source tree.
|
6
6
|
*/
|
7
7
|
|
8
|
-
|
9
|
-
#include <faiss/utils/WorkerThread.h>
|
10
8
|
#include <faiss/impl/FaissAssert.h>
|
9
|
+
#include <faiss/utils/WorkerThread.h>
|
11
10
|
#include <exception>
|
12
11
|
|
13
12
|
namespace faiss {
|
@@ -15,112 +14,104 @@ namespace faiss {
|
|
15
14
|
namespace {
|
16
15
|
|
17
16
|
// Captures any exceptions thrown by the lambda and returns them via the promise
|
18
|
-
void runCallback(std::function<void()>& fn,
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
}
|
17
|
+
void runCallback(std::function<void()>& fn, std::promise<bool>& promise) {
|
18
|
+
try {
|
19
|
+
fn();
|
20
|
+
promise.set_value(true);
|
21
|
+
} catch (...) {
|
22
|
+
promise.set_exception(std::current_exception());
|
23
|
+
}
|
26
24
|
}
|
27
25
|
|
28
26
|
} // namespace
|
29
27
|
|
30
|
-
WorkerThread::WorkerThread() :
|
31
|
-
|
32
|
-
startThread();
|
28
|
+
WorkerThread::WorkerThread() : wantStop_(false) {
|
29
|
+
startThread();
|
33
30
|
|
34
|
-
|
35
|
-
|
31
|
+
// Make sure that the thread has started before continuing
|
32
|
+
add([]() {}).get();
|
36
33
|
}
|
37
34
|
|
38
35
|
WorkerThread::~WorkerThread() {
|
39
|
-
|
40
|
-
|
36
|
+
stop();
|
37
|
+
waitForThreadExit();
|
41
38
|
}
|
42
39
|
|
43
|
-
void
|
44
|
-
|
45
|
-
thread_ = std::thread([this](){ threadMain(); });
|
40
|
+
void WorkerThread::startThread() {
|
41
|
+
thread_ = std::thread([this]() { threadMain(); });
|
46
42
|
}
|
47
43
|
|
48
|
-
void
|
49
|
-
|
50
|
-
std::lock_guard<std::mutex> guard(mutex_);
|
44
|
+
void WorkerThread::stop() {
|
45
|
+
std::lock_guard<std::mutex> guard(mutex_);
|
51
46
|
|
52
|
-
|
53
|
-
|
47
|
+
wantStop_ = true;
|
48
|
+
monitor_.notify_one();
|
54
49
|
}
|
55
50
|
|
56
|
-
std::future<bool>
|
57
|
-
|
58
|
-
std::lock_guard<std::mutex> guard(mutex_);
|
51
|
+
std::future<bool> WorkerThread::add(std::function<void()> f) {
|
52
|
+
std::lock_guard<std::mutex> guard(mutex_);
|
59
53
|
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
54
|
+
if (wantStop_) {
|
55
|
+
// The timer thread has been stopped, or we want to stop; we can't
|
56
|
+
// schedule anything else
|
57
|
+
std::promise<bool> p;
|
58
|
+
auto fut = p.get_future();
|
65
59
|
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
60
|
+
// did not execute
|
61
|
+
p.set_value(false);
|
62
|
+
return fut;
|
63
|
+
}
|
70
64
|
|
71
|
-
|
72
|
-
|
65
|
+
auto pr = std::promise<bool>();
|
66
|
+
auto fut = pr.get_future();
|
73
67
|
|
74
|
-
|
68
|
+
queue_.emplace_back(std::make_pair(std::move(f), std::move(pr)));
|
75
69
|
|
76
|
-
|
77
|
-
|
78
|
-
|
70
|
+
// Wake up our thread
|
71
|
+
monitor_.notify_one();
|
72
|
+
return fut;
|
79
73
|
}
|
80
74
|
|
81
|
-
void
|
82
|
-
|
83
|
-
threadLoop();
|
75
|
+
void WorkerThread::threadMain() {
|
76
|
+
threadLoop();
|
84
77
|
|
85
|
-
|
86
|
-
|
78
|
+
// Call all pending tasks
|
79
|
+
FAISS_ASSERT(wantStop_);
|
87
80
|
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
81
|
+
// flush all pending operations
|
82
|
+
for (auto& f : queue_) {
|
83
|
+
runCallback(f.first, f.second);
|
84
|
+
}
|
92
85
|
}
|
93
86
|
|
94
|
-
void
|
95
|
-
|
96
|
-
|
97
|
-
std::pair<std::function<void()>, std::promise<bool>> data;
|
87
|
+
void WorkerThread::threadLoop() {
|
88
|
+
while (true) {
|
89
|
+
std::pair<std::function<void()>, std::promise<bool>> data;
|
98
90
|
|
99
|
-
|
100
|
-
|
91
|
+
{
|
92
|
+
std::unique_lock<std::mutex> lock(mutex_);
|
101
93
|
|
102
|
-
|
103
|
-
|
104
|
-
|
94
|
+
while (!wantStop_ && queue_.empty()) {
|
95
|
+
monitor_.wait(lock);
|
96
|
+
}
|
105
97
|
|
106
|
-
|
107
|
-
|
108
|
-
|
98
|
+
if (wantStop_) {
|
99
|
+
return;
|
100
|
+
}
|
109
101
|
|
110
|
-
|
111
|
-
|
112
|
-
|
102
|
+
data = std::move(queue_.front());
|
103
|
+
queue_.pop_front();
|
104
|
+
}
|
113
105
|
|
114
|
-
|
115
|
-
|
106
|
+
runCallback(data.first, data.second);
|
107
|
+
}
|
116
108
|
}
|
117
109
|
|
118
|
-
void
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
}
|
110
|
+
void WorkerThread::waitForThreadExit() {
|
111
|
+
try {
|
112
|
+
thread_.join();
|
113
|
+
} catch (...) {
|
114
|
+
}
|
124
115
|
}
|
125
116
|
|
126
|
-
} // namespace
|
117
|
+
} // namespace faiss
|
@@ -5,57 +5,56 @@
|
|
5
5
|
* LICENSE file in the root directory of this source tree.
