datacite-mapping 0.1.15 → 0.1.16

Sign up to get free protection for your applications and to get access to all the features.
Files changed (144) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGES.md +5 -0
  3. data/README.md +21 -0
  4. data/datacite-mapping.gemspec +1 -1
  5. data/lib/datacite/mapping/date.rb +2 -2
  6. data/lib/datacite/mapping/identifier.rb +19 -3
  7. data/lib/datacite/mapping/module_info.rb +1 -1
  8. data/lib/datacite/mapping/nonvalidating/identifier.rb +40 -0
  9. data/lib/datacite/mapping/nonvalidating/subject.rb +43 -0
  10. data/lib/datacite/mapping/nonvalidating.rb +10 -0
  11. data/lib/datacite/mapping/resource.rb +19 -14
  12. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3059p-mrt-datacite.xml +42 -0
  13. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r31017-mrt-datacite.xml +37 -0
  14. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3201j-mrt-datacite.xml +50 -0
  15. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r33w26-mrt-datacite.xml +45 -0
  16. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r34s3v-mrt-datacite.xml +35 -0
  17. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r36p4t-mrt-datacite.xml +53 -0
  18. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r39g6f-mrt-datacite.xml +68 -0
  19. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3cc7d-mrt-datacite.xml +42 -0
  20. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3d59d-mrt-datacite.xml +45 -0
  21. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3f59q-mrt-datacite.xml +68 -0
  22. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3g591-mrt-datacite.xml +35 -0
  23. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3k016-mrt-datacite.xml +68 -0
  24. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3kw2j-mrt-datacite.xml +58 -0
  25. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3mw2v-mrt-datacite.xml +33 -0
  26. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3np4v-mrt-datacite.xml +40 -0
  27. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3pp45-mrt-datacite.xml +47 -0
  28. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3rp4s-mrt-datacite.xml +34 -0
  29. data/spec/data/dash1-datacite-xml/dataone-ark+=c5146=r3tg63-mrt-datacite.xml +36 -0
  30. data/spec/data/dash1-datacite-xml/ucb-ark+=b6078=d1159q-mrt-datacite.xml +53 -0
  31. data/spec/data/dash1-datacite-xml/ucb-ark+=b6078=d17g6j-mrt-datacite.xml +50 -0
  32. data/spec/data/dash1-datacite-xml/ucb-ark+=b6078=d1c88g-mrt-datacite.xml +47 -0
  33. data/spec/data/dash1-datacite-xml/ucb-ark+=b6078=d1cc74-mrt-datacite.xml +71 -0
  34. data/spec/data/dash1-datacite-xml/ucb-ark+=b6078=d1h019-mrt-datacite.xml +38 -0
  35. data/spec/data/dash1-datacite-xml/ucb-ark+=b6078=d1ms3x-mrt-datacite.xml +42 -0
  36. data/spec/data/dash1-datacite-xml/ucb-ark+=b6078=d1mw2k-mrt-datacite.xml +39 -0
  37. data/spec/data/dash1-datacite-xml/ucb-ark+=b6078=d1rg66-mrt-datacite.xml +39 -0
  38. data/spec/data/dash1-datacite-xml/ucb-ark+=b6078=d1rp4h-mrt-datacite.xml +53 -0
  39. data/spec/data/dash1-datacite-xml/ucb-ark+=b6078=d1wc7s-mrt-datacite.xml +49 -0
  40. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1001p-mrt-datacite.xml +51 -0
  41. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1059f-mrt-datacite.xml +65 -0
  42. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d11010-mrt-datacite.xml +49 -0
  43. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1159r-mrt-datacite.xml +79 -0
  44. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d12019-mrt-datacite.xml +60 -0
  45. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d12s30-mrt-datacite.xml +51 -0
  46. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1301m-mrt-datacite.xml +66 -0
  47. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d13s39-mrt-datacite.xml +49 -0
  48. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d13w2z-mrt-datacite.xml +60 -0
  49. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d14s3m-mrt-datacite.xml +64 -0
  50. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d15k5m-mrt-datacite.xml +66 -0
  51. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d15p48-mrt-datacite.xml +60 -0
  52. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d16k5x-mrt-datacite.xml +49 -0
  53. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d16p4k-mrt-datacite.xml +62 -0
  54. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d17g6k-mrt-datacite.xml +50 -0
  55. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d17p4w-mrt-datacite.xml +69 -0
  56. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d18g6w-mrt-datacite.xml +69 -0
  57. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1988w-mrt-datacite.xml +66 -0
  58. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d19g66-mrt-datacite.xml +74 -0
  59. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1b886-mrt-datacite.xml +53 -0
  60. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1bc7v-mrt-datacite.xml +67 -0
  61. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1c88h-mrt-datacite.xml +59 -0
  62. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1cc75-mrt-datacite.xml +62 -0
  63. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1d595-mrt-datacite.xml +50 -0
  64. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1f30c-mrt-datacite.xml +115 -0
  65. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1f59g-mrt-datacite.xml +71 -0
  66. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1g011-mrt-datacite.xml +52 -0
  67. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1g59s-mrt-datacite.xml +81 -0
  68. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1h01b-mrt-datacite.xml +66 -0
  69. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1h593-mrt-datacite.xml +62 -0
  70. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1j01n-mrt-datacite.xml +60 -0
  71. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1js3b-mrt-datacite.xml +55 -0
  72. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1k01z-mrt-datacite.xml +67 -0
  73. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1ks3n-mrt-datacite.xml +50 -0
  74. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1kw29-mrt-datacite.xml +82 -0
  75. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1ms3z-mrt-datacite.xml +48 -0
  76. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1mw2m-mrt-datacite.xml +67 -0
  77. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1np4m-mrt-datacite.xml +51 -0
  78. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1pk58-mrt-datacite.xml +47 -0
  79. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1pp4x-mrt-datacite.xml +67 -0
  80. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1qg6x-mrt-datacite.xml +53 -0
  81. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1qp47-mrt-datacite.xml +68 -0
  82. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1rg67-mrt-datacite.xml +48 -0
  83. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1rp4j-mrt-datacite.xml +70 -0
  84. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1sg6j-mrt-datacite.xml +85 -0
