xinference 0.14.1.post1__py3-none-any.whl → 0.14.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +15 -34
- xinference/client/restful/restful_client.py +2 -2
- xinference/core/chat_interface.py +45 -10
- xinference/core/image_interface.py +9 -0
- xinference/core/model.py +8 -5
- xinference/core/scheduler.py +1 -2
- xinference/core/worker.py +49 -42
- xinference/deploy/cmdline.py +2 -2
- xinference/deploy/test/test_cmdline.py +7 -7
- xinference/model/audio/chattts.py +24 -9
- xinference/model/audio/core.py +8 -2
- xinference/model/audio/fish_speech.py +228 -0
- xinference/model/audio/model_spec.json +8 -0
- xinference/model/embedding/core.py +23 -1
- xinference/model/image/model_spec.json +2 -1
- xinference/model/image/model_spec_modelscope.json +2 -1
- xinference/model/image/stable_diffusion/core.py +49 -1
- xinference/model/llm/__init__.py +26 -27
- xinference/model/llm/{ggml/llamacpp.py → llama_cpp/core.py} +2 -35
- xinference/model/llm/llm_family.json +606 -1266
- xinference/model/llm/llm_family.py +16 -139
- xinference/model/llm/llm_family_modelscope.json +276 -313
- xinference/model/llm/lmdeploy/__init__.py +0 -0
- xinference/model/llm/lmdeploy/core.py +557 -0
- xinference/model/llm/memory.py +9 -9
- xinference/model/llm/sglang/core.py +2 -2
- xinference/model/llm/{pytorch → transformers}/chatglm.py +6 -13
- xinference/model/llm/{pytorch → transformers}/cogvlm2.py +4 -45
- xinference/model/llm/transformers/cogvlm2_video.py +524 -0
- xinference/model/llm/{pytorch → transformers}/core.py +3 -10
- xinference/model/llm/{pytorch → transformers}/glm4v.py +2 -23
- xinference/model/llm/transformers/intern_vl.py +540 -0
- xinference/model/llm/{pytorch → transformers}/internlm2.py +4 -8
- xinference/model/llm/{pytorch → transformers}/minicpmv25.py +2 -23
- xinference/model/llm/{pytorch → transformers}/minicpmv26.py +66 -41
- xinference/model/llm/{pytorch → transformers}/utils.py +1 -2
- xinference/model/llm/{pytorch → transformers}/yi_vl.py +2 -24
- xinference/model/llm/utils.py +85 -70
- xinference/model/llm/vllm/core.py +110 -11
- xinference/model/utils.py +1 -95
- xinference/thirdparty/fish_speech/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/callbacks/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/callbacks/grad_norm.py +113 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +2 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/concat_repeat.py +53 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/text_data_pb2.py +33 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/text_data_stream.py +36 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/semantic.py +496 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/vqgan.py +147 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/core.py +40 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/pt_BR.json +133 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/scan.py +122 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/lit_module.py +202 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +779 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/lora.py +92 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/lit_module.py +442 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/discriminator.py +44 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +625 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +139 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/reference.py +115 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/wavenet.py +225 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/utils.py +94 -0
- xinference/thirdparty/fish_speech/fish_speech/scheduler.py +40 -0
- xinference/thirdparty/fish_speech/fish_speech/text/__init__.py +4 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_class.py +172 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_constant.py +30 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_util.py +342 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/cardinal.py +32 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/date.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/digit.py +32 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/fraction.py +35 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/money.py +43 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/percentage.py +33 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/telephone.py +51 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +177 -0
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +69 -0
