datasketches 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (247) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE +310 -0
  4. data/NOTICE +11 -0
  5. data/README.md +126 -0
  6. data/ext/datasketches/cpc_wrapper.cpp +50 -0
  7. data/ext/datasketches/ext.cpp +12 -0
  8. data/ext/datasketches/extconf.rb +11 -0
  9. data/ext/datasketches/hll_wrapper.cpp +69 -0
  10. data/lib/datasketches.rb +9 -0
  11. data/lib/datasketches/version.rb +3 -0
  12. data/vendor/datasketches-cpp/CMakeLists.txt +126 -0
  13. data/vendor/datasketches-cpp/LICENSE +311 -0
  14. data/vendor/datasketches-cpp/MANIFEST.in +19 -0
  15. data/vendor/datasketches-cpp/NOTICE +11 -0
  16. data/vendor/datasketches-cpp/README.md +42 -0
  17. data/vendor/datasketches-cpp/common/CMakeLists.txt +45 -0
  18. data/vendor/datasketches-cpp/common/include/MurmurHash3.h +173 -0
  19. data/vendor/datasketches-cpp/common/include/binomial_bounds.hpp +458 -0
  20. data/vendor/datasketches-cpp/common/include/bounds_binomial_proportions.hpp +291 -0
  21. data/vendor/datasketches-cpp/common/include/ceiling_power_of_2.hpp +41 -0
  22. data/vendor/datasketches-cpp/common/include/common_defs.hpp +51 -0
  23. data/vendor/datasketches-cpp/common/include/conditional_back_inserter.hpp +68 -0
  24. data/vendor/datasketches-cpp/common/include/conditional_forward.hpp +70 -0
  25. data/vendor/datasketches-cpp/common/include/count_zeros.hpp +114 -0
  26. data/vendor/datasketches-cpp/common/include/inv_pow2_table.hpp +107 -0
  27. data/vendor/datasketches-cpp/common/include/memory_operations.hpp +57 -0
  28. data/vendor/datasketches-cpp/common/include/serde.hpp +196 -0
  29. data/vendor/datasketches-cpp/common/test/CMakeLists.txt +38 -0
  30. data/vendor/datasketches-cpp/common/test/catch.hpp +17618 -0
  31. data/vendor/datasketches-cpp/common/test/catch_runner.cpp +7 -0
  32. data/vendor/datasketches-cpp/common/test/test_allocator.cpp +31 -0
  33. data/vendor/datasketches-cpp/common/test/test_allocator.hpp +108 -0
  34. data/vendor/datasketches-cpp/common/test/test_runner.cpp +29 -0
  35. data/vendor/datasketches-cpp/common/test/test_type.hpp +137 -0
  36. data/vendor/datasketches-cpp/cpc/CMakeLists.txt +74 -0
  37. data/vendor/datasketches-cpp/cpc/include/compression_data.hpp +6022 -0
  38. data/vendor/datasketches-cpp/cpc/include/cpc_common.hpp +62 -0
  39. data/vendor/datasketches-cpp/cpc/include/cpc_compressor.hpp +147 -0
  40. data/vendor/datasketches-cpp/cpc/include/cpc_compressor_impl.hpp +742 -0
  41. data/vendor/datasketches-cpp/cpc/include/cpc_confidence.hpp +167 -0
  42. data/vendor/datasketches-cpp/cpc/include/cpc_sketch.hpp +311 -0
  43. data/vendor/datasketches-cpp/cpc/include/cpc_sketch_impl.hpp +810 -0
  44. data/vendor/datasketches-cpp/cpc/include/cpc_union.hpp +102 -0
  45. data/vendor/datasketches-cpp/cpc/include/cpc_union_impl.hpp +346 -0
  46. data/vendor/datasketches-cpp/cpc/include/cpc_util.hpp +137 -0
  47. data/vendor/datasketches-cpp/cpc/include/icon_estimator.hpp +274 -0
  48. data/vendor/datasketches-cpp/cpc/include/kxp_byte_lookup.hpp +81 -0
  49. data/vendor/datasketches-cpp/cpc/include/u32_table.hpp +84 -0
  50. data/vendor/datasketches-cpp/cpc/include/u32_table_impl.hpp +266 -0
  51. data/vendor/datasketches-cpp/cpc/test/CMakeLists.txt +44 -0
  52. data/vendor/datasketches-cpp/cpc/test/compression_test.cpp +67 -0
  53. data/vendor/datasketches-cpp/cpc/test/cpc_sketch_test.cpp +381 -0
  54. data/vendor/datasketches-cpp/cpc/test/cpc_union_test.cpp +149 -0
  55. data/vendor/datasketches-cpp/fi/CMakeLists.txt +54 -0
  56. data/vendor/datasketches-cpp/fi/include/frequent_items_sketch.hpp +319 -0
  57. data/vendor/datasketches-cpp/fi/include/frequent_items_sketch_impl.hpp +484 -0
  58. data/vendor/datasketches-cpp/fi/include/reverse_purge_hash_map.hpp +114 -0
  59. data/vendor/datasketches-cpp/fi/include/reverse_purge_hash_map_impl.hpp +345 -0
  60. data/vendor/datasketches-cpp/fi/test/CMakeLists.txt +44 -0
  61. data/vendor/datasketches-cpp/fi/test/frequent_items_sketch_custom_type_test.cpp +84 -0
  62. data/vendor/datasketches-cpp/fi/test/frequent_items_sketch_test.cpp +360 -0
  63. data/vendor/datasketches-cpp/fi/test/items_sketch_string_from_java.sk +0 -0
  64. data/vendor/datasketches-cpp/fi/test/items_sketch_string_utf8_from_java.sk +0 -0
  65. data/vendor/datasketches-cpp/fi/test/longs_sketch_from_java.sk +0 -0
  66. data/vendor/datasketches-cpp/fi/test/reverse_purge_hash_map_test.cpp +47 -0
  67. data/vendor/datasketches-cpp/hll/CMakeLists.txt +92 -0
  68. data/vendor/datasketches-cpp/hll/include/AuxHashMap-internal.hpp +303 -0
  69. data/vendor/datasketches-cpp/hll/include/AuxHashMap.hpp +83 -0
  70. data/vendor/datasketches-cpp/hll/include/CompositeInterpolationXTable-internal.hpp +811 -0
  71. data/vendor/datasketches-cpp/hll/include/CompositeInterpolationXTable.hpp +40 -0
  72. data/vendor/datasketches-cpp/hll/include/CouponHashSet-internal.hpp +291 -0
  73. data/vendor/datasketches-cpp/hll/include/CouponHashSet.hpp +59 -0
  74. data/vendor/datasketches-cpp/hll/include/CouponList-internal.hpp +417 -0
  75. data/vendor/datasketches-cpp/hll/include/CouponList.hpp +91 -0
  76. data/vendor/datasketches-cpp/hll/include/CubicInterpolation-internal.hpp +233 -0
  77. data/vendor/datasketches-cpp/hll/include/CubicInterpolation.hpp +43 -0
  78. data/vendor/datasketches-cpp/hll/include/HarmonicNumbers-internal.hpp +90 -0
  79. data/vendor/datasketches-cpp/hll/include/HarmonicNumbers.hpp +48 -0
  80. data/vendor/datasketches-cpp/hll/include/Hll4Array-internal.hpp +335 -0
  81. data/vendor/datasketches-cpp/hll/include/Hll4Array.hpp +69 -0
  82. data/vendor/datasketches-cpp/hll/include/Hll6Array-internal.hpp +124 -0
  83. data/vendor/datasketches-cpp/hll/include/Hll6Array.hpp +55 -0
  84. data/vendor/datasketches-cpp/hll/include/Hll8Array-internal.hpp +158 -0
  85. data/vendor/datasketches-cpp/hll/include/Hll8Array.hpp +56 -0
  86. data/vendor/datasketches-cpp/hll/include/HllArray-internal.hpp +706 -0
  87. data/vendor/datasketches-cpp/hll/include/HllArray.hpp +136 -0
  88. data/vendor/datasketches-cpp/hll/include/HllSketch-internal.hpp +462 -0
  89. data/vendor/datasketches-cpp/hll/include/HllSketchImpl-internal.hpp +149 -0
  90. data/vendor/datasketches-cpp/hll/include/HllSketchImpl.hpp +85 -0
  91. data/vendor/datasketches-cpp/hll/include/HllSketchImplFactory.hpp +170 -0
  92. data/vendor/datasketches-cpp/hll/include/HllUnion-internal.hpp +287 -0
  93. data/vendor/datasketches-cpp/hll/include/HllUtil.hpp +239 -0