  85. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1t88j-mrt-datacite.xml +53 -0
  86. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1tg6v-mrt-datacite.xml +66 -0
  87. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1v88v-mrt-datacite.xml +53 -0
  88. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1vc7h-mrt-datacite.xml +64 -0
  89. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1w885-mrt-datacite.xml +50 -0
  90. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1wc7t-mrt-datacite.xml +71 -0
  91. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1x59t-mrt-datacite.xml +47 -0
  92. data/spec/data/dash1-datacite-xml/uci-ark+=b7280=d1z594-mrt-datacite.xml +62 -0
  93. data/spec/data/dash1-datacite-xml/ucla-ark+=b5060=d2qr4v2t-mrt-datacite.xml +57 -0
  94. data/spec/data/dash1-datacite-xml/ucla-ark+=b5068=d1cc7x-mrt-datacite.xml +41 -0
  95. data/spec/data/dash1-datacite-xml/ucla-ark+=b5068=d1h59v-mrt-datacite.xml +33 -0
  96. data/spec/data/dash1-datacite-xml/ucla-ark+=b5068=d1rp49-mrt-datacite.xml +36 -0
  97. data/spec/data/dash1-datacite-xml/ucla-ark+=b5068=d1wc7k-mrt-datacite.xml +46 -0
  98. data/spec/data/dash1-datacite-xml/ucm-ark+=13030=m51g217t-mrt-datacite.xml +28 -0
  99. data/spec/data/dash1-datacite-xml/ucm-ark+=b6071=z7wc73-mrt-datacite.xml +83 -0
  100. data/spec/data/dash1-datacite-xml/ucop-ark+=b5060=d8301x-mrt-datacite.xml +39 -0
  101. data/spec/data/dash1-datacite-xml/ucop-ark+=b5060=d86p4w-mrt-datacite.xml +38 -0
  102. data/spec/data/dash1-datacite-xml/ucop-ark+=b5060=d8bc75-mrt-datacite.xml +40 -0
  103. data/spec/data/dash1-datacite-xml/ucop-ark+=b5060=d8g593-mrt-datacite.xml +39 -0
  104. data/spec/data/dash1-datacite-xml/ucop-ark+=b5060=d8h59d-mrt-datacite.xml +53 -0
  105. data/spec/data/dash1-datacite-xml/ucop-ark+=b5060=d8kw2m-mrt-datacite.xml +39 -0
  106. data/spec/data/dash1-datacite-xml/ucop-ark+=b5060=d8rp4v-mrt-datacite.xml +52 -0
  107. data/spec/data/dash1-datacite-xml/ucop-ark+=b5060=d8z59f-mrt-datacite.xml +42 -0
  108. data/spec/data/dash1-datacite-xml/ucsc-ark+=b7291=d11592-mrt-datacite.xml +38 -0
  109. data/spec/data/dash1-datacite-xml/ucsc-ark+=b7291=d17p46-mrt-datacite.xml +43 -0
  110. data/spec/data/dash1-datacite-xml/ucsc-ark+=b7291=d1h59d-mrt-datacite.xml +43 -0
  111. data/spec/data/dash1-datacite-xml/ucsc-ark+=b7291=d1mw2x-mrt-datacite.xml +54 -0
  112. data/spec/data/dash1-datacite-xml/ucsc-ark+=b7291=d1wc74-mrt-datacite.xml +55 -0
  113. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6057cv6-mrt-datacite.xml +96 -0
  114. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6154f00-mrt-datacite.xml +73 -0
  115. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q61z429d-mrt-datacite.xml +29 -0
  116. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q62z13fs-mrt-datacite.xml +43 -0
  117. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q65q4t1r-mrt-datacite.xml +25 -0
  118. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q66q1v54-mrt-datacite.xml +42 -0
  119. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q67p8w9z-mrt-datacite.xml +63 -0
  120. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q68g8hmp-mrt-datacite.xml +24 -0
  121. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6bg2kwf-mrt-datacite.xml +63 -0
  122. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6c8276k-mrt-datacite.xml +43 -0
  123. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6cc0xmh-mrt-datacite.xml +63 -0
  124. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6d798bd-mrt-datacite.xml +26 -0
  125. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6h12zxh-mrt-datacite.xml +46 -0
  126. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6h41pb7-mrt-datacite.xml +60 -0
  127. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6kw5cxv-mrt-datacite.xml +43 -0
  128. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6ms3qnx-mrt-datacite.xml +42 -0
  129. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6mw2f2n-mrt-datacite.xml +61 -0
  130. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6pn93h6-mrt-datacite.xml +52 -0
  131. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6qn64nk-mrt-datacite.xml +46 -0
  132. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6rf5rzx-mrt-datacite.xml +60 -0
  133. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6rn35sz-mrt-datacite.xml +63 -0
  134. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6sf2t3q-mrt-datacite.xml +21 -0
  135. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6td9v7j-mrt-datacite.xml +29 -0
  136. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6w66hpn-mrt-datacite.xml +23 -0
  137. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6x63jt1-mrt-datacite.xml +27 -0
  138. data/spec/data/dash1-datacite-xml/ucsf-ark+=b7272=q6z60kzd-mrt-datacite.xml +45 -0
  139. data/spec/data/metadata.xsd +380 -0
  140. data/spec/data/mrt-datacite.xml +61 -0
  141. data/spec/unit/datacite/mapping/date_spec.rb +23 -15
  142. data/spec/unit/datacite/mapping/nonvalidating/identifier_spec.rb +38 -0
  143. data/spec/unit/datacite/mapping/resource_spec.rb +69 -12
  144. metadata +267 -4
@@ -0,0 +1,42 @@
1
+ <?xml version="1.0" encoding="utf-8"?><resource xmlns="http://datacite.org/schema/kernel-3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd">
2
+ <identifier identifierType="DOI">10.5060/d8z59f</identifier>
3
+ <creators>
4
+ <creator>
5
+ <creatorName>University of California Pay It Forward Project, 2015-16</creatorName>
6
+ </creator>
7
+ </creators>
8
+ <titles>
9
+ <title>Pay It Forward: Author Survey Results</title>
10
+ </titles>
11
+ <publisher>UC Office of the President</publisher>
12
+ <publicationYear>2016</publicationYear>
13
+ <subjects>
14
+ <subject>Article Processing Charge</subject>
15
+ <subject>Open Access</subject>
16
+ <subject>Scholarly Publishing</subject>
17
+ </subjects>
18
+ <contributors>
19
+ <contributor contributorType="DataManager">
20
+ <contributorName>Willmott, Mathew</contributorName>
21
+ </contributor>
22
+ <contributor contributorType="Funder">
23
+ <contributorName>Andrew W. Mellon Foundation</contributorName>
24
+ </contributor>
25
+ </contributors>
26
+ <relatedIdentifiers>
27
+ <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">http://icis.ucdavis.edu/wp-content/uploads/2015/07/UC-Pay-It-Forward-Project-Final-Report.pdf</relatedIdentifier>
28
+ <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementedBy">http://trace.tennessee.edu/utk_infosciepubs/48</relatedIdentifier>
29
+ </relatedIdentifiers>
30
+ <resourceType resourceTypeGeneral="Dataset">Dataset</resourceType>
31
+ <sizes>
32
+ <size>3157659</size>
33
+ </sizes>
34
+ <rightsList>
35
+ <rights rightsURI="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International (CC-BY 4.0)</rights>
36
+ </rightsList>
37
+ <descriptions>
38