|
6
6
|
*/
|
7
7
|
|
8
|
-
|
9
8
|
#pragma once
|
10
9
|
|
11
10
|
#include <condition_variable>
|
12
|
-
#include <future>
|
13
11
|
#include <deque>
|
12
|
+
#include <future>
|
14
13
|
#include <thread>
|
15
14
|
|
16
15
|
namespace faiss {
|
17
16
|
|
18
17
|
class WorkerThread {
|
19
|
-
|
20
|
-
|
18
|
+
public:
|
19
|
+
WorkerThread();
|
21
20
|
|
22
|
-
|
23
|
-
|
24
|
-
|
21
|
+
/// Stops and waits for the worker thread to exit, flushing all
|
22
|
+
/// pending lambdas
|
23
|
+
~WorkerThread();
|
25
24
|
|
26
|
-
|
27
|
-
|
25
|
+
/// Request that the worker thread stop itself
|
26
|
+
void stop();
|
28
27
|
|
29
|
-
|
30
|
-
|
31
|
-
|
28
|
+
/// Blocking waits in the current thread for the worker thread to
|
29
|
+
/// stop
|
30
|
+
void waitForThreadExit();
|
32
31
|
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
32
|
+
/// Adds a lambda to run on the worker thread; returns a future that
|
33
|
+
/// can be used to block on its completion.
|
34
|
+
/// Future status is `true` if the lambda was run in the worker
|
35
|
+
/// thread; `false` if it was not run, because the worker thread is
|
36
|
+
/// exiting or has exited.
|
37
|
+
std::future<bool> add(std::function<void()> f);
|
39
38
|
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
39
|
+
private:
|
40
|
+
void startThread();
|
41
|
+
void threadMain();
|
42
|
+
void threadLoop();
|
44
43
|
|
45
|
-
|
46
|
-
|
44
|
+
/// Thread that all queued lambdas are run on
|
45
|
+
std::thread thread_;
|
47
46
|
|
48
|
-
|
49
|
-
|
47
|
+
/// Mutex for the queue and exit status
|
48
|
+
std::mutex mutex_;
|
50
49
|
|
51
|
-
|
52
|
-
|
50
|
+
/// Monitor for the exit status and the queue
|
51
|
+
std::condition_variable monitor_;
|
53
52
|
|
54
|
-
|
55
|
-
|
53
|
+
/// Whether or not we want the thread to exit
|
54
|
+
bool wantStop_;
|
56
55
|
|
57
|
-
|
58
|
-
|
56
|
+
/// Queue of pending lambdas to call
|
57
|
+
std::deque<std::pair<std::function<void()>, std::promise<bool>>> queue_;
|
59
58
|
};
|
60
59
|
|
61
|
-
} // namespace
|
60
|
+
} // namespace faiss
|
@@ -10,10 +10,10 @@
|
|
10
10
|
#include <faiss/utils/distances.h>
|
11
11
|
|
12
12
|
#include <algorithm>
|
13
|
-
#include <cstdio>
|
14
13
|
#include <cassert>
|
15
|
-
#include <cstring>
|
16
14
|
#include <cmath>
|
15
|
+
#include <cstdio>
|
16
|
+
#include <cstring>
|
17
17
|
|
18
18
|
#include <omp.h>
|
19
19
|
|
@@ -21,186 +21,151 @@
|
|
21
21
|
#include <faiss/impl/FaissAssert.h>
|
22
22
|
#include <faiss/impl/ResultHandler.h>
|
23
23
|
|
24
|
-
|
25
|
-
|
26
24
|
#ifndef FINTEGER
|
27
25
|
#define FINTEGER long
|
28
26
|
#endif
|
29
27
|
|
30
|
-
|
31
28
|
extern "C" {
|
32
29
|
|
33
30
|
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
|
34
31
|
|
35
|
-
int sgemm_
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
32
|
+
int sgemm_(
|
33
|
+
const char* transa,
|
34
|
+
const char* transb,
|
35
|
+
FINTEGER* m,
|
36
|
+
FINTEGER* n,
|
37
|
+
FINTEGER* k,
|
38
|
+
const float* alpha,
|
39
|
+
const float* a,
|
40
|
+
FINTEGER* lda,
|
41
|
+
const float* b,
|
42
|
+
FINTEGER* ldb,
|
43
|
+
float* beta,
|
44
|
+
float* c,
|
45
|
+
FINTEGER* ldc);
|
41
46
|
}
|
42
47
|
|
43
|
-
|
44
48
|
namespace faiss {
|
45
49
|
|
46
|
-
|
47
|
-
|
48
50
|
/***************************************************************************
|
49
51
|
* Matrix/vector ops
|
50
52
|
***************************************************************************/
|
51
53
|
|
52
|
-
|
53
|
-
|
54
|
-
|
55
54
|
/* Compute the L2 norm of a set of nx vectors */
|
56
|
-
void fvec_norms_L2
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
55
|
+
void fvec_norms_L2(
|
56
|
+
float* __restrict nr,
|
57
|
+
const float* __restrict x,
|
58
|
+
size_t d,
|
59
|
+
size_t nx) {
|
61
60
|
#pragma omp parallel for
|
62
61
|