  94. data/vendor/datasketches-cpp/hll/include/RelativeErrorTables-internal.hpp +112 -0
  95. data/vendor/datasketches-cpp/hll/include/RelativeErrorTables.hpp +46 -0
  96. data/vendor/datasketches-cpp/hll/include/coupon_iterator-internal.hpp +56 -0
  97. data/vendor/datasketches-cpp/hll/include/coupon_iterator.hpp +43 -0
  98. data/vendor/datasketches-cpp/hll/include/hll.hpp +669 -0
  99. data/vendor/datasketches-cpp/hll/include/hll.private.hpp +32 -0
  100. data/vendor/datasketches-cpp/hll/test/AuxHashMapTest.cpp +79 -0
  101. data/vendor/datasketches-cpp/hll/test/CMakeLists.txt +51 -0
  102. data/vendor/datasketches-cpp/hll/test/CouponHashSetTest.cpp +130 -0
  103. data/vendor/datasketches-cpp/hll/test/CouponListTest.cpp +181 -0
  104. data/vendor/datasketches-cpp/hll/test/CrossCountingTest.cpp +93 -0
  105. data/vendor/datasketches-cpp/hll/test/HllArrayTest.cpp +191 -0
  106. data/vendor/datasketches-cpp/hll/test/HllSketchTest.cpp +389 -0
  107. data/vendor/datasketches-cpp/hll/test/HllUnionTest.cpp +313 -0
  108. data/vendor/datasketches-cpp/hll/test/IsomorphicTest.cpp +141 -0
  109. data/vendor/datasketches-cpp/hll/test/TablesTest.cpp +44 -0
  110. data/vendor/datasketches-cpp/hll/test/ToFromByteArrayTest.cpp +168 -0
  111. data/vendor/datasketches-cpp/hll/test/array6_from_java.sk +0 -0
  112. data/vendor/datasketches-cpp/hll/test/compact_array4_from_java.sk +0 -0
  113. data/vendor/datasketches-cpp/hll/test/compact_set_from_java.sk +0 -0
  114. data/vendor/datasketches-cpp/hll/test/list_from_java.sk +0 -0
  115. data/vendor/datasketches-cpp/hll/test/updatable_array4_from_java.sk +0 -0
  116. data/vendor/datasketches-cpp/hll/test/updatable_set_from_java.sk +0 -0
  117. data/vendor/datasketches-cpp/kll/CMakeLists.txt +58 -0
  118. data/vendor/datasketches-cpp/kll/include/kll_helper.hpp +150 -0
  119. data/vendor/datasketches-cpp/kll/include/kll_helper_impl.hpp +319 -0
  120. data/vendor/datasketches-cpp/kll/include/kll_quantile_calculator.hpp +67 -0
  121. data/vendor/datasketches-cpp/kll/include/kll_quantile_calculator_impl.hpp +169 -0
  122. data/vendor/datasketches-cpp/kll/include/kll_sketch.hpp +559 -0
  123. data/vendor/datasketches-cpp/kll/include/kll_sketch_impl.hpp +1131 -0
  124. data/vendor/datasketches-cpp/kll/test/CMakeLists.txt +44 -0
  125. data/vendor/datasketches-cpp/kll/test/kll_sketch_custom_type_test.cpp +154 -0
  126. data/vendor/datasketches-cpp/kll/test/kll_sketch_float_one_item_v1.sk +0 -0
  127. data/vendor/datasketches-cpp/kll/test/kll_sketch_from_java.sk +0 -0
  128. data/vendor/datasketches-cpp/kll/test/kll_sketch_test.cpp +685 -0
  129. data/vendor/datasketches-cpp/kll/test/kll_sketch_validation.cpp +229 -0
  130. data/vendor/datasketches-cpp/pyproject.toml +17 -0
  131. data/vendor/datasketches-cpp/python/CMakeLists.txt +61 -0
  132. data/vendor/datasketches-cpp/python/README.md +78 -0
  133. data/vendor/datasketches-cpp/python/jupyter/CPCSketch.ipynb +345 -0
  134. data/vendor/datasketches-cpp/python/jupyter/FrequentItemsSketch.ipynb +354 -0
  135. data/vendor/datasketches-cpp/python/jupyter/HLLSketch.ipynb +346 -0
  136. data/vendor/datasketches-cpp/python/jupyter/KLLSketch.ipynb +463 -0
  137. data/vendor/datasketches-cpp/python/jupyter/ThetaSketchNotebook.ipynb +396 -0
  138. data/vendor/datasketches-cpp/python/src/__init__.py +2 -0
  139. data/vendor/datasketches-cpp/python/src/cpc_wrapper.cpp +90 -0
  140. data/vendor/datasketches-cpp/python/src/datasketches.cpp +40 -0
  141. data/vendor/datasketches-cpp/python/src/fi_wrapper.cpp +123 -0
  142. data/vendor/datasketches-cpp/python/src/hll_wrapper.cpp +136 -0
  143. data/vendor/datasketches-cpp/python/src/kll_wrapper.cpp +209 -0
  144. data/vendor/datasketches-cpp/python/src/theta_wrapper.cpp +162 -0
  145. data/vendor/datasketches-cpp/python/src/vector_of_kll.cpp +488 -0
  146. data/vendor/datasketches-cpp/python/src/vo_wrapper.cpp +140 -0
  147. data/vendor/datasketches-cpp/python/tests/__init__.py +0 -0
  148. data/vendor/datasketches-cpp/python/tests/cpc_test.py +64 -0
  149. data/vendor/datasketches-cpp/python/tests/fi_test.py +110 -0
  150. data/vendor/datasketches-cpp/python/tests/hll_test.py +131 -0
  151. data/vendor/datasketches-cpp/python/tests/kll_test.py +119 -0
  152. data/vendor/datasketches-cpp/python/tests/theta_test.py +121 -0
  153. data/vendor/datasketches-cpp/python/tests/vector_of_kll_test.py +148 -0
  154. data/vendor/datasketches-cpp/python/tests/vo_test.py +101 -0
  155. data/vendor/datasketches-cpp/sampling/CMakeLists.txt +48 -0
  156. data/vendor/datasketches-cpp/sampling/include/var_opt_sketch.hpp +392 -0
  157. data/vendor/datasketches-cpp/sampling/include/var_opt_sketch_impl.hpp +1752 -0
  158. data/vendor/datasketches-cpp/sampling/include/var_opt_union.hpp +239 -0
  159. data/vendor/datasketches-cpp/sampling/include/var_opt_union_impl.hpp +645 -0
  160. data/vendor/datasketches-cpp/sampling/test/CMakeLists.txt +43 -0
  161. data/vendor/datasketches-cpp/sampling/test/binaries_from_java.txt +67 -0
  162. data/vendor/datasketches-cpp/sampling/test/var_opt_sketch_test.cpp +509 -0
  163. data/vendor/datasketches-cpp/sampling/test/var_opt_union_test.cpp +358 -0
  164. data/vendor/datasketches-cpp/sampling/test/varopt_sketch_long_sampling.sk +0 -0
  165. data/vendor/datasketches-cpp/sampling/test/varopt_sketch_string_exact.sk +0 -0
  166. data/vendor/datasketches-cpp/sampling/test/varopt_union_double_sampling.sk +0 -0
  167. data/vendor/datasketches-cpp/setup.py +94 -0
  168. data/vendor/datasketches-cpp/theta/CMakeLists.txt +57 -0
  169. data/vendor/datasketches-cpp/theta/include/theta_a_not_b.hpp +73 -0
  170. data/vendor/datasketches-cpp/theta/include/theta_a_not_b_impl.hpp +83 -0
  171. data/vendor/datasketches-cpp/theta/include/theta_intersection.hpp +88 -0
  172. data/vendor/datasketches-cpp/theta/include/theta_intersection_impl.hpp +130 -0
  173. data/vendor/datasketches-cpp/theta/include/theta_sketch.hpp +533 -0
  174. data/vendor/datasketches-cpp/theta/include/theta_sketch_impl.hpp +939 -0
  175. data/vendor/datasketches-cpp/theta/include/theta_union.hpp +122 -0
  176. data/vendor/datasketches-cpp/theta/include/theta_union_impl.hpp +109 -0
  177. data/vendor/datasketches-cpp/theta/test/CMakeLists.txt +45 -0
  178. data/vendor/datasketches-cpp/theta/test/theta_a_not_b_test.cpp +244 -0
  179. data/vendor/datasketches-cpp/theta/test/theta_compact_empty_from_java.sk +0 -0
  180. data/vendor/datasketches-cpp/theta/test/theta_compact_estimation_from_java.sk +0 -0