+ <description descriptionType="Abstract">These data files contain raw, anonymized response data, as well as a data codebook, from the author survey conducted in May and June 2015 as a part of the Pay It Forward project. The survey was distributed to approximately 15,000 academics at the University of British Columbia, The Ohio State University, the University of California, Irvine, and the University of California, Davis, and received an overall response rate of 14.1%.</description>
39
+ <description descriptionType="Methods">Survey conducted using Qualtrics software. Respondents included faculty, graduate students, and post-doctoral researchers from the University of British Columbia, The Ohio State University, the University of California, Irvine, and the University of California, Davis. The survey was open from May 20, 2015 to June 10, 2015. IRB approval for this study was obtained by the University of Tennessee, Knoxville, Office of Research Compliance.</description>
40
+ <description descriptionType="Other">41400690</description>
41
+ </descriptions>
42
+ </resource>
@@ -0,0 +1,38 @@
1
+ <?xml version="1.0" encoding="utf-8"?><resource xmlns="http://datacite.org/schema/kernel-3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd">
2
+ <identifier identifierType="DOI"/>
3
+ <creators>
4
+ <creator>
5
+ <creatorName>Norris, Timothy</creatorName>
6
+ </creator>
7
+ </creators>
8
+ <titles>
9
+ <title>Cordillera Huayhuash Water Quality 2010-2011</title>
10
+ </titles>
11
+ <publisher>UC Santa Cruz</publisher>
12
+ <publicationYear>2015</publicationYear>
13
+ <subjects>
14
+ <subject>Cordillera Huayhuash</subject>
15
+ <subject>Water Quality</subject>
16
+ <subject>Peru</subject>
17
+ </subjects>
18
+ <contributors>
19
+ <contributor contributorType="Funder">
20
+ <contributorName>National Geographic Society</contributorName>
21
+ </contributor>
22
+ </contributors>
23
+ <relatedIdentifiers>
24
+ <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">http://huaylas.com/cdhuayhuash/mapas.php</relatedIdentifier>
25
+ </relatedIdentifiers>
26
+ <resourceType resourceTypeGeneral="Dataset">Dataset</resourceType>
27
+ <sizes>
28
+ <size>18421</size>
29
+ </sizes>
30
+ <rightsList>
31
+ <rights rightsURI="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International (CC-BY 4.0)</rights>
32
+ </rightsList>
33
+ <descriptions>
34
+ <description descriptionType="Abstract">The Cordillera Huayhuash is the second highest mountain range in the Peruvian Andes and is important for tourism, mining, and local livelihoods. These three economic activities all share an interest in the water quality of the over 50 lakes and associated drainages that exist in the region. Water quality monitoring can help ease tensions between interests from these distinct economic sectors. This dataset reports on two rounds of water quality sampling and testing performed at 56 identified monitoring stations in 2010 and 2011. Several additional spot samples were taken in both years. At each monitoring station field measures such as temperature, pH, and conductivity were taken and samples were collected for laboratory analysis of elemental concentrations (metals and others) and field analysis of biological contamination (enterococcus). The results show contamination from mining activities, from tourism activities and from natural sources. The data is in a comma separated value (CSV) format with two flat files: &quot;Pruebas.csv&quot; contains the measurements of all parameters for each sample; &quot;Estaciones.csv&quot; contains a list of monitoring stations with geographic coordinates; &quot;README.csv&quot; contains the data dictionaries and other metadata (description) for both of the flat files.</description>
35
+ <description descriptionType="Methods">Two rounds of water quality sampling and testing were performed in 2010 and 2011 at 56 identified monitoring stations in the Cordillera Huayhuash, Peru. Several additional spot samples were taken in both 2010 and 2011. The selection of monitoring stations was guided by several criteria. At least two monitoring stations were identified per watershed; one at the headwaters (slightly downstream from a trekking camp if possible) and one near the confluence with the neighboring watershed. One monitoring station was identified at the source of drinking water for each community. Additional monitoring stations were identified as potential sites of contamination from mining activities. All of the monitoring station identification met Peruvian Ministry of Energy and Mines published protocols (MEM, 1994. Protocolo de Monitoreo de Calidad de Aguas. Lima, Peru: Ministerio de Energia y Minas). Samples were collected during April and May across two consecutive years; 51 stations in 2010 and 36 stations in 2011 of which 32 stations were used both years (see stations.csv). Field measurements were made for temperature, pH, conductivity, salinity, total dissolved solids, and dissolved oxygen with two distinct field instruments (the Oakton Instruments PCSTester35 multi-parameter tester and the Oakton Instruments ExStik® DO600 oxygen meter respectively). The American Public Health Association (APHA) methods 9222 and 9230 (APHA, 2005. Standard methods for the examination of water and waste water, 21st edition. American Public Health Association, American Water Works Association &amp; Water Environment Federation: Baltimore, Port City Press) were followed for the analysis of fecal coliforms (Enterococcus spp.) in the field. Each measured sample was filtered with a 0.45 micron gridded filter. Each filter was then incubated at approximately 44.5° C for twenty four hours on Agar specially formulated for Enterococcus growth. The number of colonies that appeared was counted and a most probable number (MPN) was calculated using the number of colonies observed and the amount of water originally filtered. In 2010 split filtered (0.45 micron) and unfiltered samples were collected for heavy metal analysis at each monitoring station and in 2011 only unfiltered samples were collected. Across both years ½ liter was used as the sample volume. The collection bottles were provided by the laboratory and were guaranteed to be clean (according to EPA protocols detailed below). The collection of samples in the field followed the EPA protocols published in each method detailed below. In 2010 the unfiltered sample was analyzed for dissolved mercury (Hg) concentrations in a laboratory in Lima (EnviroLab S.A.C) using EPA method 1631 (Cold Vapor Atomic Fluorescence Spectrometry) (EPA, 2002. Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. Baltimore: United States Environmental Protection Agency). The Mercury measurement was not repeated the second year as no sample from 2010 yielded a positive result and no new sources of mercury were identified. In 2010 the unfiltered sample was analyzed for a full run of elemental concentrations (As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn, Ag, B, Bi, Ca, Fe, K, Li, Mg, Na, P, Si, Sn, Sr, and Ti) with the EPA 200.8 method (inductively coupled plasma - mass spectrometry) (EPA, 1994. Method 200.8 Determination of trace elements in waters and wastes by inductively coupled plasma - mass spectrometry. Cincinnati: United States Environmental Protection Agency). In 2011 the elemental analysis was narrowed to aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) based on the results from 2010.</description>
