xinference 0.14.1.post1__py3-none-any.whl → 0.14.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +15 -34
- xinference/client/restful/restful_client.py +2 -2
- xinference/core/chat_interface.py +45 -10
- xinference/core/image_interface.py +9 -0
- xinference/core/model.py +8 -5
- xinference/core/scheduler.py +1 -2
- xinference/core/worker.py +49 -42
- xinference/deploy/cmdline.py +2 -2
- xinference/deploy/test/test_cmdline.py +7 -7
- xinference/model/audio/chattts.py +24 -9
- xinference/model/audio/core.py +8 -2
- xinference/model/audio/fish_speech.py +228 -0
- xinference/model/audio/model_spec.json +8 -0
- xinference/model/embedding/core.py +23 -1
- xinference/model/image/model_spec.json +2 -1
- xinference/model/image/model_spec_modelscope.json +2 -1
- xinference/model/image/stable_diffusion/core.py +49 -1
- xinference/model/llm/__init__.py +26 -27
- xinference/model/llm/{ggml/llamacpp.py → llama_cpp/core.py} +2 -35
- xinference/model/llm/llm_family.json +606 -1266
- xinference/model/llm/llm_family.py +16 -139
- xinference/model/llm/llm_family_modelscope.json +276 -313
- xinference/model/llm/lmdeploy/__init__.py +0 -0
- xinference/model/llm/lmdeploy/core.py +557 -0
- xinference/model/llm/memory.py +9 -9
- xinference/model/llm/sglang/core.py +2 -2
- xinference/model/llm/{pytorch → transformers}/chatglm.py +6 -13
- xinference/model/llm/{pytorch → transformers}/cogvlm2.py +4 -45
- xinference/model/llm/transformers/cogvlm2_video.py +524 -0
- xinference/model/llm/{pytorch → transformers}/core.py +3 -10
- xinference/model/llm/{pytorch → transformers}/glm4v.py +2 -23
- xinference/model/llm/transformers/intern_vl.py +540 -0
- xinference/model/llm/{pytorch → transformers}/internlm2.py +4 -8
- xinference/model/llm/{pytorch → transformers}/minicpmv25.py +2 -23
- xinference/model/llm/{pytorch → transformers}/minicpmv26.py +66 -41
- xinference/model/llm/{pytorch → transformers}/utils.py +1 -2
- xinference/model/llm/{pytorch → transformers}/yi_vl.py +2 -24
- xinference/model/llm/utils.py +85 -70
- xinference/model/llm/vllm/core.py +110 -11
- xinference/model/utils.py +1 -95
- xinference/thirdparty/fish_speech/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/callbacks/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/callbacks/grad_norm.py +113 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +2 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/concat_repeat.py +53 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/text_data_pb2.py +33 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/text_data_stream.py +36 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/semantic.py +496 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/vqgan.py +147 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/core.py +40 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/pt_BR.json +133 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/scan.py +122 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/lit_module.py +202 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +779 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/lora.py +92 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/lit_module.py +442 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/discriminator.py +44 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +625 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +139 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/reference.py +115 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/wavenet.py +225 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/utils.py +94 -0
- xinference/thirdparty/fish_speech/fish_speech/scheduler.py +40 -0
