faiss 0.2.0 → 0.2.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +292 -291
- data/vendor/faiss/faiss/AutoTune.h +55 -56
- data/vendor/faiss/faiss/Clustering.cpp +334 -195
- data/vendor/faiss/faiss/Clustering.h +88 -35
- data/vendor/faiss/faiss/IVFlib.cpp +171 -195
- data/vendor/faiss/faiss/IVFlib.h +48 -51
- data/vendor/faiss/faiss/Index.cpp +85 -103
- data/vendor/faiss/faiss/Index.h +54 -48
- data/vendor/faiss/faiss/Index2Layer.cpp +139 -164
- data/vendor/faiss/faiss/Index2Layer.h +22 -22
- data/vendor/faiss/faiss/IndexBinary.cpp +45 -37
- data/vendor/faiss/faiss/IndexBinary.h +140 -132
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +73 -53
- data/vendor/faiss/faiss/IndexBinaryFlat.h +29 -24
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +46 -43
- data/vendor/faiss/faiss/IndexBinaryFromFloat.h +16 -15
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +215 -232
- data/vendor/faiss/faiss/IndexBinaryHNSW.h +25 -24
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +182 -177
- data/vendor/faiss/faiss/IndexBinaryHash.h +41 -34
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +489 -461
- data/vendor/faiss/faiss/IndexBinaryIVF.h +97 -68
- data/vendor/faiss/faiss/IndexFlat.cpp +116 -147
- data/vendor/faiss/faiss/IndexFlat.h +35 -46
- data/vendor/faiss/faiss/IndexHNSW.cpp +372 -348
- data/vendor/faiss/faiss/IndexHNSW.h +57 -41
- data/vendor/faiss/faiss/IndexIVF.cpp +474 -454
- data/vendor/faiss/faiss/IndexIVF.h +146 -113
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +248 -250
- data/vendor/faiss/faiss/IndexIVFFlat.h +48 -51
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +457 -516
- data/vendor/faiss/faiss/IndexIVFPQ.h +74 -66
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +406 -372
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +82 -57
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +104 -102
- data/vendor/faiss/faiss/IndexIVFPQR.h +33 -28
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +125 -133
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +19 -21
- data/vendor/faiss/faiss/IndexLSH.cpp +75 -96
- data/vendor/faiss/faiss/IndexLSH.h +21 -26
- data/vendor/faiss/faiss/IndexLattice.cpp +42 -56
- data/vendor/faiss/faiss/IndexLattice.h +11 -16
- data/vendor/faiss/faiss/IndexNNDescent.cpp +231 -0
- data/vendor/faiss/faiss/IndexNNDescent.h +72 -0
- data/vendor/faiss/faiss/IndexNSG.cpp +303 -0
- data/vendor/faiss/faiss/IndexNSG.h +85 -0
- data/vendor/faiss/faiss/IndexPQ.cpp +405 -464
- data/vendor/faiss/faiss/IndexPQ.h +64 -67
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +143 -170
- data/vendor/faiss/faiss/IndexPQFastScan.h +46 -32
- data/vendor/faiss/faiss/IndexPreTransform.cpp +120 -150
- data/vendor/faiss/faiss/IndexPreTransform.h +33 -36
- data/vendor/faiss/faiss/IndexRefine.cpp +115 -131
- data/vendor/faiss/faiss/IndexRefine.h +22 -23
- data/vendor/faiss/faiss/IndexReplicas.cpp +147 -153
- data/vendor/faiss/faiss/IndexReplicas.h +62 -56
- data/vendor/faiss/faiss/IndexResidual.cpp +291 -0
- data/vendor/faiss/faiss/IndexResidual.h +152 -0
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +120 -155
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +41 -45
- data/vendor/faiss/faiss/IndexShards.cpp +256 -240
- data/vendor/faiss/faiss/IndexShards.h +85 -73
- data/vendor/faiss/faiss/MatrixStats.cpp +112 -97
- data/vendor/faiss/faiss/MatrixStats.h +7 -10
- data/vendor/faiss/faiss/MetaIndexes.cpp +135 -157
- data/vendor/faiss/faiss/MetaIndexes.h +40 -34
- data/vendor/faiss/faiss/MetricType.h +7 -7
- data/vendor/faiss/faiss/VectorTransform.cpp +652 -474
- data/vendor/faiss/faiss/VectorTransform.h +61 -89
- data/vendor/faiss/faiss/clone_index.cpp +77 -73
- data/vendor/faiss/faiss/clone_index.h +4 -9
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +33 -38
- data/vendor/faiss/faiss/gpu/GpuAutoTune.h +11 -9
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +197 -170
- data/vendor/faiss/faiss/gpu/GpuCloner.h +53 -35
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.cpp +12 -14
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +27 -25
- data/vendor/faiss/faiss/gpu/GpuDistance.h +116 -112
- data/vendor/faiss/faiss/gpu/GpuFaissAssert.h +1 -2
- data/vendor/faiss/faiss/gpu/GpuIndex.h +134 -137
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +76 -73
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +173 -162
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +67 -64
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +89 -86
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +150 -141
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +101 -103
- data/vendor/faiss/faiss/gpu/GpuIndicesOptions.h +17 -16
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +116 -128
- data/vendor/faiss/faiss/gpu/GpuResources.h +182 -186
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +433 -422
- data/vendor/faiss/faiss/gpu/StandardGpuResources.h +131 -130
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +468 -456
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.h +25 -19
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +22 -20