36
+ <description descriptionType="Other">C171-09</description>
37
+ </descriptions>
38
+ </resource>
@@ -0,0 +1,43 @@
1
+ <?xml version="1.0" encoding="utf-8"?><resource xmlns="http://datacite.org/schema/kernel-3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd">
2
+ <identifier identifierType="DOI"/>
3
+ <creators>
4
+ <creator>
5
+ <creatorName>Flores, German</creatorName>
6
+ </creator>
7
+ <creator>
8
+ <creatorName>Manduchi, Roberto</creatorName>
9
+ </creator>
10
+ </creators>
11
+ <titles>
12
+ <title>The WeAllWalk Data Set</title>
13
+ </titles>
14
+ <publisher>UC Santa Cruz</publisher>
15
+ <publicationYear>2016</publicationYear>
16
+ <subjects>
17
+ <subject>inertial sensing</subject>
18
+ <subject>step counting</subject>
19
+ <subject>orientation and mobility</subject>
20
+ <subject>blindness</subject>
21
+ </subjects>
22
+ <contributors>
23
+ <contributor contributorType="DataManager">
24
+ <contributorName>Manduchi, Roberto</contributorName>
25
+ </contributor>
26
+ <contributor contributorType="Funder">
27
+ <contributorName>Center for Information Technology Research in the Interest of Society</contributorName>
28
+ </contributor>
29
+ </contributors>
30
+ <relatedIdentifiers/>
31
+ <resourceType resourceTypeGeneral="Dataset">Dataset</resourceType>
32
+ <sizes>
33
+ <size>536605415</size>
34
+ </sizes>
35
+ <rightsList>
36
+ <rights rightsURI="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International (CC-BY 4.0)</rights>
37
+ </rightsList>
38
+ <descriptions>
39
+ <description descriptionType="Abstract">This data set contains time series from inertial sensors carried by blind subjects walking through pre-determined routes In two buildings in the UCSC campus. The sensors include two MetaWear CPRO (obtaining a tai-axial accelerometer and gyroscope) and two iPhone 6 containing try-axial accelerometer, gyroscopes, and magnetometers.</description>
40
+ <description descriptionType="Methods">The data is timestamped and annotated. In particular, the paths taken by the blind subjects are subdivided into continuous non-overlapping intervals corresponding, for example, to straight segments or left/right turns. In addition, our annotations contain specific &quot;features&quot;, such as when a blind subject bumped onto an obstacles or stopped momentarily. Intervals and features are specified by their start and end time. An XML schema (WeAllWalk.xsd) has been defined to format these annotations, and is contained in the data set. </description>
41
+ <description descriptionType="Other">2015-321</description>
42
+ </descriptions>
43
+ </resource>
@@ -0,0 +1,43 @@
1
+ <?xml version="1.0" encoding="utf-8"?><resource xmlns="http://datacite.org/schema/kernel-3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd">
2
+ <identifier identifierType="DOI"/>
3
+ <creators>
4
+ <creator>
5
+ <creatorName>Magnani, Jacopo</creatorName>
6
+ </creator>
7
+ <creator>
8
+ <creatorName>Friedman, Daniel</creatorName>
9
+ </creator>
10
+ <creator>
11
+ <creatorName>Sinervo, Barry</creatorName>
12
+ </creator>
13
+ </creators>
14
+ <titles>
15
+ <title>Maximum Likelihood Estimate of Payoffs from Time Series</title>
16
+ </titles>
17
+ <publisher>UC Santa Cruz</publisher>
18
+ <publicationYear>2015</publicationYear>
19
+ <subjects>
20
+ <subject>Maximum Likelihood</subject>
21
+ <subject>Time Series</subject>
22
+ <subject>Estimating Payoff Matrix From Time Series Data</subject>
23
+ </subjects>
24
+ <contributors>
25
+ <contributor contributorType="DataManager">
26
+ <contributorName>Sinervo, Barry</contributorName>
27
+ </contributor>
28
+ </contributors>
29
+ <relatedIdentifiers/>
30
+ <resourceType resourceTypeGeneral="Software">Software</resourceType>
31
+ <sizes>
32
+ <size>36961</size>
33
+ </sizes>
34
+ <rightsList>
35
+ <rights rightsURI="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International (CC-BY 4.0)</rights>
36
+ </rightsList>
37
+ <descriptions>
38
+ <description descriptionType="Abstract">We fit the data to a structural model estimated via maximum likelihood (ML) techniques.
39
+ The model in the matlab code joins discrete time replicator dynamics with a stochastic structure, given by the Dirichlet distribution or, alternatively, by the logistic distribution. </description>
40
+ <description descriptionType="Methods">This software can be used in the MatLab to estimate payoff matrices from time series data on the frequency of strategies over generations (discrete). Full details can be found in the book by Daniel Friedman and Barry Sinervo, &quot;Evolutionary Games in Natural, Social, and Virtual Worlds&quot;, (Publisher: Oxford University Press, 2016). </description>
41
+ <description descriptionType="Other"/>
42
+ </descriptions>
43
+ </resource>
@@ -0,0 +1,54 @@
1
+ <?xml version="1.0" encoding="utf-8"?><resource xmlns="http://datacite.org/schema/kernel-3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd">
2
+ <identifier identifierType="DOI"/>
3
+ <creators>
4
+ <creator>
5
+ <creatorName>Friedman, Daniel</creatorName>
6
+ </creator>
7
+ <creator>
8
+ <creatorName>Sinervo, Barry</creatorName>
9
+ </creator>
10
+ </creators>
11
+ <titles>
12
+ <title>Evolutionary Game Theory: Simulations</title>
13
+ </titles>
14
+ <publisher>UC Santa Cruz</publisher>
15
+ <publicationYear>2015</publicationYear>
16
+ <subjects>
17
+ <subject>Hawk Dove</subject>
18
+ <subject>RPS</subject>
19
+ <subject>Defect, Cooperate, Tit-for-Tat</subject>
20
+ <subject>Baseball</subject>
21
+ <subject>Differential Equation solver for Continuous Evolutionary Games </subject>
22
+ <subject>Cellular Automata</subject>
23
+ <subject>Buyer-Seller</subject>
24
+ </subjects>
25
+ <contributors>
26
+ <contributor contributorType="DataManager">
27
+ <contributorName>Sinervo, Barry</contributorName>
28
+ </contributor>
29
+ </contributors>
30
+ <relatedIdentifiers/>
31
+ <resourceType resourceTypeGeneral="Software">Software</resourceType>
32
+ <sizes>
33
+ <size>36129588</size>
34
+ </sizes>
35
+ <rightsList>
36
+ <rights rightsURI="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International (CC-BY 4.0)</rights>
37
+ </rightsList>
38
+ <descriptions>
39
+ <description descriptionType="Abstract">The software examples are all derived in the book by Daniel Friedman and Barry Sinervo, &quot;Evolutionary Games in Natural, Social, and Virtual Worlds&quot;, published by Oxford University Press (2016). These Excel simulations, R workspaces, and mathematica programs are designed to illustrate diverse games that can be developed for one-population games such as Hawk Dove, RPS, Defect-Cooperate-TFT, to two population games such as Baseball (pitchers versus batters) or Buyer-Seller. The Excel games D-C-TFT and Baseball are derived from Joseph E. Harrington's examples from his book &quot;Games, Strategies, and Decision Making&quot; (Publisher MacMillan, 2009).