- xinference/thirdparty/fish_speech/fish_speech/text/__init__.py +4 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_class.py +172 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_constant.py +30 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_util.py +342 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/cardinal.py +32 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/date.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/digit.py +32 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/fraction.py +35 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/money.py +43 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/percentage.py +33 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/telephone.py +51 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +177 -0
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +69 -0
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +130 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +139 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +23 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/braceexpand.py +217 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/context.py +13 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/file.py +16 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/instantiators.py +50 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/logger.py +55 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/logging_utils.py +48 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/rich_utils.py +100 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/spectrogram.py +122 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +114 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +120 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1237 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +495 -0
- xinference/thirdparty/fish_speech/tools/auto_rerank.py +159 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +55 -0
- xinference/thirdparty/fish_speech/tools/extract_model.py +21 -0
- xinference/thirdparty/fish_speech/tools/file.py +108 -0
- xinference/thirdparty/fish_speech/tools/gen_ref.py +36 -0
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/llama/build_dataset.py +169 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +171 -0
- xinference/thirdparty/fish_speech/tools/llama/generate.py +698 -0
- xinference/thirdparty/fish_speech/tools/llama/merge_lora.py +95 -0
- xinference/thirdparty/fish_speech/tools/llama/quantize.py +497 -0
- xinference/thirdparty/fish_speech/tools/llama/rebuild_tokenizer.py +57 -0
- xinference/thirdparty/fish_speech/tools/merge_asr_files.py +55 -0
- xinference/thirdparty/fish_speech/tools/post_api.py +164 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/auto_model.py +573 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/fun_asr.py +332 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/vad_utils.py +61 -0
- xinference/thirdparty/fish_speech/tools/smart_pad.py +47 -0
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/vqgan/create_train_split.py +83 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +227 -0
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +120 -0
- xinference/thirdparty/fish_speech/tools/webui.py +619 -0
- xinference/thirdparty/fish_speech/tools/whisper_asr.py +176 -0
- xinference/thirdparty/internvl/__init__.py +0 -0
- xinference/thirdparty/internvl/conversation.py +393 -0
- xinference/thirdparty/omnilmm/model/utils.py +16 -1
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/main.661c7b0a.js +3 -0
- xinference/web/ui/build/static/js/{main.17ca0398.js.map → main.661c7b0a.js.map} +1 -1