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +9 -8
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper-inl.h +39 -44
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper.h +16 -14
- data/vendor/faiss/faiss/gpu/perf/PerfClustering.cpp +77 -71
- data/vendor/faiss/faiss/gpu/perf/PerfIVFPQAdd.cpp +109 -88
- data/vendor/faiss/faiss/gpu/perf/WriteIndex.cpp +75 -64
- data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +230 -215
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +80 -86
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +284 -277
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +416 -416
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +611 -517
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +166 -164
- data/vendor/faiss/faiss/gpu/test/TestGpuMemoryException.cpp +61 -53
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +274 -238
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +73 -57
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +47 -50
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +79 -72
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.cpp +140 -146
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.h +69 -71
- data/vendor/faiss/faiss/gpu/utils/StaticUtils.h +21 -16
- data/vendor/faiss/faiss/gpu/utils/Timer.cpp +25 -29
- data/vendor/faiss/faiss/gpu/utils/Timer.h +30 -29
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +270 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +115 -0
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +90 -120
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +81 -65
- data/vendor/faiss/faiss/impl/FaissAssert.h +73 -58
- data/vendor/faiss/faiss/impl/FaissException.cpp +56 -48
- data/vendor/faiss/faiss/impl/FaissException.h +41 -29
- data/vendor/faiss/faiss/impl/HNSW.cpp +595 -611
- data/vendor/faiss/faiss/impl/HNSW.h +179 -200
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +672 -0
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +172 -0
- data/vendor/faiss/faiss/impl/NNDescent.cpp +487 -0
- data/vendor/faiss/faiss/impl/NNDescent.h +154 -0
- data/vendor/faiss/faiss/impl/NSG.cpp +682 -0
- data/vendor/faiss/faiss/impl/NSG.h +199 -0
- data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +484 -454
- data/vendor/faiss/faiss/impl/PolysemousTraining.h +52 -55
- data/vendor/faiss/faiss/impl/ProductQuantizer-inl.h +26 -47
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +469 -459
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +76 -87
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +448 -0
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +130 -0
- data/vendor/faiss/faiss/impl/ResultHandler.h +96 -132
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +648 -701
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +48 -46
- data/vendor/faiss/faiss/impl/ThreadedIndex-inl.h +129 -131
- data/vendor/faiss/faiss/impl/ThreadedIndex.h +61 -55
- data/vendor/faiss/faiss/impl/index_read.cpp +547 -479
- data/vendor/faiss/faiss/impl/index_write.cpp +497 -407
- data/vendor/faiss/faiss/impl/io.cpp +75 -94
- data/vendor/faiss/faiss/impl/io.h +31 -41
- data/vendor/faiss/faiss/impl/io_macros.h +40 -29
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +137 -186
- data/vendor/faiss/faiss/impl/lattice_Zn.h +40 -51
- data/vendor/faiss/faiss/impl/platform_macros.h +29 -8
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +77 -124
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +39 -48
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +41 -52
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +80 -117
- data/vendor/faiss/faiss/impl/simd_result_handlers.h +109 -137
- data/vendor/faiss/faiss/index_factory.cpp +269 -218
- data/vendor/faiss/faiss/index_factory.h +6 -7
- data/vendor/faiss/faiss/index_io.h +23 -26
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +67 -75
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +22 -24
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +96 -112
- data/vendor/faiss/faiss/invlists/DirectMap.h +29 -33
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +307 -364
- data/vendor/faiss/faiss/invlists/InvertedLists.h +151 -151
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.cpp +29 -34
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.h +17 -18
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +257 -293
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.h +50 -45
- data/vendor/faiss/faiss/python/python_callbacks.cpp +23 -26
- data/vendor/faiss/faiss/python/python_callbacks.h +9 -16
- data/vendor/faiss/faiss/utils/AlignedTable.h +79 -44
- data/vendor/faiss/faiss/utils/Heap.cpp +40 -48
- data/vendor/faiss/faiss/utils/Heap.h +186 -209
- data/vendor/faiss/faiss/utils/WorkerThread.cpp +67 -76
- data/vendor/faiss/faiss/utils/WorkerThread.h +32 -33
- data/vendor/faiss/faiss/utils/distances.cpp +301 -310
- data/vendor/faiss/faiss/utils/distances.h +133 -118
- data/vendor/faiss/faiss/utils/distances_simd.cpp +456 -516
- data/vendor/faiss/faiss/utils/extra_distances-inl.h +117 -0
- data/vendor/faiss/faiss/utils/extra_distances.cpp +113 -232
- data/vendor/faiss/faiss/utils/extra_distances.h +30 -29