40
+
41
+ We also develop continuous time versions of several games in the R programming environment, including an r-K strategy game, a two-population buyer-seller game, and several variations on RPS (all discussed in Chapters 1-4 of Friedman and Sinervo, 2016).
42
+
43
+ The software repository also includes a cellular automata (written by Morgan Maddren, Barry Sinervo and Daniel Friedman) implemented in the R programming environment. The package is described in Chapter 6 of Friedman and Sinervo (2016). The software requires the R packages vcd and deSolve to run.
44
+
45
+ We also include a mathematica version, based on William Sandholm's Mathematica package Dynamo (2013) of a predator (Naive-Responsive) playing against alternative prey types of Aposematic Model, Batesian Mimic, and Cryptic type, referred to as ABC prey game vs NR Predator. Version 1 of ABC-NR includes the simple version introduced in Chapter 7 of Friedman and Sinervo (2016) as well as the more complex version with additional own population effects for prey.
46
+
47
+ Also included in this software repository are diverse examples of RPS games using Sandholm's mathematica package Dynamo, such as the yeast RPS of Question 6 in Chapter 3, and diverse RPS mating systems found in Chapter 7 of Friedman and Sinervo (2016).
48
+
49
+ These examples are intended to spur on the development of projects by students who use the book as a text for a class. </description>
50
+ <description descriptionType="Methods">The spreadsheets and R software implement discrete or continuous time versions of several evolutionary games as described in the Book by Daniel Friedman and Barry Sinervo, &quot;Evolutionary Games in Natural, Social, and Virtual Worlds&quot;, published by Oxford University Press (2016).
51
+
52
+ </description>
53
+ </descriptions>
54
+ </resource>
@@ -0,0 +1,55 @@
1
+ <?xml version="1.0" encoding="utf-8"?><resource xmlns="http://datacite.org/schema/kernel-3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd">
2
+ <identifier identifierType="DOI"/>
3
+ <creators>
4
+ <creator>
5
+ <creatorName>Bennett, Ryan</creatorName>
6
+ </creator>
7
+ <creator>
8
+ <creatorName>McGuire, Grant</creatorName>
9
+ </creator>
10
+ <creator>
11
+ <creatorName>Ní Chiosáin, Máire</creatorName>
12
+ </creator>
13
+ <creator>
14
+ <creatorName>Padgett, Jaye</creatorName>
15
+ </creator>
16
+ </creators>
17
+ <titles>
18
+ <title>Ultrasound Investigation of Irish Palatalization (Phase 1, Connacht dialect)</title>
19
+ </titles>
20
+ <publisher>UC Santa Cruz</publisher>
21
+ <publicationYear>2015</publicationYear>
22
+ <subjects>
23
+ <subject>Irish</subject>
24
+ <subject>ultrasound</subject>
25
+ <subject>Connemara Irish</subject>
26
+ <subject>Connacht</subject>
27
+ <subject>linguistics</subject>
28
+ <subject>palatalization</subject>
29
+ <subject>velarization</subject>
30
+ <subject>phonetics</subject>
31
+ <subject>phonology</subject>
32
+ </subjects>
33
+ <contributors>
34
+ <contributor contributorType="Funder">
35
+ <contributorName>National Science Foundation. Division of Behavioral and Cognitive Sciences</contributorName>
36
+ </contributor>
37
+ </contributors>
38
+ <relatedIdentifiers>
39
+ <relatedIdentifier relatedIdentifierType="URL" relationType="Cites">http://humweb.ucsc.edu/jayepadgett/wp/conamara</relatedIdentifier>
40
+ </relatedIdentifiers>
41
+ <resourceType resourceTypeGeneral="Collection">Collection</resourceType>
42
+ <sizes>
43
+ <size>4424249688</size>
44
+ </sizes>
45
+ <rightsList>
46
+ <rights rightsURI="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International (CC-BY 4.0)</rights>
47
+ </rightsList>
48
+ <descriptions>
49
+ <description descriptionType="Abstract">This dataset documents the production of palatalized and velarized consonants in Connemara Irish gathered in 2010 using a portable ultrasound device. Ultrasound imaging provides direct information about tongue body shape and movement, crucial to an understanding of palatalization and velarization. We also recorded video of lip movement, and audio, simultaneously with the ultrasound video. The shape of the tongue body, and of the lips, were extracted from video and averaged by statistical means. This dataset is part of a larger project that documents the articulatory and acoustic properties of palatalization in the three major dialects of Irish (Connacht, Munster, and Ulster); material in this dataset comes from the Connacht dialect (Connemara Irish). This data is useful for researchers studying the effects on the palatalization contrast of consonant identity, vowel context, etc., as well as speaker strategies for maintaining contrast and coordinating gestures. In addition, learners and teachers of Irish can use this data for guidance on how to produce the Irish contrast between palatalized (slender) and velarized (broad) consonants.</description>
50
+ <description descriptionType="Methods">Ultrasound data was collected using a Terason T3000 ultrasound system with a model 8MC3 probe. The ultrasound machine recorded video at a rate of 57 frames per second, giving one new image roughly every 17.5ms. The probe was mounted in an Articulate Instruments Ultrasound Stabilization Headset, which was worn by the speakers throughout the experiment. (See Scobbie et al. 2008 for validation of this headset for probe stabilization.) Acoustic data was collected simultaneously using a Shure WH20 dynamic cardioid microphone attached to the headset, recording directly to the ultrasound system (which includes a laptop computer; 48,000 kHz sampling rate, 16 bit depth, mono, .WAV format). Each recording session lasted about one hour. Recordings were made in a quiet room in Sept. 2010.