for (int64_t i = 0; i < nx; i++) {
|
63
|
-
nr[i] = sqrtf
|
62
|
+
nr[i] = sqrtf(fvec_norm_L2sqr(x + i * d, d));
|
64
63
|
}
|
65
64
|
}
|
66
65
|
|
67
|
-
void fvec_norms_L2sqr
|
68
|
-
|
69
|
-
|
70
|
-
|
66
|
+
void fvec_norms_L2sqr(
|
67
|
+
float* __restrict nr,
|
68
|
+
const float* __restrict x,
|
69
|
+
size_t d,
|
70
|
+
size_t nx) {
|
71
71
|
#pragma omp parallel for
|
72
72
|
for (int64_t i = 0; i < nx; i++)
|
73
|
-
nr[i] = fvec_norm_L2sqr
|
73
|
+
nr[i] = fvec_norm_L2sqr(x + i * d, d);
|
74
74
|
}
|
75
75
|
|
76
|
-
|
77
|
-
|
78
|
-
void fvec_renorm_L2 (size_t d, size_t nx, float * __restrict x)
|
79
|
-
{
|
76
|
+
void fvec_renorm_L2(size_t d, size_t nx, float* __restrict x) {
|
80
77
|
#pragma omp parallel for
|
81
78
|
for (int64_t i = 0; i < nx; i++) {
|
82
|
-
float
|
79
|
+
float* __restrict xi = x + i * d;
|
83
80
|
|
84
|
-
float nr = fvec_norm_L2sqr
|
81
|
+
float nr = fvec_norm_L2sqr(xi, d);
|
85
82
|
|
86
83
|
if (nr > 0) {
|
87
84
|
size_t j;
|
88
|
-
const float inv_nr = 1.0 / sqrtf
|
85
|
+
const float inv_nr = 1.0 / sqrtf(nr);
|
89
86
|
for (j = 0; j < d; j++)
|
90
87
|
xi[j] *= inv_nr;
|
91
88
|
}
|
92
89
|
}
|
93
90
|
}
|
94
91
|
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
92
|
/***************************************************************************
|
107
93
|
* KNN functions
|
108
94
|
***************************************************************************/
|
109
95
|
|
110
96
|
namespace {
|
111
97
|
|
112
|
-
|
113
|
-
|
114
98
|
/* Find the nearest neighbors for nx queries in a set of ny vectors */
|
115
|
-
template<class ResultHandler>
|
116
|
-
void exhaustive_inner_product_seq
|
117
|
-
const float
|
118
|
-
const float
|
119
|
-
size_t d,
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
check_period *= omp_get_max_threads();
|
125
|
-
|
99
|
+
template <class ResultHandler>
|
100
|
+
void exhaustive_inner_product_seq(
|
101
|
+
const float* x,
|
102
|
+
const float* y,
|
103
|
+
size_t d,
|
104
|
+
size_t nx,
|
105
|
+
size_t ny,
|
106
|
+
ResultHandler& res) {
|
126
107
|
using SingleResultHandler = typename ResultHandler::SingleResultHandler;
|
127
108
|
|
128
|
-
for (size_t i0 = 0; i0 < nx; i0 += check_period) {
|
129
|
-
size_t i1 = std::min(i0 + check_period, nx);
|
130
|
-
|
131
109
|
#pragma omp parallel
|
132
|
-
|
133
|
-
|
110
|
+
{
|
111
|
+
SingleResultHandler resi(res);
|
134
112
|
#pragma omp for
|
135
|
-
|
136
|
-
|
137
|
-
|
113
|
+
for (int64_t i = 0; i < nx; i++) {
|
114
|
+
const float* x_i = x + i * d;
|
115
|
+
const float* y_j = y;
|
138
116
|
|
139
|
-
|
117
|
+
resi.begin(i);
|
140
118
|
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
}
|
146
|
-
resi.end();
|
119
|
+
for (size_t j = 0; j < ny; j++) {
|
120
|
+
float ip = fvec_inner_product(x_i, y_j, d);
|
121
|
+
resi.add_result(ip, j);
|
122
|
+
y_j += d;
|
147
123
|
}
|
124
|
+
resi.end();
|
148
125
|
}
|
149
|
-
InterruptCallback::check ();
|
150
126
|
}
|
151
|
-
|
152
127
|
}
|
153
128
|
|
154
|
-
template<class ResultHandler>
|
155
|
-
void exhaustive_L2sqr_seq
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
size_t check_period = InterruptCallback::get_period_hint (ny * d);
|
163
|
-
check_period *= omp_get_max_threads();
|
129
|
+
template <class ResultHandler>
|
130
|
+
void exhaustive_L2sqr_seq(
|
131
|
+
const float* x,
|
132
|
+
const float* y,
|
133
|
+
size_t d,
|
134
|
+
size_t nx,
|
135
|
+
size_t ny,
|
136
|
+
ResultHandler& res) {
|
164
137
|
using SingleResultHandler = typename ResultHandler::SingleResultHandler;
|
165
138
|
|
166
|
-
for (size_t i0 = 0; i0 < nx; i0 += check_period) {
|
167
|
-
size_t i1 = std::min(i0 + check_period, nx);
|
168
|
-
|
169
139
|
#pragma omp parallel
|
170
|
-
|
171
|
-
|
140
|
+
{
|
141
|
+
SingleResultHandler resi(res);
|
172
142
|
#pragma omp for