- data/vendor/faiss/faiss/utils/hamming-inl.h +260 -209
- data/vendor/faiss/faiss/utils/hamming.cpp +375 -469
- data/vendor/faiss/faiss/utils/hamming.h +62 -85
- data/vendor/faiss/faiss/utils/ordered_key_value.h +16 -18
- data/vendor/faiss/faiss/utils/partitioning.cpp +393 -318
- data/vendor/faiss/faiss/utils/partitioning.h +26 -21
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +78 -66
- data/vendor/faiss/faiss/utils/quantize_lut.h +22 -20
- data/vendor/faiss/faiss/utils/random.cpp +39 -63
- data/vendor/faiss/faiss/utils/random.h +13 -16
- data/vendor/faiss/faiss/utils/simdlib.h +4 -2
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +88 -85
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +226 -165
- data/vendor/faiss/faiss/utils/simdlib_neon.h +832 -0
- data/vendor/faiss/faiss/utils/utils.cpp +304 -287
- data/vendor/faiss/faiss/utils/utils.h +53 -48
- metadata +20 -2
@@ -9,80 +9,100 @@
|
|
9
9
|
|
10
10
|
#include <faiss/IndexBinaryFlat.h>
|
11
11
|
|
12
|
-
#include <
|
12
|
+
#include <faiss/impl/AuxIndexStructures.h>
|
13
|
+
#include <faiss/impl/FaissAssert.h>
|
14
|
+
#include <faiss/utils/Heap.h>
|
13
15
|
#include <faiss/utils/hamming.h>
|
14
16
|
#include <faiss/utils/utils.h>
|
15
|
-
#include <
|
16
|
-
#include <faiss/impl/FaissAssert.h>
|
17
|
-
#include <faiss/impl/AuxIndexStructures.h>
|
17
|
+
#include <cstring>
|
18
18
|
|
19
19
|
namespace faiss {
|
20
20
|
|
21
|
-
IndexBinaryFlat::IndexBinaryFlat(idx_t d)
|
22
|
-
: IndexBinary(d) {}
|
21
|
+
IndexBinaryFlat::IndexBinaryFlat(idx_t d) : IndexBinary(d) {}
|
23
22
|
|
24
|
-
void IndexBinaryFlat::add(idx_t n, const uint8_t
|
25
|
-
|
26
|
-
|
23
|
+
void IndexBinaryFlat::add(idx_t n, const uint8_t* x) {
|
24
|
+
xb.insert(xb.end(), x, x + n * code_size);
|
25
|
+
ntotal += n;
|
27
26
|
}
|
28
27
|
|
29
28
|
void IndexBinaryFlat::reset() {
|
30
|
-
|
31
|
-
|
29
|
+
xb.clear();
|
30
|
+
ntotal = 0;
|
32
31
|
}
|
33
32
|
|
34
|
-
void IndexBinaryFlat::search(
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
}
|
33
|
+
void IndexBinaryFlat::search(
|
34
|
+
idx_t n,
|
35
|
+
const uint8_t* x,
|
36
|
+
idx_t k,
|
37
|
+
int32_t* distances,
|
38
|
+
idx_t* labels) const {
|
39
|
+
FAISS_THROW_IF_NOT(k > 0);
|
42
40
|
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
41
|
+
const idx_t block_size = query_batch_size;
|
42
|
+
for (idx_t s = 0; s < n; s += block_size) {
|
43
|
+
idx_t nn = block_size;
|
44
|
+
if (s + block_size > n) {
|
45
|
+
nn = n - s;
|
46
|
+
}
|
48
47
|
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
48
|
+
if (use_heap) {
|
49
|
+
// We see the distances and labels as heaps.
|
50
|
+
int_maxheap_array_t res = {
|
51
|
+
size_t(nn), size_t(k), labels + s * k, distances + s * k};
|
52
|
+
|
53
|
+
hammings_knn_hc(
|
54
|
+
&res,
|
55
|
+
x + s * code_size,
|
56
|
+
xb.data(),
|
57
|
+
ntotal,
|
58
|
+
code_size,
|
59
|
+
/* ordered = */ true);
|
60
|
+
} else {
|
61
|
+
hammings_knn_mc(
|
62
|
+
x + s * code_size,
|
63
|
+
xb.data(),
|
64
|
+
nn,
|
65
|
+
ntotal,
|
66
|
+
k,
|
67
|
+
code_size,
|
68
|
+
distances + s * k,
|
69
|
+
labels + s * k);
|
70
|
+
}
|
54
71
|
}
|
55
|
-
}
|
56
72
|
}
|
57
73
|
|
58
74
|
size_t IndexBinaryFlat::remove_ids(const IDSelector& sel) {
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
75
|
+
idx_t j = 0;
|
76
|
+
for (idx_t i = 0; i < ntotal; i++) {
|
77
|
+
if (sel.is_member(i)) {
|
78
|
+
// should be removed
|
79
|
+
} else {
|
80
|
+
if (i > j) {
|
81
|
+
memmove(&xb[code_size * j],
|
82
|
+
&xb[code_size * i],
|
83
|
+
sizeof(xb[0]) * code_size);
|
84
|
+
}
|
85
|
+
j++;
|
86
|
+
}
|
87
|
+
}
|
88
|
+
long nremove = ntotal - j;
|
89
|
+
if (nremove > 0) {
|
90
|
+
ntotal = j;
|
91
|
+
xb.resize(ntotal * code_size);
|
68
92
|
}
|
69
|
-
|
70
|
-
long nremove = ntotal - j;
|
71
|
-
if (nremove > 0) {
|
72
|
-
ntotal = j;
|
73
|
-
xb.resize(ntotal * code_size);
|
74
|
-
}
|
75
|
-
return nremove;
|
93
|
+
return nremove;
|
76
94
|
}
|
77
95
|
|
78
|
-
void IndexBinaryFlat::reconstruct(idx_t key, uint8_t
|
79
|
-
|
96
|
+
void IndexBinaryFlat::reconstruct(idx_t key, uint8_t* recons) const {
|
97
|
+
memcpy(recons, &(xb[code_size * key]), sizeof(*recons) * code_size);
|
80
98
|
}
|
81
99
|
|
82
|
-
void IndexBinaryFlat::range_search(
|
83
|
-
|
84
|
-
|
85
|
-
|
100
|
+
void IndexBinaryFlat::range_search(
|
101
|
+
idx_t n,
|
102
|
+
const uint8_t* x,
|
103
|
+
int radius,
|
104
|
+
RangeSearchResult* result) const {
|
105
|
+
hamming_range_search(x, xb.data(), n, ntotal, radius, code_size, result);
|
86
106
|
}
|
87
107
|
|
88
|
-
}
|
108
|
+
} // namespace faiss
|
@@ -16,42 +16,47 @@
|
|
16
16
|
|
17
17
|
namespace faiss {
|
18
18
|
|
19
|
-
|
20
19
|
/** Index that stores the full vectors and performs exhaustive search. */
|
21
20
|
struct IndexBinaryFlat : IndexBinary {
|
22
|
-
|
23
|
-
|
21
|
+
/// database vectors, size ntotal * d / 8
|
22
|
+
std::vector<uint8_t> xb;
|
24
23
|
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
24
|
+
/** Select between using a heap or counting to select the k smallest values
|
25
|
+
* when scanning inverted lists.
