datasketches 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE +310 -0
- data/NOTICE +11 -0
- data/README.md +126 -0
- data/ext/datasketches/cpc_wrapper.cpp +50 -0
- data/ext/datasketches/ext.cpp +12 -0
- data/ext/datasketches/extconf.rb +11 -0
- data/ext/datasketches/hll_wrapper.cpp +69 -0
- data/lib/datasketches.rb +9 -0
- data/lib/datasketches/version.rb +3 -0
- data/vendor/datasketches-cpp/CMakeLists.txt +126 -0
- data/vendor/datasketches-cpp/LICENSE +311 -0
- data/vendor/datasketches-cpp/MANIFEST.in +19 -0
- data/vendor/datasketches-cpp/NOTICE +11 -0
- data/vendor/datasketches-cpp/README.md +42 -0
- data/vendor/datasketches-cpp/common/CMakeLists.txt +45 -0
- data/vendor/datasketches-cpp/common/include/MurmurHash3.h +173 -0
- data/vendor/datasketches-cpp/common/include/binomial_bounds.hpp +458 -0
- data/vendor/datasketches-cpp/common/include/bounds_binomial_proportions.hpp +291 -0
- data/vendor/datasketches-cpp/common/include/ceiling_power_of_2.hpp +41 -0
- data/vendor/datasketches-cpp/common/include/common_defs.hpp +51 -0
- data/vendor/datasketches-cpp/common/include/conditional_back_inserter.hpp +68 -0
- data/vendor/datasketches-cpp/common/include/conditional_forward.hpp +70 -0
- data/vendor/datasketches-cpp/common/include/count_zeros.hpp +114 -0
- data/vendor/datasketches-cpp/common/include/inv_pow2_table.hpp +107 -0
- data/vendor/datasketches-cpp/common/include/memory_operations.hpp +57 -0
- data/vendor/datasketches-cpp/common/include/serde.hpp +196 -0
- data/vendor/datasketches-cpp/common/test/CMakeLists.txt +38 -0
- data/vendor/datasketches-cpp/common/test/catch.hpp +17618 -0
- data/vendor/datasketches-cpp/common/test/catch_runner.cpp +7 -0
- data/vendor/datasketches-cpp/common/test/test_allocator.cpp +31 -0
- data/vendor/datasketches-cpp/common/test/test_allocator.hpp +108 -0
- data/vendor/datasketches-cpp/common/test/test_runner.cpp +29 -0
- data/vendor/datasketches-cpp/common/test/test_type.hpp +137 -0
- data/vendor/datasketches-cpp/cpc/CMakeLists.txt +74 -0
- data/vendor/datasketches-cpp/cpc/include/compression_data.hpp +6022 -0
- data/vendor/datasketches-cpp/cpc/include/cpc_common.hpp +62 -0
- data/vendor/datasketches-cpp/cpc/include/cpc_compressor.hpp +147 -0
- data/vendor/datasketches-cpp/cpc/include/cpc_compressor_impl.hpp +742 -0
- data/vendor/datasketches-cpp/cpc/include/cpc_confidence.hpp +167 -0
- data/vendor/datasketches-cpp/cpc/include/cpc_sketch.hpp +311 -0
- data/vendor/datasketches-cpp/cpc/include/cpc_sketch_impl.hpp +810 -0
- data/vendor/datasketches-cpp/cpc/include/cpc_union.hpp +102 -0
- data/vendor/datasketches-cpp/cpc/include/cpc_union_impl.hpp +346 -0
- data/vendor/datasketches-cpp/cpc/include/cpc_util.hpp +137 -0
- data/vendor/datasketches-cpp/cpc/include/icon_estimator.hpp +274 -0
- data/vendor/datasketches-cpp/cpc/include/kxp_byte_lookup.hpp +81 -0
- data/vendor/datasketches-cpp/cpc/include/u32_table.hpp +84 -0
- data/vendor/datasketches-cpp/cpc/include/u32_table_impl.hpp +266 -0
- data/vendor/datasketches-cpp/cpc/test/CMakeLists.txt +44 -0
- data/vendor/datasketches-cpp/cpc/test/compression_test.cpp +67 -0
- data/vendor/datasketches-cpp/cpc/test/cpc_sketch_test.cpp +381 -0
- data/vendor/datasketches-cpp/cpc/test/cpc_union_test.cpp +149 -0
- data/vendor/datasketches-cpp/fi/CMakeLists.txt +54 -0
- data/vendor/datasketches-cpp/fi/include/frequent_items_sketch.hpp +319 -0
- data/vendor/datasketches-cpp/fi/include/frequent_items_sketch_impl.hpp +484 -0
- data/vendor/datasketches-cpp/fi/include/reverse_purge_hash_map.hpp +114 -0
- data/vendor/datasketches-cpp/fi/include/reverse_purge_hash_map_impl.hpp +345 -0
- data/vendor/datasketches-cpp/fi/test/CMakeLists.txt +44 -0
- data/vendor/datasketches-cpp/fi/test/frequent_items_sketch_custom_type_test.cpp +84 -0
- data/vendor/datasketches-cpp/fi/test/frequent_items_sketch_test.cpp +360 -0
- data/vendor/datasketches-cpp/fi/test/items_sketch_string_from_java.sk +0 -0
- data/vendor/datasketches-cpp/fi/test/items_sketch_string_utf8_from_java.sk +0 -0
- data/vendor/datasketches-cpp/fi/test/longs_sketch_from_java.sk +0 -0
- data/vendor/datasketches-cpp/fi/test/reverse_purge_hash_map_test.cpp +47 -0
- data/vendor/datasketches-cpp/hll/CMakeLists.txt +92 -0
- data/vendor/datasketches-cpp/hll/include/AuxHashMap-internal.hpp +303 -0
- data/vendor/datasketches-cpp/hll/include/AuxHashMap.hpp +83 -0
- data/vendor/datasketches-cpp/hll/include/CompositeInterpolationXTable-internal.hpp +811 -0
- data/vendor/datasketches-cpp/hll/include/CompositeInterpolationXTable.hpp +40 -0
- data/vendor/datasketches-cpp/hll/include/CouponHashSet-internal.hpp +291 -0
- data/vendor/datasketches-cpp/hll/include/CouponHashSet.hpp +59 -0
- data/vendor/datasketches-cpp/hll/include/CouponList-internal.hpp +417 -0
- data/vendor/datasketches-cpp/hll/include/CouponList.hpp +91 -0
- data/vendor/datasketches-cpp/hll/include/CubicInterpolation-internal.hpp +233 -0