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
}
|
182
|
-
resi.end();
|
143
|
+
for (int64_t i = 0; i < nx; i++) {
|
144
|
+
const float* x_i = x + i * d;
|
145
|
+
const float* y_j = y;
|
146
|
+
resi.begin(i);
|
147
|
+
for (size_t j = 0; j < ny; j++) {
|
148
|
+
float disij = fvec_L2sqr(x_i, y_j, d);
|
149
|
+
resi.add_result(disij, j);
|
150
|
+
y_j += d;
|
183
151
|
}
|
152
|
+
resi.end();
|
184
153
|
}
|
185
|
-
InterruptCallback::check ();
|
186
154
|
}
|
187
|
-
|
188
|
-
};
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
155
|
+
}
|
193
156
|
|
194
157
|
/** Find the nearest neighbors for nx queries in a set of ny vectors */
|
195
|
-
template<class ResultHandler>
|
196
|
-
void exhaustive_inner_product_blas
|
197
|
-
const float
|
198
|
-
const float
|
199
|
-
size_t d,
|
200
|
-
|
201
|
-
|
158
|
+
template <class ResultHandler>
|
159
|
+
void exhaustive_inner_product_blas(
|
160
|
+
const float* x,
|
161
|
+
const float* y,
|
162
|
+
size_t d,
|
163
|
+
size_t nx,
|
164
|
+
size_t ny,
|
165
|
+
ResultHandler& res) {
|
202
166
|
// BLAS does not like empty matrices
|
203
|
-
if (nx == 0 || ny == 0)
|
167
|
+
if (nx == 0 || ny == 0)
|
168
|
+
return;
|
204
169
|
|
205
170
|
/* block sizes */
|
206
171
|
const size_t bs_x = distance_compute_blas_query_bs;
|
@@ -209,86 +174,105 @@ void exhaustive_inner_product_blas (
|
|
209
174
|
|
210
175
|
for (size_t i0 = 0; i0 < nx; i0 += bs_x) {
|
211
176
|
size_t i1 = i0 + bs_x;
|
212
|
-
if(i1 > nx)
|
177
|
+
if (i1 > nx)
|
178
|
+
i1 = nx;
|
213
179
|
|
214
180
|
res.begin_multiple(i0, i1);
|
215
181
|
|
216
182
|
for (size_t j0 = 0; j0 < ny; j0 += bs_y) {
|
217
183
|
size_t j1 = j0 + bs_y;
|
218
|
-
if (j1 > ny)
|
184
|
+
if (j1 > ny)
|
185
|
+
j1 = ny;
|
219
186
|
/* compute the actual dot products */
|
220
187
|
{
|
221
188
|
float one = 1, zero = 0;
|
222
189
|
FINTEGER nyi = j1 - j0, nxi = i1 - i0, di = d;
|
223
|
-
sgemm_
|
224
|
-
|
225
|
-
|
226
|
-
|
190
|
+
sgemm_("Transpose",
|
191
|
+
"Not transpose",
|
192
|
+
&nyi,
|
193
|
+
&nxi,
|
194
|
+
&di,
|
195
|
+
&one,
|
196
|
+
y + j0 * d,
|
197
|
+
&di,
|
198
|
+
x + i0 * d,
|
199
|
+
&di,
|
200
|
+
&zero,
|
201
|
+
ip_block.get(),
|
202
|
+
&nyi);
|
227
203
|
}
|
228
204
|
|
229
205
|
res.add_results(j0, j1, ip_block.get());
|
230
|
-
|
231
206
|
}
|
232
207
|
res.end_multiple();
|
233
|
-
InterruptCallback::check
|
234
|
-
|
208
|
+
InterruptCallback::check();
|
235
209
|
}
|
236
210
|
}
|
237
211
|
|
238
|
-
|
239
|
-
|
240
|
-
|
241
212
|
// distance correction is an operator that can be applied to transform
|
242
213
|
// the distances
|
243
|
-
template<class ResultHandler>
|
244
|
-
void exhaustive_L2sqr_blas
|
245
|
-
const float
|
246
|
-
const float
|
247
|
-
size_t d,
|
248
|
-
|
249
|
-
|
250
|
-
|
214
|
+
template <class ResultHandler>
|
215
|
+
void exhaustive_L2sqr_blas(
|
216
|
+
const float* x,
|
217
|
+
const float* y,
|
218
|
+
size_t d,
|
219
|
+
size_t nx,
|
220
|
+
size_t ny,
|
221
|
+
ResultHandler& res,
|
222
|
+
const float* y_norms = nullptr) {
|
251
223
|
// BLAS does not like empty matrices
|
252
|
-
if (nx == 0 || ny == 0)
|
224
|
+
if (nx == 0 || ny == 0)
|
225
|
+
return;
|
253
226
|
|
254
227
|
/* block sizes */
|
255
228
|
const size_t bs_x = distance_compute_blas_query_bs;
|
256
229
|
const size_t bs_y = distance_compute_blas_database_bs;
|
257
230
|
// const size_t bs_x = 16, bs_y = 16;
|
258
|
-
std::unique_ptr<float
|
259
|
-
std::unique_ptr<float
|
260
|
-
std::unique_ptr<float
|
231
|
+
std::unique_ptr<float[]> ip_block(new float[bs_x * bs_y]);
|
232
|
+
std::unique_ptr<float[]> x_norms(new float[nx]);
|
233
|
+
std::unique_ptr<float[]> del2;
|
261
234
|
|
262
|
-
fvec_norms_L2sqr
|
235
|
+
fvec_norms_L2sqr(x_norms.get(), x, d, nx);
|
263
236
|
|
264
237
|
if (!y_norms) {
|
265