|
26
|
+
*/
|
27
|
+
bool use_heap = true;
|
29
28
|
|
30
|
-
|
29
|
+
size_t query_batch_size = 32;
|
31
30
|
|
32
|
-
|
31
|
+
explicit IndexBinaryFlat(idx_t d);
|
33
32
|
|
34
|
-
|
33
|
+
void add(idx_t n, const uint8_t* x) override;
|
35
34
|
|
36
|
-
|
35
|
+
void reset() override;
|
37
36
|
|
38
|
-
|
39
|
-
|
37
|
+
void search(
|
38
|
+
idx_t n,
|
39
|
+
const uint8_t* x,
|
40
|
+
idx_t k,
|
41
|
+
int32_t* distances,
|
42
|
+
idx_t* labels) const override;
|
40
43
|
|
41
|
-
|
42
|
-
|
44
|
+
void range_search(
|
45
|
+
idx_t n,
|
46
|
+
const uint8_t* x,
|
47
|
+
int radius,
|
48
|
+
RangeSearchResult* result) const override;
|
43
49
|
|
44
|
-
|
50
|
+
void reconstruct(idx_t key, uint8_t* recons) const override;
|
45
51
|
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
52
|
+
/** Remove some ids. Note that because of the indexing structure,
|
53
|
+
* the semantics of this operation are different from the usual ones:
|
54
|
+
* the new ids are shifted. */
|
55
|
+
size_t remove_ids(const IDSelector& sel) override;
|
50
56
|
|
51
|
-
|
57
|
+
IndexBinaryFlat() {}
|
52
58
|
};
|
53
59
|
|
60
|
+
} // namespace faiss
|
54
61
|
|
55
|
-
|
56
|
-
|
57
|
-
#endif // INDEX_BINARY_FLAT_H
|
62
|
+
#endif // INDEX_BINARY_FLAT_H
|
@@ -9,71 +9,74 @@
|
|
9
9
|
|
10
10
|
#include <faiss/IndexBinaryFromFloat.h>
|
11
11
|
|
12
|
+
#include <faiss/utils/utils.h>
|
12
13
|
#include <algorithm>
|
13
14
|
#include <memory>
|
14
|
-
#include <faiss/utils/utils.h>
|
15
15
|
|
16
16
|
namespace faiss {
|
17
17
|
|
18
|
-
|
19
18
|
IndexBinaryFromFloat::IndexBinaryFromFloat() {}
|
20
19
|
|
21
|
-
IndexBinaryFromFloat::IndexBinaryFromFloat(Index
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
is_trained = index->is_trained;
|
26
|
-
ntotal = index->ntotal;
|
20
|
+
IndexBinaryFromFloat::IndexBinaryFromFloat(Index* index)
|
21
|
+
: IndexBinary(index->d), index(index), own_fields(false) {
|
22
|
+
is_trained = index->is_trained;
|
23
|
+
ntotal = index->ntotal;
|
27
24
|
}
|
28
25
|
|
29
26
|
IndexBinaryFromFloat::~IndexBinaryFromFloat() {
|
30
|
-
|
31
|
-
|
32
|
-
|
27
|
+
if (own_fields) {
|
28
|
+
delete index;
|
29
|
+
}
|
33
30
|
}
|
34
31
|
|
35
|
-
void IndexBinaryFromFloat::add(idx_t n, const uint8_t
|
36
|
-
|
37
|
-
|
32
|
+
void IndexBinaryFromFloat::add(idx_t n, const uint8_t* x) {
|
33
|
+
constexpr idx_t bs = 32768;
|
34
|
+
std::unique_ptr<float[]> xf(new float[bs * d]);
|
38
35
|
|
39
|
-
|
40
|
-
|
41
|
-
|
36
|
+
for (idx_t b = 0; b < n; b += bs) {
|
37
|
+
idx_t bn = std::min(bs, n - b);
|
38
|
+
binary_to_real(bn * d, x + b * code_size, xf.get());
|
42
39
|
|
43
|
-
|
44
|
-
|
45
|
-
|
40
|
+
index->add(bn, xf.get());
|
41
|
+
}
|
42
|
+
ntotal = index->ntotal;
|
46
43
|
}
|
47
44
|
|
48
45
|
void IndexBinaryFromFloat::reset() {
|
49
|
-
|
50
|
-
|
46
|
+
index->reset();
|
47
|
+
ntotal = index->ntotal;
|
51
48
|
}
|
52
49
|
|
53
|
-
void IndexBinaryFromFloat::search(
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
50
|
+
void IndexBinaryFromFloat::search(
|
51
|
+
idx_t n,
|
52
|
+
const uint8_t* x,
|
53
|
+
idx_t k,
|
54
|
+
int32_t* distances,
|
55
|
+
idx_t* labels) const {
|
56
|
+
FAISS_THROW_IF_NOT(k > 0);
|
57
|
+
|
58
|
+
constexpr idx_t bs = 32768;
|
59
|
+
std::unique_ptr<float[]> xf(new float[bs * d]);
|
60
|
+
std::unique_ptr<float[]> df(new float[bs * k]);
|
61
|
+
|
62
|
+
for (idx_t b = 0; b < n; b += bs) {
|
63
|
+
idx_t bn = std::min(bs, n - b);
|
64
|
+
binary_to_real(bn * d, x + b * code_size, xf.get());
|
65
|
+
|
66
|
+
index->search(bn, xf.get(), k, df.get(), labels + b * k);
|
67
|
+
for (int i = 0; i < bn * k; ++i) {
|
68
|
+
distances[b * k + i] = int32_t(std::round(df[i] / 4.0));
|
69
|
+
}
|
66
70
|
}
|
67
|
-
}
|
68
71
|
}
|
69
72
|
|
70
|
-
void IndexBinaryFromFloat::train(idx_t n, const uint8_t
|
71
|
-
|
72
|
-
|
73
|
+
void IndexBinaryFromFloat::train(idx_t n, const uint8_t* x) {
|
74
|
+
std::unique_ptr<float[]> xf(new float[n * d]);
|
75
|
+
binary_to_real(n * d, x, xf.get());
|
73
76
|
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
+
index->train(n, xf.get());
|
78
|
+
is_trained = true;
|
79
|
+
ntotal = index->ntotal;
|
77
80
|
}
|
78
81
|
|
79
|
-
}
|
82
|
+
} // namespace faiss
|
@@ -12,10 +12,8 @@
|
|
12
12
|
|
13
13
|
#include <faiss/IndexBinary.h>
|
14
14
|
|
15
|
-
|
16
15
|
namespace faiss {
|
17
16
|
|
18
|
-
|
19
17
|
struct Index;
|
20
18
|
|
21
19
|
/** IndexBinary backed by a float Index.
