faiss 0.2.0 → 0.2.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +292 -291
- data/vendor/faiss/faiss/AutoTune.h +55 -56
- data/vendor/faiss/faiss/Clustering.cpp +334 -195
- data/vendor/faiss/faiss/Clustering.h +88 -35
- data/vendor/faiss/faiss/IVFlib.cpp +171 -195
- data/vendor/faiss/faiss/IVFlib.h +48 -51
- data/vendor/faiss/faiss/Index.cpp +85 -103
- data/vendor/faiss/faiss/Index.h +54 -48
- data/vendor/faiss/faiss/Index2Layer.cpp +139 -164
- data/vendor/faiss/faiss/Index2Layer.h +22 -22
- data/vendor/faiss/faiss/IndexBinary.cpp +45 -37
- data/vendor/faiss/faiss/IndexBinary.h +140 -132
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +73 -53
- data/vendor/faiss/faiss/IndexBinaryFlat.h +29 -24
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +46 -43
- data/vendor/faiss/faiss/IndexBinaryFromFloat.h +16 -15
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +215 -232
- data/vendor/faiss/faiss/IndexBinaryHNSW.h +25 -24
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +182 -177
- data/vendor/faiss/faiss/IndexBinaryHash.h +41 -34
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +489 -461
- data/vendor/faiss/faiss/IndexBinaryIVF.h +97 -68
- data/vendor/faiss/faiss/IndexFlat.cpp +116 -147
- data/vendor/faiss/faiss/IndexFlat.h +35 -46
- data/vendor/faiss/faiss/IndexHNSW.cpp +372 -348
- data/vendor/faiss/faiss/IndexHNSW.h +57 -41
- data/vendor/faiss/faiss/IndexIVF.cpp +474 -454
- data/vendor/faiss/faiss/IndexIVF.h +146 -113
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +248 -250
- data/vendor/faiss/faiss/IndexIVFFlat.h +48 -51
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +457 -516
- data/vendor/faiss/faiss/IndexIVFPQ.h +74 -66
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +406 -372
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +82 -57
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +104 -102
- data/vendor/faiss/faiss/IndexIVFPQR.h +33 -28
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +125 -133
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +19 -21
- data/vendor/faiss/faiss/IndexLSH.cpp +75 -96
- data/vendor/faiss/faiss/IndexLSH.h +21 -26
- data/vendor/faiss/faiss/IndexLattice.cpp +42 -56
- data/vendor/faiss/faiss/IndexLattice.h +11 -16
- data/vendor/faiss/faiss/IndexNNDescent.cpp +231 -0
- data/vendor/faiss/faiss/IndexNNDescent.h +72 -0
- data/vendor/faiss/faiss/IndexNSG.cpp +303 -0
- data/vendor/faiss/faiss/IndexNSG.h +85 -0
- data/vendor/faiss/faiss/IndexPQ.cpp +405 -464
- data/vendor/faiss/faiss/IndexPQ.h +64 -67
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +143 -170
- data/vendor/faiss/faiss/IndexPQFastScan.h +46 -32
- data/vendor/faiss/faiss/IndexPreTransform.cpp +120 -150
- data/vendor/faiss/faiss/IndexPreTransform.h +33 -36
- data/vendor/faiss/faiss/IndexRefine.cpp +115 -131
- data/vendor/faiss/faiss/IndexRefine.h +22 -23
- data/vendor/faiss/faiss/IndexReplicas.cpp +147 -153
- data/vendor/faiss/faiss/IndexReplicas.h +62 -56
- data/vendor/faiss/faiss/IndexResidual.cpp +291 -0
- data/vendor/faiss/faiss/IndexResidual.h +152 -0
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +120 -155
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +41 -45
- data/vendor/faiss/faiss/IndexShards.cpp +256 -240
- data/vendor/faiss/faiss/IndexShards.h +85 -73
- data/vendor/faiss/faiss/MatrixStats.cpp +112 -97
- data/vendor/faiss/faiss/MatrixStats.h +7 -10
- data/vendor/faiss/faiss/MetaIndexes.cpp +135 -157
- data/vendor/faiss/faiss/MetaIndexes.h +40 -34
- data/vendor/faiss/faiss/MetricType.h +7 -7
- data/vendor/faiss/faiss/VectorTransform.cpp +652 -474
- data/vendor/faiss/faiss/VectorTransform.h +61 -89
- data/vendor/faiss/faiss/clone_index.cpp +77 -73
- data/vendor/faiss/faiss/clone_index.h +4 -9
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +33 -38
- data/vendor/faiss/faiss/gpu/GpuAutoTune.h +11 -9
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +197 -170
- data/vendor/faiss/faiss/gpu/GpuCloner.h +53 -35
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.cpp +12 -14
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +27 -25
- data/vendor/faiss/faiss/gpu/GpuDistance.h +116 -112
- data/vendor/faiss/faiss/gpu/GpuFaissAssert.h +1 -2
- data/vendor/faiss/faiss/gpu/GpuIndex.h +134 -137
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +76 -73