|
-
float
|
238
|
+
float* y_norms2 = new float[ny];
|
266
239
|
del2.reset(y_norms2);
|
267
|
-
fvec_norms_L2sqr
|
240
|
+
fvec_norms_L2sqr(y_norms2, y, d, ny);
|
268
241
|
y_norms = y_norms2;
|
269
242
|
}
|
270
243
|
|
271
244
|
for (size_t i0 = 0; i0 < nx; i0 += bs_x) {
|
272
245
|
size_t i1 = i0 + bs_x;
|
273
|
-
if(i1 > nx)
|
246
|
+
if (i1 > nx)
|
247
|
+
i1 = nx;
|
274
248
|
|
275
249
|
res.begin_multiple(i0, i1);
|
276
250
|
|
277
251
|
for (size_t j0 = 0; j0 < ny; j0 += bs_y) {
|
278
252
|
size_t j1 = j0 + bs_y;
|
279
|
-
if (j1 > ny)
|
253
|
+
if (j1 > ny)
|
254
|
+
j1 = ny;
|
280
255
|
/* compute the actual dot products */
|
281
256
|
{
|
282
257
|
float one = 1, zero = 0;
|
283
258
|
FINTEGER nyi = j1 - j0, nxi = i1 - i0, di = d;
|
284
|
-
sgemm_
|
285
|
-
|
286
|
-
|
287
|
-
|
259
|
+
sgemm_("Transpose",
|
260
|
+
"Not transpose",
|
261
|
+
&nyi,
|
262
|
+
&nxi,
|
263
|
+
&di,
|
264
|
+
&one,
|
265
|
+
y + j0 * d,
|
266
|
+
&di,
|
267
|
+
x + i0 * d,
|
268
|
+
&di,
|
269
|
+
&zero,
|
270
|
+
ip_block.get(),
|
271
|
+
&nyi);
|
288
272
|
}
|
289
|
-
|
273
|
+
#pragma omp parallel for
|
290
274
|
for (int64_t i = i0; i < i1; i++) {
|
291
|
-
float
|
275
|
+
float* ip_line = ip_block.get() + (i - i0) * (j1 - j0);
|
292
276
|
|
293
277
|
for (size_t j = j0; j < j1; j++) {
|
294
278
|
float ip = *ip_line;
|
@@ -296,7 +280,8 @@ void exhaustive_L2sqr_blas (
|
|
296
280
|
|
297
281
|
// negative values can occur for identical vectors
|
298
282
|
// due to roundoff errors
|
299
|
-
if (dis < 0)
|
283
|
+
if (dis < 0)
|
284
|
+
dis = 0;
|
300
285
|
|
301
286
|
*ip_line = dis;
|
302
287
|
ip_line++;
|
@@ -305,18 +290,12 @@ void exhaustive_L2sqr_blas (
|
|
305
290
|
res.add_results(j0, j1, ip_block.get());
|
306
291
|
}
|
307
292
|
res.end_multiple();
|
308
|
-
InterruptCallback::check
|
293
|
+
InterruptCallback::check();
|
309
294
|
}
|
310
295
|
}
|
311
296
|
|
312
|
-
|
313
|
-
|
314
297
|
} // anonymous namespace
|
315
298
|
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
299
|
/*******************************************************
|
321
300
|
* KNN driver functions
|
322
301
|
*******************************************************/
|
@@ -326,268 +305,275 @@ int distance_compute_blas_query_bs = 4096;
|
|
326
305
|
int distance_compute_blas_database_bs = 1024;
|
327
306
|
int distance_compute_min_k_reservoir = 100;
|
328
307
|
|
329
|
-
void knn_inner_product
|
330
|
-
const float
|
331
|
-
|
332
|
-
|
333
|
-
|
308
|
+
void knn_inner_product(
|
309
|
+
const float* x,
|
310
|
+
const float* y,
|
311
|
+
size_t d,
|
312
|
+
size_t nx,
|
313
|
+
size_t ny,
|
314
|
+
float_minheap_array_t* ha) {
|
334
315
|
if (ha->k < distance_compute_min_k_reservoir) {
|
335
316
|
HeapResultHandler<CMin<float, int64_t>> res(
|
336
|
-
|
317
|
+
ha->nh, ha->val, ha->ids, ha->k);
|
337
318
|
if (nx < distance_compute_blas_threshold) {
|
338
|
-
exhaustive_inner_product_seq
|
319
|
+
exhaustive_inner_product_seq(x, y, d, nx, ny, res);
|
339
320
|
} else {
|
340
|
-
exhaustive_inner_product_blas
|
321
|
+
exhaustive_inner_product_blas(x, y, d, nx, ny, res);
|
341
322
|
}
|
342
323
|
} else {
|
343
324
|
ReservoirResultHandler<CMin<float, int64_t>> res(
|
344
|
-
|
325
|
+
ha->nh, ha->val, ha->ids, ha->k);
|
345
326
|
if (nx < distance_compute_blas_threshold) {
|
346
|
-
exhaustive_inner_product_seq
|
327
|
+
exhaustive_inner_product_seq(x, y, d, nx, ny, res);
|
347
328
|
} else {
|
348
|
-
exhaustive_inner_product_blas
|
329
|
+
exhaustive_inner_product_blas(x, y, d, nx, ny, res);
|
349
330
|
}
|
350
331
|
}
|
351
332
|
}
|
352
333
|
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
const float *y_norm2
|
362
|
-
) {
|
363
|
-
|
334
|
+
void knn_L2sqr(
|
335
|
+
const float* x,
|
336
|
+
const float* y,
|
337
|
+
size_t d,
|
338
|
+
size_t nx,