- xinference/web/ui/node_modules/.cache/babel-loader/070d8c6b3b0f3485c6d3885f0b6bbfdf9643e088a468acbd5d596f2396071c16.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/213b5913e164773c2b0567455377765715f5f07225fbac77ad8e1e9dc9648a47.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5391543180fead1eeef5364300301498d58a7d91d62de3841a32768b67f4552f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5c26a23b5eacf5b752a08531577ae3840bb247745ef9a39583dc2d05ba93a82a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/714c37ce0ec5b5c591033f02be2f3f491fdd70da3ef568ee4a4f94689a3d5ca2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/978b57d1a04a701bc3fcfebc511f5f274eed6ed7eade67f6fb76c27d5fd9ecc8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a797831de0dc74897f4b50b3426555d748f328b4c2cc391de709eadaf6a5f3e3.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e91938976f229ce986b2907e51e1f00540b584ced0a315d498c172d13220739d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +1 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/METADATA +22 -13
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/RECORD +170 -79
- xinference/locale/utils.py +0 -39
- xinference/locale/zh_CN.json +0 -26
- xinference/model/llm/ggml/tools/__init__.py +0 -15
- xinference/model/llm/ggml/tools/convert_ggml_to_gguf.py +0 -498
- xinference/model/llm/ggml/tools/gguf.py +0 -884
- xinference/model/llm/pytorch/__init__.py +0 -13
- xinference/model/llm/pytorch/baichuan.py +0 -81
- xinference/model/llm/pytorch/falcon.py +0 -138
- xinference/model/llm/pytorch/intern_vl.py +0 -352
- xinference/model/llm/pytorch/vicuna.py +0 -69
- xinference/web/ui/build/static/js/main.17ca0398.js +0 -3
- xinference/web/ui/node_modules/.cache/babel-loader/1444c41a4d04494f1cbc2d8c1537df107b451cb569cb2c1fbf5159f3a4841a5f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/2f40209b32e7e46a2eab6b8c8a355eb42c3caa8bc3228dd929f32fd2b3940294.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/44774c783428f952d8e2e4ad0998a9c5bc16a57cd9c68b7c5ff18aaa5a41d65c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/5262556baf9207738bf6a8ba141ec6599d0a636345c245d61fdf88d3171998cb.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/6450605fac003812485f6251b9f0caafbf2e5bfc3bbe2f000050d9e2fdb8dcd3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/71684495d995c7e266eecc6a0ad8ea0284cc785f80abddf863789c57a6134969.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/80acd1edf31542ab1dcccfad02cb4b38f3325cff847a781fcce97500cfd6f878.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8a9742ddd8ba8546ef42dc14caca443f2b4524fabed7bf269e0eff3b7b64ee7d.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d06a96a3c9c32e42689094aa3aaad41c8125894e956b8f84a70fadce6e3f65b3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d93730e2b5d7e8c957b4d0965d2ed1dac9045a649adbd47c220d11f255d4b1e0.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e656dc00b4d8b387f0a81ba8fc558767df1601c66369e2eb86a5ef27cf080572.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f28b83886159d83b84f099b05d607a822dca4dd7f2d8aa6d56fe08bab0b5b086.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f3e02274cb1964e99b1fe69cbb6db233d3d8d7dd05d50ebcdb8e66d50b224b7b.json +0 -1
- /xinference/{locale → model/llm/llama_cpp}/__init__.py +0 -0
- /xinference/model/llm/{ggml → transformers}/__init__.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/compression.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/deepseek_vl.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/llama_2.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/omnilmm.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/qwen_vl.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/tensorizer_utils.py +0 -0
- /xinference/web/ui/build/static/js/{main.17ca0398.js.LICENSE.txt → main.661c7b0a.js.LICENSE.txt} +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/LICENSE +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/WHEEL +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/entry_points.txt +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,332 @@
|
|
|
1