  181. data/vendor/datasketches-cpp/theta/test/theta_compact_single_item_from_java.sk +0 -0
  182. data/vendor/datasketches-cpp/theta/test/theta_intersection_test.cpp +218 -0
  183. data/vendor/datasketches-cpp/theta/test/theta_sketch_test.cpp +438 -0
  184. data/vendor/datasketches-cpp/theta/test/theta_union_test.cpp +97 -0
  185. data/vendor/datasketches-cpp/theta/test/theta_update_empty_from_java.sk +0 -0
  186. data/vendor/datasketches-cpp/theta/test/theta_update_estimation_from_java.sk +0 -0
  187. data/vendor/datasketches-cpp/tuple/CMakeLists.txt +104 -0
  188. data/vendor/datasketches-cpp/tuple/include/array_of_doubles_a_not_b.hpp +52 -0
  189. data/vendor/datasketches-cpp/tuple/include/array_of_doubles_a_not_b_impl.hpp +32 -0
  190. data/vendor/datasketches-cpp/tuple/include/array_of_doubles_intersection.hpp +52 -0
  191. data/vendor/datasketches-cpp/tuple/include/array_of_doubles_intersection_impl.hpp +31 -0
  192. data/vendor/datasketches-cpp/tuple/include/array_of_doubles_sketch.hpp +179 -0
  193. data/vendor/datasketches-cpp/tuple/include/array_of_doubles_sketch_impl.hpp +238 -0
  194. data/vendor/datasketches-cpp/tuple/include/array_of_doubles_union.hpp +81 -0
  195. data/vendor/datasketches-cpp/tuple/include/array_of_doubles_union_impl.hpp +43 -0
  196. data/vendor/datasketches-cpp/tuple/include/bounds_on_ratios_in_sampled_sets.hpp +135 -0
  197. data/vendor/datasketches-cpp/tuple/include/bounds_on_ratios_in_theta_sketched_sets.hpp +135 -0
  198. data/vendor/datasketches-cpp/tuple/include/jaccard_similarity.hpp +172 -0
  199. data/vendor/datasketches-cpp/tuple/include/theta_a_not_b_experimental.hpp +53 -0
  200. data/vendor/datasketches-cpp/tuple/include/theta_a_not_b_experimental_impl.hpp +33 -0
  201. data/vendor/datasketches-cpp/tuple/include/theta_comparators.hpp +48 -0
  202. data/vendor/datasketches-cpp/tuple/include/theta_constants.hpp +34 -0
  203. data/vendor/datasketches-cpp/tuple/include/theta_helpers.hpp +54 -0
  204. data/vendor/datasketches-cpp/tuple/include/theta_intersection_base.hpp +59 -0
  205. data/vendor/datasketches-cpp/tuple/include/theta_intersection_base_impl.hpp +121 -0
  206. data/vendor/datasketches-cpp/tuple/include/theta_intersection_experimental.hpp +78 -0
  207. data/vendor/datasketches-cpp/tuple/include/theta_intersection_experimental_impl.hpp +43 -0
  208. data/vendor/datasketches-cpp/tuple/include/theta_set_difference_base.hpp +54 -0
  209. data/vendor/datasketches-cpp/tuple/include/theta_set_difference_base_impl.hpp +80 -0
  210. data/vendor/datasketches-cpp/tuple/include/theta_sketch_experimental.hpp +393 -0
  211. data/vendor/datasketches-cpp/tuple/include/theta_sketch_experimental_impl.hpp +481 -0
  212. data/vendor/datasketches-cpp/tuple/include/theta_union_base.hpp +60 -0
  213. data/vendor/datasketches-cpp/tuple/include/theta_union_base_impl.hpp +84 -0
  214. data/vendor/datasketches-cpp/tuple/include/theta_union_experimental.hpp +88 -0
  215. data/vendor/datasketches-cpp/tuple/include/theta_union_experimental_impl.hpp +47 -0
  216. data/vendor/datasketches-cpp/tuple/include/theta_update_sketch_base.hpp +259 -0
  217. data/vendor/datasketches-cpp/tuple/include/theta_update_sketch_base_impl.hpp +389 -0
  218. data/vendor/datasketches-cpp/tuple/include/tuple_a_not_b.hpp +57 -0
  219. data/vendor/datasketches-cpp/tuple/include/tuple_a_not_b_impl.hpp +33 -0
  220. data/vendor/datasketches-cpp/tuple/include/tuple_intersection.hpp +104 -0
  221. data/vendor/datasketches-cpp/tuple/include/tuple_intersection_impl.hpp +43 -0
  222. data/vendor/datasketches-cpp/tuple/include/tuple_sketch.hpp +496 -0
  223. data/vendor/datasketches-cpp/tuple/include/tuple_sketch_impl.hpp +587 -0
  224. data/vendor/datasketches-cpp/tuple/include/tuple_union.hpp +109 -0
  225. data/vendor/datasketches-cpp/tuple/include/tuple_union_impl.hpp +47 -0
  226. data/vendor/datasketches-cpp/tuple/test/CMakeLists.txt +53 -0
  227. data/vendor/datasketches-cpp/tuple/test/aod_1_compact_empty_from_java.sk +1 -0
  228. data/vendor/datasketches-cpp/tuple/test/aod_1_compact_estimation_from_java.sk +0 -0
  229. data/vendor/datasketches-cpp/tuple/test/aod_1_compact_non_empty_no_entries_from_java.sk +0 -0
  230. data/vendor/datasketches-cpp/tuple/test/aod_2_compact_exact_from_java.sk +0 -0
  231. data/vendor/datasketches-cpp/tuple/test/aod_3_compact_empty_from_java.sk +1 -0
  232. data/vendor/datasketches-cpp/tuple/test/array_of_doubles_sketch_test.cpp +298 -0
  233. data/vendor/datasketches-cpp/tuple/test/theta_a_not_b_experimental_test.cpp +250 -0
  234. data/vendor/datasketches-cpp/tuple/test/theta_compact_empty_from_java.sk +0 -0
  235. data/vendor/datasketches-cpp/tuple/test/theta_compact_estimation_from_java.sk +0 -0
  236. data/vendor/datasketches-cpp/tuple/test/theta_compact_single_item_from_java.sk +0 -0
  237. data/vendor/datasketches-cpp/tuple/test/theta_intersection_experimental_test.cpp +224 -0
  238. data/vendor/datasketches-cpp/tuple/test/theta_jaccard_similarity_test.cpp +144 -0
  239. data/vendor/datasketches-cpp/tuple/test/theta_sketch_experimental_test.cpp +247 -0
  240. data/vendor/datasketches-cpp/tuple/test/theta_union_experimental_test.cpp +44 -0
  241. data/vendor/datasketches-cpp/tuple/test/tuple_a_not_b_test.cpp +289 -0
  242. data/vendor/datasketches-cpp/tuple/test/tuple_intersection_test.cpp +235 -0
  243. data/vendor/datasketches-cpp/tuple/test/tuple_jaccard_similarity_test.cpp +98 -0
  244. data/vendor/datasketches-cpp/tuple/test/tuple_sketch_allocation_test.cpp +102 -0
  245. data/vendor/datasketches-cpp/tuple/test/tuple_sketch_test.cpp +249 -0
  246. data/vendor/datasketches-cpp/tuple/test/tuple_union_test.cpp +187 -0
  247. metadata +302 -0
@@ -0,0 +1,67 @@
1
+ /*
2
+ * Licensed to the Apache Software Foundation (ASF) under one
3
+ * or more contributor license agreements. See the NOTICE file
4
+ * distributed with this work for additional information
5
+ * regarding copyright ownership. The ASF licenses this file
6
+ * to you under the Apache License, Version 2.0 (the
7
+ * "License"); you may not use this file except in compliance
8
+ * with the License. You may obtain a copy of the License at
9
+ *
10
+ * http://www.apache.org/licenses/LICENSE-2.0
11
+ *
12
+ * Unless required by applicable law or agreed to in writing,
13
+ * software distributed under the License is distributed on an
14
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15
+ * KIND, either express or implied. See the License for the
16
+ * specific language governing permissions and limitations
17
+ * under the License.