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +130 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +139 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +23 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/braceexpand.py +217 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/context.py +13 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/file.py +16 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/instantiators.py +50 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/logger.py +55 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/logging_utils.py +48 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/rich_utils.py +100 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/spectrogram.py +122 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +114 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +120 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1237 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +495 -0
- xinference/thirdparty/fish_speech/tools/auto_rerank.py +159 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +55 -0
- xinference/thirdparty/fish_speech/tools/extract_model.py +21 -0
- xinference/thirdparty/fish_speech/tools/file.py +108 -0
- xinference/thirdparty/fish_speech/tools/gen_ref.py +36 -0
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/llama/build_dataset.py +169 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +171 -0
- xinference/thirdparty/fish_speech/tools/llama/generate.py +698 -0
- xinference/thirdparty/fish_speech/tools/llama/merge_lora.py +95 -0
- xinference/thirdparty/fish_speech/tools/llama/quantize.py +497 -0
- xinference/thirdparty/fish_speech/tools/llama/rebuild_tokenizer.py +57 -0
- xinference/thirdparty/fish_speech/tools/merge_asr_files.py +55 -0
- xinference/thirdparty/fish_speech/tools/post_api.py +164 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/auto_model.py +573 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/fun_asr.py +332 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/vad_utils.py +61 -0
- xinference/thirdparty/fish_speech/tools/smart_pad.py +47 -0
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/vqgan/create_train_split.py +83 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +227 -0
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +120 -0
- xinference/thirdparty/fish_speech/tools/webui.py +619 -0
- xinference/thirdparty/fish_speech/tools/whisper_asr.py +176 -0
- xinference/thirdparty/internvl/__init__.py +0 -0
- xinference/thirdparty/internvl/conversation.py +393 -0
- xinference/thirdparty/omnilmm/model/utils.py +16 -1
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/main.661c7b0a.js +3 -0
- xinference/web/ui/build/static/js/{main.17ca0398.js.map → main.661c7b0a.js.map} +1 -1
- xinference/web/ui/node_modules/.cache/babel-loader/070d8c6b3b0f3485c6d3885f0b6bbfdf9643e088a468acbd5d596f2396071c16.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/213b5913e164773c2b0567455377765715f5f07225fbac77ad8e1e9dc9648a47.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5391543180fead1eeef5364300301498d58a7d91d62de3841a32768b67f4552f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5c26a23b5eacf5b752a08531577ae3840bb247745ef9a39583dc2d05ba93a82a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/714c37ce0ec5b5c591033f02be2f3f491fdd70da3ef568ee4a4f94689a3d5ca2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/978b57d1a04a701bc3fcfebc511f5f274eed6ed7eade67f6fb76c27d5fd9ecc8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a797831de0dc74897f4b50b3426555d748f328b4c2cc391de709eadaf6a5f3e3.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e91938976f229ce986b2907e51e1f00540b584ced0a315d498c172d13220739d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +1 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/METADATA +22 -13
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/RECORD +170 -79
- xinference/locale/utils.py +0 -39
- xinference/locale/zh_CN.json +0 -26
- xinference/model/llm/ggml/tools/__init__.py +0 -15
- xinference/model/llm/ggml/tools/convert_ggml_to_gguf.py +0 -498
- xinference/model/llm/ggml/tools/gguf.py +0 -884
- xinference/model/llm/pytorch/__init__.py +0 -13
- xinference/model/llm/pytorch/baichuan.py +0 -81
- xinference/model/llm/pytorch/falcon.py +0 -138
- xinference/model/llm/pytorch/intern_vl.py +0 -352
- xinference/model/llm/pytorch/vicuna.py +0 -69
- xinference/web/ui/build/static/js/main.17ca0398.js +0 -3