|
+
import gc
|
|
2
|
+
import os
|
|
3
|
+
import re
|
|
4
|
+
|
|
5
|
+
from audio_separator.separator import Separator
|
|
6
|
+
|
|
7
|
+
os.environ["MODELSCOPE_CACHE"] = "./.cache/funasr"
|
|
8
|
+
os.environ["UVR5_CACHE"] = "./.cache/uvr5-models"
|
|
9
|
+
import json
|
|
10
|
+
import subprocess
|
|
11
|
+
from pathlib import Path
|
|
12
|
+
|
|
13
|
+
import click
|
|
14
|
+
import torch
|
|
15
|
+
from loguru import logger
|
|
16
|
+
from pydub import AudioSegment
|
|
17
|
+
from silero_vad import get_speech_timestamps, load_silero_vad, read_audio
|
|
18
|
+
from tqdm import tqdm
|
|
19
|
+
|
|
20
|
+
from tools.file import AUDIO_EXTENSIONS, VIDEO_EXTENSIONS, list_files
|
|
21
|
+
from tools.sensevoice.auto_model import AutoModel
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def uvr5_cli(
|
|
25
|
+
audio_dir: Path,
|
|
26
|
+
output_folder: Path,
|
|
27
|
+
audio_files: list[Path] | None = None,
|
|
28
|
+
output_format: str = "flac",
|
|
29
|
+
model: str = "BS-Roformer-Viperx-1296.ckpt",
|
|
30
|
+
):
|
|
31
|
+
# ["BS-Roformer-Viperx-1297.ckpt", "BS-Roformer-Viperx-1296.ckpt", "BS-Roformer-Viperx-1053.ckpt", "Mel-Roformer-Viperx-1143.ckpt"]
|
|
32
|
+
sepr = Separator(
|
|
33
|
+
model_file_dir=os.environ["UVR5_CACHE"],
|
|
34
|
+
output_dir=output_folder,
|
|
35
|
+
output_format=output_format,
|
|
36
|
+
)
|
|
37
|
+
dictmodel = {
|
|
38
|
+
"BS-Roformer-Viperx-1297.ckpt": "model_bs_roformer_ep_317_sdr_12.9755.ckpt",
|
|
39
|
+
"BS-Roformer-Viperx-1296.ckpt": "model_bs_roformer_ep_368_sdr_12.9628.ckpt",
|
|
40
|
+
"BS-Roformer-Viperx-1053.ckpt": "model_bs_roformer_ep_937_sdr_10.5309.ckpt",
|
|
41
|
+
"Mel-Roformer-Viperx-1143.ckpt": "model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt",
|
|
42
|
+
}
|
|
43
|
+
roformer_model = dictmodel[model]
|
|
44
|
+
sepr.load_model(roformer_model)
|
|
45
|
+
if audio_files is None:
|
|
46
|
+
audio_files = list_files(
|
|
47
|
+
path=audio_dir, extensions=AUDIO_EXTENSIONS, recursive=True
|
|
48
|
+
)
|
|
49
|
+
total_files = len(audio_files)
|
|
50
|
+
|
|
51
|
+
print(f"{total_files} audio files found")
|
|
52
|
+
|
|
53
|
+
res = []
|
|
54
|
+
for audio in tqdm(audio_files, desc="Denoising: "):
|
|
55
|
+
file_path = str(audio_dir / audio)
|
|
56
|
+
sep_out = sepr.separate(file_path)
|
|
57
|
+
if isinstance(sep_out, str):
|
|
58
|
+
res.append(sep_out)
|
|
59
|
+
elif isinstance(sep_out, list):
|
|
60
|
+
res.extend(sep_out)
|
|
61
|
+
del sepr
|
|
62
|
+
gc.collect()
|
|
63
|
+
if torch.cuda.is_available():
|
|
64
|
+
torch.cuda.empty_cache()
|
|
65
|
+
|
|
66
|
+
return res, roformer_model
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def get_sample_rate(media_path: Path):
|
|
70
|
+
result = subprocess.run(
|
|
71
|
+
[
|
|
72
|
+
"ffprobe",
|
|
73
|
+
"-v",
|
|
74
|
+
"quiet",
|
|
75
|
+
"-print_format",
|
|
76
|
+
"json",
|
|
77
|
+
"-show_streams",
|
|
78
|
+
str(media_path),
|
|
79
|
+
],
|
|
80
|
+
capture_output=True,
|
|
81
|
+
text=True,
|
|
82
|
+
check=True,
|
|
83
|
+
)
|
|
84
|
+
media_info = json.loads(result.stdout)
|
|
85
|
+
for stream in media_info.get("streams", []):
|
|
86
|
+
if stream.get("codec_type") == "audio":
|
|
87
|
+
return stream.get("sample_rate")
|
|
88
|
+
return "44100" # Default sample rate if not found
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
def convert_to_mono(src_path: Path, out_path: Path, out_fmt: str = "wav"):
|
|
92
|
+
sr = get_sample_rate(src_path)
|
|
93
|
+
out_path.parent.mkdir(parents=True, exist_ok=True)
|
|
94
|
+
if src_path.resolve() == out_path.resolve():
|
|
95
|
+
output = str(out_path.with_stem(out_path.stem + f"_{sr}"))
|
|
96
|
+
else:
|
|
97
|
+
output = str(out_path)
|
|
98
|
+
subprocess.run(
|
|
99
|
+
[
|
|
100
|
+
"ffmpeg",
|
|
101
|
+
"-loglevel",
|
|
102
|
+
"error",
|
|
103