18
+ */
19
+
20
+ #ifndef KLL_QUANTILE_CALCULATOR_HPP_
21
+ #define KLL_QUANTILE_CALCULATOR_HPP_
22
+
23
+ #include <memory>
24
+
25
+ namespace datasketches {
26
+
27
+ template <typename T, typename C, typename A>
28
+ class kll_quantile_calculator {
29
+ public:
30
+ // assumes that all levels are sorted including level 0
31
+ kll_quantile_calculator(const T* items, const uint32_t* levels, uint8_t num_levels, uint64_t n);
32
+ T get_quantile(double fraction) const;
33
+
34
+ private:
35
+ using AllocU32 = typename std::allocator_traits<A>::template rebind_alloc<uint32_t>;
36
+ using vector_u32 = std::vector<uint32_t, AllocU32>;
37
+ using Entry = std::pair<T, uint64_t>;
38
+ using AllocEntry = typename std::allocator_traits<A>::template rebind_alloc<Entry>;
39
+ using Container = std::vector<Entry, AllocEntry>;
40
+ uint64_t n_;
41
+ vector_u32 levels_;
42
+ Container entries_;
43
+
44
+ void populate_from_sketch(const T* items, const uint32_t* levels, uint8_t num_levels);
45
+ T approximately_answer_positional_query(uint64_t pos) const;
46
+ void convert_to_preceding_cummulative();
47
+ uint32_t chunk_containing_pos(uint64_t pos) const;
48
+ uint32_t search_for_chunk_containing_pos(uint64_t pos, uint32_t l, uint32_t r) const;
49
+ static void merge_sorted_blocks(Container& entries, const uint32_t* levels, uint8_t num_levels, uint32_t num_items);
50
+ static void merge_sorted_blocks_direct(Container& orig, Container& temp, const uint32_t* levels, uint8_t starting_level, uint8_t num_levels);
51
+ static void merge_sorted_blocks_reversed(Container& orig, Container& temp, const uint32_t* levels, uint8_t starting_level, uint8_t num_levels);
52
+ static uint64_t pos_of_phi(double phi, uint64_t n);
53
+
54
+ template<typename Comparator>
55
+ struct compare_pair_by_first {
56
+ template<typename Entry1, typename Entry2>
57
+ bool operator()(Entry1&& a, Entry2&& b) const {
58
+ return Comparator()(std::forward<Entry1>(a).first, std::forward<Entry2>(b).first);
59
+ }
60
+ };
61
+ };
62
+
63
+ } /* namespace datasketches */
64
+
65
+ #include "kll_quantile_calculator_impl.hpp"
66
+
67
+ #endif // KLL_QUANTILE_CALCULATOR_HPP_
@@ -0,0 +1,169 @@
1
+ /*
2
+ * Licensed to the Apache Software Foundation (ASF) under one
3
+ * or more contributor license agreements. See the NOTICE file
4
+ * distributed with this work for additional information
5
+ * regarding copyright ownership. The ASF licenses this file
6
+ * to you under the Apache License, Version 2.0 (the
7
+ * "License"); you may not use this file except in compliance
8
+ * with the License. You may obtain a copy of the License at
9
+ *
10
+ * http://www.apache.org/licenses/LICENSE-2.0
11
+ *
12
+ * Unless required by applicable law or agreed to in writing,
13
+ * software distributed under the License is distributed on an
14
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15
+ * KIND, either express or implied. See the License for the
16
+ * specific language governing permissions and limitations
17
+ * under the License.
18
+ */
19
+
20
+ #ifndef KLL_QUANTILE_CALCULATOR_IMPL_HPP_
21
+ #define KLL_QUANTILE_CALCULATOR_IMPL_HPP_
22
+
23
+ #include <memory>
24
+ #include <cmath>
25
+ #include <algorithm>
26
+
27
+ #include "kll_helper.hpp"
28
+
29
+ namespace datasketches {
30
+
31
+ template <typename T, typename C, typename A>
32
+ kll_quantile_calculator<T, C, A>::kll_quantile_calculator(const T* items, const uint32_t* levels, uint8_t num_levels, uint64_t n):
33
+ n_(n), levels_(num_levels + 1)
34
+ {
35
+ const uint32_t num_items = levels[num_levels] - levels[0];
36
+ entries_.reserve(num_items);
37
+ populate_from_sketch(items, levels, num_levels);
38
+ merge_sorted_blocks(entries_, levels_.data(), levels_.size() - 1, num_items);
39
+ if (!is_sorted(entries_.begin(), entries_.end(), compare_pair_by_first<C>())) throw std::logic_error("entries must be sorted");
40
+ convert_to_preceding_cummulative();
41
+ }
42
+
43
+ template <typename T, typename C, typename A>
44
+ T kll_quantile_calculator<T, C, A>::get_quantile(double fraction) const {
45
+ return approximately_answer_positional_query(pos_of_phi(fraction, n_));
46
+ }
47
+
48
+ template <typename T, typename C, typename A>
49
+ void kll_quantile_calculator<T, C, A>::populate_from_sketch(const T* items, const uint32_t* levels, uint8_t num_levels) {
50
+ size_t src_level = 0;
51
+ size_t dst_level = 0;
52
+ uint64_t weight = 1;
53
+ uint32_t offset = levels[0];
54
+ while (src_level < num_levels) {
55
+ const uint32_t from_index(levels[src_level] - offset);
56
+ const uint32_t to_index(levels[src_level + 1] - offset); // exclusive
57
+ if (from_index < to_index) { // skip empty levels
58
+ for (uint32_t i = from_index; i < to_index; ++i) {
59
+ entries_.push_back(Entry(items[i + offset], weight));
60
+ }
61
+ levels_[dst_level] = from_index;
62
+ levels_[dst_level + 1] = to_index;
63
+ dst_level++;
64
+ }
65
+ src_level++;
66
+ weight *= 2;
67
+ }
68
+ if (levels_.size() > static_cast<size_t>(dst_level + 1)) levels_.resize(dst_level + 1);
69
+ }
70
+
71
+ template <typename T, typename C, typename A>
72
+ T kll_quantile_calculator<T, C, A>::approximately_answer_positional_query(uint64_t pos) const {
73
+ if (pos >= n_) throw std::logic_error("position out of range");
74
+ const uint32_t num_items = levels_[levels_.size() - 1];
75
+ if (pos > entries_[num_items - 1].second) return entries_[num_items - 1].first;
76
+ const uint32_t index = chunk_containing_pos(pos);
77
+ return entries_[index].first;
78
+ }
79
+
80
+ template <typename T, typename C, typename A>
81
+ void kll_quantile_calculator<T, C, A>::convert_to_preceding_cummulative() {
82
+ uint64_t subtotal = 0;
83
+ for (auto& entry: entries_) {
84
+ const uint64_t new_subtotal = subtotal + entry.second;
85
+ entry.second = subtotal;
86
+ subtotal = new_subtotal;
87
+ }
88
+ }
89
+
90
+ template <typename T, typename C, typename A>
91
+ uint64_t kll_quantile_calculator<T, C, A>::pos_of_phi(double phi, uint64_t n) {
92
+ const uint64_t pos = std::floor(phi * n);
93
+ return (pos == n) ? n - 1 : pos;
94
+ }
95
+
96
+ template <typename T, typename C, typename A>
97
+ uint32_t kll_quantile_calculator<T, C, A>::chunk_containing_pos(uint64_t pos) const {
98
+ if (entries_.size() < 1) throw std::logic_error("array too short");
99
+ if (pos < entries_[0].second) throw std::logic_error("position too small");
100
+ if (pos > entries_[entries_.size() - 1].second) throw std::logic_error("position too large");
101
+ return search_for_chunk_containing_pos(pos, 0, entries_.size());
102
+ }
103
+
104
+ template <typename T, typename C, typename A>
105
+ uint32_t kll_quantile_calculator<T, C, A>::search_for_chunk_containing_pos(uint64_t pos, uint32_t l, uint32_t r) const {
106
+ if (l + 1 == r) {
107