|
339
|
+
size_t ny,
|
340
|
+
float_maxheap_array_t* ha,
|
341
|
+
const float* y_norm2) {
|
364
342
|
if (ha->k < distance_compute_min_k_reservoir) {
|
365
343
|
HeapResultHandler<CMax<float, int64_t>> res(
|
366
|
-
|
344
|
+
ha->nh, ha->val, ha->ids, ha->k);
|
367
345
|
|
368
346
|
if (nx < distance_compute_blas_threshold) {
|
369
|
-
exhaustive_L2sqr_seq
|
347
|
+
exhaustive_L2sqr_seq(x, y, d, nx, ny, res);
|
370
348
|
} else {
|
371
|
-
exhaustive_L2sqr_blas
|
349
|
+
exhaustive_L2sqr_blas(x, y, d, nx, ny, res, y_norm2);
|
372
350
|
}
|
373
351
|
} else {
|
374
352
|
ReservoirResultHandler<CMax<float, int64_t>> res(
|
375
|
-
|
353
|
+
ha->nh, ha->val, ha->ids, ha->k);
|
376
354
|
if (nx < distance_compute_blas_threshold) {
|
377
|
-
exhaustive_L2sqr_seq
|
355
|
+
exhaustive_L2sqr_seq(x, y, d, nx, ny, res);
|
378
356
|
} else {
|
379
|
-
exhaustive_L2sqr_blas
|
357
|
+
exhaustive_L2sqr_blas(x, y, d, nx, ny, res, y_norm2);
|
380
358
|
}
|
381
359
|
}
|
382
360
|
}
|
383
361
|
|
384
|
-
|
385
362
|
/***************************************************************************
|
386
363
|
* Range search
|
387
364
|
***************************************************************************/
|
388
365
|
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
size_t d, size_t nx, size_t ny,
|
366
|
+
void range_search_L2sqr(
|
367
|
+
const float* x,
|
368
|
+
const float* y,
|
369
|
+
size_t d,
|
370
|
+
size_t nx,
|
371
|
+
size_t ny,
|
396
372
|
float radius,
|
397
|
-
RangeSearchResult
|
398
|
-
{
|
373
|
+
RangeSearchResult* res) {
|
399
374
|
RangeSearchResultHandler<CMax<float, int64_t>> resh(res, radius);
|
400
375
|
if (nx < distance_compute_blas_threshold) {
|
401
|
-
exhaustive_L2sqr_seq
|
376
|
+
exhaustive_L2sqr_seq(x, y, d, nx, ny, resh);
|
402
377
|
} else {
|
403
|
-
exhaustive_L2sqr_blas
|
378
|
+
exhaustive_L2sqr_blas(x, y, d, nx, ny, resh);
|
404
379
|
}
|
405
380
|
}
|
406
381
|
|
407
|
-
void range_search_inner_product
|
408
|
-
const float
|
409
|
-
const float
|
410
|
-
size_t d,
|
382
|
+
void range_search_inner_product(
|
383
|
+
const float* x,
|
384
|
+
const float* y,
|
385
|
+
size_t d,
|
386
|
+
size_t nx,
|
387
|
+
size_t ny,
|
411
388
|
float radius,
|
412
|
-
RangeSearchResult
|
413
|
-
{
|
414
|
-
|
389
|
+
RangeSearchResult* res) {
|
415
390
|
RangeSearchResultHandler<CMin<float, int64_t>> resh(res, radius);
|
416
391
|
if (nx < distance_compute_blas_threshold) {
|
417
|
-
exhaustive_inner_product_seq
|
392
|
+
exhaustive_inner_product_seq(x, y, d, nx, ny, resh);
|
418
393
|
} else {
|
419
|
-
exhaustive_inner_product_blas
|
394
|
+
exhaustive_inner_product_blas(x, y, d, nx, ny, resh);
|
420
395
|
}
|
421
396
|
}
|
422
397
|
|
423
|
-
|
424
398
|
/***************************************************************************
|
425
399
|
* compute a subset of distances
|
426
400
|
***************************************************************************/
|
427
401
|
|
428
402
|
/* compute the inner product between x and a subset y of ny vectors,
|
429
403
|
whose indices are given by idy. */
|
430
|
-
void fvec_inner_products_by_idx
|
431
|
-
|
432
|
-
|
433
|
-
|
434
|
-
|
435
|
-
|
404
|
+
void fvec_inner_products_by_idx(
|
405
|
+
float* __restrict ip,
|
406
|
+
const float* x,
|
407
|
+
const float* y,
|
408
|
+
const int64_t* __restrict ids, /* for y vecs */
|
409
|
+
size_t d,
|
410
|
+
size_t nx,
|
411
|
+
size_t ny) {
|
436
412
|
#pragma omp parallel for
|
437
413
|
for (int64_t j = 0; j < nx; j++) {
|
438
|
-
const int64_t
|
439
|
-
const float
|
440
|
-
float
|
414
|
+
const int64_t* __restrict idsj = ids + j * ny;
|
415
|
+
const float* xj = x + j * d;
|
416
|
+
float* __restrict ipj = ip + j * ny;
|
441
417
|
for (size_t i = 0; i < ny; i++) {
|
442
418
|
if (idsj[i] < 0)
|
443
419
|
continue;
|