|
+
"-i",
|
|
104
|
+
str(src_path),
|
|
105
|
+
"-acodec",
|
|
106
|
+
"pcm_s16le" if out_fmt == "wav" else "flac",
|
|
107
|
+
"-ar",
|
|
108
|
+
sr,
|
|
109
|
+
"-ac",
|
|
110
|
+
"1",
|
|
111
|
+
"-y",
|
|
112
|
+
output,
|
|
113
|
+
],
|
|
114
|
+
check=True,
|
|
115
|
+
)
|
|
116
|
+
return out_path
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
def convert_video_to_audio(video_path: Path, audio_dir: Path):
|
|
120
|
+
cur_dir = audio_dir / video_path.relative_to(audio_dir).parent
|
|
121
|
+
vocals = [
|
|
122
|
+
p
|
|
123
|
+
for p in cur_dir.glob(f"{video_path.stem}_(Vocals)*.*")
|
|
124
|
+
if p.suffix in AUDIO_EXTENSIONS
|
|
125
|
+
]
|
|
126
|
+
if len(vocals) > 0:
|
|
127
|
+
return vocals[0]
|
|
128
|
+
audio_path = cur_dir / f"{video_path.stem}.wav"
|
|
129
|
+
convert_to_mono(video_path, audio_path)
|
|
130
|
+
return audio_path
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
@click.command()
|
|
134
|
+
@click.option("--audio-dir", required=True, help="Directory containing audio files")
|
|
135
|
+
@click.option(
|
|
136
|
+
"--save-dir", required=True, help="Directory to save processed audio files"
|
|
137
|
+
)
|
|
138
|
+
@click.option("--device", default="cuda", help="Device to use [cuda / cpu]")
|
|
139
|
+
@click.option("--language", default="auto", help="Language of the transcription")
|
|
140
|
+
@click.option(
|
|
141
|
+
"--max_single_segment_time",
|
|
142
|
+
default=20000,
|
|
143
|
+
type=int,
|
|
144
|
+
help="Maximum of Output single audio duration(ms)",
|
|
145
|
+
)
|
|
146
|
+
@click.option("--fsmn-vad/--silero-vad", default=False)
|
|
147
|
+
@click.option("--punc/--no-punc", default=False)
|
|
148
|
+
@click.option("--denoise/--no-denoise", default=False)
|
|
149
|
+
@click.option("--save_emo/--no_save_emo", default=False)
|
|
150
|
+
def main(
|
|
151
|
+
audio_dir: str,
|
|
152
|
+
save_dir: str,
|
|
153
|
+
device: str,
|
|
154
|
+
language: str,
|
|
155
|
+
max_single_segment_time: int,
|
|
156
|
+
fsmn_vad: bool,
|
|
157
|
+
punc: bool,
|
|
158
|
+
denoise: bool,
|
|
159
|
+
save_emo: bool,
|
|
160
|
+
):
|
|
161
|
+
|
|
162
|
+
audios_path = Path(audio_dir)
|
|
163
|
+
save_path = Path(save_dir)
|
|
164
|
+
save_path.mkdir(parents=True, exist_ok=True)
|
|
165
|
+
|
|
166
|
+
video_files = list_files(
|
|
167
|
+
path=audio_dir, extensions=VIDEO_EXTENSIONS, recursive=True
|
|
168
|
+
)
|
|
169
|
+
v2a_files = [convert_video_to_audio(p, audio_dir) for p in video_files]
|
|
170
|
+
|
|
171
|
+
if denoise:
|
|
172
|
+
VOCAL = "_(Vocals)"
|
|
173
|
+
original_files = [
|
|
174
|
+
p
|
|
175
|
+
for p in audios_path.glob("**/*")
|
|
176
|
+
if p.suffix in AUDIO_EXTENSIONS and VOCAL not in p.stem
|
|
177
|
+
]
|
|
178
|
+
|
|
179
|
+
_, cur_model = uvr5_cli(
|
|
180
|
+
audio_dir=audio_dir, output_folder=audio_dir, audio_files=original_files
|
|
181
|
+
)
|
|
182
|
+
need_remove = [p for p in audios_path.glob("**/*(Instrumental)*")]
|
|
183
|
+
need_remove.extend(original_files)
|
|
184
|
+
for _ in need_remove:
|
|
185
|
+
_.unlink()
|
|
186
|
+
vocal_files = [
|
|
187
|
+
p
|
|
188
|
+
for p in audios_path.glob("**/*")
|
|
189
|
+
if p.suffix in AUDIO_EXTENSIONS and VOCAL in p.stem
|
|
190
|
+
]
|
|
191
|
+
for f in vocal_files:
|
|
192
|
+
fn, ext = f.stem, f.suffix
|
|
193
|
+
|
|
194
|
+
v_pos = fn.find(VOCAL + "_" + cur_model.split(".")[0])
|
|
195
|
+
if v_pos != -1:
|
|
196
|
+
new_fn = fn[: v_pos + len(VOCAL)]
|
|
197
|
+
new_f = f.with_name(new_fn + ext)
|
|
198
|
+
f = f.rename(new_f)
|
|
199
|
+
convert_to_mono(f, f, "flac")
|
|
200
|
+
f.unlink()
|
|
201
|
+
|
|
202
|
+
audio_files = list_files(
|
|
203
|
+
path=audio_dir, extensions=AUDIO_EXTENSIONS, recursive=True
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
logger.info("Loading / Downloading Funasr model...")