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +173 -162
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +67 -64
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +89 -86
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +150 -141
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +101 -103
- data/vendor/faiss/faiss/gpu/GpuIndicesOptions.h +17 -16
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +116 -128
- data/vendor/faiss/faiss/gpu/GpuResources.h +182 -186
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +433 -422
- data/vendor/faiss/faiss/gpu/StandardGpuResources.h +131 -130
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +468 -456
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.h +25 -19
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +22 -20
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +9 -8
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper-inl.h +39 -44
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper.h +16 -14
- data/vendor/faiss/faiss/gpu/perf/PerfClustering.cpp +77 -71
- data/vendor/faiss/faiss/gpu/perf/PerfIVFPQAdd.cpp +109 -88
- data/vendor/faiss/faiss/gpu/perf/WriteIndex.cpp +75 -64
- data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +230 -215
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +80 -86
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +284 -277
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +416 -416
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +611 -517
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +166 -164
- data/vendor/faiss/faiss/gpu/test/TestGpuMemoryException.cpp +61 -53
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +274 -238
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +73 -57
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +47 -50
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +79 -72
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.cpp +140 -146
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.h +69 -71
- data/vendor/faiss/faiss/gpu/utils/StaticUtils.h +21 -16
- data/vendor/faiss/faiss/gpu/utils/Timer.cpp +25 -29
- data/vendor/faiss/faiss/gpu/utils/Timer.h +30 -29
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +270 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +115 -0
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +90 -120
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +81 -65
- data/vendor/faiss/faiss/impl/FaissAssert.h +73 -58
- data/vendor/faiss/faiss/impl/FaissException.cpp +56 -48
- data/vendor/faiss/faiss/impl/FaissException.h +41 -29
- data/vendor/faiss/faiss/impl/HNSW.cpp +595 -611
- data/vendor/faiss/faiss/impl/HNSW.h +179 -200
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +672 -0
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +172 -0
- data/vendor/faiss/faiss/impl/NNDescent.cpp +487 -0
- data/vendor/faiss/faiss/impl/NNDescent.h +154 -0
- data/vendor/faiss/faiss/impl/NSG.cpp +682 -0
- data/vendor/faiss/faiss/impl/NSG.h +199 -0
- data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +484 -454
- data/vendor/faiss/faiss/impl/PolysemousTraining.h +52 -55
- data/vendor/faiss/faiss/impl/ProductQuantizer-inl.h +26 -47
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +469 -459
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +76 -87
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +448 -0
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +130 -0
- data/vendor/faiss/faiss/impl/ResultHandler.h +96 -132
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +648 -701
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +48 -46
- data/vendor/faiss/faiss/impl/ThreadedIndex-inl.h +129 -131
- data/vendor/faiss/faiss/impl/ThreadedIndex.h +61 -55
- data/vendor/faiss/faiss/impl/index_read.cpp +547 -479
- data/vendor/faiss/faiss/impl/index_write.cpp +497 -407
- data/vendor/faiss/faiss/impl/io.cpp +75 -94
- data/vendor/faiss/faiss/impl/io.h +31 -41
- data/vendor/faiss/faiss/impl/io_macros.h +40 -29
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +137 -186
- data/vendor/faiss/faiss/impl/lattice_Zn.h +40 -51
- data/vendor/faiss/faiss/impl/platform_macros.h +29 -8
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +77 -124
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +39 -48
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +41 -52