+ return l;
108
+ }
109
+ const uint32_t m(l + (r - l) / 2);
110
+ if (entries_[m].second <= pos) {
111
+ return search_for_chunk_containing_pos(pos, m, r);
112
+ }
113
+ return search_for_chunk_containing_pos(pos, l, m);
114
+ }
115
+
116
+ template <typename T, typename C, typename A>
117
+ void kll_quantile_calculator<T, C, A>::merge_sorted_blocks(Container& entries, const uint32_t* levels, uint8_t num_levels, uint32_t num_items) {
118
+ if (num_levels == 1) return;
119
+ Container temporary;
120
+ temporary.reserve(num_items);
121
+ merge_sorted_blocks_direct(entries, temporary, levels, 0, num_levels);
122
+ }
123
+
124
+ template <typename T, typename C, typename A>
125
+ void kll_quantile_calculator<T, C, A>::merge_sorted_blocks_direct(Container& orig, Container& temp, const uint32_t* levels,
126
+ uint8_t starting_level, uint8_t num_levels) {
127
+ if (num_levels == 1) return;
128
+ const uint8_t num_levels_1 = num_levels / 2;
129
+ const uint8_t num_levels_2 = num_levels - num_levels_1;
130
+ const uint8_t starting_level_1 = starting_level;
131
+ const uint8_t starting_level_2 = starting_level + num_levels_1;
132
+ const auto chunk_begin = temp.begin() + temp.size();
133
+ merge_sorted_blocks_reversed(orig, temp, levels, starting_level_1, num_levels_1);
134
+ merge_sorted_blocks_reversed(orig, temp, levels, starting_level_2, num_levels_2);
135
+ const uint32_t num_items_1 = levels[starting_level_1 + num_levels_1] - levels[starting_level_1];
136
+ std::merge(
137
+ std::make_move_iterator(chunk_begin), std::make_move_iterator(chunk_begin + num_items_1),
138
+ std::make_move_iterator(chunk_begin + num_items_1), std::make_move_iterator(temp.end()),
139
+ orig.begin() + levels[starting_level], compare_pair_by_first<C>()
140
+ );
141
+ temp.erase(chunk_begin, temp.end());
142
+ }
143
+
144
+ template <typename T, typename C, typename A>
145
+ void kll_quantile_calculator<T, C, A>::merge_sorted_blocks_reversed(Container& orig, Container& temp, const uint32_t* levels,
146
+ uint8_t starting_level, uint8_t num_levels) {
147
+ if (num_levels == 1) {
148
+ std::move(orig.begin() + levels[starting_level], orig.begin() + levels[starting_level + 1], std::back_inserter(temp));
149
+ return;
150
+ }
151
+ const uint8_t num_levels_1 = num_levels / 2;
152
+ const uint8_t num_levels_2 = num_levels - num_levels_1;
153
+ const uint8_t starting_level_1 = starting_level;
154
+ const uint8_t starting_level_2 = starting_level + num_levels_1;
155
+ merge_sorted_blocks_direct(orig, temp, levels, starting_level_1, num_levels_1);
156
+ merge_sorted_blocks_direct(orig, temp, levels, starting_level_2, num_levels_2);
157
+ std::merge(
158
+ std::make_move_iterator(orig.begin() + levels[starting_level_1]),
159
+ std::make_move_iterator(orig.begin() + levels[starting_level_1 + num_levels_1]),
160
+ std::make_move_iterator(orig.begin() + levels[starting_level_2]),
161
+ std::make_move_iterator(orig.begin() + levels[starting_level_2 + num_levels_2]),
162
+ std::back_inserter(temp),
163
+ compare_pair_by_first<C>()
164
+ );
165
+ }
166
+
167
+ } /* namespace datasketches */
168
+
169
+ #endif // KLL_QUANTILE_CALCULATOR_IMPL_HPP_
@@ -0,0 +1,559 @@
1
+ /*
2
+ * Licensed to the Apache Software Foundation (ASF) under one
3
+ * or more contributor license agreements. See the NOTICE file
4
+ * distributed with this work for additional information
5
+ * regarding copyright ownership. The ASF licenses this file
6
+ * to you under the Apache License, Version 2.0 (the
7
+ * "License"); you may not use this file except in compliance
8
+ * with the License. You may obtain a copy of the License at
9
+ *
10
+ * http://www.apache.org/licenses/LICENSE-2.0
11
+ *
12
+ * Unless required by applicable law or agreed to in writing,
13
+ * software distributed under the License is distributed on an
14
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15
+ * KIND, either express or implied. See the License for the
16
+ * specific language governing permissions and limitations
17
+ * under the License.
18
+ */
19
+
20
+ #ifndef KLL_SKETCH_HPP_
21
+ #define KLL_SKETCH_HPP_
22
+
23
+ #include <functional>
24
+ #include <memory>
25
+ #include <vector>
26
+
27
+ #include "kll_quantile_calculator.hpp"
28
+ #include "common_defs.hpp"
29
+ #include "serde.hpp"
30
+
31
+ namespace datasketches {
32
+
33
+ /*
34
+ * Implementation of a very compact quantiles sketch with lazy compaction scheme
35
+ * and nearly optimal accuracy per retained item.
36
+ * See <a href="https://arxiv.org/abs/1603.05346v2">Optimal Quantile Approximation in Streams</a>.
37
+ *
38
+ * <p>This is a stochastic streaming sketch that enables near-real time analysis of the
39
+ * approximate distribution of values from a very large stream in a single pass, requiring only
40
+ * that the values are comparable.
41
+ * The analysis is obtained using <i>get_quantile()</i> or <i>get_quantiles()</i> functions or the
42
+ * inverse functions get_rank(), get_PMF() (Probability Mass Function), and get_CDF()
43
+ * (Cumulative Distribution Function).
44
+ *
45
+ * <p>As of May 2020, this implementation produces serialized sketches which are binary-compatible
46
+ * with the equivalent Java implementation only when template parameter T = float
47
+ * (32-bit single precision values).
48
+ *
49
+ * <p>Given an input stream of <i>N</i> numeric values, the <i>absolute rank</i> of any specific
50
+ * value is defined as its index <i>(0 to N-1)</i> in the hypothetical sorted stream of all
51
+ * <i>N</i> input values.
52
+ *
53
+ * <p>The <i>normalized rank</i> (<i>rank</i>) of any specific value is defined as its
54
+ * <i>absolute rank</i> divided by <i>N</i>.
55
+ * Thus, the <i>normalized rank</i> is a value between zero and one.
56
+ * In the documentation for this sketch <i>absolute rank</i> is never used so any
57
+ * reference to just <i>rank</i> should be interpreted to mean <i>normalized rank</i>.
58
+ *
59
+ * <p>This sketch is configured with a parameter <i>k</i>, which affects the size of the sketch
60
+ * and its estimation error.
61
+ *
62
+ * <p>The estimation error is commonly called <i>epsilon</i> (or <i>eps</i>) and is a fraction
63
+ * between zero and one. Larger values of <i>k</i> result in smaller values of epsilon.
64
+ * Epsilon is always with respect to the rank and cannot be applied to the
65
+ * corresponding values.
66
+ *
67
+ * <p>The relationship between the normalized rank and the corresponding values can be viewed
68
+ * as a two dimensional monotonic plot with the normalized rank on one axis and the
69
+ * corresponding values on the other axis. If the y-axis is specified as the value-axis and
70
+ * the x-axis as the normalized rank, then <i>y = get_quantile(x)</i> is a monotonically
71
+ * increasing function.