- xinference/web/ui/node_modules/.cache/babel-loader/1444c41a4d04494f1cbc2d8c1537df107b451cb569cb2c1fbf5159f3a4841a5f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/2f40209b32e7e46a2eab6b8c8a355eb42c3caa8bc3228dd929f32fd2b3940294.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/44774c783428f952d8e2e4ad0998a9c5bc16a57cd9c68b7c5ff18aaa5a41d65c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/5262556baf9207738bf6a8ba141ec6599d0a636345c245d61fdf88d3171998cb.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/6450605fac003812485f6251b9f0caafbf2e5bfc3bbe2f000050d9e2fdb8dcd3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/71684495d995c7e266eecc6a0ad8ea0284cc785f80abddf863789c57a6134969.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/80acd1edf31542ab1dcccfad02cb4b38f3325cff847a781fcce97500cfd6f878.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8a9742ddd8ba8546ef42dc14caca443f2b4524fabed7bf269e0eff3b7b64ee7d.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d06a96a3c9c32e42689094aa3aaad41c8125894e956b8f84a70fadce6e3f65b3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d93730e2b5d7e8c957b4d0965d2ed1dac9045a649adbd47c220d11f255d4b1e0.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e656dc00b4d8b387f0a81ba8fc558767df1601c66369e2eb86a5ef27cf080572.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f28b83886159d83b84f099b05d607a822dca4dd7f2d8aa6d56fe08bab0b5b086.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f3e02274cb1964e99b1fe69cbb6db233d3d8d7dd05d50ebcdb8e66d50b224b7b.json +0 -1
- /xinference/{locale → model/llm/llama_cpp}/__init__.py +0 -0
- /xinference/model/llm/{ggml → transformers}/__init__.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/compression.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/deepseek_vl.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/llama_2.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/omnilmm.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/qwen_vl.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/tensorizer_utils.py +0 -0
- /xinference/web/ui/build/static/js/{main.17ca0398.js.LICENSE.txt → main.661c7b0a.js.LICENSE.txt} +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/LICENSE +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/WHEEL +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/entry_points.txt +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,619 @@
|
|
|
1
|
+
import gc
|
|
2
|
+
import html
|
|
3
|
+
import io
|
|
4
|
+
import os
|
|
5
|
+
import queue
|
|
6
|
+
import wave
|
|
7
|
+
from argparse import ArgumentParser
|
|
8
|
+
from functools import partial
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
|
|
11
|
+
import gradio as gr
|
|
12
|
+
import librosa
|
|
13
|
+
import numpy as np
|
|
14
|
+
# import pyrootutils
|
|
15
|
+
import torch
|
|
16
|
+
from loguru import logger
|
|
17
|
+
from transformers import AutoTokenizer
|
|
18
|
+
|
|
19
|
+
# pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
from fish_speech.i18n import i18n
|
|
23
|
+
from fish_speech.text.chn_text_norm.text import Text as ChnNormedText
|
|
24
|
+
from fish_speech.utils import autocast_exclude_mps
|
|
25
|
+
from tools.api import decode_vq_tokens, encode_reference
|
|
26
|
+
from tools.auto_rerank import batch_asr, calculate_wer, is_chinese, load_model
|
|
27
|
+
from tools.llama.generate import (
|
|
28
|
+
GenerateRequest,
|
|
29
|
+
GenerateResponse,
|
|
30
|
+
WrappedGenerateResponse,
|
|
31
|
+
launch_thread_safe_queue,
|
|
32
|
+
)
|
|
33
|
+
from tools.vqgan.inference import load_model as load_decoder_model
|
|
34
|
+
|
|
35
|
+
# Make einx happy
|
|
36
|
+
os.environ["EINX_FILTER_TRACEBACK"] = "false"
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
HEADER_MD = f"""# Fish Speech
|
|
40
|
+
|
|
41
|
+
{i18n("A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).")}
|
|
42
|
+
|
|
43
|
+
{i18n("You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1).")}
|
|
44
|
+
|
|
45
|
+
{i18n("Related code are released under BSD-3-Clause License, and weights are released under CC BY-NC-SA 4.0 License.")}
|
|
46
|
+
|
|
47
|
+
{i18n("We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.")}
|
|
48
|
+
"""
|
|
49
|
+
|
|
50
|
+
TEXTBOX_PLACEHOLDER = i18n("Put your text here.")
|
|
51
|
+
SPACE_IMPORTED = False
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def build_html_error_message(error):
|
|
55
|
+
return f"""
|
|
56
|
+
<div style="color: red;
|
|
57
|
+
font-weight: bold;">