- data/vendor/datasketches-cpp/hll/include/CubicInterpolation.hpp +43 -0
- data/vendor/datasketches-cpp/hll/include/HarmonicNumbers-internal.hpp +90 -0
- data/vendor/datasketches-cpp/hll/include/HarmonicNumbers.hpp +48 -0
- data/vendor/datasketches-cpp/hll/include/Hll4Array-internal.hpp +335 -0
- data/vendor/datasketches-cpp/hll/include/Hll4Array.hpp +69 -0
- data/vendor/datasketches-cpp/hll/include/Hll6Array-internal.hpp +124 -0
- data/vendor/datasketches-cpp/hll/include/Hll6Array.hpp +55 -0
- data/vendor/datasketches-cpp/hll/include/Hll8Array-internal.hpp +158 -0
- data/vendor/datasketches-cpp/hll/include/Hll8Array.hpp +56 -0
- data/vendor/datasketches-cpp/hll/include/HllArray-internal.hpp +706 -0
- data/vendor/datasketches-cpp/hll/include/HllArray.hpp +136 -0
- data/vendor/datasketches-cpp/hll/include/HllSketch-internal.hpp +462 -0
- data/vendor/datasketches-cpp/hll/include/HllSketchImpl-internal.hpp +149 -0
- data/vendor/datasketches-cpp/hll/include/HllSketchImpl.hpp +85 -0
- data/vendor/datasketches-cpp/hll/include/HllSketchImplFactory.hpp +170 -0
- data/vendor/datasketches-cpp/hll/include/HllUnion-internal.hpp +287 -0
- data/vendor/datasketches-cpp/hll/include/HllUtil.hpp +239 -0
- data/vendor/datasketches-cpp/hll/include/RelativeErrorTables-internal.hpp +112 -0
- data/vendor/datasketches-cpp/hll/include/RelativeErrorTables.hpp +46 -0
- data/vendor/datasketches-cpp/hll/include/coupon_iterator-internal.hpp +56 -0
- data/vendor/datasketches-cpp/hll/include/coupon_iterator.hpp +43 -0
- data/vendor/datasketches-cpp/hll/include/hll.hpp +669 -0
- data/vendor/datasketches-cpp/hll/include/hll.private.hpp +32 -0
- data/vendor/datasketches-cpp/hll/test/AuxHashMapTest.cpp +79 -0
- data/vendor/datasketches-cpp/hll/test/CMakeLists.txt +51 -0
- data/vendor/datasketches-cpp/hll/test/CouponHashSetTest.cpp +130 -0
- data/vendor/datasketches-cpp/hll/test/CouponListTest.cpp +181 -0
- data/vendor/datasketches-cpp/hll/test/CrossCountingTest.cpp +93 -0
- data/vendor/datasketches-cpp/hll/test/HllArrayTest.cpp +191 -0
- data/vendor/datasketches-cpp/hll/test/HllSketchTest.cpp +389 -0
- data/vendor/datasketches-cpp/hll/test/HllUnionTest.cpp +313 -0
- data/vendor/datasketches-cpp/hll/test/IsomorphicTest.cpp +141 -0
- data/vendor/datasketches-cpp/hll/test/TablesTest.cpp +44 -0
- data/vendor/datasketches-cpp/hll/test/ToFromByteArrayTest.cpp +168 -0
- data/vendor/datasketches-cpp/hll/test/array6_from_java.sk +0 -0
- data/vendor/datasketches-cpp/hll/test/compact_array4_from_java.sk +0 -0
- data/vendor/datasketches-cpp/hll/test/compact_set_from_java.sk +0 -0
- data/vendor/datasketches-cpp/hll/test/list_from_java.sk +0 -0
- data/vendor/datasketches-cpp/hll/test/updatable_array4_from_java.sk +0 -0
- data/vendor/datasketches-cpp/hll/test/updatable_set_from_java.sk +0 -0
- data/vendor/datasketches-cpp/kll/CMakeLists.txt +58 -0
- data/vendor/datasketches-cpp/kll/include/kll_helper.hpp +150 -0
- data/vendor/datasketches-cpp/kll/include/kll_helper_impl.hpp +319 -0
- data/vendor/datasketches-cpp/kll/include/kll_quantile_calculator.hpp +67 -0
- data/vendor/datasketches-cpp/kll/include/kll_quantile_calculator_impl.hpp +169 -0
- data/vendor/datasketches-cpp/kll/include/kll_sketch.hpp +559 -0
- data/vendor/datasketches-cpp/kll/include/kll_sketch_impl.hpp +1131 -0
- data/vendor/datasketches-cpp/kll/test/CMakeLists.txt +44 -0
- data/vendor/datasketches-cpp/kll/test/kll_sketch_custom_type_test.cpp +154 -0
- data/vendor/datasketches-cpp/kll/test/kll_sketch_float_one_item_v1.sk +0 -0
- data/vendor/datasketches-cpp/kll/test/kll_sketch_from_java.sk +0 -0
- data/vendor/datasketches-cpp/kll/test/kll_sketch_test.cpp +685 -0
- data/vendor/datasketches-cpp/kll/test/kll_sketch_validation.cpp +229 -0
- data/vendor/datasketches-cpp/pyproject.toml +17 -0
- data/vendor/datasketches-cpp/python/CMakeLists.txt +61 -0
- data/vendor/datasketches-cpp/python/README.md +78 -0
- data/vendor/datasketches-cpp/python/jupyter/CPCSketch.ipynb +345 -0
- data/vendor/datasketches-cpp/python/jupyter/FrequentItemsSketch.ipynb +354 -0
- data/vendor/datasketches-cpp/python/jupyter/HLLSketch.ipynb +346 -0
- data/vendor/datasketches-cpp/python/jupyter/KLLSketch.ipynb +463 -0
- data/vendor/datasketches-cpp/python/jupyter/ThetaSketchNotebook.ipynb +396 -0
- data/vendor/datasketches-cpp/python/src/__init__.py +2 -0
- data/vendor/datasketches-cpp/python/src/cpc_wrapper.cpp +90 -0
- data/vendor/datasketches-cpp/python/src/datasketches.cpp +40 -0
- data/vendor/datasketches-cpp/python/src/fi_wrapper.cpp +123 -0
- data/vendor/datasketches-cpp/python/src/hll_wrapper.cpp +136 -0
- data/vendor/datasketches-cpp/python/src/kll_wrapper.cpp +209 -0
- data/vendor/datasketches-cpp/python/src/theta_wrapper.cpp +162 -0
- data/vendor/datasketches-cpp/python/src/vector_of_kll.cpp +488 -0
- data/vendor/datasketches-cpp/python/src/vo_wrapper.cpp +140 -0
- data/vendor/datasketches-cpp/python/tests/__init__.py +0 -0