|
@@ -26,27 +24,30 @@ struct Index;
|
|
26
24
|
* vectors.
|
27
25
|
*/
|
28
26
|
struct IndexBinaryFromFloat : IndexBinary {
|
29
|
-
|
27
|
+
Index* index = nullptr;
|
30
28
|
|
31
|
-
|
29
|
+
bool own_fields = false; ///< Whether object owns the index pointer.
|
32
30
|
|
33
|
-
|
31
|
+
IndexBinaryFromFloat();
|
34
32
|
|
35
|
-
|
33
|
+
explicit IndexBinaryFromFloat(Index* index);
|
36
34
|
|
37
|
-
|
35
|
+
~IndexBinaryFromFloat();
|
38
36
|
|
39
|
-
|
37
|
+
void add(idx_t n, const uint8_t* x) override;
|
40
38
|
|
41
|
-
|
39
|
+
void reset() override;
|
42
40
|
|
43
|
-
|
44
|
-
|
41
|
+
void search(
|
42
|
+
idx_t n,
|
43
|
+
const uint8_t* x,
|
44
|
+
idx_t k,
|
45
|
+
int32_t* distances,
|
46
|
+
idx_t* labels) const override;
|
45
47
|
|
46
|
-
|
48
|
+
void train(idx_t n, const uint8_t* x) override;
|
47
49
|
};
|
48
50
|
|
51
|
+
} // namespace faiss
|
49
52
|
|
50
|
-
|
51
|
-
|
52
|
-
#endif // FAISS_INDEX_BINARY_FROM_FLOAT_H
|
53
|
+
#endif // FAISS_INDEX_BINARY_FROM_FLOAT_H
|
@@ -9,316 +9,299 @@
|
|
9
9
|
|
10
10
|
#include <faiss/IndexBinaryHNSW.h>
|
11
11
|
|
12
|
-
|
13
|
-
#include <memory>
|
14
|
-
#include <cstdlib>
|
12
|
+
#include <omp.h>
|
15
13
|
#include <cassert>
|
16
|
-
#include <cstring>
|
17
|
-
#include <cstdio>
|
18
14
|
#include <cmath>
|
19
|
-
#include <
|
15
|
+
#include <cstdio>
|
16
|
+
#include <cstdlib>
|
17
|
+
#include <cstring>
|
18
|
+
#include <memory>
|
20
19
|
|
21
|
-
#include <unordered_set>
|
22
20
|
#include <queue>
|
21
|
+
#include <unordered_set>
|
23
22
|
|
24
|
-
#include <sys/types.h>
|
25
|
-
#include <sys/stat.h>
|
26
23
|
#include <stdint.h>
|
24
|
+
#include <sys/stat.h>
|
25
|
+
#include <sys/types.h>
|
27
26
|
|
28
|
-
#include <faiss/utils/random.h>
|
29
|
-
#include <faiss/utils/Heap.h>
|
30
|
-
#include <faiss/impl/FaissAssert.h>
|
31
27
|
#include <faiss/IndexBinaryFlat.h>
|
32
|
-
#include <faiss/utils/hamming.h>
|
33
28
|
#include <faiss/impl/AuxIndexStructures.h>
|
29
|
+
#include <faiss/impl/FaissAssert.h>
|
30
|
+
#include <faiss/utils/Heap.h>
|
31
|
+
#include <faiss/utils/hamming.h>
|
32
|
+
#include <faiss/utils/random.h>
|
34
33
|
|
35
34
|
namespace faiss {
|
36
35
|
|
37
|
-
|
38
36
|
/**************************************************************
|
39
37
|
* add / search blocks of descriptors
|
40
38
|
**************************************************************/
|
41
39
|
|
42
40
|
namespace {
|
43
41
|
|
42
|
+
void hnsw_add_vertices(
|
43
|
+
IndexBinaryHNSW& index_hnsw,
|
44
|
+
size_t n0,
|
45
|
+
size_t n,
|
46
|
+
const uint8_t* x,
|
47
|
+
bool verbose,
|
48
|
+
bool preset_levels = false) {
|
49
|
+
HNSW& hnsw = index_hnsw.hnsw;
|
50
|
+
size_t ntotal = n0 + n;
|
51
|
+
double t0 = getmillisecs();
|
52
|
+
if (verbose) {
|
53
|
+
printf("hnsw_add_vertices: adding %zd elements on top of %zd "
|
54
|
+
"(preset_levels=%d)\n",
|
55
|
+
n,
|
56
|
+
n0,
|
57
|
+
int(preset_levels));
|
58
|
+
}
|
59
|
+
|
60
|
+
int max_level = hnsw.prepare_level_tab(n, preset_levels);
|
44
61
|
|
45
|
-
|
46
|
-
|
47
|
-
size_t n, const uint8_t *x,
|
48
|
-
bool verbose,
|
49
|
-
bool preset_levels = false) {
|
50
|
-
HNSW& hnsw = index_hnsw.hnsw;
|
51
|
-
size_t ntotal = n0 + n;
|
52
|
-
double t0 = getmillisecs();
|
53
|
-
if (verbose) {
|
54
|
-
printf("hnsw_add_vertices: adding %zd elements on top of %zd "
|
55
|
-
"(preset_levels=%d)\n",
|
56
|
-
n, n0, int(preset_levels));
|
57
|
-
}
|
58
|
-
|
59
|
-
int max_level = hnsw.prepare_level_tab(n, preset_levels);
|
60
|
-
|
61
|
-
if (verbose) {
|
62
|
-
printf(" max_level = %d\n", max_level);
|
63
|
-
}
|
64
|
-
|
65
|
-
std::vector<omp_lock_t> locks(ntotal);
|
66
|
-
for(int i = 0; i < ntotal; i++) {
|
67
|
-
omp_init_lock(&locks[i]);
|
68
|
-
}
|
69
|
-
|
70
|
-
// add vectors from highest to lowest level
|
71
|