51
+
52
+ For further details, see: Bennett, Ryan, Grant McGuire, Máire Ní Chiosáin &amp; Jaye Padgett (2014). An ultrasound study of Connemara Irish palatalization and velarization. Ms., UC Santa Cruz, University College Dublin, and Yale University. Available at &lt;http://humweb.ucsc.edu/jayepadgett/wp/wp-content/uploads/2014/02/Conamara_paper.pdf&gt;.</description>
53
+ <description descriptionType="Other">1424398</description>
54
+ </descriptions>
55
+ </resource>
@@ -0,0 +1,96 @@
1
+ <?xml version="1.0" encoding="utf-8"?><resource xmlns="http://datacite.org/schema/kernel-3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd">
2
+ <identifier identifierType="DOI">10.7272/Q6057CV6</identifier>
3
+ <creators>
4
+ <creator>
5
+ <creatorName>Cardenas, Valerie</creatorName>
6
+ </creator>
7
+ <creator>
8
+ <creatorName>Reed, Bruce</creatorName>
9
+ </creator>
10
+ <creator>
11
+ <creatorName>Chao, Linda</creatorName>
12
+ </creator>
13
+ <creator>
14
+ <creatorName>Chui, Helena</creatorName>
15
+ </creator>
16
+ <creator>
17
+ <creatorName>Sanossian, Nerses</creatorName>
18
+ </creator>
19
+ <creator>
20
+ <creatorName>DeCarli, Charles</creatorName>
21
+ </creator>
22
+ <creator>
23
+ <creatorName>Mack, Wendy</creatorName>
24
+ </creator>
25
+ <creator>
26
+ <creatorName>Kramer, Joel</creatorName>
27
+ </creator>
28
+ <creator>
29
+ <creatorName>Hodis, Howard</creatorName>
30
+ </creator>
31
+ <creator>
32
+ <creatorName>Yan, Mingzhu</creatorName>
33
+ </creator>
34
+ <creator>
35
+ <creatorName>Buonocore, Michael</creatorName>
36
+ </creator>
37
+ <creator>
38
+ <creatorName>Carmichael, Owen</creatorName>
39
+ </creator>
40
+ <creator>
41
+ <creatorName>Jagust, William J.</creatorName>
42
+ </creator>
43
+ <creator>
44
+ <creatorName>Weiner, Michael W.</creatorName>
45
+ </creator>
46
+ </creators>
47
+ <titles>
48
+ <title>Associations between vascular risk factors, carotid atherosclerosis and cortical volume and thickness in older adults</title>
49
+ </titles>
50
+ <publisher>University of California, San Francisco</publisher>
51
+ <publicationYear>2012</publicationYear>
52
+ <subjects>
53
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Adult</subject>
54
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Male</subject>
55
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Female</subject>
56
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Magnetic Resonance Imaging</subject>
57
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Brain</subject>
58
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Human</subject>
59
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Framingham Cardiovascular Risk Profile</subject>
60
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Aged</subject>
61
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Carotid Intima Media</subject>
62
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Gray Matter</subject>
63
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Cortical Thickness</subject>
64
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Cortical Volume</subject>
65
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Atrophy</subject>
66
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Cerebrovascular Disease</subject>
67
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Stroke</subject>
68
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Myocardial Infarction</subject>
69
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Infarct</subject>
70
+ </subjects>
71
+ <contributors>
72
+ <contributor contributorType="ResearchGroup">
73
+ <contributorName>UCSF Center for Imaging of Neurodegenerative Diseases</contributorName>
74
+ </contributor>
75
+ </contributors>
76
+ <dates>
77
+ <date dateType="Collected">2009-2011</date>
78
+ </dates>
79
+ <resourceType resourceTypeGeneral="Dataset">application/octet-stream</resourceType>
80
+ <relatedIdentifiers>
81
+ <relatedIdentifier relatedIdentifierType="PMID" relationType="References">22984010</relatedIdentifier>
82
+ </relatedIdentifiers>
83
+ <descriptions>
84
+ <description descriptionType="Abstract">Data from healthy and cognitively impaired elderly, enriched for cerebrovascular disease.
85
+ Background and Purpose: To investigate whether the Framingham Cardiovascular Risk Profile (FCRP) and carotid artery intima-media thickness (CIMT) are associated with cortical volume and thickness.
86
+ Results: 152 subjects (82 men) were aged 78 (±7) years old, 94 had a CDR of 0, 58 had a clinical dementia rating (CDR) of 0.5 and the mean mini-mental status examination (MMSE) was 28 ±2. FCRP score was inversely associated with total gray matter (GM) volume, parietal and temporal GM volume (adjusted p&lt;0.04). FCRP was inversely associated with parietal and total cerebral GM thickness (adjusted p&lt;0.03). CIMT was inversely associated with thickness of parietal GM only (adjusted p=0.04). Including history of myocardial infarction or stroke and radiologic evidence of brain infarction, or apoE genotype did not alter relationships with FCRP or CIMT.
87
+ Conclusions: Increased cardiovascular risk was associated with reduced GM volume and thickness in regions also affected by Alzheimer's disease (AD), independent of infarcts and apoE genotype. These results suggest a &quot;double hit&quot; toward developing dementia when someone with incipient AD also has high cardiovascular risk.
88
+ Subjects: Consecutive subjects were identified from an ongoing, longitudinal, multi-institutional Aging Brain program project that recruits subjects with normal cognition to mild cognitive impairment, representing a spectrum of low to high vascular risk14. Most participants were acquired through community-based recruitment using a protocol designed to obtain a demographically diverse cohort, or through sources such as stroke clinics and support groups attended by people with high vascular risk factors. All participants gave written informed consent in accordance with the policies of each institutional review board. Inclusion criteria include age 60 or older, with cognitive function in the normal to mild cognitive impairment range (Clinical Dementia Rating [CDR] score of 0 or 0.5) 15. Persons with history of multiple vascular risk factors, coronary or carotid disease, myocardial infarction, or ischemic stroke were targeted for inclusion, although patients with very large strokes that interfered with estimation of cortical volume and thickness were excluded. Exclusion criteria included evidence of alcohol or substance abuse, head trauma with loss of consciousness lasting longer than 15 minutes, factors contraindicating MRI, and severe medical illness, neurologic or psychiatric disorders unrelated to AD or vascular dementia that could significantly affect brain structure (e.g., schizophrenia and other psychotic disorders, bipolar disorder, current major depression, post-traumatic stress disorder, obsessive-compulsive disorder, liver disease, multiple sclerosis, amyotrophic lateral sclerosis). Participant demographics by CDR are shown in Table 1.
89
+ Measures of cardiovascular risk and carotid atherosclerosis: The FCRP uses empirically-derived age- and gender-adjusted weighting of categorical variables to predict the 10-year risk of coronary heart disease and is a weighted sum of: age, gender, active smoking, diabetes, systolic blood pressure (and/or use of hypertensive medications) and total cholesterol and high-density lipoprotein cholesterol levels13. Higher scores indicate greater coronary risk.
90
+ CIMT was used as a measure of subclinical atherosclerosis. CIMT is a measures of the thickness of the inner two layers of the carotid artery; higher CIMT indicates greater atherosclerosis burden. High-resolution B-mode ultrasound images of the right and left common carotid arteries were obtained with a 7.5-MHz linear array transducer attached to an ATL Apogee ultrasound system (Bothell, WA). CIMT was determined as the average of 70 to 100 measurements between the intima-lumen and media-adventitia interfaces along a 1 cm length just proximal to the carotid artery bulb at the same point of the cardiac cycle using comperterized automated edge detection. Right and left CIMT were measured in each individual whenever possible. For individuals with CIMT measurements from both sides, the maximum of these two quantities was used in subsequent statistical analyses.
91
+ Measure of AD risk: Blood was drawn with the subject's consent for apolipoprotein E genotyping. Genotyping was completed for 102 participants. Subjects with 3/4 or 4/4 combined alleles were classified as apoE e4 positive, and those with 3/3 alleles as apoE e4 negative. Because the 2/4 combined allele is associated with a lower risk of AD16, these subjects were not included in the APOE e4 positive group.</description>
92
+ <description descriptionType="Methods">Consecutive subjects participating in a prospective cohort study of aging and mild cognitive impairment enriched for vascular risk factors for atherosclerosis underwent structural MRI scans at 3T and 4T MRI at three sites. Freesurfer (v5.1) was used to obtain regional measures of neocortical volumes (mm3) and thickness (mm). Multiple linear regression was used to determine the association of FCRP and CIMT with cortical volume and thickness.