- data/vendor/datasketches-cpp/python/tests/cpc_test.py +64 -0
- data/vendor/datasketches-cpp/python/tests/fi_test.py +110 -0
- data/vendor/datasketches-cpp/python/tests/hll_test.py +131 -0
- data/vendor/datasketches-cpp/python/tests/kll_test.py +119 -0
- data/vendor/datasketches-cpp/python/tests/theta_test.py +121 -0
- data/vendor/datasketches-cpp/python/tests/vector_of_kll_test.py +148 -0
- data/vendor/datasketches-cpp/python/tests/vo_test.py +101 -0
- data/vendor/datasketches-cpp/sampling/CMakeLists.txt +48 -0
- data/vendor/datasketches-cpp/sampling/include/var_opt_sketch.hpp +392 -0
- data/vendor/datasketches-cpp/sampling/include/var_opt_sketch_impl.hpp +1752 -0
- data/vendor/datasketches-cpp/sampling/include/var_opt_union.hpp +239 -0
- data/vendor/datasketches-cpp/sampling/include/var_opt_union_impl.hpp +645 -0
- data/vendor/datasketches-cpp/sampling/test/CMakeLists.txt +43 -0
- data/vendor/datasketches-cpp/sampling/test/binaries_from_java.txt +67 -0
- data/vendor/datasketches-cpp/sampling/test/var_opt_sketch_test.cpp +509 -0
- data/vendor/datasketches-cpp/sampling/test/var_opt_union_test.cpp +358 -0
- data/vendor/datasketches-cpp/sampling/test/varopt_sketch_long_sampling.sk +0 -0
- data/vendor/datasketches-cpp/sampling/test/varopt_sketch_string_exact.sk +0 -0
- data/vendor/datasketches-cpp/sampling/test/varopt_union_double_sampling.sk +0 -0
- data/vendor/datasketches-cpp/setup.py +94 -0
- data/vendor/datasketches-cpp/theta/CMakeLists.txt +57 -0
- data/vendor/datasketches-cpp/theta/include/theta_a_not_b.hpp +73 -0
- data/vendor/datasketches-cpp/theta/include/theta_a_not_b_impl.hpp +83 -0
- data/vendor/datasketches-cpp/theta/include/theta_intersection.hpp +88 -0
- data/vendor/datasketches-cpp/theta/include/theta_intersection_impl.hpp +130 -0
- data/vendor/datasketches-cpp/theta/include/theta_sketch.hpp +533 -0
- data/vendor/datasketches-cpp/theta/include/theta_sketch_impl.hpp +939 -0
- data/vendor/datasketches-cpp/theta/include/theta_union.hpp +122 -0
- data/vendor/datasketches-cpp/theta/include/theta_union_impl.hpp +109 -0
- data/vendor/datasketches-cpp/theta/test/CMakeLists.txt +45 -0
- data/vendor/datasketches-cpp/theta/test/theta_a_not_b_test.cpp +244 -0
- data/vendor/datasketches-cpp/theta/test/theta_compact_empty_from_java.sk +0 -0
- data/vendor/datasketches-cpp/theta/test/theta_compact_estimation_from_java.sk +0 -0
- data/vendor/datasketches-cpp/theta/test/theta_compact_single_item_from_java.sk +0 -0
- data/vendor/datasketches-cpp/theta/test/theta_intersection_test.cpp +218 -0
- data/vendor/datasketches-cpp/theta/test/theta_sketch_test.cpp +438 -0
- data/vendor/datasketches-cpp/theta/test/theta_union_test.cpp +97 -0
- data/vendor/datasketches-cpp/theta/test/theta_update_empty_from_java.sk +0 -0
- data/vendor/datasketches-cpp/theta/test/theta_update_estimation_from_java.sk +0 -0
- data/vendor/datasketches-cpp/tuple/CMakeLists.txt +104 -0
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_a_not_b.hpp +52 -0
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_a_not_b_impl.hpp +32 -0
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_intersection.hpp +52 -0
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_intersection_impl.hpp +31 -0
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_sketch.hpp +179 -0
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_sketch_impl.hpp +238 -0
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_union.hpp +81 -0
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_union_impl.hpp +43 -0
- data/vendor/datasketches-cpp/tuple/include/bounds_on_ratios_in_sampled_sets.hpp +135 -0
- data/vendor/datasketches-cpp/tuple/include/bounds_on_ratios_in_theta_sketched_sets.hpp +135 -0
- data/vendor/datasketches-cpp/tuple/include/jaccard_similarity.hpp +172 -0
- data/vendor/datasketches-cpp/tuple/include/theta_a_not_b_experimental.hpp +53 -0
- data/vendor/datasketches-cpp/tuple/include/theta_a_not_b_experimental_impl.hpp +33 -0
- data/vendor/datasketches-cpp/tuple/include/theta_comparators.hpp +48 -0
- data/vendor/datasketches-cpp/tuple/include/theta_constants.hpp +34 -0
- data/vendor/datasketches-cpp/tuple/include/theta_helpers.hpp +54 -0
- data/vendor/datasketches-cpp/tuple/include/theta_intersection_base.hpp +59 -0
- data/vendor/datasketches-cpp/tuple/include/theta_intersection_base_impl.hpp +121 -0
- data/vendor/datasketches-cpp/tuple/include/theta_intersection_experimental.hpp +78 -0
- data/vendor/datasketches-cpp/tuple/include/theta_intersection_experimental_impl.hpp +43 -0
- data/vendor/datasketches-cpp/tuple/include/theta_set_difference_base.hpp +54 -0
- data/vendor/datasketches-cpp/tuple/include/theta_set_difference_base_impl.hpp +80 -0
- data/vendor/datasketches-cpp/tuple/include/theta_sketch_experimental.hpp +393 -0
- data/vendor/datasketches-cpp/tuple/include/theta_sketch_experimental_impl.hpp +481 -0
- data/vendor/datasketches-cpp/tuple/include/theta_union_base.hpp +60 -0