444
|
-
ipj[i] = fvec_inner_product
|
420
|
+
ipj[i] = fvec_inner_product(xj, y + d * idsj[i], d);
|
445
421
|
}
|
446
422
|
}
|
447
423
|
}
|
448
424
|
|
449
|
-
|
450
|
-
|
451
425
|
/* compute the inner product between x and a subset y of ny vectors,
|
452
426
|
whose indices are given by idy. */
|
453
|
-
void fvec_L2sqr_by_idx
|
454
|
-
|
455
|
-
|
456
|
-
|
457
|
-
|
458
|
-
|
427
|
+
void fvec_L2sqr_by_idx(
|
428
|
+
float* __restrict dis,
|
429
|
+
const float* x,
|
430
|
+
const float* y,
|
431
|
+
const int64_t* __restrict ids, /* ids of y vecs */
|
432
|
+
size_t d,
|
433
|
+
size_t nx,
|
434
|
+
size_t ny) {
|
459
435
|
#pragma omp parallel for
|
460
436
|
for (int64_t j = 0; j < nx; j++) {
|
461
|
-
const int64_t
|
462
|
-
const float
|
463
|
-
float
|
437
|
+
const int64_t* __restrict idsj = ids + j * ny;
|
438
|
+
const float* xj = x + j * d;
|
439
|
+
float* __restrict disj = dis + j * ny;
|
464
440
|
for (size_t i = 0; i < ny; i++) {
|
465
441
|
if (idsj[i] < 0)
|
466
442
|
continue;
|
467
|
-
disj[i] = fvec_L2sqr
|
443
|
+
disj[i] = fvec_L2sqr(xj, y + d * idsj[i], d);
|
468
444
|
}
|
469
445
|
}
|
470
446
|
}
|
471
447
|
|
472
|
-
void pairwise_indexed_L2sqr
|
473
|
-
size_t d,
|
474
|
-
|
475
|
-
const float
|
476
|
-
|
477
|
-
|
448
|
+
void pairwise_indexed_L2sqr(
|
449
|
+
size_t d,
|
450
|
+
size_t n,
|
451
|
+
const float* x,
|
452
|
+
const int64_t* ix,
|
453
|
+
const float* y,
|
454
|
+
const int64_t* iy,
|
455
|
+
float* dis) {
|
478
456
|
#pragma omp parallel for
|
479
457
|
for (int64_t j = 0; j < n; j++) {
|
480
458
|
if (ix[j] >= 0 && iy[j] >= 0) {
|
481
|
-
dis[j] = fvec_L2sqr
|
459
|
+
dis[j] = fvec_L2sqr(x + d * ix[j], y + d * iy[j], d);
|
482
460
|
}
|
483
461
|
}
|
484
462
|
}
|
485
463
|
|
486
|
-
void pairwise_indexed_inner_product
|
487
|
-
size_t d,
|
488
|
-
|
489
|
-
const float
|
490
|
-
|
491
|
-
|
464
|
+
void pairwise_indexed_inner_product(
|
465
|
+
size_t d,
|
466
|
+
size_t n,
|
467
|
+
const float* x,
|
468
|
+
const int64_t* ix,
|
469
|
+
const float* y,
|
470
|
+
const int64_t* iy,
|
471
|
+
float* dis) {
|
492
472
|
#pragma omp parallel for
|
493
473
|
for (int64_t j = 0; j < n; j++) {
|
494
474
|
if (ix[j] >= 0 && iy[j] >= 0) {
|
495
|
-
dis[j] = fvec_inner_product
|
475
|
+
dis[j] = fvec_inner_product(x + d * ix[j], y + d * iy[j], d);
|
496
476
|
}
|
497
477
|
}
|
498
478
|
}
|
499
479
|
|
500
|
-
|
501
480
|
/* Find the nearest neighbors for nx queries in a set of ny vectors
|
502
481
|
indexed by ids. May be useful for re-ranking a pre-selected vector list */
|
503
|
-
void knn_inner_products_by_idx
|
504
|
-
|
505
|
-
|
506
|
-
|
507
|
-
|
508
|
-
|
482
|
+
void knn_inner_products_by_idx(
|
483
|
+
const float* x,
|
484
|
+
const float* y,
|
485
|
+
const int64_t* ids,
|
486
|
+
size_t d,
|
487
|
+
size_t nx,
|
488
|
+
size_t ny,
|
489
|
+
float_minheap_array_t* res) {
|
509
490
|
size_t k = res->k;
|
510
491
|
|
511
492
|
#pragma omp parallel for
|
512
493
|
for (int64_t i = 0; i < nx; i++) {
|
513
|
-
const float
|
514
|
-
const int64_t
|
494
|
+
const float* x_ = x + i * d;
|
495
|
+
const int64_t* idsi = ids + i * ny;
|
515
496
|
size_t j;
|
516
|
-
float
|
517
|
-
int64_t
|
518
|
-
minheap_heapify
|
497
|
+
float* __restrict simi = res->get_val(i);
|
498
|
+
int64_t* __restrict idxi = res->get_ids(i);
|
499
|
+
minheap_heapify(k, simi, idxi);
|
519
500
|
|
520
501
|
for (j = 0; j < ny; j++) {
|
521
|
-
if (idsi[j] < 0)
|
522
|
-
|
502
|
+
if (idsi[j] < 0)
|
503
|
+
break;
|
504
|
+
float ip = fvec_inner_product(x_, y + d * idsi[j], d);
|
523
505
|
|
524
506
|
if (ip > simi[0]) {
|
525
|
-
minheap_replace_top
|
507
|
+
minheap_replace_top(k, simi, idxi, ip, idsi[j]);
|
526
508
|
}
|
527
509
|
}
|
528
|
-
minheap_reorder
|
510
|
+
minheap_reorder(k, simi, idxi);
|
529
511
|
}
|