93
+ MRI: acquisition: Structural T1-weighted MRI scans for participants were collected on 3T and 4T MRI systems. Forty-three participants were scanned at the University of Southern California using a 3T General Electric Signal HDx system with an 8-channel head coil. Acquired images included a T1-weighted volumetric SPGR (TR = 7 ms, TE = 2.9 ms, TI= 650 ms, 1 mm3 isotropic resolution). Fifty-four participants were scanned at the University of California, Davis research center. Nine participants were scanned using a 3T Siemens Magnetom Trio Syngo System with an 8-channel head coil. Forty-five were scanned using a 3T Siemens Magnetom TrioTim system with an 8-channel head coil. Acquired images for all 54 participants included a T1-weighted volumetric MP-RAGE (TR = 2500, TE = 2.98, TI = 1100, 1 mm3 isotropic resolution). Thirty-three participants were scanned at the San Francisco Veterans Administration Medical Center using a 4T Siemens MedSpec Syngo System with an 8-channel head coil. A T1-weighted volumetric MP-RAGE scan (TR = 2300, TE = 2.84, TI = 950, 1 mm3 isotropic resolution) was acquired. Twenty-two participants were scanned at the University of California, San Francisco Neuroscience Imaging Center using a 3T Siemens Magnetom TrioTim system with a 12-channel head coil. Acquired images included a T1-weighted volumetric MP-RAGE (TR = 2500, TE = 2.98, TI = 1100, 1 mm3 isotropic resolution).
94
+ MRI: processing: The publicly available Freesurfer v5.1 (http://surfer.nmr.mgh.harvard.edu/) volumetric segmentation and cortical surface reconstruction methods were used to obtain regional measures of neocortical volumes (mm3) and thickness (mm). The reconstructed cortical surface models for each participant were manually inspected to ensure segmentation accuracy; regions with poor segmentation accuracy due to poor image quality or misregistration were excluded from further statistical analyses. Cortical surfaces were automatically parcellated17 and combined to create average cortical thickness and volume for total GM and for frontal, temporal, parietal, and occipital lobar regions. Region of interest volumes and thicknesses by cognitive status are shown in Table 2.</description>
95
+ </descriptions>
96
+ </resource>
@@ -0,0 +1,73 @@
1
+ <?xml version="1.0" encoding="utf-8"?><resource xmlns="http://datacite.org/schema/kernel-3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd">
2
+ <identifier identifierType="DOI">10.7272/Q6154F00</identifier>
3
+ <creators>
4
+ <creator>
5
+ <creatorName>Ewers, Michael</creatorName>
6
+ </creator>
7
+ <creator>
8
+ <creatorName>Insel, Philip</creatorName>
9
+ </creator>
10
+ <creator>
11
+ <creatorName>Jagust, William J.</creatorName>
12
+ </creator>
13
+ <creator>
14
+ <creatorName>Shaw, Leslie</creatorName>
15
+ </creator>
16
+ <creator>
17
+ <creatorName>Trojanowski, John Q.</creatorName>
18
+ </creator>
19
+ <creator>
20
+ <creatorName>Aisen, Paul</creatorName>
21
+ </creator>
22
+ <creator>
23
+ <creatorName>Petersen, Ronald C.</creatorName>
24
+ </creator>
25
+ <creator>
26
+ <creatorName>Schuff, Norbert</creatorName>
27
+ </creator>
28
+ <creator>
29
+ <creatorName>Weiner, Michael W.</creatorName>
30
+ </creator>
31
+ </creators>
32
+ <titles>
33
+ <title>CSF Biomarker and PIB-PET Derived Beta-Amyloid Signature Predicts Metabolic, Grey Matter and Cognitive Changes in Non-Demented Subjects</title>
34
+ </titles>
35
+ <publisher>University of California, San Francisco</publisher>
36
+ <publicationYear>2012</publicationYear>
37
+ <subjects>
38
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Adult</subject>
39
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Male</subject>
40
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Female</subject>
41
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Magnetic Resonance Imaging</subject>
42
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Brain</subject>
43
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Human</subject>
44
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Aged</subject>
45
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Amyloid</subject>
46
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Cerebral Spinal Fluid</subject>
47
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Positron Emission Tomography</subject>
48
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Pathology</subject>
49
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">A Beta</subject>
50
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">FDG-PET</subject>
51
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Glucose Metabolism</subject>
52
+ <subject schemeURI="http://www.nlm.nih.gov/mesh/" subjectScheme="MeSH">Atrophy</subject>
53
+ </subjects>
54
+ <contributors>
55
+ <contributor contributorType="ResearchGroup">
56
+ <contributorName>UCSF Center for Imaging of Neurodegenerative Diseases</contributorName>
57
+ </contributor>
58
+ </contributors>
59
+ <resourceType resourceTypeGeneral="Dataset">application/octet-stream</resourceType>
60
+ <relatedIdentifiers>
61
+ <relatedIdentifier relatedIdentifierType="PMID" relationType="References">22038908</relatedIdentifier>
62
+ </relatedIdentifiers>
63
+ <descriptions>
64
+ <description descriptionType="Abstract">Beta-amyloid (Aß is a histopathological hallmark of Alzheimer's disease dementia, but high levels of Aß in the brain can also be found in a substantial proportion of nondemented subjects. Here we investigated which 2-year rate of brain and cognitive changes are present in nondemented subjects with high and low Aß levels, as assessed with cerebrospinal fluid and molecular positron emission tomography (PET)-based biomarkers of Aß. In subjects with mild cognitive impairment, increased brain Aß levels were associated with significantly faster cognitive decline, progression of gray matter atrophy within temporal and parietal brain regions, and a trend for a faster decline in parietal Fludeoxyglucose (FDG)-PET metabolism. Changes in gray matter and FDG-PET mediated the association between Aß and cognitive decline. In contrast, elderly cognitively healthy controls (HC) with high Aß levels showed only a faster medial temporal lobe and precuneus volume decline compared with HC with low Aß. In conclusion, the current results suggest not only that both functional and volumetric brain changes are associated with high Aß years before the onset of dementia but also that HC with substantial Aß levels show higher Aß pathology resistance, lack other pathologies that condition neurotoxic effects of Aß, or accumulated Aß for a shorter time period.</description>
65