- data/vendor/datasketches-cpp/tuple/include/theta_union_base_impl.hpp +84 -0
- data/vendor/datasketches-cpp/tuple/include/theta_union_experimental.hpp +88 -0
- data/vendor/datasketches-cpp/tuple/include/theta_union_experimental_impl.hpp +47 -0
- data/vendor/datasketches-cpp/tuple/include/theta_update_sketch_base.hpp +259 -0
- data/vendor/datasketches-cpp/tuple/include/theta_update_sketch_base_impl.hpp +389 -0
- data/vendor/datasketches-cpp/tuple/include/tuple_a_not_b.hpp +57 -0
- data/vendor/datasketches-cpp/tuple/include/tuple_a_not_b_impl.hpp +33 -0
- data/vendor/datasketches-cpp/tuple/include/tuple_intersection.hpp +104 -0
- data/vendor/datasketches-cpp/tuple/include/tuple_intersection_impl.hpp +43 -0
- data/vendor/datasketches-cpp/tuple/include/tuple_sketch.hpp +496 -0
- data/vendor/datasketches-cpp/tuple/include/tuple_sketch_impl.hpp +587 -0
- data/vendor/datasketches-cpp/tuple/include/tuple_union.hpp +109 -0
- data/vendor/datasketches-cpp/tuple/include/tuple_union_impl.hpp +47 -0
- data/vendor/datasketches-cpp/tuple/test/CMakeLists.txt +53 -0
- data/vendor/datasketches-cpp/tuple/test/aod_1_compact_empty_from_java.sk +1 -0
- data/vendor/datasketches-cpp/tuple/test/aod_1_compact_estimation_from_java.sk +0 -0
- data/vendor/datasketches-cpp/tuple/test/aod_1_compact_non_empty_no_entries_from_java.sk +0 -0
- data/vendor/datasketches-cpp/tuple/test/aod_2_compact_exact_from_java.sk +0 -0
- data/vendor/datasketches-cpp/tuple/test/aod_3_compact_empty_from_java.sk +1 -0
- data/vendor/datasketches-cpp/tuple/test/array_of_doubles_sketch_test.cpp +298 -0
- data/vendor/datasketches-cpp/tuple/test/theta_a_not_b_experimental_test.cpp +250 -0
- data/vendor/datasketches-cpp/tuple/test/theta_compact_empty_from_java.sk +0 -0
- data/vendor/datasketches-cpp/tuple/test/theta_compact_estimation_from_java.sk +0 -0
- data/vendor/datasketches-cpp/tuple/test/theta_compact_single_item_from_java.sk +0 -0
- data/vendor/datasketches-cpp/tuple/test/theta_intersection_experimental_test.cpp +224 -0
- data/vendor/datasketches-cpp/tuple/test/theta_jaccard_similarity_test.cpp +144 -0
- data/vendor/datasketches-cpp/tuple/test/theta_sketch_experimental_test.cpp +247 -0
- data/vendor/datasketches-cpp/tuple/test/theta_union_experimental_test.cpp +44 -0
- data/vendor/datasketches-cpp/tuple/test/tuple_a_not_b_test.cpp +289 -0
- data/vendor/datasketches-cpp/tuple/test/tuple_intersection_test.cpp +235 -0
- data/vendor/datasketches-cpp/tuple/test/tuple_jaccard_similarity_test.cpp +98 -0
- data/vendor/datasketches-cpp/tuple/test/tuple_sketch_allocation_test.cpp +102 -0
- data/vendor/datasketches-cpp/tuple/test/tuple_sketch_test.cpp +249 -0
- data/vendor/datasketches-cpp/tuple/test/tuple_union_test.cpp +187 -0
- metadata +302 -0
@@ -0,0 +1,119 @@
|
|
1
|
+
# Licensed to the Apache Software Foundation (ASF) under one
|
2
|
+
# or more contributor license agreements. See the NOTICE file
|
3
|
+
# distributed with this work for additional information
|
4
|
+
# regarding copyright ownership. The ASF licenses this file
|
5
|
+
# to you under the Apache License, Version 2.0 (the
|
6
|
+
# "License"); you may not use this file except in compliance
|
7
|
+
# with the License. You may obtain a copy of the License at
|
8
|
+
#
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10
|
+
#
|
11
|
+
# Unless required by applicable law or agreed to in writing,
|
12
|
+
# software distributed under the License is distributed on an
|
13
|
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
14
|
+
# KIND, either express or implied. See the License for the
|
15
|
+
# specific language governing permissions and limitations
|
16
|
+
# under the License.
|
17
|
+
|
18
|
+
import unittest
|
19
|
+
from datasketches import (kll_ints_sketch, kll_floats_sketch,
|
20
|
+
vector_of_kll_ints_sketches,
|
21
|
+
vector_of_kll_floats_sketches)
|
22
|
+
import numpy as np
|
23
|
+
|
24
|
+
class KllTest(unittest.TestCase):
|
25
|
+
def test_kll_example(self):
|
26
|
+
k = 160
|
27
|
+
n = 2 ** 20
|
28
|
+
|
29
|
+
# create a sketch and inject ~1 million N(0,1) points as an array and as a single item
|
30
|
+
kll = kll_floats_sketch(k)
|
31
|
+
kll.update(np.random.normal(size=n-1))
|
32
|
+
kll.update(0.0)
|
33
|
+
|
34
|
+
# 0 should be near the median
|
35
|
+
self.assertAlmostEqual(0.5, kll.get_rank(0.0), delta=0.025)
|
36
|
+
|
37
|
+
# the median should be near 0
|
38
|
+
self.assertAlmostEqual(0.0, kll.get_quantile(0.5), delta=0.025)
|
39
|
+
|
40
|
+
# we also track the min/max independently from the rest of the data
|
41
|
+
# which lets us know the full observed data range
|
42
|
+
self.assertLessEqual(kll.get_min_value(), kll.get_quantile(0.01))
|
43
|
+
self.assertLessEqual(0.0, kll.get_rank(kll.get_min_value()))
|
44
|
+
self.assertGreaterEqual(kll.get_max_value(), kll.get_quantile(0.99))
|
45
|
+
self.assertGreaterEqual(1.0, kll.get_rank(kll.get_max_value()))