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +80 -117
- data/vendor/faiss/faiss/impl/simd_result_handlers.h +109 -137
- data/vendor/faiss/faiss/index_factory.cpp +269 -218
- data/vendor/faiss/faiss/index_factory.h +6 -7
- data/vendor/faiss/faiss/index_io.h +23 -26
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +67 -75
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +22 -24
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +96 -112
- data/vendor/faiss/faiss/invlists/DirectMap.h +29 -33
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +307 -364
- data/vendor/faiss/faiss/invlists/InvertedLists.h +151 -151
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.cpp +29 -34
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.h +17 -18
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +257 -293
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.h +50 -45
- data/vendor/faiss/faiss/python/python_callbacks.cpp +23 -26
- data/vendor/faiss/faiss/python/python_callbacks.h +9 -16
- data/vendor/faiss/faiss/utils/AlignedTable.h +79 -44
- data/vendor/faiss/faiss/utils/Heap.cpp +40 -48
- data/vendor/faiss/faiss/utils/Heap.h +186 -209
- data/vendor/faiss/faiss/utils/WorkerThread.cpp +67 -76
- data/vendor/faiss/faiss/utils/WorkerThread.h +32 -33
- data/vendor/faiss/faiss/utils/distances.cpp +301 -310
- data/vendor/faiss/faiss/utils/distances.h +133 -118
- data/vendor/faiss/faiss/utils/distances_simd.cpp +456 -516
- data/vendor/faiss/faiss/utils/extra_distances-inl.h +117 -0
- data/vendor/faiss/faiss/utils/extra_distances.cpp +113 -232
- data/vendor/faiss/faiss/utils/extra_distances.h +30 -29
- data/vendor/faiss/faiss/utils/hamming-inl.h +260 -209
- data/vendor/faiss/faiss/utils/hamming.cpp +375 -469
- data/vendor/faiss/faiss/utils/hamming.h +62 -85
- data/vendor/faiss/faiss/utils/ordered_key_value.h +16 -18
- data/vendor/faiss/faiss/utils/partitioning.cpp +393 -318
- data/vendor/faiss/faiss/utils/partitioning.h +26 -21
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +78 -66
- data/vendor/faiss/faiss/utils/quantize_lut.h +22 -20
- data/vendor/faiss/faiss/utils/random.cpp +39 -63
- data/vendor/faiss/faiss/utils/random.h +13 -16
- data/vendor/faiss/faiss/utils/simdlib.h +4 -2
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +88 -85
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +226 -165
- data/vendor/faiss/faiss/utils/simdlib_neon.h +832 -0
- data/vendor/faiss/faiss/utils/utils.cpp +304 -287
- data/vendor/faiss/faiss/utils/utils.h +53 -48
- metadata +20 -2
@@ -10,7 +10,6 @@
|
|
10
10
|
#ifndef FAISS_INDEX_LATTICE_H
|
11
11
|
#define FAISS_INDEX_LATTICE_H
|
12
12
|
|
13
|
-
|
14
13
|
#include <vector>
|
15
14
|
|
16
15
|
#include <faiss/IndexIVF.h>
|
@@ -18,14 +17,9 @@
|
|
18
17
|
|
19
18
|
namespace faiss {
|
20
19
|
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
20
|
/** Index that encodes a vector with a series of Zn lattice quantizers
|
26
21
|
*/
|
27
|
-
struct IndexLattice: Index {
|
28
|
-
|
22
|
+
struct IndexLattice : Index {
|
29
23
|
/// number of sub-vectors
|
30
24
|
int nsq;
|
31
25
|
/// dimension of sub-vectors
|
@@ -42,25 +36,26 @@ struct IndexLattice: Index {
|
|
42
36
|
/// mins and maxes of the vector norms, per subquantizer
|
43
37
|
std::vector<float> trained;
|
44
38
|
|
45
|
-
IndexLattice
|
39
|
+
IndexLattice(idx_t d, int nsq, int scale_nbit, int r2);
|
46
40
|
|
47
41
|
void train(idx_t n, const float* x) override;
|
48
42
|
|
49
43
|
/* The standalone codec interface */
|
50
|
-
size_t sa_code_size
|
44
|
+
size_t sa_code_size() const override;
|
51
45
|
|
52
|
-
void sa_encode
|
53
|
-
uint8_t *bytes) const override;
|
46
|
+
void sa_encode(idx_t n, const float* x, uint8_t* bytes) const override;
|
54
47
|
|
55
|
-
void sa_decode
|
56
|
-
float *x) const override;
|
48
|
+
void sa_decode(idx_t n, const uint8_t* bytes, float* x) const override;
|
57
49
|
|
58
50
|
/// not implemented
|
59
51
|
void add(idx_t n, const float* x) override;
|
60
|
-
void search(
|
61
|
-
|
52
|
+
void search(
|
53
|
+
idx_t n,
|
54
|
+
const float* x,
|
55
|
+
idx_t k,
|
56
|
+
float* distances,
|
57
|
+
idx_t* labels) const override;
|
62
58
|
void reset() override;
|
63
|
-
|
64
59
|
};
|
65
60
|
|
66
61
|
} // namespace faiss
|
@@ -0,0 +1,231 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#include <faiss/IndexNNDescent.h>