|
|
58
|
+
{html.escape(str(error))}
|
|
59
|
+
</div>
|
|
60
|
+
"""
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
@torch.inference_mode()
|
|
64
|
+
def inference(
|
|
65
|
+
text,
|
|
66
|
+
enable_reference_audio,
|
|
67
|
+
reference_audio,
|
|
68
|
+
reference_text,
|
|
69
|
+
max_new_tokens,
|
|
70
|
+
chunk_length,
|
|
71
|
+
top_p,
|
|
72
|
+
repetition_penalty,
|
|
73
|
+
temperature,
|
|
74
|
+
streaming=False,
|
|
75
|
+
):
|
|
76
|
+
if args.max_gradio_length > 0 and len(text) > args.max_gradio_length:
|
|
77
|
+
return (
|
|
78
|
+
None,
|
|
79
|
+
None,
|
|
80
|
+
i18n("Text is too long, please keep it under {} characters.").format(
|
|
81
|
+
args.max_gradio_length
|
|
82
|
+
),
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
# Parse reference audio aka prompt
|
|
86
|
+
prompt_tokens = encode_reference(
|
|
87
|
+
decoder_model=decoder_model,
|
|
88
|
+
reference_audio=reference_audio,
|
|
89
|
+
enable_reference_audio=enable_reference_audio,
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
# LLAMA Inference
|
|
93
|
+
request = dict(
|
|
94
|
+
device=decoder_model.device,
|
|
95
|
+
max_new_tokens=max_new_tokens,
|
|
96
|
+
text=text,
|
|
97
|
+
top_p=top_p,
|
|
98
|
+
repetition_penalty=repetition_penalty,
|
|
99
|
+
temperature=temperature,
|
|
100
|
+
compile=args.compile,
|
|
101
|
+
iterative_prompt=chunk_length > 0,
|
|
102
|
+
chunk_length=chunk_length,
|
|
103
|
+
max_length=2048,
|
|
104
|
+
prompt_tokens=prompt_tokens if enable_reference_audio else None,
|
|
105
|
+
prompt_text=reference_text if enable_reference_audio else None,
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
response_queue = queue.Queue()
|
|
109
|
+
llama_queue.put(
|
|
110
|
+
GenerateRequest(
|
|
111
|
+
request=request,
|
|
112
|
+
response_queue=response_queue,
|
|
113
|
+
)
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
if streaming:
|
|
117
|
+
yield wav_chunk_header(), None, None
|
|
118
|
+
|
|
119
|
+
segments = []
|
|
120
|
+
|
|
121
|
+
while True:
|
|
122
|
+
result: WrappedGenerateResponse = response_queue.get()
|
|
123
|
+
if result.status == "error":
|
|
124
|
+
yield None, None, build_html_error_message(result.response)
|
|
125
|
+
break
|
|
126
|
+
|
|
127
|
+
result: GenerateResponse = result.response
|
|
128
|
+
if result.action == "next":
|
|
129
|
+
break
|
|
130
|
+
|
|
131
|
+
with autocast_exclude_mps(
|
|
132
|
+
device_type=decoder_model.device.type, dtype=args.precision
|
|
133
|
+
):
|
|
134
|
+
fake_audios = decode_vq_tokens(
|
|
135
|
+
decoder_model=decoder_model,
|
|
136
|
+
codes=result.codes,
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
fake_audios = fake_audios.float().cpu().numpy()
|
|
140
|
+
segments.append(fake_audios)
|
|
141
|
+
|
|
142
|
+
if streaming:
|
|
143
|
+
yield (fake_audios * 32768).astype(np.int16).tobytes(), None, None
|
|
144
|
+
|
|
145
|
+
if len(segments) == 0:
|
|
146
|
+
return (
|
|
147
|
+
None,
|
|
148
|
+
None,
|
|
149
|
+
build_html_error_message(
|
|
150
|
+
i18n("No audio generated, please check the input text.")
|
|
151
|
+
),
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
# No matter streaming or not, we need to return the final audio
|
|
155
|
+
audio = np.concatenate(segments, axis=0)
|
|
156
|
+
yield None, (decoder_model.spec_transform.sample_rate, audio), None
|
|
157
|
+
|
|
158
|
+
if torch.cuda.is_available():
|
|
159
|
+
torch.cuda.empty_cache()
|
|
160
|
+
gc.collect()
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
def inference_with_auto_rerank(
|
|
164
|
+
text,
|
|
165
|
+
enable_reference_audio,
|
|
166
|
+
reference_audio,
|
|
167
|
+
reference_text,
|
|
168
|
+
max_new_tokens,
|
|
169
|
+
chunk_length,
|
|
170
|
+
top_p,
|
|
171
|
+
repetition_penalty,
|
|
172
|
+
temperature,
|
|
173
|
+
use_auto_rerank,
|
|
174
|
+
streaming=False,
|
|
175
|
+
):
|
|
176
|
+
|
|
177
|
+
max_attempts = 2 if use_auto_rerank else 1
|
|
178
|
+
best_wer = float("inf")
|
|
179
|
+
best_audio = None
|
|
180
|
+
best_sample_rate = None
|
|
181
|
+
|
|
182
|
+
for attempt in range(max_attempts):
|
|
183
|
+
audio_generator = inference(
|
|
184
|
+
text,
|
|
185
|
+
enable_reference_audio,
|
|
186
|
+
reference_audio,
|
|
187
|
+
reference_text,
|
|
188
|
+
max_new_tokens,
|
|
189
|
+
chunk_length,
|
|
190
|
+
top_p,
|
|
191
|
+
repetition_penalty,
|
|
192
|
+
temperature,
|
|
193
|
+
streaming=False,
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
# 获取音频数据
|
|
197
|
+