|
46
|
+
|
47
|
+
# we can also extract a list of values at a time,
|
48
|
+
# here the values should give us something close to [-2, -1, 0, 1, 2].
|
49
|
+
# then get the CDF, which will return something close to
|
50
|
+
# the original values used in get_quantiles()
|
51
|
+
# finally, can check the normalized rank error bound
|
52
|
+
pts = kll.get_quantiles([0.0228, 0.1587, 0.5, 0.8413, 0.9772])
|
53
|
+
cdf = kll.get_cdf(pts) # include 1.0 at end to account for all probability mass
|
54
|
+
self.assertEqual(len(cdf), len(pts)+1)
|
55
|
+
err = kll.normalized_rank_error(False)
|
56
|
+
self.assertEqual(err, kll_floats_sketch.get_normalized_rank_error(k, False))
|
57
|
+
|
58
|
+
# and a few basic queries about the sketch
|
59
|
+
self.assertFalse(kll.is_empty())
|
60
|
+
self.assertTrue(kll.is_estimation_mode())
|
61
|
+
self.assertEqual(kll.get_n(), n)
|
62
|
+
self.assertLess(kll.get_num_retained(), n)
|
63
|
+
|
64
|
+
# merging itself will double the number of items the sketch has seen
|
65
|
+
kll.merge(kll)
|
66
|
+
self.assertEqual(kll.get_n(), 2*n)
|
67
|
+
|
68
|
+
# we can then serialize and reconstruct the sketch
|
69
|
+
kll_bytes = kll.serialize()
|
70
|
+
new_kll = kll.deserialize(kll_bytes)
|
71
|
+
self.assertEqual(kll.get_num_retained(), new_kll.get_num_retained())
|
72
|
+
self.assertEqual(kll.get_min_value(), new_kll.get_min_value())
|
73
|
+
self.assertEqual(kll.get_max_value(), new_kll.get_max_value())
|
74
|
+
self.assertEqual(kll.get_quantile(0.7), new_kll.get_quantile(0.7))
|
75
|
+
self.assertEqual(kll.get_rank(0.0), new_kll.get_rank(0.0))
|
76
|
+
|
77
|
+
def test_kll_ints_sketch(self):
|
78
|
+
k = 100
|
79
|
+
n = 10
|
80
|
+
kll = kll_ints_sketch(k)
|
81
|
+
for i in range(0, n):
|
82
|
+
kll.update(i)
|
83
|
+
|
84
|
+
self.assertEqual(kll.get_min_value(), 0)
|
85
|
+
self.assertEqual(kll.get_max_value(), n-1)
|
86
|
+
self.assertEqual(kll.get_n(), n)
|
87
|
+
self.assertFalse(kll.is_empty())
|
88
|
+
self.assertFalse(kll.is_estimation_mode()) # n < k
|
89
|
+
|
90
|
+
pmf = kll.get_pmf([round(n/2)])
|
91
|
+
self.assertIsNotNone(pmf)
|
92
|
+
self.assertEqual(len(pmf), 2)
|
93
|
+
|
94
|
+
cdf = kll.get_cdf([round(n/2)])
|
95
|
+
self.assertIsNotNone(cdf)
|
96
|
+
self.assertEqual(len(cdf), 2)
|
97
|
+
|
98
|
+
self.assertEqual(kll.get_quantile(0.5), round(n/2))
|
99
|
+
quants = kll.get_quantiles([0.25, 0.5, 0.75])
|
100
|
+
self.assertIsNotNone(quants)
|
101
|
+
self.assertEqual(len(quants), 3)
|
102
|
+
|
103
|
+
self.assertEqual(kll.get_rank(round(n/2)), 0.5)
|
104
|
+
|
105
|
+
# merge self
|
106
|
+
kll.merge(kll)
|
107
|
+
self.assertEqual(kll.get_n(), 2 * n)
|
108
|
+
|
109
|
+
sk_bytes = kll.serialize()
|
110
|
+
self.assertTrue(isinstance(kll_ints_sketch.deserialize(sk_bytes), kll_ints_sketch))
|
111
|
+
|
112
|
+
def test_kll_floats_sketch(self):
|
113
|
+
# already tested ints and it's templatized, so just make sure it instantiates properly
|
114
|
+
k = 75
|
115
|
+
kll = kll_floats_sketch(k)
|
116
|
+
self.assertTrue(kll.is_empty())
|
117
|
+
|
118
|
+
if __name__ == '__main__':
|
119
|
+
unittest.main()
|
@@ -0,0 +1,121 @@
|
|
1
|
+
# Licensed to the Apache Software Foundation (ASF) under one
|
2
|
+
# or more contributor license agreements. See the NOTICE file
|
3
|
+
# distributed with this work for additional information
|
4
|
+
# regarding copyright ownership. The ASF licenses this file
|
5
|
+
# to you under the Apache License, Version 2.0 (the
|
6
|
+
# "License"); you may not use this file except in compliance
|
7
|
+
# with the License. You may obtain a copy of the License at
|
8
|
+
#
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10
|
+
#
|
11
|
+
# Unless required by applicable law or agreed to in writing,
|
12
|
+
# software distributed under the License is distributed on an
|
13
|
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
14
|
+
# KIND, either express or implied. See the License for the
|
15
|
+
# specific language governing permissions and limitations
|
16
|
+
# under the License.
|
17
|
+
|
18
|
+
import unittest
|
19
|
+
|
20
|
+
from datasketches import theta_sketch, update_theta_sketch
|
21
|
+
from datasketches import compact_theta_sketch, theta_union
|
22
|
+
from datasketches import theta_intersection, theta_a_not_b
|
23
|
+
|
24
|
+
class ThetaTest(unittest.TestCase):
|
25
|
+
def test_theta_basic_example(self):
|
26
|
+
k = 12 # 2^k = 4096 rows in the table
|
27
|
+
n = 1 << 18 # ~256k unique values
|
28
|
+
|
29
|
+
# create a sketch and inject some values
|
30
|
+
sk = self.generate_theta_sketch(n, k)