530
|
-
|
531
512
|
}
|
532
513
|
|
533
|
-
void knn_L2sqr_by_idx
|
534
|
-
|
535
|
-
|
536
|
-
|
537
|
-
|
538
|
-
|
514
|
+
void knn_L2sqr_by_idx(
|
515
|
+
const float* x,
|
516
|
+
const float* y,
|
517
|
+
const int64_t* __restrict ids,
|
518
|
+
size_t d,
|
519
|
+
size_t nx,
|
520
|
+
size_t ny,
|
521
|
+
float_maxheap_array_t* res) {
|
539
522
|
size_t k = res->k;
|
540
523
|
|
541
524
|
#pragma omp parallel for
|
542
525
|
for (int64_t i = 0; i < nx; i++) {
|
543
|
-
const float
|
544
|
-
const int64_t
|
545
|
-
float
|
546
|
-
int64_t
|
547
|
-
maxheap_heapify
|
526
|
+
const float* x_ = x + i * d;
|
527
|
+
const int64_t* __restrict idsi = ids + i * ny;
|
528
|
+
float* __restrict simi = res->get_val(i);
|
529
|
+
int64_t* __restrict idxi = res->get_ids(i);
|
530
|
+
maxheap_heapify(res->k, simi, idxi);
|
548
531
|
for (size_t j = 0; j < ny; j++) {
|
549
|
-
float disij = fvec_L2sqr
|
532
|
+
float disij = fvec_L2sqr(x_, y + d * idsi[j], d);
|
550
533
|
|
551
534
|
if (disij < simi[0]) {
|
552
|
-
maxheap_replace_top
|
535
|
+
maxheap_replace_top(k, simi, idxi, disij, idsi[j]);
|
553
536
|
}
|
554
537
|
}
|
555
|
-
maxheap_reorder
|
538
|
+
maxheap_reorder(res->k, simi, idxi);
|
556
539
|
}
|
557
|
-
|
558
540
|
}
|
559
541
|
|
560
|
-
|
561
|
-
|
562
|
-
|
563
|
-
|
564
|
-
|
565
|
-
|
566
|
-
|
567
|
-
|
568
|
-
|
569
|
-
{
|
570
|
-
if (nq == 0 || nb == 0)
|
571
|
-
|
572
|
-
if (
|
573
|
-
|
542
|
+
void pairwise_L2sqr(
|
543
|
+
int64_t d,
|
544
|
+
int64_t nq,
|
545
|
+
const float* xq,
|
546
|
+
int64_t nb,
|
547
|
+
const float* xb,
|
548
|
+
float* dis,
|
549
|
+
int64_t ldq,
|
550
|
+
int64_t ldb,
|
551
|
+
int64_t ldd) {
|
552
|
+
if (nq == 0 || nb == 0)
|
553
|
+
return;
|
554
|
+
if (ldq == -1)
|
555
|
+
ldq = d;
|
556
|
+
if (ldb == -1)
|
557
|
+
ldb = d;
|
558
|
+
if (ldd == -1)
|
559
|
+
ldd = nb;
|
574
560
|
|
575
561
|
// store in beginning of distance matrix to avoid malloc
|
576
|
-
float
|
562
|
+
float* b_norms = dis;
|
577
563
|
|
578
564
|
#pragma omp parallel for
|
579
565
|
for (int64_t i = 0; i < nb; i++)
|
580
|
-
b_norms
|
566
|
+
b_norms[i] = fvec_norm_L2sqr(xb + i * ldb, d);
|
581
567
|
|
582
568
|
#pragma omp parallel for
|
583
569
|
for (int64_t i = 1; i < nq; i++) {
|
584
|
-
float q_norm = fvec_norm_L2sqr
|
570
|
+
float q_norm = fvec_norm_L2sqr(xq + i * ldq, d);
|
585
571
|
for (int64_t j = 0; j < nb; j++)
|
586
|
-
dis[i * ldd + j] = q_norm + b_norms
|
572
|
+
dis[i * ldd + j] = q_norm + b_norms[j];
|
587
573
|
}
|
588
574
|
|
589
575
|
{
|
590
|
-
float q_norm = fvec_norm_L2sqr
|
576
|
+
float q_norm = fvec_norm_L2sqr(xq, d);
|
591
577
|
for (int64_t j = 0; j < nb; j++)
|
592
578
|
dis[j] += q_norm;
|
593
579
|
}
|
@@ -596,22 +582,28 @@ void pairwise_L2sqr (int64_t d,
|
|
596
582
|
FINTEGER nbi = nb, nqi = nq, di = d, ldqi = ldq, ldbi = ldb, lddi = ldd;
|
597
583
|
float one = 1.0, minus_2 = -2.0;
|
598
584
|
|
599
|
-
sgemm_
|
600
|
-
|
601
|
-
|
602
|
-
|
603
|
-
|
604
|
-
|
585
|
+
sgemm_("Transposed",
|
586
|
+
"Not transposed",
|
587
|
+
&nbi,
|
588
|
+
&nqi,
|
589
|
+
&di,
|
590
|
+
&minus_2,
|
591
|
+
xb,
|
592
|
+
&ldbi,
|
593
|
+
xq,
|
594
|
+
&ldqi,
|
595
|
+
&one,
|
596
|
+
dis,
|
597
|
+
&lddi);
|
605
598
|
}
|
606
|
-
|
607
599
|
}
|
608
600
|
|
609
|
-
void inner_product_to_L2sqr(
|
610
|
-
|
611
|
-
|
612
|
-
|
613
|
-
|
614
|
-
|
601
|
+
void inner_product_to_L2sqr(
|
602
|
+
float* __restrict dis,
|
603
|
+
const float* nr1,
|
604
|
+
const float* nr2,
|
605
|
+
size_t n1,
|
606
|
+
size_t n2) {
|
615
607
|
#pragma omp parallel for
|
616
608
|
for (int64_t j = 0; j < n1; j++) {
|
617
609
|
float* disj = dis + j * n2;
|
@@ -620,5 +612,4 @@ void inner_product_to_L2sqr(float* __restrict dis,
|
|
620
612
|
}
|
621
613
|
}
|
622
614
|
|
623
|
-
|
624
615
|
} // namespace faiss
|