|
11
|
+
|
12
|
+
#include <omp.h>
|
13
|
+
|
14
|
+
#include <cinttypes>
|
15
|
+
#include <cstdio>
|
16
|
+
#include <cstdlib>
|
17
|
+
|
18
|
+
#include <queue>
|
19
|
+
#include <unordered_set>
|
20
|
+
|
21
|
+
#ifdef __SSE__
|
22
|
+
#endif
|
23
|
+
|
24
|
+
#include <faiss/IndexFlat.h>
|
25
|
+
#include <faiss/impl/AuxIndexStructures.h>
|
26
|
+
#include <faiss/impl/FaissAssert.h>
|
27
|
+
#include <faiss/utils/Heap.h>
|
28
|
+
#include <faiss/utils/distances.h>
|
29
|
+
#include <faiss/utils/random.h>
|
30
|
+
|
31
|
+
extern "C" {
|
32
|
+
|
33
|
+
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
|
34
|
+
|
35
|
+
int sgemm_(
|
36
|
+
const char* transa,
|
37
|
+
const char* transb,
|
38
|
+
FINTEGER* m,
|
39
|
+
FINTEGER* n,
|
40
|
+
FINTEGER* k,
|
41
|
+
const float* alpha,
|
42
|
+
const float* a,
|
43
|
+
FINTEGER* lda,
|
44
|
+
const float* b,
|
45
|
+
FINTEGER* ldb,
|
46
|
+
float* beta,
|
47
|
+
float* c,
|
48
|
+
FINTEGER* ldc);
|
49
|
+
}
|
50
|
+
|
51
|
+
namespace faiss {
|
52
|
+
|
53
|
+
using idx_t = Index::idx_t;
|
54
|
+
using storage_idx_t = NNDescent::storage_idx_t;
|
55
|
+
|
56
|
+
/**************************************************************
|
57
|
+
* add / search blocks of descriptors
|
58
|
+
**************************************************************/
|
59
|
+
|
60
|
+
namespace {
|
61
|
+
|
62
|
+
/* Wrap the distance computer into one that negates the
|
63
|
+
distances. This makes supporting INNER_PRODUCE search easier */
|
64
|
+
|
65
|
+
struct NegativeDistanceComputer : DistanceComputer {
|
66
|
+
/// owned by this
|
67
|
+
DistanceComputer* basedis;
|
68
|
+
|
69
|
+
explicit NegativeDistanceComputer(DistanceComputer* basedis)
|
70
|
+
: basedis(basedis) {}
|
71
|
+
|
72
|
+
void set_query(const float* x) override {
|
73
|
+
basedis->set_query(x);
|
74
|
+
}
|
75
|
+
|
76
|
+
/// compute distance of vector i to current query
|
77
|
+
float operator()(idx_t i) override {
|
78
|
+
return -(*basedis)(i);
|
79
|
+
}
|
80
|
+
|
81
|
+
/// compute distance between two stored vectors
|
82
|
+
float symmetric_dis(idx_t i, idx_t j) override {
|
83
|
+
return -basedis->symmetric_dis(i, j);
|
84
|
+
}
|
85
|
+
|
86
|
+
~NegativeDistanceComputer() override {
|
87
|
+
delete basedis;
|
88
|
+
}
|
89
|
+
};
|
90
|
+
|
91
|
+
DistanceComputer* storage_distance_computer(const Index* storage) {
|
92
|
+
if (storage->metric_type == METRIC_INNER_PRODUCT) {
|
93
|
+
return new NegativeDistanceComputer(storage->get_distance_computer());
|
94
|
+
} else {
|
95
|
+
return storage->get_distance_computer();
|
96
|
+
}
|
97
|
+
}
|
98
|
+
|
99
|
+
} // namespace
|
100
|
+
|
101
|
+
/**************************************************************
|
102
|
+
* IndexNNDescent implementation
|
103
|
+
**************************************************************/
|
104
|
+
|
105
|
+
IndexNNDescent::IndexNNDescent(int d, int K, MetricType metric)
|
106
|
+
: Index(d, metric),
|
107
|
+
nndescent(d, K),
|
108
|
+
own_fields(false),
|
109
|
+
storage(nullptr) {}
|
110
|
+
|
111
|
+
IndexNNDescent::IndexNNDescent(Index* storage, int K)
|
112
|
+
: Index(storage->d, storage->metric_type),
|
113
|
+
nndescent(storage->d, K),
|
114
|
+
own_fields(false),
|
115
|
+
storage(storage) {}
|
116
|
+
|
117
|
+
IndexNNDescent::~IndexNNDescent() {
|
118
|
+
if (own_fields) {
|
119
|
+
delete storage;
|
120
|
+
}
|
121
|
+
}
|
122
|
+
|
123
|
+
void IndexNNDescent::train(idx_t n, const float* x) {
|
124
|
+
FAISS_THROW_IF_NOT_MSG(
|
125
|
+
storage,
|
126
|
+
"Please use IndexNNDescentFlat (or variants) "
|
127
|
+
"instead of IndexNNDescent directly");
|
128
|
+
// nndescent structure does not require training
|
129
|
+
storage->train(n, x);
|
130
|
+
is_trained = true;
|
131
|
+
}
|
132
|
+
|
133
|
+
void IndexNNDescent::search(
|
134
|
+
idx_t n,
|
135
|
+
const float* x,
|
136
|
+
idx_t k,
|
137
|
+
float* distances,
|
138
|
+
idx_t* labels) const
|
139
|
+
|
140
|
+
{
|
141
|
+
FAISS_THROW_IF_NOT_MSG(
|
142
|
+
storage,
|
143
|
+
"Please use IndexNNDescentFlat (or variants) "
|
144
|
+
"instead of IndexNNDescent directly");
|
145
|
+
if (verbose) {
|
146
|
+
printf("Parameters: k=%" PRId64 ", search_L=%d\n",
|
147
|
+
k,
|
148
|
+
nndescent.search_L);
|
149
|
+
}
|
150
|
+
|
151
|
+
idx_t check_period =
|
152
|
+