-
std::vector<int> hist;
|
72
|
-
std::vector<int> order(n);
|
73
|
-
|
74
|
-
{ // make buckets with vectors of the same level
|
75
|
-
|
76
|
-
// build histogram
|
77
|
-
for (int i = 0; i < n; i++) {
|
78
|
-
HNSW::storage_idx_t pt_id = i + n0;
|
79
|
-
int pt_level = hnsw.levels[pt_id] - 1;
|
80
|
-
while (pt_level >= hist.size()) {
|
81
|
-
hist.push_back(0);
|
82
|
-
}
|
83
|
-
hist[pt_level] ++;
|
62
|
+
if (verbose) {
|
63
|
+
printf(" max_level = %d\n", max_level);
|
84
64
|
}
|
85
65
|
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
offsets[i + 1] = offsets[i] + hist[i];
|
66
|
+
std::vector<omp_lock_t> locks(ntotal);
|
67
|
+
for (int i = 0; i < ntotal; i++) {
|
68
|
+
omp_init_lock(&locks[i]);
|
90
69
|
}
|
91
70
|
|
92
|
-
//
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
71
|
+
// add vectors from highest to lowest level
|
72
|
+
std::vector<int> hist;
|
73
|
+
std::vector<int> order(n);
|
74
|
+
|
75
|
+
{ // make buckets with vectors of the same level
|
76
|
+
|
77
|
+
// build histogram
|
78
|
+
for (int i = 0; i < n; i++) {
|
79
|
+
HNSW::storage_idx_t pt_id = i + n0;
|
80
|
+
int pt_level = hnsw.levels[pt_id] - 1;
|
81
|
+
while (pt_level >= hist.size()) {
|
82
|
+
hist.push_back(0);
|
83
|
+
}
|
84
|
+
hist[pt_level]++;
|
85
|
+
}
|
86
|
+
|
87
|
+
// accumulate
|
88
|
+
std::vector<int> offsets(hist.size() + 1, 0);
|
89
|
+
for (int i = 0; i < hist.size() - 1; i++) {
|
90
|
+
offsets[i + 1] = offsets[i] + hist[i];
|
91
|
+
}
|
92
|
+
|
93
|
+
// bucket sort
|
94
|
+
for (int i = 0; i < n; i++) {
|
95
|
+
HNSW::storage_idx_t pt_id = i + n0;
|
96
|
+
int pt_level = hnsw.levels[pt_id] - 1;
|
97
|
+
order[offsets[pt_level]++] = pt_id;
|
98
|
+
}
|
97
99
|
}
|
98
|
-
}
|
99
100
|
|
100
|
-
|
101
|
-
|
101
|
+
{ // perform add
|
102
|
+
RandomGenerator rng2(789);
|
102
103
|
|
103
|
-
|
104
|
+
int i1 = n;
|
104
105
|
|
105
|
-
|
106
|
-
|
106
|
+
for (int pt_level = hist.size() - 1; pt_level >= 0; pt_level--) {
|
107
|
+
int i0 = i1 - hist[pt_level];
|
107
108
|
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
}
|
109
|
+
if (verbose) {
|
110
|
+
printf("Adding %d elements at level %d\n", i1 - i0, pt_level);
|
111
|
+
}
|
112
112
|
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
113
|
+
// random permutation to get rid of dataset order bias
|
114
|
+
for (int j = i0; j < i1; j++) {
|
115
|
+
std::swap(order[j], order[j + rng2.rand_int(i1 - j)]);
|
116
|
+
}
|
117
117
|
|
118
118
|
#pragma omp parallel
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
#pragma omp
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
119
|
+
{
|
120
|
+
VisitedTable vt(ntotal);
|
121
|
+
|
122
|
+
std::unique_ptr<DistanceComputer> dis(
|
123
|
+
index_hnsw.get_distance_computer());
|
124
|
+
int prev_display =
|
125
|
+
verbose && omp_get_thread_num() == 0 ? 0 : -1;
|
126
|
+
|
127
|
+
#pragma omp for schedule(dynamic)
|
128
|
+
for (int i = i0; i < i1; i++) {
|
129
|
+
HNSW::storage_idx_t pt_id = order[i];
|
130
|
+
dis->set_query(
|
131
|
+
(float*)(x + (pt_id - n0) * index_hnsw.code_size));
|
132
|
+
|
133
|
+
hnsw.add_with_locks(*dis, pt_level, pt_id, locks, vt);
|
134
|
+
|
135
|
+
if (prev_display >= 0 && i - i0 > prev_display + 10000) {
|
136
|
+
prev_display = i - i0;
|
137
|
+
printf(" %d / %d\r", i - i0, i1 - i0);
|
138
|
+
fflush(stdout);
|
139
|
+
}
|
140
|
+
}
|
141
|
+
}
|
142
|
+
i1 = i0;
|
139
143
|
}
|
140
|
-
|
141
|
-
|
144
|
+
FAISS_ASSERT(i1 == 0);
|
145
|
+
}
|
146
|
+
if (verbose) {
|
147
|
+
printf("Done in %.3f ms\n", getmillisecs() - t0);
|
142
148
|
}
|
143
|
-
FAISS_ASSERT(i1 == 0);
|
144
|
-
}
|
145
|
-
if (verbose) {
|
146
|
-
printf("Done in %.3f ms\n", getmillisecs() - t0);
|
147
|
-
}
|
148
|
-
|
149
|
-
for(int i = 0; i < ntotal; i++)
|
150
|
-
omp_destroy_lock(&locks[i]);
|
151
|
-