|
31
|
+
|
32
|
+
# we can check that the upper and lower bounds bracket the
|
33
|
+
# estimate, without needing to know the exact value.
|
34
|
+
self.assertLessEqual(sk.get_lower_bound(1), sk.get_estimate())
|
35
|
+
self.assertGreaterEqual(sk.get_upper_bound(1), sk.get_estimate())
|
36
|
+
|
37
|
+
# because this sketch is deterministically generated, we can
|
38
|
+
# also compare against the exact value
|
39
|
+
self.assertLessEqual(sk.get_lower_bound(1), n)
|
40
|
+
self.assertGreaterEqual(sk.get_upper_bound(1), n)
|
41
|
+
|
42
|
+
# serialize for storage and reconstruct
|
43
|
+
sk_bytes = sk.serialize()
|
44
|
+
new_sk = update_theta_sketch.deserialize(sk_bytes)
|
45
|
+
|
46
|
+
# estimate remains unchanged
|
47
|
+
self.assertFalse(sk.is_empty())
|
48
|
+
self.assertEqual(sk.get_estimate(), new_sk.get_estimate())
|
49
|
+
|
50
|
+
def test_theta_set_operations(self):
|
51
|
+
k = 12 # 2^k = 4096 rows in the table
|
52
|
+
n = 1 << 18 # ~256k unique values
|
53
|
+
|
54
|
+
# we'll have 1/4 of the values overlap
|
55
|
+
offset = int(3 * n / 4) # it's a float w/o cast
|
56
|
+
|
57
|
+
# create a couple sketches and inject some values
|
58
|
+
sk1 = self.generate_theta_sketch(n, k)
|
59
|
+
sk2 = self.generate_theta_sketch(n, k, offset)
|
60
|
+
|
61
|
+
# UNIONS
|
62
|
+
# create a union object
|
63
|
+
union = theta_union(k)
|
64
|
+
union.update(sk1)
|
65
|
+
union.update(sk2)
|
66
|
+
|
67
|
+
# getting result from union returns a compact_theta_sketch
|
68
|
+
# compact theta sketches can be used in additional unions
|
69
|
+
# or set operations but cannot accept further item updates
|
70
|
+
result = union.get_result()
|
71
|
+
self.assertTrue(isinstance(result, compact_theta_sketch))
|
72
|
+
|
73
|
+
# since our process here is deterministic, we have
|
74
|
+
# checked and know the exact answer is within one
|
75
|
+
# standard deviation of the estimate
|
76
|
+
self.assertLessEqual(result.get_lower_bound(1), 7 * n / 4)
|
77
|
+
self.assertGreaterEqual(result.get_upper_bound(1), 7 * n / 4)
|
78
|
+
|
79
|
+
|
80
|
+
# INTERSECTIONS
|
81
|
+
# create an intersection object
|
82
|
+
intersect = theta_intersection() # no lg_k
|
83
|
+
intersect.update(sk1)
|
84
|
+
intersect.update(sk2)
|
85
|
+
|
86
|
+
# has_result() indicates the intersection has been used,
|
87
|
+
# although the result may be the empty set
|
88
|
+
self.assertTrue(intersect.has_result())
|
89
|
+
|
90
|
+
# as with unions, the result is a compact sketch
|
91
|
+
result = intersect.get_result()
|
92
|
+
self.assertTrue(isinstance(result, compact_theta_sketch))
|
93
|
+
|
94
|
+
# we know the sets overlap by 1/4
|
95
|
+
self.assertLessEqual(result.get_lower_bound(1), n / 4)
|
96
|
+
self.assertGreaterEqual(result.get_upper_bound(1), n / 4)
|
97
|
+
|
98
|
+
|
99
|
+
# A NOT B
|
100
|
+
# create an a_not_b object
|
101
|
+
anb = theta_a_not_b() # no lg_k
|
102
|
+
result = anb.compute(sk1, sk2)
|
103
|
+
|
104
|
+
# as with unions, the result is a compact sketch
|
105
|
+
self.assertTrue(isinstance(result, compact_theta_sketch))
|
106
|
+
|
107
|
+
# we know the sets overlap by 1/4, so the remainder is 3/4
|
108
|
+
self.assertLessEqual(result.get_lower_bound(1), 3 * n / 4)
|
109
|
+
self.assertGreaterEqual(result.get_upper_bound(1), 3 * n / 4)
|
110
|
+
|
111
|
+
|
112
|
+
def generate_theta_sketch(self, n, k, offset=0):
|
113
|
+
sk = update_theta_sketch(k)
|
114
|
+
for i in range(0, n):
|
115
|
+
sk.update(i + offset)
|
116
|
+
return sk
|
117
|
+
|
118
|
+
if __name__ == '__main__':
|
119
|
+
unittest.main()