72
+ *
73
+ * <p>The functions <i>get_quantile(rank)</i> and get_quantiles(...) translate ranks into
74
+ * corresponding values. The functions <i>get_rank(value),
75
+ * get_CDF(...) (Cumulative Distribution Function), and get_PMF(...)
76
+ * (Probability Mass Function)</i> perform the opposite operation and translate values into ranks.
77
+ *
78
+ * <p>The <i>getPMF(...)</i> function has about 13 to 47% worse rank error (depending
79
+ * on <i>k</i>) than the other queries because the mass of each "bin" of the PMF has
80
+ * "double-sided" error from the upper and lower edges of the bin as a result of a subtraction,
81
+ * as the errors from the two edges can sometimes add.
82
+ *
83
+ * <p>The default <i>k</i> of 200 yields a "single-sided" epsilon of about 1.33% and a
84
+ * "double-sided" (PMF) epsilon of about 1.65%.
85
+ *
86
+ * <p>A <i>get_quantile(rank)</i> query has the following guarantees:
87
+ * <ul>
88
+ * <li>Let <i>v = get_quantile(r)</i> where <i>r</i> is the rank between zero and one.</li>
89
+ * <li>The value <i>v</i> will be a value from the input stream.</li>
90
+ * <li>Let <i>trueRank</i> be the true rank of <i>v</i> derived from the hypothetical sorted
91
+ * stream of all <i>N</i> values.</li>
92
+ * <li>Let <i>eps = get_normalized_rank_error(false)</i>.</li>
93
+ * <li>Then <i>r - eps &le; trueRank &le; r + eps</i> with a confidence of 99%. Note that the
94
+ * error is on the rank, not the value.</li>
95
+ * </ul>
96
+ *
97
+ * <p>A <i>get_rank(value)</i> query has the following guarantees:
98
+ * <ul>
99
+ * <li>Let <i>r = get_rank(v)</i> where <i>v</i> is a value between the min and max values of
100
+ * the input stream.</li>
101
+ * <li>Let <i>true_rank</i> be the true rank of <i>v</i> derived from the hypothetical sorted
102
+ * stream of all <i>N</i> values.</li>
103
+ * <li>Let <i>eps = get_normalized_rank_error(false)</i>.</li>
104
+ * <li>Then <i>r - eps &le; trueRank &le; r + eps</i> with a confidence of 99%.</li>
105
+ * </ul>
106
+ *
107
+ * <p>A <i>get_PMF()</i> query has the following guarantees:
108
+ * <ul>
109
+ * <li>Let <i>{r1, r2, ..., r(m+1)} = get_PMF(v1, v2, ..., vm)</i> where <i>v1, v2</i> are values
110
+ * between the min and max values of the input stream.
111
+ * <li>Let <i>mass<sub>i</sub> = estimated mass between v<sub>i</sub> and v<sub>i+1</sub></i>.</li>
112
+ * <li>Let <i>trueMass</i> be the true mass between the values of <i>v<sub>i</sub>,
113
+ * v<sub>i+1</sub></i> derived from the hypothetical sorted stream of all <i>N</i> values.</li>
114
+ * <li>Let <i>eps = get_normalized_rank_error(true)</i>.</li>
115
+ * <li>then <i>mass - eps &le; trueMass &le; mass + eps</i> with a confidence of 99%.</li>
116
+ * <li>r(m+1) includes the mass of all points larger than vm.</li>
117
+ * </ul>
118
+ *
119
+ * <p>A <i>get_CDF(...)</i> query has the following guarantees;
120
+ * <ul>
121
+ * <li>Let <i>{r1, r2, ..., r(m+1)} = get_CDF(v1, v2, ..., vm)</i> where <i>v1, v2</i> are values
122
+ * between the min and max values of the input stream.
123
+ * <li>Let <i>mass<sub>i</sub> = r<sub>i+1</sub> - r<sub>i</sub></i>.</li>
124
+ * <li>Let <i>trueMass</i> be the true mass between the true ranks of <i>v<sub>i</sub>,
125
+ * v<sub>i+1</sub></i> derived from the hypothetical sorted stream of all <i>N</i> values.</li>
126
+ * <li>Let <i>eps = get_normalized_rank_error(true)</i>.</li>
127
+ * <li>then <i>mass - eps &le; trueMass &le; mass + eps</i> with a confidence of 99%.</li>
128
+ * <li>1 - r(m+1) includes the mass of all points larger than vm.</li>
129
+ * </ul>
130
+ *
131
+ * <p>From the above, it might seem like we could make some estimates to bound the
132
+ * <em>value</em> returned from a call to <em>get_quantile()</em>. The sketch, however, does not
133
+ * let us derive error bounds or confidences around values. Because errors are independent, we
134
+ * can approximately bracket a value as shown below, but there are no error estimates available.
135
+ * Additionally, the interval may be quite large for certain distributions.
136
+ * <ul>
137
+ * <li>Let <i>v = get_quantile(r)</i>, the estimated quantile value of rank <i>r</i>.</li>
138
+ * <li>Let <i>eps = get_normalized_rank_error(false)</i>.</li>
139
+ * <li>Let <i>v<sub>lo</sub></i> = estimated quantile value of rank <i>(r - eps)</i>.</li>
140
+ * <li>Let <i>v<sub>hi</sub></i> = estimated quantile value of rank <i>(r + eps)</i>.</li>
141
+ * <li>Then <i>v<sub>lo</sub> &le; v &le; v<sub>hi</sub></i>, with 99% confidence.</li>
142
+ * </ul>
143
+ *
144
+ * author Kevin Lang
145
+ * author Alexander Saydakov
146
+ * author Lee Rhodes
147
+ */
148
+
149
+ template<typename A> using AllocU8 = typename std::allocator_traits<A>::template rebind_alloc<uint8_t>;
150
+ template<typename A> using vector_u8 = std::vector<uint8_t, AllocU8<A>>;
151
+ template<typename A> using AllocU32 = typename std::allocator_traits<A>::template rebind_alloc<uint32_t>;
152
+ template<typename A> using vector_u32 = std::vector<uint32_t, AllocU32<A>>;
153
+ template<typename A> using AllocD = typename std::allocator_traits<A>::template rebind_alloc<double>;
154
+ template<typename A> using vector_d = std::vector<double, AllocD<A>>;
155
+
156
+ template <typename T, typename C = std::less<T>, typename S = serde<T>, typename A = std::allocator<T>>
157
+ class kll_sketch {
158
+ public:
159
+ static const uint8_t DEFAULT_M = 8;
160
+ static const uint16_t DEFAULT_K = 200;
161
+ static const uint16_t MIN_K = DEFAULT_M;
162
+ static const uint16_t MAX_K = (1 << 16) - 1;
163
+
164
+ explicit kll_sketch(uint16_t k = DEFAULT_K);
165
+ kll_sketch(const kll_sketch& other);
166
+ kll_sketch(kll_sketch&& other) noexcept;
167
+ ~kll_sketch();
168
+ kll_sketch& operator=(const kll_sketch& other);
169
+ kll_sketch& operator=(kll_sketch&& other);
170
+
171
+ /**
172
+ * Updates this sketch with the given data item.
173
+ * This method takes lvalue.
174
+ * @param value an item from a stream of items
175
+ */
176
+ void update(const T& value);
177
+
178
+ /**
179
+ * Updates this sketch with the given data item.
180
+ * This method takes rvalue.
181
+ * @param value an item from a stream of items
182
+ */
183
+ void update(T&& value);
184
+
185
+ /**
186
+ * Merges another sketch into this one.
187
+ * This method takes lvalue.
188
+ * @param other sketch to merge into this one
189
+ */
190
+ void merge(const kll_sketch& other);
191
+
192
+ /**
193
+ * Merges another sketch into this one.
194
+ * This method takes rvalue.
195
+ * @param other sketch to merge into this one
196
+ */
197
+ void merge(kll_sketch&& other);
198
+
199
+ /**
200
+ * Returns true if this sketch is empty.
201
+ * @return empty flag
202
+ */
203
+ bool is_empty() const;
204
+
205
+ /**
206
+ * Returns the length of the input stream.
207
+ * @return stream length
208
+ */
209
+ uint64_t get_n() const;
210
+
211
+ /**
212
+ * Returns the number of retained items (samples) in the sketch.