}
|
152
149
|
|
150
|
+
for (int i = 0; i < ntotal; i++)
|
151
|
+
omp_destroy_lock(&locks[i]);
|
152
|
+
}
|
153
153
|
|
154
154
|
} // anonymous namespace
|
155
155
|
|
156
|
-
|
157
156
|
/**************************************************************
|
158
157
|
* IndexBinaryHNSW implementation
|
159
158
|
**************************************************************/
|
160
159
|
|
161
|
-
IndexBinaryHNSW::IndexBinaryHNSW()
|
162
|
-
|
163
|
-
is_trained = true;
|
160
|
+
IndexBinaryHNSW::IndexBinaryHNSW() {
|
161
|
+
is_trained = true;
|
164
162
|
}
|
165
163
|
|
166
164
|
IndexBinaryHNSW::IndexBinaryHNSW(int d, int M)
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
is_trained = true;
|
165
|
+
: IndexBinary(d),
|
166
|
+
hnsw(M),
|
167
|
+
own_fields(true),
|
168
|
+
storage(new IndexBinaryFlat(d)) {
|
169
|
+
is_trained = true;
|
173
170
|
}
|
174
171
|
|
175
|
-
IndexBinaryHNSW::IndexBinaryHNSW(IndexBinary
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
is_trained = true;
|
172
|
+
IndexBinaryHNSW::IndexBinaryHNSW(IndexBinary* storage, int M)
|
173
|
+
: IndexBinary(storage->d),
|
174
|
+
hnsw(M),
|
175
|
+
own_fields(false),
|
176
|
+
storage(storage) {
|
177
|
+
is_trained = true;
|
182
178
|
}
|
183
179
|
|
184
180
|
IndexBinaryHNSW::~IndexBinaryHNSW() {
|
185
|
-
|
186
|
-
|
187
|
-
|
181
|
+
if (own_fields) {
|
182
|
+
delete storage;
|
183
|
+
}
|
188
184
|
}
|
189
185
|
|
190
|
-
void IndexBinaryHNSW::train(idx_t n, const uint8_t
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
is_trained = true;
|
186
|
+
void IndexBinaryHNSW::train(idx_t n, const uint8_t* x) {
|
187
|
+
// hnsw structure does not require training
|
188
|
+
storage->train(n, x);
|
189
|
+
is_trained = true;
|
195
190
|
}
|
196
191
|
|
197
|
-
void IndexBinaryHNSW::search(
|
198
|
-
|
199
|
-
|
192
|
+
void IndexBinaryHNSW::search(
|
193
|
+
idx_t n,
|
194
|
+
const uint8_t* x,
|
195
|
+
idx_t k,
|
196
|
+
int32_t* distances,
|
197
|
+
idx_t* labels) const {
|
198
|
+
FAISS_THROW_IF_NOT(k > 0);
|
199
|
+
|
200
200
|
#pragma omp parallel
|
201
|
-
|
202
|
-
|
203
|
-
|
201
|
+
{
|
202
|
+
VisitedTable vt(ntotal);
|
203
|
+
std::unique_ptr<DistanceComputer> dis(get_distance_computer());
|
204
204
|
|
205
205
|
#pragma omp for
|
206
|
-
|
207
|
-
|
208
|
-
|
206
|
+
for (idx_t i = 0; i < n; i++) {
|
207
|
+
idx_t* idxi = labels + i * k;
|
208
|
+
float* simi = (float*)(distances + i * k);
|
209
209
|
|
210
|
-
|
210
|
+
dis->set_query((float*)(x + i * code_size));
|
211
211
|
|
212
|
-
|
213
|
-
|
214
|
-
|
212
|
+
maxheap_heapify(k, simi, idxi);
|
213
|
+
hnsw.search(*dis, k, idxi, simi, vt);
|
214
|
+
maxheap_reorder(k, simi, idxi);
|
215
|
+
}
|
215
216
|
}
|
216
|
-
}
|
217
217
|
|
218
218
|
#pragma omp parallel for
|
219
|
-
|
220
|
-
|
221
|
-
|
219
|
+
for (int i = 0; i < n * k; ++i) {
|
220
|
+
distances[i] = std::round(((float*)distances)[i]);
|
221
|
+
}
|
222
222
|
}
|
223
223
|
|
224
|
+
void IndexBinaryHNSW::add(idx_t n, const uint8_t* x) {
|
225
|
+
FAISS_THROW_IF_NOT(is_trained);
|
226
|
+
int n0 = ntotal;
|
227
|
+
storage->add(n, x);
|
228
|
+
ntotal = storage->ntotal;
|
224
229
|
|
225
|
-
|
226
|
-
{
|
227
|
-
FAISS_THROW_IF_NOT(is_trained);
|
228
|
-
int n0 = ntotal;
|
229
|
-
storage->add(n, x);
|
230
|
-
ntotal = storage->ntotal;
|
231
|
-
|
232
|
-
hnsw_add_vertices(*this, n0, n, x, verbose,
|
233
|
-
hnsw.levels.size() == ntotal);
|
230
|
+
hnsw_add_vertices(*this, n0, n, x, verbose, hnsw.levels.size() == ntotal);
|
234
231
|
}
|
235
232
|
|
236
|
-
void IndexBinaryHNSW::reset()
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
ntotal = 0;
|
233
|
+
void IndexBinaryHNSW::reset() {
|
234
|
+
hnsw.reset();
|
235
|
+
storage->reset();
|
236
|
+
ntotal = 0;
|
241
237
|
}
|
242
238
|
|
243
|
-
void IndexBinaryHNSW::reconstruct(idx_t key, uint8_t