|
120
|
+
|
121
|
+
|
@@ -0,0 +1,148 @@
|
|
1
|
+
# Licensed to the Apache Software Foundation (ASF) under one
|
2
|
+
# or more contributor license agreements. See the NOTICE file
|
3
|
+
# distributed with this work for additional information
|
4
|
+
# regarding copyright ownership. The ASF licenses this file
|
5
|
+
# to you under the Apache License, Version 2.0 (the
|
6
|
+
# "License"); you may not use this file except in compliance
|
7
|
+
# with the License. You may obtain a copy of the License at
|
8
|
+
#
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10
|
+
#
|
11
|
+
# Unless required by applicable law or agreed to in writing,
|
12
|
+
# software distributed under the License is distributed on an
|
13
|
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
14
|
+
# KIND, either express or implied. See the License for the
|
15
|
+
# specific language governing permissions and limitations
|
16
|
+
# under the License.
|
17
|
+
|
18
|
+
import unittest
|
19
|
+
from datasketches import (vector_of_kll_ints_sketches,
|
20
|
+
vector_of_kll_floats_sketches)
|
21
|
+
import numpy as np
|
22
|
+
|
23
|
+
class VectorOfKllSketchesTest(unittest.TestCase):
|
24
|
+
def test_vector_of_kll_floats_sketches_example(self):
|
25
|
+
k = 200
|
26
|
+
d = 3
|
27
|
+
n = 2 ** 20
|
28
|
+
|
29
|
+
# create a sketch and inject ~1 million N(0,1) points
|
30
|
+
kll = vector_of_kll_floats_sketches(k, d)
|
31
|
+
# Track the min/max for each sketch to test later
|
32
|
+
smin = np.zeros(d) + np.inf
|
33
|
+
smax = np.zeros(d) - np.inf
|
34
|
+
|
35
|
+
for i in range(0, n):
|
36
|
+
dat = np.random.randn(d)
|
37
|
+
smin = np.amin([smin, dat], axis=0)
|
38
|
+
smax = np.amax([smax, dat], axis=0)
|
39
|
+
kll.update(dat)
|
40
|
+
|
41
|
+
# 0 should be near the median
|
42
|
+
np.testing.assert_allclose(0.5, kll.get_ranks(0.0), atol=0.025)
|
43
|
+
# the median should be near 0
|
44
|
+
np.testing.assert_allclose(0.0, kll.get_quantiles(0.5), atol=0.025)
|
45
|
+
# we also track the min/max independently from the rest of the data
|
46
|
+
# which lets us know the full observed data range
|
47
|
+
np.testing.assert_allclose(kll.get_min_values(), smin)
|
48
|
+
np.testing.assert_allclose(kll.get_max_values(), smax)
|
49
|
+
np.testing.assert_array_less(kll.get_min_values(), kll.get_quantiles(0.01)[:,0])
|
50
|
+
np.testing.assert_array_less(kll.get_quantiles(0.99)[:,0], kll.get_max_values())
|
51
|
+
|
52
|
+
# we can also extract a list of values at a time,
|
53
|
+
# here the values should give us something close to [-2, -1, 0, 1, 2].
|
54
|
+
# then get the CDF, which will return something close to
|
55
|
+
# the original values used in get_quantiles()
|
56
|
+
# finally, can check the normalized rank error bound
|
57
|
+
pts = kll.get_quantiles([0.0228, 0.1587, 0.5, 0.8413, 0.9772])
|
58
|
+
# use the mean pts for the CDF, include 1.0 at end to account for all probability mass
|
59
|
+
meanpts = np.mean(pts, axis=0)
|
60
|
+
cdf = kll.get_cdf(meanpts)
|
61
|
+
self.assertEqual(cdf.shape[0], pts.shape[0])
|
62
|
+
self.assertEqual(cdf.shape[1], pts.shape[1]+1)
|
63
|
+
|
64
|
+
# and a few basic queries about the sketch
|
65
|
+
self.assertFalse(np.all(kll.is_empty()))
|
66
|
+
self.assertTrue(np.all(kll.is_estimation_mode()))
|
67
|
+
self.assertTrue(np.all(kll.get_n() == n))
|
68
|
+
self.assertTrue(np.all(kll.get_num_retained() < n))
|
69
|
+
|
70
|
+
# we can combine sketches across all dimensions and get the reuslt
|
71
|
+
result = kll.collapse()
|
72
|
+
self.assertEqual(result.get_n(), d * n)
|
73
|
+
|
74
|
+
# merging a copy of itself will double the number of items the sketch has seen
|
75
|
+
kll_copy = vector_of_kll_floats_sketches(kll)
|
76
|
+
kll.merge(kll_copy)
|
77
|
+
np.testing.assert_equal(kll.get_n(), 2*n)
|
78
|
+
|
79
|
+
# we can then serialize and reconstruct the sketch
|
80
|
+
kll_bytes = kll.serialize() # serializes each sketch as a list
|
81
|
+
new_kll = vector_of_kll_floats_sketches(k, d)
|
82
|
+
for s in range(len(kll_bytes)):
|
83
|
+
new_kll.deserialize(kll_bytes[s], s)
|
84
|
+
|
85
|
+
# everything should be exactly equal
|
86
|
+
np.testing.assert_equal(kll.get_num_retained(), new_kll.get_num_retained())
|
87
|
+
np.testing.assert_equal;(kll.get_min_values(), new_kll.get_min_values())
|
88
|
+
np.testing.assert_equal(kll.get_max_values(), new_kll.get_max_values())
|
89
|
+
np.testing.assert_equal(kll.get_quantiles(0.7), new_kll.get_quantiles(0.7))
|
90
|
+
np.testing.assert_equal(kll.get_ranks(0.0), new_kll.get_ranks(0.0))
|
91
|
+
|
92
|
+
def test_kll_ints_sketches(self):
|
93
|
+
# already tested floats and it's templatized, so just make sure it instantiates properly
|
94
|
+
k = 100
|
95
|
+
d = 5
|
96
|
+
kll = vector_of_kll_ints_sketches(k, d)
|
97
|
+
self.assertTrue(np.all(kll.is_empty()))
|
98
|
+
|
99
|
+
def test_kll_2Dupdates(self):
|
100
|
+
# 1D case tested in the first example
|
101
|
+
# 2D case will follow same idea, but focusing on update()
|
102
|
+
k = 200
|
103
|
+
d = 3
|
104
|
+
# we'll do ~250k updates of 4 values each (total ~1mil updates, as above)
|
105
|
+
n = 2 ** 18
|
106
|
+
nbatch = 4
|
107
|
+
|
108
|
+
# create a sketch and inject ~1 million N(0,1) points
|
109
|
+
kll = vector_of_kll_floats_sketches(k, d)
|
110
|
+
# Track the min/max for each sketch to test later
|
111
|
+
smin = np.zeros(d) + np.inf
|
112
|
+
smax = np.zeros(d) - np.inf
|
113
|
+
|
114
|
+
for i in range(0, n):
|
115
|
+
dat = np.random.randn(nbatch, d)
|
116
|
+
smin = np.amin(np.row_stack((smin, dat)), axis=0)
|
117
|
+
smax = np.amax(np.row_stack((smax, dat)), axis=0)
|
118
|
+
kll.update(dat)
|
119
|
+
|
120
|
+
# 0 should be near the median
|
121
|
+
np.testing.assert_allclose(0.5, kll.get_ranks(0.0), atol=0.025)
|
122
|
+
# the median should be near 0
|
123
|
+
np.testing.assert_allclose(0.0, kll.get_quantiles(0.5), atol=0.025)
|
124
|
+
# we also track the min/max independently from the rest of the data
|
125
|
+
# which lets us know the full observed data range
|
126
|
+
np.testing.assert_allclose(kll.get_min_values(), smin)
|
127
|
+
np.testing.assert_allclose(kll.get_max_values(), smax)
|
128
|
+
|
129
|
+
def test_kll_3Dupdates(self):
|
130
|
+
# now test 3D update, which should fail
|
131
|
+
k = 200
|
132
|
+
d = 3
|
133
|
+
|
134
|
+
# create a sketch
|
135
|
+
kll = vector_of_kll_floats_sketches(k, d)
|
136
|
+
|
137
|
+
# we'll try 1 3D update
|
138
|
+
dat = np.random.randn(10, 7, d)
|
139
|
+
try:
|
140
|
+
kll.update(dat)
|
141
|
+
except:
|
142
|
+
# this is what we expect
|
143
|
+
pass
|
144
|
+
# the sketches should still be empty
|
145
|
+
self.assertTrue(np.all(kll.is_empty()))
|
146
|
+
|
147
|
+
if __name__ == '__main__':
|
148
|
+
unittest.main()