213
+ * @return the number of retained items
214
+ */
215
+ uint32_t get_num_retained() const;
216
+
217
+ /**
218
+ * Returns true if this sketch is in estimation mode.
219
+ * @return estimation mode flag
220
+ */
221
+ bool is_estimation_mode() const;
222
+
223
+ /**
224
+ * Returns the min value of the stream.
225
+ * For floating point types: if the sketch is empty this returns NaN.
226
+ * For other types: if the sketch is empty this throws runtime_error.
227
+ * @return the min value of the stream
228
+ */
229
+ T get_min_value() const;
230
+
231
+ /**
232
+ * Returns the max value of the stream.
233
+ * For floating point types: if the sketch is empty this returns NaN.
234
+ * For other types: if the sketch is empty this throws runtime_error.
235
+ * @return the max value of the stream
236
+ */
237
+ T get_max_value() const;
238
+
239
+ /**
240
+ * Returns an approximation to the value of the data item
241
+ * that would be preceded by the given fraction of a hypothetical sorted
242
+ * version of the input stream so far.
243
+ * <p>
244
+ * Note that this method has a fairly large overhead (microseconds instead of nanoseconds)
245
+ * so it should not be called multiple times to get different quantiles from the same
246
+ * sketch. Instead use get_quantiles(), which pays the overhead only once.
247
+ * <p>
248
+ * For floating point types: if the sketch is empty this returns NaN.
249
+ * For other types: if the sketch is empty this throws runtime_error.
250
+ *
251
+ * @param fraction the specified fractional position in the hypothetical sorted stream.
252
+ * These are also called normalized ranks or fractional ranks.
253
+ * If fraction = 0.0, the true minimum value of the stream is returned.
254
+ * If fraction = 1.0, the true maximum value of the stream is returned.
255
+ *
256
+ * @return the approximation to the value at the given fraction
257
+ */
258
+ T get_quantile(double fraction) const;
259
+
260
+ /**
261
+ * This is a more efficient multiple-query version of get_quantile().
262
+ * <p>
263
+ * This returns an array that could have been generated by using get_quantile() for each
264
+ * fractional rank separately, but would be very inefficient.
265
+ * This method incurs the internal set-up overhead once and obtains multiple quantile values in
266
+ * a single query. It is strongly recommend that this method be used instead of multiple calls
267
+ * to get_quantile().
268
+ *
269
+ * <p>If the sketch is empty this returns an empty vector.
270
+ *
271
+ * @param fractions given array of fractional positions in the hypothetical sorted stream.
272
+ * These are also called normalized ranks or fractional ranks.
273
+ * These fractions must be in the interval [0.0, 1.0], inclusive.
274
+ *
275
+ * @return array of approximations to the given fractions in the same order as given fractions
276
+ * in the input array.
277
+ */
278
+ std::vector<T, A> get_quantiles(const double* fractions, uint32_t size) const;
279
+
280
+ /**
281
+ * This is a multiple-query version of get_quantile() that allows the caller to
282
+ * specify the number of evenly-spaced fractional ranks.
283
+ *
284
+ * <p>If the sketch is empty this returns an empty vector.
285
+ *
286
+ * @param num an integer that specifies the number of evenly-spaced fractional ranks.
287
+ * This must be an integer greater than 0. A value of 1 will return the min value.
288
+ * A value of 2 will return the min and the max value. A value of 3 will return the min,
289
+ * the median and the max value, etc.
290
+ *
291
+ * @return array of approximations to the given number of evenly-spaced fractional ranks.
292
+ */
293
+ std::vector<T, A> get_quantiles(size_t num) const;
294
+
295
+ /**
296
+ * Returns an approximation to the normalized (fractional) rank of the given value from 0 to 1,
297
+ * inclusive.
298
+ *
299
+ * <p>The resulting approximation has a probabilistic guarantee that can be obtained from the
300
+ * get_normalized_rank_error(false) function.
301
+ *
302
+ * <p>If the sketch is empty this returns NaN.
303
+ *
304
+ * @param value to be ranked
305
+ * @return an approximate rank of the given value
306
+ */
307
+ double get_rank(const T& value) const;
308
+
309
+ /**
310
+ * Returns an approximation to the Probability Mass Function (PMF) of the input stream
311
+ * given a set of split points (values).
312
+ *
313
+ * <p>The resulting approximations have a probabilistic guarantee that can be obtained from the
314
+ * get_normalized_rank_error(true) function.
315
+ *
316
+ * <p>If the sketch is empty this returns an empty vector.
317
+ *
318
+ * @param split_points an array of <i>m</i> unique, monotonically increasing values
319
+ * that divide the input domain into <i>m+1</i> consecutive disjoint intervals.
320
+ * The definition of an "interval" is inclusive of the left split point (or minimum value) and
321
+ * exclusive of the right split point, with the exception that the last interval will include
322
+ * the maximum value.
323
+ * It is not necessary to include either the min or max values in these split points.
324
+ *
325
+ * @return an array of m+1 doubles each of which is an approximation
326
+ * to the fraction of the input stream values (the mass) that fall into one of those intervals.
327
+ * The definition of an "interval" is inclusive of the left split point and exclusive of the right
328
+ * split point, with the exception that the last interval will include maximum value.
329
+ */
330
+ vector_d<A> get_PMF(const T* split_points, uint32_t size) const;
331
+
332
+ /**
333
+ * Returns an approximation to the Cumulative Distribution Function (CDF), which is the
334
+ * cumulative analog of the PMF, of the input stream given a set of split points (values).
335
+ *
336
+ * <p>The resulting approximations have a probabilistic guarantee that can be obtained from the
337
+ * get_normalized_rank_error(false) function.
338
+ *
339
+ * <p>If the sketch is empty this returns an empty vector.
340
+ *
341
+ * @param split_points an array of <i>m</i> unique, monotonically increasing values
342
+ * that divide the input domain into <i>m+1</i> consecutive disjoint intervals.
343
+ * The definition of an "interval" is inclusive of the left split point (or minimum value) and
344
+ * exclusive of the right split point, with the exception that the last interval will include
345
+ * the maximum value.
346
+ * It is not necessary to include either the min or max values in these split points.
347
+ *
348
+ * @return an array of m+1 double values, which are a consecutive approximation to the CDF
349
+ * of the input stream given the split_points. The value at array position j of the returned
350
+ * CDF array is the sum of the returned values in positions 0 through j of the returned PMF
351
+ * array.
352
+ */
353
+ vector_d<A> get_CDF(const T* split_points, uint32_t size) const;
354
+
355
+ /**
356
+ * Gets the approximate rank error of this sketch normalized as a fraction between zero and one.
357
+ * @param pmf if true, returns the "double-sided" normalized rank error for the get_PMF() function.
358
+ * Otherwise, it is the "single-sided" normalized rank error for all the other queries.
359
+ * @return if pmf is true, returns the normalized rank error for the get_PMF() function.
360
+ * Otherwise, it is the "single-sided" normalized rank error for all the other queries.
361
+ */
362
+ double get_normalized_rank_error(bool pmf) const;
363
+
364
+ /**
365
+ * Computes size needed to serialize the current state of the sketch.
366
+ * This version is for fixed-size arithmetic types (integral and floating point).
367
+ * @return size in bytes needed to serialize this sketch
368
+ */
369
+ template<typename TT = T, typename std::enable_if<std::is_arithmetic<TT>::value, int>::type = 0>
370
+ size_t get_serialized_size_bytes() const;
371
+
372
+ /**
373
+ * Computes size needed to serialize the current state of the sketch.
374
+ * This version is for all other types and can be expensive since every item needs to be looked at.
375
+ * @return size in bytes needed to serialize this sketch
376
+ */
377
+ template<typename TT = T, typename std::enable_if<!std::is_arithmetic<TT>::value, int>::type = 0>
378
+ size_t get_serialized_size_bytes() const;
379
+
380
+ /**
381
+ * This method serializes the sketch into a given stream in a binary form
382
+ * @param os output stream
383
+ */
384
+ void serialize(std::ostream& os) const;
385
+
386
+ // This is a convenience alias for users
387
+ // The type returned by the following serialize method
388
+ typedef vector_u8<A> vector_bytes;
389
+
390
+ /**
391
+ * This method serializes the sketch as a vector of bytes.