for _ in audio_generator:
|
|
198
|
+
pass
|
|
199
|
+
_, (sample_rate, audio), message = _
|
|
200
|
+
|
|
201
|
+
if audio is None:
|
|
202
|
+
return None, None, message
|
|
203
|
+
|
|
204
|
+
if not use_auto_rerank:
|
|
205
|
+
return None, (sample_rate, audio), None
|
|
206
|
+
|
|
207
|
+
asr_result = batch_asr(asr_model, [audio], sample_rate)[0]
|
|
208
|
+
wer = calculate_wer(text, asr_result["text"])
|
|
209
|
+
if wer <= 0.3 and not asr_result["huge_gap"]:
|
|
210
|
+
return None, (sample_rate, audio), None
|
|
211
|
+
|
|
212
|
+
if wer < best_wer:
|
|
213
|
+
best_wer = wer
|
|
214
|
+
best_audio = audio
|
|
215
|
+
best_sample_rate = sample_rate
|
|
216
|
+
|
|
217
|
+
if attempt == max_attempts - 1:
|
|
218
|
+
break
|
|
219
|
+
|
|
220
|
+
return None, (best_sample_rate, best_audio), None
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
inference_stream = partial(inference, streaming=True)
|
|
224
|
+
|
|
225
|
+
n_audios = 4
|
|
226
|
+
|
|
227
|
+
global_audio_list = []
|
|
228
|
+
global_error_list = []
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
def inference_wrapper(
|
|
232
|
+
text,
|
|
233
|
+
enable_reference_audio,
|
|
234
|
+
reference_audio,
|
|
235
|
+
reference_text,
|
|
236
|
+
max_new_tokens,
|
|
237
|
+
chunk_length,
|
|
238
|
+
top_p,
|
|
239
|
+
repetition_penalty,
|
|
240
|
+
temperature,
|
|
241
|
+
batch_infer_num,
|
|
242
|
+
if_load_asr_model,
|
|
243
|
+
):
|
|
244
|
+
audios = []
|
|
245
|
+
errors = []
|
|
246
|
+
|
|
247
|
+
for _ in range(batch_infer_num):
|
|
248
|
+
result = inference_with_auto_rerank(
|
|
249
|
+
text,
|
|
250
|
+
enable_reference_audio,
|
|
251
|
+
reference_audio,
|
|
252
|
+
reference_text,
|
|
253
|
+
max_new_tokens,
|
|
254
|
+
chunk_length,
|
|
255
|
+
top_p,
|
|
256
|
+
repetition_penalty,
|
|
257
|
+
temperature,
|
|
258
|
+
if_load_asr_model,
|
|
259
|
+
)
|
|
260
|
+
|
|
261
|
+
_, audio_data, error_message = result
|
|
262
|
+
|
|
263
|
+
audios.append(
|
|
264
|
+
gr.Audio(value=audio_data if audio_data else None, visible=True),
|
|
265
|
+
)
|
|
266
|
+
errors.append(
|
|
267
|
+
gr.HTML(value=error_message if error_message else None, visible=True),
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
for _ in range(batch_infer_num, n_audios):
|
|
271
|
+
audios.append(
|
|
272
|
+
gr.Audio(value=None, visible=False),
|
|
273
|
+
)
|
|
274
|
+
errors.append(
|
|
275
|
+
gr.HTML(value=None, visible=False),
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
return None, *audios, *errors
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
|
|
282
|
+
buffer = io.BytesIO()
|
|
283
|
+
|
|
284
|
+
with wave.open(buffer, "wb") as wav_file:
|
|
285
|
+
wav_file.setnchannels(channels)
|
|
286
|
+
wav_file.setsampwidth(bit_depth // 8)
|
|
287
|
+
wav_file.setframerate(sample_rate)
|
|
288
|
+
|
|
289
|
+
wav_header_bytes = buffer.getvalue()
|
|
290
|
+
buffer.close()
|
|
291
|
+
return wav_header_bytes
|
|
292
|
+
|
|
293
|
+
|
|
294
|
+
def normalize_text(user_input, use_normalization):
|
|
295
|
+
if use_normalization:
|
|
296
|
+
return ChnNormedText(raw_text=user_input).normalize()
|
|
297
|
+
else:
|
|
298
|
+
return user_input
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
asr_model = None
|
|
302
|
+
|
|
303
|
+
|
|
304
|
+
def change_if_load_asr_model(if_load):
|
|
305
|
+
global asr_model
|
|
306
|
+
|
|
307
|
+
if if_load:
|
|
308
|
+
gr.Warning("Loading faster whisper model...")
|
|
309
|
+
if asr_model is None:
|
|
310
|
+
asr_model = load_model()
|
|
311
|
+
return gr.Checkbox(label="Unload faster whisper model", value=if_load)
|
|
312
|
+
|
|
313
|
+
if if_load is False:
|
|
314
|
+
gr.Warning("Unloading faster whisper model...")
|
|
315
|
+
del asr_model
|
|
316
|
+
asr_model = None
|
|
317
|
+
if torch.cuda.is_available():
|
|
318
|
+
torch.cuda.empty_cache()
|
|
319
|
+
gc.collect()
|
|
320
|
+
return gr.Checkbox(label="Load faster whisper model", value=if_load)
|
|
321
|
+
|
|
322
|
+
|
|
323
|
+
def change_if_auto_label(if_load, if_auto_label, enable_ref, ref_audio, ref_text):
|
|
324
|
+
if if_load and asr_model is not None:
|
|
325
|
+
if (
|
|
326
|
+
if_auto_label
|
|
327
|
+
and enable_ref
|
|
328
|
+
and ref_audio is not None
|
|
329
|
+
and ref_text.strip() == ""
|
|
330
|
+
):
|
|
331
|
+
data, sample_rate = librosa.load(ref_audio)
|
|
332
|
+
res = batch_asr(asr_model, [data], sample_rate)[0]
|
|
333
|
+
ref_text = res["text"]
|
|
334
|
+
else:
|
|
335
|
+
gr.Warning("Whisper model not loaded!")