InterruptCallback::get_period_hint(d * nndescent.search_L);
|
153
|
+
|
154
|
+
for (idx_t i0 = 0; i0 < n; i0 += check_period) {
|
155
|
+
idx_t i1 = std::min(i0 + check_period, n);
|
156
|
+
|
157
|
+
#pragma omp parallel
|
158
|
+
{
|
159
|
+
VisitedTable vt(ntotal);
|
160
|
+
|
161
|
+
DistanceComputer* dis = storage_distance_computer(storage);
|
162
|
+
ScopeDeleter1<DistanceComputer> del(dis);
|
163
|
+
|
164
|
+
#pragma omp for
|
165
|
+
for (idx_t i = i0; i < i1; i++) {
|
166
|
+
idx_t* idxi = labels + i * k;
|
167
|
+
float* simi = distances + i * k;
|
168
|
+
dis->set_query(x + i * d);
|
169
|
+
|
170
|
+
maxheap_heapify(k, simi, idxi);
|
171
|
+
nndescent.search(*dis, k, idxi, simi, vt);
|
172
|
+
maxheap_reorder(k, simi, idxi);
|
173
|
+
}
|
174
|
+
}
|
175
|
+
InterruptCallback::check();
|
176
|
+
}
|
177
|
+
|
178
|
+
if (metric_type == METRIC_INNER_PRODUCT) {
|
179
|
+
// we need to revert the negated distances
|
180
|
+
for (size_t i = 0; i < k * n; i++) {
|
181
|
+
distances[i] = -distances[i];
|
182
|
+
}
|
183
|
+
}
|
184
|
+
}
|
185
|
+
|
186
|
+
void IndexNNDescent::add(idx_t n, const float* x) {
|
187
|
+
FAISS_THROW_IF_NOT_MSG(
|
188
|
+
storage,
|
189
|
+
"Please use IndexNNDescentFlat (or variants) "
|
190
|
+
"instead of IndexNNDescent directly");
|
191
|
+
FAISS_THROW_IF_NOT(is_trained);
|
192
|
+
|
193
|
+
if (ntotal != 0) {
|
194
|
+
fprintf(stderr,
|
195
|
+
"WARNING NNDescent doest not support dynamic insertions,"
|
196
|
+
"multiple insertions would lead to re-building the index");
|
197
|
+
}
|
198
|
+
|
199
|
+
storage->add(n, x);
|
200
|
+
ntotal = storage->ntotal;
|
201
|
+
|
202
|
+
DistanceComputer* dis = storage_distance_computer(storage);
|
203
|
+
ScopeDeleter1<DistanceComputer> del(dis);
|
204
|
+
nndescent.build(*dis, ntotal, verbose);
|
205
|
+
}
|
206
|
+
|
207
|
+
void IndexNNDescent::reset() {
|
208
|
+
nndescent.reset();
|
209
|
+
storage->reset();
|
210
|
+
ntotal = 0;
|
211
|
+
}
|
212
|
+
|
213
|
+
void IndexNNDescent::reconstruct(idx_t key, float* recons) const {
|
214
|
+
storage->reconstruct(key, recons);
|
215
|
+
}
|
216
|
+
|
217
|
+
/**************************************************************
|
218
|
+
* IndexNNDescentFlat implementation
|
219
|
+
**************************************************************/
|
220
|
+
|
221
|
+
IndexNNDescentFlat::IndexNNDescentFlat() {
|
222
|
+
is_trained = true;
|
223
|
+
}
|
224
|
+
|
225
|
+
IndexNNDescentFlat::IndexNNDescentFlat(int d, int M, MetricType metric)
|
226
|
+
: IndexNNDescent(new IndexFlat(d, metric), M) {
|
227
|
+
own_fields = true;
|
228
|
+
is_trained = true;
|
229
|
+
}
|
230
|
+
|
231
|
+
} // namespace faiss
|
@@ -0,0 +1,72 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#pragma once
|
11
|
+
|
12
|
+
#include <vector>
|
13
|
+
|
14
|
+
#include <faiss/IndexFlat.h>
|
15
|
+
#include <faiss/impl/NNDescent.h>
|
16
|
+
#include <faiss/utils/utils.h>
|
17
|
+
|
18
|
+
namespace faiss {
|
19
|
+
|
20
|
+
/** The NNDescent index is a normal random-access index with an NNDescent
|
21
|
+
* link structure built on top */
|
22
|
+
|
23
|
+
struct IndexNNDescent : Index {
|
24
|
+
// internal storage of vectors (32 bits)
|
25
|
+
using storage_idx_t = NNDescent::storage_idx_t;
|
26
|
+
|
27
|
+
/// Faiss results are 64-bit
|
28
|
+
using idx_t = Index::idx_t;
|
29
|
+
|
30
|
+
// the link strcuture
|
31
|
+
NNDescent nndescent;
|
32
|
+
|
33
|
+
// the sequential storage
|
34
|
+
bool own_fields;
|
35
|
+
Index* storage;
|
36
|
+
|
37
|
+
explicit IndexNNDescent(
|
38
|
+
int d = 0,
|
39
|
+
int K = 32,
|
40
|
+
MetricType metric = METRIC_L2);
|
41
|
+
explicit IndexNNDescent(Index* storage, int K = 32);
|
42
|
+
|
43
|
+
~IndexNNDescent() override;
|
44
|
+
|
45
|
+
void add(idx_t n, const float* x) override;
|
46
|
+
|
47
|
+
/// Trains the storage if needed
|
48
|
+
void train(idx_t n, const float* x) override;
|
49
|
+
|
50
|
+
/// entry point for search
|
51
|
+
void search(
|
52
|
+
idx_t n,
|
53
|
+
const float* x,
|
54
|
+
idx_t k,
|
55
|
+
float* distances,
|
56
|
+
idx_t* labels) const override;
|
57
|
+
|
58
|
+
void reconstruct(idx_t key, float* recons) const override;
|
59
|
+
|
60
|
+
void reset() override;
|
61
|
+
};
|
62
|
+
|
63
|
+
/** Flat index topped with with a NNDescent structure to access elements
|
64
|
+
* more efficiently.