|
@@ -0,0 +1,101 @@
|
|
1
|
+
# Licensed to the Apache Software Foundation (ASF) under one
|
2
|
+
# or more contributor license agreements. See the NOTICE file
|
3
|
+
# distributed with this work for additional information
|
4
|
+
# regarding copyright ownership. The ASF licenses this file
|
5
|
+
# to you under the Apache License, Version 2.0 (the
|
6
|
+
# "License"); you may not use this file except in compliance
|
7
|
+
# with the License. You may obtain a copy of the License at
|
8
|
+
#
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10
|
+
#
|
11
|
+
# Unless required by applicable law or agreed to in writing,
|
12
|
+
# software distributed under the License is distributed on an
|
13
|
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
14
|
+
# KIND, either express or implied. See the License for the
|
15
|
+
# specific language governing permissions and limitations
|
16
|
+
# under the License.
|
17
|
+
|
18
|
+
import unittest
|
19
|
+
from datasketches import var_opt_sketch, var_opt_union
|
20
|
+
|
21
|
+
class VoTest(unittest.TestCase):
|
22
|
+
def test_vo_example(self):
|
23
|
+
k = 50 # a small value so we can easily fill the sketch
|
24
|
+
vo = var_opt_sketch(k)
|
25
|
+
|
26
|
+
# varopt sampling reduces to standard reservoir sampling
|
27
|
+
# if the items are all equally weighted, although the
|
28
|
+
# algorithm will be significantly slower than an optimized
|
29
|
+
# reservoir sampler
|
30
|
+
n = 5 * k
|
31
|
+
for i in range(0, n):
|
32
|
+
vo.update(i)
|
33
|
+
|
34
|
+
# we can also add a heavy item, using a negative weight for
|
35
|
+
# easy filtering later. keep in mind that "heavy" is a
|
36
|
+
# relative concept, so using a fixed multiple of n may not
|
37
|
+
# be considered a heavy item for larger values of n
|
38
|
+
vo.update(-1, 1000 * n)
|
39
|
+
self.assertEqual(k, vo.k)
|
40
|
+
self.assertEqual(k, vo.num_samples)
|
41
|
+
self.assertEqual(n + 1, vo.n)
|
42
|
+
self.assertFalse(vo.is_empty())
|
43
|
+
|
44
|
+
# we can easily get the list of items in the sample
|
45
|
+
items = vo.get_samples()
|
46
|
+
self.assertEqual(len(items), k)
|
47
|
+
|
48
|
+
# we can also apply a predicate to the sketch to get an estimate
|
49
|
+
# (with optimially minimal variance) of the subset sum of items
|
50
|
+
# matching that predicate among the entire population
|
51
|
+
|
52
|
+
# we'll use a lambda here, but any function operating on a single
|
53
|
+
# item which returns a boolean value should work
|
54
|
+
summary = vo.estimate_subset_sum(lambda x: x < 0)
|
55
|
+
self.assertEqual(summary['estimate'], 1000 * n)
|
56
|
+
self.assertEqual(summary['total_sketch_weight'], 1001 * n)
|
57
|
+
|
58
|
+
# a regular function is similarly handled
|
59
|
+
def geq_zero(x):
|
60
|
+
return x >= 0
|
61
|
+
summary = vo.estimate_subset_sum(geq_zero)
|
62
|
+
self.assertEqual(summary['estimate'], n)
|
63
|
+
self.assertEqual(summary['total_sketch_weight'], 1001 * n)
|
64
|
+
|
65
|
+
# next we'll create a second, smaller sketch with
|
66
|
+
# only heavier items relative to the previous sketch,
|
67
|
+
# but with the sketch in sampling mode
|
68
|
+
k2 = 5
|
69
|
+
vo2 = var_opt_sketch(k2)
|
70
|
+
# for weight, use the estimate of all items >=0 from before
|
71
|
+
wt = summary['estimate']
|
72
|
+
for i in range(0, k2 + 1):
|
73
|
+
vo2.update((2 * n) + i, wt)
|
74
|
+
|
75
|
+
# now union the sketches, demonstrating how the
|
76
|
+
# union's k may not be equal to that of either
|
77
|
+
# input value
|
78
|
+
union = var_opt_union(k)
|
79
|
+
union.update(vo)
|
80
|
+
union.update(vo2)
|
81
|
+
|
82
|
+
result = union.get_result()
|
83
|
+
self.assertEqual(n + k2 + 2, result.n)
|
84
|
+
self.assertFalse(result.is_empty())
|
85
|
+
self.assertGreater(result.k, k2)
|
86
|
+
self.assertLess(result.k, k)
|
87
|
+
|
88
|
+
# we can compare what information is available from both
|
89
|
+
# the union and a sketch.
|
90
|
+
print(union)
|
91
|
+
|
92
|
+
# if we want to print the list of itmes, there must be a
|
93
|
+
# __str__() method for each item (which need not be the same
|
94
|
+
# type; they're all generic python objects when used from
|
95
|
+
# python), otherwise you may trigger an exception.
|
96
|
+
# to_string() is provided as a convenince to avoid direct
|
97
|
+
# calls to __str__() with parameters.
|
98
|
+
print(result.to_string(True))
|
99
|
+
|
100
|
+
if __name__ == '__main__':
|
101
|
+
unittest.main()
|