392
+ * An optional header can be reserved in front of the sketch.
393
+ * It is a blank space of a given size.
394
+ * This header is used in Datasketches PostgreSQL extension.
395
+ * @param header_size_bytes space to reserve in front of the sketch
396
+ */
397
+ vector_bytes serialize(unsigned header_size_bytes = 0) const;
398
+
399
+ /**
400
+ * This method deserializes a sketch from a given stream.
401
+ * @param is input stream
402
+ * @return an instance of a sketch
403
+ */
404
+ static kll_sketch deserialize(std::istream& is);
405
+
406
+ /**
407
+ * This method deserializes a sketch from a given array of bytes.
408
+ * @param bytes pointer to the array of bytes
409
+ * @param size the size of the array
410
+ * @return an instance of a sketch
411
+ */
412
+ static kll_sketch deserialize(const void* bytes, size_t size);
413
+
414
+ /*
415
+ * Gets the normalized rank error given k and pmf.
416
+ * k - the configuration parameter
417
+ * pmf - if true, returns the "double-sided" normalized rank error for the get_PMF() function.
418
+ * Otherwise, it is the "single-sided" normalized rank error for all the other queries.
419
+ * Constants were derived as the best fit to 99 percentile empirically measured max error in thousands of trials
420
+ */
421
+ static double get_normalized_rank_error(uint16_t k, bool pmf);
422
+
423
+ /**
424
+ * Prints a summary of the sketch.
425
+ * @param print_levels if true include information about levels
426
+ * @param print_items if true include sketch data
427
+ */
428
+ string<A> to_string(bool print_levels = false, bool print_items = false) const;
429
+
430
+ class const_iterator;
431
+ const_iterator begin() const;
432
+ const_iterator end() const;
433
+
434
+ #ifdef KLL_VALIDATION
435
+ uint8_t get_num_levels() { return num_levels_; }
436
+ uint32_t* get_levels() { return levels_; }
437
+ T* get_items() { return items_; }
438
+ #endif
439
+
440
+ private:
441
+ /* Serialized sketch layout:
442
+ * Adr:
443
+ * || 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
444
+ * 0 || unused | M |--------K--------| Flags | FamID | SerVer | PreambleInts |
445
+ * || 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
446
+ * 1 ||-----------------------------------N------------------------------------------|
447
+ * || 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
448
+ * 2 ||---------------data----------------|-unused-|numLevels|-------min K-----------|
449
+ */
450
+
451
+ static const size_t EMPTY_SIZE_BYTES = 8;
452
+ static const size_t DATA_START_SINGLE_ITEM = 8;
453
+ static const size_t DATA_START = 20;
454
+
455
+ static const uint8_t SERIAL_VERSION_1 = 1;
456
+ static const uint8_t SERIAL_VERSION_2 = 2;
457
+ static const uint8_t FAMILY = 15;
458
+
459
+ enum flags { IS_EMPTY, IS_LEVEL_ZERO_SORTED, IS_SINGLE_ITEM };
460
+
461
+ static const uint8_t PREAMBLE_INTS_SHORT = 2; // for empty and single item
462
+ static const uint8_t PREAMBLE_INTS_FULL = 5;
463
+
464
+ uint16_t k_;
465
+ uint8_t m_; // minimum buffer "width"
466
+ uint16_t min_k_; // for error estimation after merging with different k
467
+ uint64_t n_;
468
+ uint8_t num_levels_;
469
+ vector_u32<A> levels_;
470
+ T* items_;
471
+ uint32_t items_size_;
472
+ T* min_value_;
473
+ T* max_value_;
474
+ bool is_level_zero_sorted_;
475
+
476
+ // for deserialization
477
+ class item_deleter;
478
+ class items_deleter;
479
+ kll_sketch(uint16_t k, uint16_t min_k, uint64_t n, uint8_t num_levels, vector_u32<A>&& levels,
480
+ std::unique_ptr<T, items_deleter> items, uint32_t items_size, std::unique_ptr<T, item_deleter> min_value,
481
+ std::unique_ptr<T, item_deleter> max_value, bool is_level_zero_sorted);
482
+
483
+ // common update code
484
+ inline void update_min_max(const T& value);
485
+ inline uint32_t internal_update();
486
+
487
+ // The following code is only valid in the special case of exactly reaching capacity while updating.
488
+ // It cannot be used while merging, while reducing k, or anything else.
489
+ void compress_while_updating(void);
490
+
491
+ uint8_t find_level_to_compact() const;
492
+ void add_empty_top_level_to_completely_full_sketch();
493
+ void sort_level_zero();
494
+ std::unique_ptr<kll_quantile_calculator<T, C, A>, std::function<void(kll_quantile_calculator<T, C, A>*)>> get_quantile_calculator();
495
+ vector_d<A> get_PMF_or_CDF(const T* split_points, uint32_t size, bool is_CDF) const;
496
+ void increment_buckets_unsorted_level(uint32_t from_index, uint32_t to_index, uint64_t weight,
497
+ const T* split_points, uint32_t size, double* buckets) const;
498
+ void increment_buckets_sorted_level(uint32_t from_index, uint32_t to_index, uint64_t weight,
499
+ const T* split_points, uint32_t size, double* buckets) const;
500
+ template<typename O> void merge_higher_levels(O&& other, uint64_t final_n);
501
+ void populate_work_arrays(const kll_sketch& other, T* workbuf, uint32_t* worklevels, uint8_t provisional_num_levels);
502
+ void populate_work_arrays(kll_sketch&& other, T* workbuf, uint32_t* worklevels, uint8_t provisional_num_levels);
503
+ void assert_correct_total_weight() const;
504
+ uint32_t safe_level_size(uint8_t level) const;
505
+ uint32_t get_num_retained_above_level_zero() const;
506
+
507
+ static void check_m(uint8_t m);
508
+ static void check_preamble_ints(uint8_t preamble_ints, uint8_t flags_byte);
509
+ static void check_serial_version(uint8_t serial_version);
510
+ static void check_family_id(uint8_t family_id);
511
+
512
+ // implementations for floating point types
513
+ template<typename TT = T, typename std::enable_if<std::is_floating_point<TT>::value, int>::type = 0>
514
+ static TT get_invalid_value() {
515
+ return std::numeric_limits<TT>::quiet_NaN();
516
+ }
517
+
518
+ template<typename TT = T, typename std::enable_if<std::is_floating_point<TT>::value, int>::type = 0>
519
+ static inline bool check_update_value(TT value) {
520
+ return !std::isnan(value);
521
+ }
522
+
523
+ // implementations for all other types
524
+ template<typename TT = T, typename std::enable_if<!std::is_floating_point<TT>::value, int>::type = 0>
525
+ static TT get_invalid_value() {
526
+ throw std::runtime_error("getting quantiles from empty sketch is not supported for this type of values");
527
+ }
528
+
529
+ template<typename TT = T, typename std::enable_if<!std::is_floating_point<TT>::value, int>::type = 0>
530
+ static inline bool check_update_value(TT) {
531
+ return true;
532
+ }
533
+
534
+ };
535
+
536
+ template<typename T, typename C, typename S, typename A>
537
+ class kll_sketch<T, C, S, A>::const_iterator: public std::iterator<std::input_iterator_tag, T> {
538
+ public:
539
+ friend class kll_sketch<T, C, S, A>;
540
+ const_iterator& operator++();
541
+ const_iterator& operator++(int);
542
+ bool operator==(const const_iterator& other) const;
543
+ bool operator!=(const const_iterator& other) const;
544
+ const std::pair<const T&, const uint64_t> operator*() const;
545
+ private:
546
+ const T* items;
547
+ const uint32_t* levels;
548
+ const uint8_t num_levels;
549
+ uint32_t index;
550
+ uint8_t level;
551
+ uint64_t weight;
552
+ const_iterator(const T* items, const uint32_t* levels, const uint8_t num_levels);
553
+ };
554
+
555
+ } /* namespace datasketches */
556
+
557
+ #include "kll_sketch_impl.hpp"
558
+
559
+ #endif