|
|
336
|
+
|
|
337
|
+
return gr.Textbox(value=ref_text)
|
|
338
|
+
|
|
339
|
+
|
|
340
|
+
def build_app():
|
|
341
|
+
with gr.Blocks(theme=gr.themes.Base()) as app:
|
|
342
|
+
gr.Markdown(HEADER_MD)
|
|
343
|
+
|
|
344
|
+
# Use light theme by default
|
|
345
|
+
app.load(
|
|
346
|
+
None,
|
|
347
|
+
None,
|
|
348
|
+
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}"
|
|
349
|
+
% args.theme,
|
|
350
|
+
)
|
|
351
|
+
|
|
352
|
+
# Inference
|
|
353
|
+
with gr.Row():
|
|
354
|
+
with gr.Column(scale=3):
|
|
355
|
+
text = gr.Textbox(
|
|
356
|
+
label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10
|
|
357
|
+
)
|
|
358
|
+
refined_text = gr.Textbox(
|
|
359
|
+
label=i18n("Realtime Transform Text"),
|
|
360
|
+
placeholder=i18n(
|
|
361
|
+
"Normalization Result Preview (Currently Only Chinese)"
|
|
362
|
+
),
|
|
363
|
+
lines=5,
|
|
364
|
+
interactive=False,
|
|
365
|
+
)
|
|
366
|
+
|
|
367
|
+
with gr.Row():
|
|
368
|
+
if_refine_text = gr.Checkbox(
|
|
369
|
+
label=i18n("Text Normalization"),
|
|
370
|
+
value=True,
|
|
371
|
+
scale=1,
|
|
372
|
+
)
|
|
373
|
+
|
|
374
|
+
if_load_asr_model = gr.Checkbox(
|
|
375
|
+
label=i18n("Load / Unload ASR model for auto-reranking"),
|
|
376
|
+
value=False,
|
|
377
|
+
scale=3,
|
|
378
|
+
)
|
|
379
|
+
|
|
380
|
+
with gr.Row():
|
|
381
|
+
with gr.Tab(label=i18n("Advanced Config")):
|
|
382
|
+
chunk_length = gr.Slider(
|
|
383
|
+
label=i18n("Iterative Prompt Length, 0 means off"),
|
|
384
|
+
minimum=0,
|
|
385
|
+
maximum=500,
|
|
386
|
+
value=100,
|
|
387
|
+
step=8,
|
|
388
|
+
)
|
|
389
|
+
|
|
390
|
+
max_new_tokens = gr.Slider(
|
|
391
|
+
label=i18n("Maximum tokens per batch, 0 means no limit"),
|
|
392
|
+
minimum=0,
|
|
393
|
+
maximum=2048,
|
|
394
|
+
value=1024, # 0 means no limit
|
|
395
|
+
step=8,
|
|
396
|
+
)
|
|
397
|
+
|
|
398
|
+
top_p = gr.Slider(
|
|
399
|
+
label="Top-P",
|
|
400
|
+
minimum=0.6,
|
|
401
|
+
maximum=0.9,
|
|
402
|
+
value=0.7,
|
|
403
|
+
step=0.01,
|
|
404
|
+
)
|
|
405
|
+
|
|
406
|
+
repetition_penalty = gr.Slider(
|
|
407
|
+
label=i18n("Repetition Penalty"),
|
|
408
|
+
minimum=1,
|
|
409
|
+
maximum=1.5,
|
|
410
|
+
value=1.2,
|
|
411
|
+
step=0.01,
|
|
412
|
+
)
|
|
413
|
+
|
|
414
|
+
temperature = gr.Slider(
|
|
415
|
+
label="Temperature",
|
|
416
|
+
minimum=0.6,
|
|
417
|
+
maximum=0.9,
|
|
418
|
+
value=0.7,
|
|
419
|
+
step=0.01,
|
|
420
|
+
)
|
|
421
|
+
|
|
422
|
+
with gr.Tab(label=i18n("Reference Audio")):
|
|
423
|
+
gr.Markdown(
|
|
424
|
+
i18n(
|
|
425
|
+
"5 to 10 seconds of reference audio, useful for specifying speaker."