|
65
|
+
*/
|
66
|
+
|
67
|
+
struct IndexNNDescentFlat : IndexNNDescent {
|
68
|
+
IndexNNDescentFlat();
|
69
|
+
IndexNNDescentFlat(int d, int K, MetricType metric = METRIC_L2);
|
70
|
+
};
|
71
|
+
|
72
|
+
} // namespace faiss
|
@@ -0,0 +1,303 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#include <faiss/IndexNSG.h>
|
11
|
+
|
12
|
+
#include <omp.h>
|
13
|
+
|
14
|
+
#include <cinttypes>
|
15
|
+
#include <memory>
|
16
|
+
|
17
|
+
#include <faiss/IndexFlat.h>
|
18
|
+
#include <faiss/IndexNNDescent.h>
|
19
|
+
#include <faiss/impl/AuxIndexStructures.h>
|
20
|
+
#include <faiss/impl/FaissAssert.h>
|
21
|
+
#include <faiss/utils/Heap.h>
|
22
|
+
#include <faiss/utils/distances.h>
|
23
|
+
|
24
|
+
namespace faiss {
|
25
|
+
|
26
|
+
using idx_t = Index::idx_t;
|
27
|
+
using namespace nsg;
|
28
|
+
|
29
|
+
/**************************************************************
|
30
|
+
* IndexNSG implementation
|
31
|
+
**************************************************************/
|
32
|
+
|
33
|
+
IndexNSG::IndexNSG(int d, int R, MetricType metric)
|
34
|
+
: Index(d, metric),
|
35
|
+
nsg(R),
|
36
|
+
own_fields(false),
|
37
|
+
storage(nullptr),
|
38
|
+
is_built(false),
|
39
|
+
GK(64),
|
40
|
+
build_type(0) {
|
41
|
+
nndescent_S = 10;
|
42
|
+
nndescent_R = 100;
|
43
|
+
nndescent_L = GK + 50;
|
44
|
+
nndescent_iter = 10;
|
45
|
+
}
|
46
|
+
|
47
|
+
IndexNSG::IndexNSG(Index* storage, int R)
|
48
|
+
: Index(storage->d, storage->metric_type),
|
49
|
+
nsg(R),
|
50
|
+
own_fields(false),
|
51
|
+
storage(storage),
|
52
|
+
is_built(false),
|
53
|
+
GK(64),
|
54
|
+
build_type(1) {
|
55
|
+
nndescent_S = 10;
|
56
|
+
nndescent_R = 100;
|
57
|
+
nndescent_L = GK + 50;
|
58
|
+
nndescent_iter = 10;
|
59
|
+
}
|
60
|
+
|
61
|
+
IndexNSG::~IndexNSG() {
|
62
|
+
if (own_fields) {
|
63
|
+
delete storage;
|
64
|
+
}
|
65
|
+
}
|
66
|
+
|
67
|
+
void IndexNSG::train(idx_t n, const float* x) {
|
68
|
+
FAISS_THROW_IF_NOT_MSG(
|
69
|
+
storage,
|
70
|
+
"Please use IndexNSGFlat (or variants) instead of IndexNSG directly");
|
71
|
+
// nsg structure does not require training
|
72
|
+
storage->train(n, x);
|
73
|
+
is_trained = true;
|
74
|
+
}
|
75
|
+
|
76
|
+
void IndexNSG::search(
|
77
|
+
idx_t n,
|
78
|
+
const float* x,
|
79
|
+
idx_t k,
|
80
|
+
float* distances,
|
81
|
+
idx_t* labels) const
|
82
|
+
|
83
|
+
{
|
84
|
+
FAISS_THROW_IF_NOT_MSG(
|
85
|
+
storage,
|
86
|
+
"Please use IndexNSGFlat (or variants) instead of IndexNSG directly");
|
87
|
+
|
88
|
+
int L = std::max(nsg.search_L, (int)k); // in case of search L = -1
|
89
|
+
idx_t check_period = InterruptCallback::get_period_hint(d * L);
|
90
|
+
|
91
|
+
for (idx_t i0 = 0; i0 < n; i0 += check_period) {
|
92
|
+
idx_t i1 = std::min(i0 + check_period, n);
|
93
|
+
|
94
|
+
#pragma omp parallel
|
95
|
+
{
|
96
|
+
VisitedTable vt(ntotal);
|
97
|
+
|
98
|
+
DistanceComputer* dis = storage_distance_computer(storage);
|
99
|
+
ScopeDeleter1<DistanceComputer> del(dis);
|
100
|
+
|
101
|
+
#pragma omp for
|
102
|
+
for (idx_t i = i0; i < i1; i++) {
|
103
|
+
idx_t* idxi = labels + i * k;
|
104
|
+
float* simi = distances + i * k;
|
105
|
+
dis->set_query(x + i * d);