|
244
|
-
|
245
|
-
storage->reconstruct(key, recons);
|
239
|
+
void IndexBinaryHNSW::reconstruct(idx_t key, uint8_t* recons) const {
|
240
|
+
storage->reconstruct(key, recons);
|
246
241
|
}
|
247
242
|
|
248
|
-
|
249
243
|
namespace {
|
250
244
|
|
251
|
-
|
252
|
-
template<class HammingComputer>
|
245
|
+
template <class HammingComputer>
|
253
246
|
struct FlatHammingDis : DistanceComputer {
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
~FlatHammingDis() override {
|
247
|
+
const int code_size;
|
248
|
+
const uint8_t* b;
|
249
|
+
size_t ndis;
|
250
|
+
HammingComputer hc;
|
251
|
+
|
252
|
+
float operator()(idx_t i) override {
|
253
|
+
ndis++;
|
254
|
+
return hc.hamming(b + i * code_size);
|
255
|
+
}
|
256
|
+
|
257
|
+
float symmetric_dis(idx_t i, idx_t j) override {
|
258
|
+
return HammingComputerDefault(b + j * code_size, code_size)
|
259
|
+
.hamming(b + i * code_size);
|
260
|
+
}
|
261
|
+
|
262
|
+
explicit FlatHammingDis(const IndexBinaryFlat& storage)
|
263
|
+
: code_size(storage.code_size),
|
264
|
+
b(storage.xb.data()),
|
265
|
+
ndis(0),
|
266
|
+
hc() {}
|
267
|
+
|
268
|
+
// NOTE: Pointers are cast from float in order to reuse the floating-point
|
269
|
+
// DistanceComputer.
|
270
|
+
void set_query(const float* x) override {
|
271
|
+
hc.set((uint8_t*)x, code_size);
|
272
|
+
}
|
273
|
+
|
274
|
+
~FlatHammingDis() override {
|
283
275
|
#pragma omp critical
|
284
|
-
|
285
|
-
hnsw_stats.ndis += ndis;
|
276
|
+
{ hnsw_stats.ndis += ndis; }
|
286
277
|
}
|
287
|
-
}
|
288
278
|
};
|
289
279
|
|
280
|
+
} // namespace
|
281
|
+
|
282
|
+
DistanceComputer* IndexBinaryHNSW::get_distance_computer() const {
|
283
|
+
IndexBinaryFlat* flat_storage = dynamic_cast<IndexBinaryFlat*>(storage);
|
284
|
+
|
285
|
+
FAISS_ASSERT(flat_storage != nullptr);
|
286
|
+
|
287
|
+
switch (code_size) {
|
288
|
+
case 4:
|
289
|
+
return new FlatHammingDis<HammingComputer4>(*flat_storage);
|
290
|
+
case 8:
|
291
|
+
return new FlatHammingDis<HammingComputer8>(*flat_storage);
|
292
|
+
case 16:
|
293
|
+
return new FlatHammingDis<HammingComputer16>(*flat_storage);
|
294
|
+
case 20:
|
295
|
+
return new FlatHammingDis<HammingComputer20>(*flat_storage);
|
296
|
+
case 32:
|
297
|
+
return new FlatHammingDis<HammingComputer32>(*flat_storage);
|
298
|
+
case 64:
|
299
|
+
return new FlatHammingDis<HammingComputer64>(*flat_storage);
|
300
|
+
default:
|
301
|
+
break;
|
302
|
+
}
|
290
303
|
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
DistanceComputer *IndexBinaryHNSW::get_distance_computer() const {
|
295
|
-
IndexBinaryFlat *flat_storage = dynamic_cast<IndexBinaryFlat *>(storage);
|
296
|
-
|
297
|
-
FAISS_ASSERT(flat_storage != nullptr);
|
298
|
-
|
299
|
-
switch(code_size) {
|
300
|
-
case 4:
|
301
|
-
return new FlatHammingDis<HammingComputer4>(*flat_storage);
|
302
|
-
case 8:
|
303
|
-
return new FlatHammingDis<HammingComputer8>(*flat_storage);
|
304
|
-
case 16:
|
305
|
-
return new FlatHammingDis<HammingComputer16>(*flat_storage);
|
306
|
-
case 20:
|
307
|
-
return new FlatHammingDis<HammingComputer20>(*flat_storage);
|
308
|
-
case 32:
|
309
|
-
return new FlatHammingDis<HammingComputer32>(*flat_storage);
|
310
|
-
case 64:
|
311
|
-
return new FlatHammingDis<HammingComputer64>(*flat_storage);
|
312
|
-
default:
|
313
|
-
if (code_size % 8 == 0) {
|
314
|
-
return new FlatHammingDis<HammingComputerM8>(*flat_storage);
|
315
|
-
} else if (code_size % 4 == 0) {
|
316
|
-
return new FlatHammingDis<HammingComputerM4>(*flat_storage);
|
317
|
-
}
|
318
|
-
}
|
319
|
-
|
320
|
-
return new FlatHammingDis<HammingComputerDefault>(*flat_storage);
|
304
|
+
return new FlatHammingDis<HammingComputerDefault>(*flat_storage);
|
321
305
|
}
|
322
306
|
|
323
|
-
|
324
307
|
} // namespace faiss
|