|
|
426
|
+
)
|
|
427
|
+
)
|
|
428
|
+
|
|
429
|
+
enable_reference_audio = gr.Checkbox(
|
|
430
|
+
label=i18n("Enable Reference Audio"),
|
|
431
|
+
)
|
|
432
|
+
reference_audio = gr.Audio(
|
|
433
|
+
label=i18n("Reference Audio"),
|
|
434
|
+
type="filepath",
|
|
435
|
+
)
|
|
436
|
+
with gr.Row():
|
|
437
|
+
if_auto_label = gr.Checkbox(
|
|
438
|
+
label=i18n("Auto Labeling"),
|
|
439
|
+
min_width=100,
|
|
440
|
+
scale=0,
|
|
441
|
+
value=False,
|
|
442
|
+
)
|
|
443
|
+
reference_text = gr.Textbox(
|
|
444
|
+
label=i18n("Reference Text"),
|
|
445
|
+
lines=1,
|
|
446
|
+
placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。",
|
|
447
|
+
value="",
|
|
448
|
+
)
|
|
449
|
+
with gr.Tab(label=i18n("Batch Inference")):
|
|
450
|
+
batch_infer_num = gr.Slider(
|
|
451
|
+
label="Batch infer nums",
|
|
452
|
+
minimum=1,
|
|
453
|
+
maximum=n_audios,
|
|
454
|
+
step=1,
|
|
455
|
+
value=1,
|
|
456
|
+
)
|
|
457
|
+
|
|
458
|
+
with gr.Column(scale=3):
|
|
459
|
+
for _ in range(n_audios):
|
|
460
|
+
with gr.Row():
|
|
461
|
+
error = gr.HTML(
|
|
462
|
+
label=i18n("Error Message"),
|
|
463
|
+
visible=True if _ == 0 else False,
|
|
464
|
+
)
|
|
465
|
+
global_error_list.append(error)
|
|
466
|
+
with gr.Row():
|
|
467
|
+
audio = gr.Audio(
|
|
468
|
+
label=i18n("Generated Audio"),
|
|
469
|
+
type="numpy",
|
|
470
|
+
interactive=False,
|
|
471
|
+
visible=True if _ == 0 else False,
|
|
472
|
+
)
|
|
473
|
+
global_audio_list.append(audio)
|
|
474
|
+
|
|
475
|
+
with gr.Row():
|
|
476
|
+
stream_audio = gr.Audio(
|
|
477
|
+
label=i18n("Streaming Audio"),
|
|
478
|
+
streaming=True,
|
|
479
|
+
autoplay=True,
|
|
480
|
+
interactive=False,
|
|
481
|
+
show_download_button=True,
|
|
482
|
+
)
|
|
483
|
+
with gr.Row():
|
|
484
|
+
with gr.Column(scale=3):
|
|
485
|
+
generate = gr.Button(
|
|
486
|
+
value="\U0001F3A7 " + i18n("Generate"), variant="primary"
|
|
487
|
+
)
|
|
488
|
+
generate_stream = gr.Button(
|
|
489
|
+
value="\U0001F3A7 " + i18n("Streaming Generate"),
|
|
490
|
+
variant="primary",
|
|
491
|
+
)
|
|
492
|
+
|
|
493
|
+
text.input(
|
|
494
|
+
fn=normalize_text, inputs=[text, if_refine_text], outputs=[refined_text]
|
|
495
|
+
)
|
|
496
|
+
|
|
497
|
+
if_load_asr_model.change(
|
|
498
|
+
fn=change_if_load_asr_model,
|
|
499
|
+
inputs=[if_load_asr_model],
|
|
500
|
+
outputs=[if_load_asr_model],
|
|
501
|
+
)
|
|
502
|
+
|
|
503
|
+
if_auto_label.change(
|
|
504
|
+
fn=lambda: gr.Textbox(value=""),
|
|
505
|
+
inputs=[],
|
|
506
|
+
outputs=[reference_text],
|
|
507
|
+
).then(
|
|
508
|
+
fn=change_if_auto_label,
|
|
509
|
+
inputs=[
|
|
510
|
+
if_load_asr_model,
|
|
511
|
+
if_auto_label,
|
|
512
|
+
enable_reference_audio,
|
|
513
|
+
reference_audio,
|
|
514
|
+
reference_text,
|
|
515
|
+
],
|
|
516
|
+
outputs=[reference_text],
|
|
517
|
+
)
|
|
518
|
+
|
|
519
|
+
# # Submit
|
|
520
|
+
generate.click(
|
|
521
|
+
inference_wrapper,
|
|
522
|
+
[
|
|
523
|
+
refined_text,
|
|
524
|
+
enable_reference_audio,
|
|
525
|
+
reference_audio,
|
|
526
|
+
reference_text,
|
|
527
|
+
max_new_tokens,
|
|
528
|
+
chunk_length,
|
|
529
|