|
106
|
+
|
107
|
+
maxheap_heapify(k, simi, idxi);
|
108
|
+
nsg.search(*dis, k, idxi, simi, vt);
|
109
|
+
maxheap_reorder(k, simi, idxi);
|
110
|
+
|
111
|
+
vt.advance();
|
112
|
+
}
|
113
|
+
}
|
114
|
+
InterruptCallback::check();
|
115
|
+
}
|
116
|
+
|
117
|
+
if (metric_type == METRIC_INNER_PRODUCT) {
|
118
|
+
// we need to revert the negated distances
|
119
|
+
for (size_t i = 0; i < k * n; i++) {
|
120
|
+
distances[i] = -distances[i];
|
121
|
+
}
|
122
|
+
}
|
123
|
+
}
|
124
|
+
|
125
|
+
void IndexNSG::build(idx_t n, const float* x, idx_t* knn_graph, int GK) {
|
126
|
+
FAISS_THROW_IF_NOT_MSG(
|
127
|
+
storage,
|
128
|
+
"Please use IndexNSGFlat (or variants) instead of IndexNSG directly");
|
129
|
+
FAISS_THROW_IF_NOT_MSG(
|
130
|
+
!is_built && ntotal == 0, "The IndexNSG is already built");
|
131
|
+
|
132
|
+
storage->add(n, x);
|
133
|
+
ntotal = storage->ntotal;
|
134
|
+
|
135
|
+
// check the knn graph
|
136
|
+
check_knn_graph(knn_graph, n, GK);
|
137
|
+
|
138
|
+
const nsg::Graph<idx_t> knng(knn_graph, n, GK);
|
139
|
+
nsg.build(storage, n, knng, verbose);
|
140
|
+
is_built = true;
|
141
|
+
}
|
142
|
+
|
143
|
+
void IndexNSG::add(idx_t n, const float* x) {
|
144
|
+
FAISS_THROW_IF_NOT_MSG(
|
145
|
+
storage,
|
146
|
+
"Please use IndexNSGFlat (or variants) "
|
147
|
+
"instead of IndexNSG directly");
|
148
|
+
FAISS_THROW_IF_NOT(is_trained);
|
149
|
+
|
150
|
+
FAISS_THROW_IF_NOT_MSG(
|
151
|
+
!is_built && ntotal == 0,
|
152
|
+
"NSG does not support incremental addition");
|
153
|
+
|
154
|
+
std::vector<idx_t> knng;
|
155
|
+
if (verbose) {
|
156
|
+
printf("IndexNSG::add %zd vectors\n", size_t(n));
|
157
|
+
}
|
158
|
+
|
159
|
+
if (build_type == 0) { // build with brute force search
|
160
|
+
|
161
|
+
if (verbose) {
|
162
|
+
printf(" Build knn graph with brute force search on storage index\n");
|
163
|
+
}
|
164
|
+
|
165
|
+
storage->add(n, x);
|
166
|
+
ntotal = storage->ntotal;
|
167
|
+
FAISS_THROW_IF_NOT(ntotal == n);
|
168
|
+
|
169
|
+
knng.resize(ntotal * (GK + 1));
|
170
|
+
storage->assign(ntotal, x, knng.data(), GK + 1);
|
171
|
+
|
172
|
+
// Remove itself
|
173
|
+
// - For metric distance, we just need to remove the first neighbor
|
174
|
+
// - But for non-metric, e.g. inner product, we need to check
|
175
|
+
// - each neighbor
|
176
|
+
if (storage->metric_type == METRIC_INNER_PRODUCT) {
|
177
|
+
for (idx_t i = 0; i < ntotal; i++) {
|
178
|
+
int count = 0;
|
179
|
+
for (int j = 0; j < GK + 1; j++) {
|
180
|
+
idx_t id = knng[i * (GK + 1) + j];
|
181
|
+
if (id != i) {
|
182
|
+
knng[i * GK + count] = id;
|
183
|
+
count += 1;
|
184
|
+
}
|
185
|
+
if (count == GK) {
|
186
|
+
break;
|
187
|
+
}
|
188
|
+
}
|
189
|
+
}
|
190
|
+
} else {
|
191
|
+
for (idx_t i = 0; i < ntotal; i++) {
|
192
|
+
memmove(knng.data() + i * GK,
|
193
|
+
knng.data() + i * (GK + 1) + 1,
|
194
|
+
GK * sizeof(idx_t));
|
195
|
+
}
|
196
|
+
}
|
197
|
+
|
198
|
+
} else if (build_type == 1) { // build with NNDescent
|
199
|
+
IndexNNDescent index(storage, GK);
|
200
|
+
index.nndescent.S = nndescent_S;
|
201
|
+
index.nndescent.R = nndescent_R;
|
202
|
+