+ <description descriptionType="Methods">Subjects: The study included 465 subjects of which 124 were elderly cognitively HC subjects, 229 subjects were diagnosed with amnestic MCI and 112 subjects had probable AD, recruited within the North American multicenter Alzheimer's Disease Neuroimaging Initiative (ADNI, for database, see www.loni.ucla.edu/ADNI). ADNI was launched in 2003 by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration, private pharmaceutical companies, and nonprofit organizations, as a $60 million, 5-year public-private partnership. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), PET, other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of MCI and early Alzheimer's disease (AD). The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research—approximately 200 cognitively normal older individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years, and 200 people with early AD to be followed for 2 years. For up-to-date information, see www.adni-info.org. The current sample was restricted to those subjects who had either a PIB-PET assessment or a CSF-Aß-1-42 measurement. Within this subset, PIB-PET was available in 103 subjects including 19 HC, 65 MCI, and 19 AD subjects. The CSF-Aß-1-42 concentration was assessed in a total of 116 HC, 199 MCI, and 102 AD subjects (see Fig. 1 for further information on subjects and data inclusion). Within 55 subjects, both CSF Ab1--42 and PIB-PET were assessed. The observation interval covered 2 years, where neuropsychological assessment, FDG-PET scanning, and MRI acquisition was conducted at baseline, 6, 12, and 24 month. All collected data are freely accessible online to researchers (http://www.loni.ucla.edu/ADNI). General inclusion criteria included an age between 55 and 90 years, a modified Hachinski score =4, education of at least 6 grade level, and stable treatment of at least 4 weeks in case of treatment with permitted medication (for full list, see http://www.adni-info.org, Procedures Manual). The diagnosis of AD was made according to the NINCDS-ADRDA criteria (McKhann et al. 1984). Inclusion criteria for AD encompassed subjective memory complaint, memory impairment as assessed by an education adjusted score on delayed recall of a single paragraph recall from the Wechsler Logical Memory II Subscale as follows: 0–7 years of education, =2; for 8–15 years, =4; for 16 years or more, =8, a Mini Mental State Exam (MMSE) score between 20 and 26, and a clinical dementia rating (CDR) score of 0.5 or 1. For the diagnosis of amnestic MCI, the subjects had to show subjective memory impairment and objective memory impairment identical to that for AD, a CDR of 0.5 including the memory box score of 0.5 or greater, and a MMSE score between 24 and 30, with unimpaired general cognitive ability and functional performance such that they did not meet criteria for dementia. HC had to show normal performance on the Logical Memory II Subscale adjusted for education as follows: 0–7 years, =3, 8–15 years, =5; 16 or more years, =9, and absence of significant impairment on cognitive function or activities of daily living (Ewers et al. 2010).
66
+ CSF Measurement: All CSF samples collected at the different centers were shipped on dry ice to the Penn ADNI Biomarker Core Laboratory at the University of Pennsylvania, Philadelphia, for storage at -80°C until further analysis at the laboratory. More details on data collection of the CSF samples can be found at http://www.adni-info.org, under &quot;ADNI study procedures.&quot; The CSF concentration of Aß-1-42, t-tau, and p-tau181 were measured in the baseline CSF samples using the multiplex xMAP Luminex platform (Lumnix Corp, Austin, TX) at the Penn ADNI Biomarker Core Laboratory. For detailed description, see Shaw et al. (2009).
67
+ PIB-PET, FDG-PET, MRI Acquisition, and ROI Measurement: All MRI data were acquired on 1.5-T MRI scanners using a volumetric T1-weighted sequences to map brain structures, optimized for the different scanners as indicated at http://www.loni.ucla.edu/ADNI/Research/Cores/index (Jack, Bernstein, et al. 2008). Freesurfer software version 4.5 (Dale et al. 1999; Fischl et al. 1999) was employed to measure longitudinal changes in regional brain volumes. Briefly, the image-processing pipeline using FreeSurfer consisted of five stages: an affine registration with Talairach space, an initial volumetric labeling, bias field correction, nonlinear alignment to the Talairach space, and a final labeling of the volume. The fully automated labeling of volumes is achieved by warping a population based brain atlas to the target brain and by maximizing an a posteriori probability of the labels given specific constraints. A full description of the FreeSurfer processing steps can be found in (Fischl et al. 2002). The procedures have been extensively validated.
68
+ MRI-volume ROIs were selected based on the previous meta-analyses on MRI gray matter volume measures that were most predictive of AD, including the hippocampus, middle temporal gyrus, superior temporal gyrus, amygdala, parahippocampus, entorhinal cortex, inferior parietal lobe, precuneus, and thalamus (Schroeter et al. 2009).
69
+ PET data were acquired on multiple instruments of varying resolution. PIB scans were collected as 4 × 5 min frames beginning 50 min after injection of tracer. FDG scans were collected as 6 × 5 min frames beginning 30 min after injection of approximately 5 mCi of tracer. Attenuation correction was performed either via transmission scan or computer tomography. Images were uploaded to the Laboratory of Neuroimaging where they were processed to provide standard orientation, voxel size, and resolution. FDG-PET ROIs were constructed based on a meta-analysis of the location of FDG-PET changes in the brain that are typically affected in AD as described previously (Jagust et al. 2009; Landau et al. 2009). FDG uptake was normalized to a reference region composed of the pons and cerebellum and measured in the target ROIs that included bilateral angular gyrus, posterior cingulate/precuneus, and inferior temporal cortex as described previously (Jagust et al. 2009). PIB-PET uptake was normalized to the cerebellum to generate maps of the PIB-PET score used for further statistical analysis. Target ROIs were drawn on a structural MRI template from a single 79-year-old MCI subject scanned at the University of Pittsburgh. This image was deemed an &quot;average&quot; older subject with typical atrophy and ventricular size. Each subject's PIB-PET score map was coregistered to the individual MRI with SPM5 that was normalized to the MCI template with SPM5 and permitted the transformation of the subject's PIB-PET to the template space. ROIs in which PIB uptake is known to predominate were averaged in left and right hemispheres and comprised of prefrontal, lateral temporal, anterior cingulate gyrus, parietal and posterior cingulate/precuneus. Further information is available at the ADNI webpage (http://www.loni.ucla.edu/ADNI/).
70
+ Neuropsychological Tests: Global cognitive ability was assessed with the neuropsychological test battery Alzheimer's Disease Assessment Scale–cognitive section (ADAS-cog) (Rosen et al. 1984). The ADAS-cog score is the total score on a number of tests on learning and memory, language production, language comprehension, constructional praxis, ideational praxis, and orientation (see ADNI procedures manual for details at http://www.adni-info.org/Scientists/ProceduresManuals.aspx). A higher score on ADAS-cog scores indicates lower cognitive performance.
71
+ Episodic memory was assessed with the Rey Auditory Verbal Learning Test (RAVLT), using the score on the 30-min delayed recall of a list of 15 words that had been repeatedly presented and recalled during the learning phase of 5 verbal presentations of the list (Rey 1964). The test score corresponds to the number of words recalled on the 30-min delayed test. For details on the administration and scoring, see the &quot;Procedures Manual&quot; (http://www.adni-info.org/Scientists/ProceduresManuals.aspx). </description>
72
+ </descriptions>
73
+ </resource>