+
top_p,
|
|
530
|
+
repetition_penalty,
|
|
531
|
+
temperature,
|
|
532
|
+
batch_infer_num,
|
|
533
|
+
if_load_asr_model,
|
|
534
|
+
],
|
|
535
|
+
[stream_audio, *global_audio_list, *global_error_list],
|
|
536
|
+
concurrency_limit=1,
|
|
537
|
+
)
|
|
538
|
+
|
|
539
|
+
generate_stream.click(
|
|
540
|
+
inference_stream,
|
|
541
|
+
[
|
|
542
|
+
refined_text,
|
|
543
|
+
enable_reference_audio,
|
|
544
|
+
reference_audio,
|
|
545
|
+
reference_text,
|
|
546
|
+
max_new_tokens,
|
|
547
|
+
chunk_length,
|
|
548
|
+
top_p,
|
|
549
|
+
repetition_penalty,
|
|
550
|
+
temperature,
|
|
551
|
+
],
|
|
552
|
+
[stream_audio, global_audio_list[0], global_error_list[0]],
|
|
553
|
+
concurrency_limit=10,
|
|
554
|
+
)
|
|
555
|
+
return app
|
|
556
|
+
|
|
557
|
+
|
|
558
|
+
def parse_args():
|
|
559
|
+
parser = ArgumentParser()
|
|
560
|
+
parser.add_argument(
|
|
561
|
+
"--llama-checkpoint-path",
|
|
562
|
+
type=Path,
|
|
563
|
+
default="checkpoints/fish-speech-1.2-sft",
|
|
564
|
+
)
|
|
565
|
+
parser.add_argument(
|
|
566
|
+
"--decoder-checkpoint-path",
|
|
567
|
+
type=Path,
|
|
568
|
+
default="checkpoints/fish-speech-1.2-sft/firefly-gan-vq-fsq-4x1024-42hz-generator.pth",
|
|
569
|
+
)
|
|
570
|
+
parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
|
|
571
|
+
parser.add_argument("--device", type=str, default="cuda")
|
|
572
|
+
parser.add_argument("--half", action="store_true")
|
|
573
|
+
parser.add_argument("--compile", action="store_true")
|
|
574
|
+
parser.add_argument("--max-gradio-length", type=int, default=0)
|
|
575
|
+
parser.add_argument("--theme", type=str, default="light")
|
|
576
|
+
|
|
577
|
+
return parser.parse_args()
|
|
578
|
+
|
|
579
|
+
|
|
580
|
+
if __name__ == "__main__":
|
|
581
|
+
args = parse_args()
|
|
582
|
+
args.precision = torch.half if args.half else torch.bfloat16
|
|
583
|
+
|
|
584
|
+
logger.info("Loading Llama model...")
|
|
585
|
+
llama_queue = launch_thread_safe_queue(
|
|
586
|
+
checkpoint_path=args.llama_checkpoint_path,
|
|
587
|
+
device=args.device,
|
|
588
|
+
precision=args.precision,
|
|
589
|
+
compile=args.compile,
|
|
590
|
+
)
|
|
591
|
+
logger.info("Llama model loaded, loading VQ-GAN model...")
|
|
592
|
+
|
|
593
|
+
decoder_model = load_decoder_model(
|
|
594
|
+
config_name=args.decoder_config_name,
|
|
595
|
+
checkpoint_path=args.decoder_checkpoint_path,
|
|
596
|
+
device=args.device,
|
|
597
|
+
)
|
|
598
|
+
|
|
599
|
+
logger.info("Decoder model loaded, warming up...")
|
|
600
|
+
|
|
601
|
+
# Dry run to check if the model is loaded correctly and avoid the first-time latency
|
|
602
|
+
list(
|
|
603
|
+
inference(
|
|
604
|
+
text="Hello, world!",
|
|
605
|
+
enable_reference_audio=False,
|
|
606
|
+
reference_audio=None,
|
|
607
|
+
reference_text="",
|
|
608
|
+
max_new_tokens=0,
|
|
609
|
+
chunk_length=100,
|
|
610
|
+
top_p=0.7,
|
|
611
|
+
repetition_penalty=1.2,
|
|
612
|
+
temperature=0.7,
|
|
613
|
+
)
|
|
614
|
+
)
|
|
615
|
+
|
|
616
|
+
logger.info("Warming up done, launching the web UI...")
|
|
617
|
+
|
|
618
|
+
app = build_app()
|
|
619
|
+
app.launch(show_api=True)
|