index.nndescent.L = std::max(nndescent_L, GK + 50);
|
203
|
+
index.nndescent.iter = nndescent_iter;
|
204
|
+
index.verbose = verbose;
|
205
|
+
|
206
|
+
if (verbose) {
|
207
|
+
printf(" Build knn graph with NNdescent S=%d R=%d L=%d niter=%d\n",
|
208
|
+
index.nndescent.S,
|
209
|
+
index.nndescent.R,
|
210
|
+
index.nndescent.L,
|
211
|
+
index.nndescent.iter);
|
212
|
+
}
|
213
|
+
|
214
|
+
// prevent IndexNSG from deleting the storage
|
215
|
+
index.own_fields = false;
|
216
|
+
|
217
|
+
index.add(n, x);
|
218
|
+
|
219
|
+
// storage->add is already implicit called in IndexNSG.add
|
220
|
+
ntotal = storage->ntotal;
|
221
|
+
FAISS_THROW_IF_NOT(ntotal == n);
|
222
|
+
|
223
|
+
knng.resize(ntotal * GK);
|
224
|
+
|
225
|
+
// cast from idx_t to int
|
226
|
+
const int* knn_graph = index.nndescent.final_graph.data();
|
227
|
+
#pragma omp parallel for
|
228
|
+
for (idx_t i = 0; i < ntotal * GK; i++) {
|
229
|
+
knng[i] = knn_graph[i];
|
230
|
+
}
|
231
|
+
} else {
|
232
|
+
FAISS_THROW_MSG("build_type should be 0 or 1");
|
233
|
+
}
|
234
|
+
|
235
|
+
if (verbose) {
|
236
|
+
printf(" Check the knn graph\n");
|
237
|
+
}
|
238
|
+
|
239
|
+
// check the knn graph
|
240
|
+
check_knn_graph(knng.data(), n, GK);
|
241
|
+
|
242
|
+
if (verbose) {
|
243
|
+
printf(" nsg building\n");
|
244
|
+
}
|
245
|
+
|
246
|
+
const nsg::Graph<idx_t> knn_graph(knng.data(), n, GK);
|
247
|
+
nsg.build(storage, n, knn_graph, verbose);
|
248
|
+
is_built = true;
|
249
|
+
}
|
250
|
+
|
251
|
+
void IndexNSG::reset() {
|
252
|
+
nsg.reset();
|
253
|
+
storage->reset();
|
254
|
+
ntotal = 0;
|
255
|
+
is_built = false;
|
256
|
+
}
|
257
|
+
|
258
|
+
void IndexNSG::reconstruct(idx_t key, float* recons) const {
|
259
|
+
storage->reconstruct(key, recons);
|
260
|
+
}
|
261
|
+
|
262
|
+
void IndexNSG::check_knn_graph(const idx_t* knn_graph, idx_t n, int K) const {
|
263
|
+
idx_t total_count = 0;
|
264
|
+
|
265
|
+
#pragma omp parallel for reduction(+ : total_count)
|
266
|
+
for (idx_t i = 0; i < n; i++) {
|
267
|
+
int count = 0;
|
268
|
+
for (int j = 0; j < K; j++) {
|
269
|
+
idx_t id = knn_graph[i * K + j];
|
270
|
+
if (id < 0 || id >= n || id == i) {
|
271
|
+
count += 1;
|
272
|
+
}
|
273
|
+
}
|
274
|
+
total_count += count;
|
275
|
+
}
|
276
|
+
|
277
|
+
if (total_count > 0) {
|
278
|
+
fprintf(stderr,
|
279
|
+
"WARNING: the input knn graph "
|
280
|
+
"has %" PRId64 " invalid entries\n",
|
281
|
+
total_count);
|
282
|
+
}
|
283
|
+
FAISS_THROW_IF_NOT_MSG(
|
284
|
+
total_count < n / 10,
|
285
|
+
"There are too much invalid entries in the knn graph. "
|
286
|
+
"It may be an invalid knn graph.");
|
287
|
+
}
|
288
|
+
|
289
|
+
/**************************************************************
|
290
|
+
* IndexNSGFlat implementation
|
291
|
+
**************************************************************/
|
292
|
+
|
293
|
+
IndexNSGFlat::IndexNSGFlat() {
|
294
|
+
is_trained = true;
|
295
|
+
}
|
296
|
+
|
297
|
+
IndexNSGFlat::IndexNSGFlat(int d, int R, MetricType metric)
|
298
|
+
: IndexNSG(new IndexFlat(d, metric), R) {
|
299
|
+
own_fields = true;
|
300
|
+
is_trained = true;
|
301
|
+
}
|
302
|
+
|
303
|
+
} // namespace faiss
|