|
|
207
|
+
|
|
208
|
+
model_dir = "iic/SenseVoiceSmall"
|
|
209
|
+
|
|
210
|
+
vad_model = "fsmn-vad" if fsmn_vad else None
|
|
211
|
+
vad_kwargs = {"max_single_segment_time": max_single_segment_time}
|
|
212
|
+
punc_model = "ct-punc" if punc else None
|
|
213
|
+
|
|
214
|
+
manager = AutoModel(
|
|
215
|
+
model=model_dir,
|
|
216
|
+
trust_remote_code=False,
|
|
217
|
+
vad_model=vad_model,
|
|
218
|
+
vad_kwargs=vad_kwargs,
|
|
219
|
+
punc_model=punc_model,
|
|
220
|
+
device=device,
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
if not fsmn_vad and vad_model is None:
|
|
224
|
+
vad_model = load_silero_vad()
|
|
225
|
+
|
|
226
|
+
logger.info("Model loaded.")
|
|
227
|
+
|
|
228
|
+
pattern = re.compile(r"_\d{3}\.")
|
|
229
|
+
|
|
230
|
+
for file_path in tqdm(audio_files, desc="Processing audio file"):
|
|
231
|
+
|
|
232
|
+
if pattern.search(file_path.name):
|
|
233
|
+
# logger.info(f"Skipping {file_path} as it has already been processed.")
|
|
234
|
+
continue
|
|
235
|
+
|
|
236
|
+
file_stem = file_path.stem
|
|
237
|
+
file_suffix = file_path.suffix
|
|
238
|
+
|
|
239
|
+
rel_path = Path(file_path).relative_to(audio_dir)
|
|
240
|
+
(save_path / rel_path.parent).mkdir(parents=True, exist_ok=True)
|
|
241
|
+
|
|
242
|
+
audio = AudioSegment.from_file(file_path)
|
|
243
|
+
|
|
244
|
+
cfg = dict(
|
|
245
|
+
cache={},
|
|
246
|
+
language=language, # "zh", "en", "yue", "ja", "ko", "nospeech"
|
|
247
|
+
use_itn=False,
|
|
248
|
+
batch_size_s=60,
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
if fsmn_vad:
|
|
252
|
+
elapsed, vad_res = manager.vad(input=str(file_path), **cfg)
|
|
253
|
+
else:
|
|
254
|
+
wav = read_audio(
|
|
255
|
+
str(file_path)
|
|
256
|
+
) # backend (sox, soundfile, or ffmpeg) required!
|
|
257
|
+
audio_key = file_path.stem
|
|
258
|
+
audio_val = []
|
|
259
|
+
speech_timestamps = get_speech_timestamps(
|
|
260
|
+
wav,
|
|
261
|
+
vad_model,
|
|
262
|
+
max_speech_duration_s=max_single_segment_time // 1000,
|
|
263
|
+
return_seconds=True,
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
audio_val = [
|
|
267
|
+
[int(timestamp["start"] * 1000), int(timestamp["end"] * 1000)]
|
|
268
|
+
for timestamp in speech_timestamps
|
|
269
|
+
]
|
|
270
|
+
vad_res = []
|
|
271
|
+
vad_res.append(dict(key=audio_key, value=audio_val))
|
|
272
|
+
|
|
273
|
+
res = manager.inference_with_vadres(
|
|
274
|
+
input=str(file_path), vad_res=vad_res, **cfg
|
|
275
|
+
)
|
|
276
|
+
|
|
277
|
+
for i, info in enumerate(res):
|
|
278
|
+
[start_ms, end_ms] = info["interval"]
|
|
279
|
+
text = info["text"]
|
|
280
|
+
emo = info["emo"]
|
|
281
|
+
sliced_audio = audio[start_ms:end_ms]
|
|
282
|
+
audio_save_path = (
|
|
283
|
+
save_path / rel_path.parent / f"{file_stem}_{i:03d}{file_suffix}"
|
|
284
|
+
)
|
|
285
|
+
sliced_audio.export(audio_save_path, format=file_suffix[1:])
|
|
286
|
+
print(f"Exported {audio_save_path}: {text}")
|
|
287
|
+
|
|
288
|
+
transcript_save_path = (
|
|
289
|
+
save_path / rel_path.parent / f"{file_stem}_{i:03d}.lab"
|
|
290
|
+
)
|
|
291
|
+
with open(
|
|
292
|
+
transcript_save_path,
|
|
293
|
+
"w",
|
|
294
|
+
encoding="utf-8",
|
|
295
|
+
) as f:
|
|
296
|
+
f.write(text)
|
|
297
|
+
|
|
298
|
+
if save_emo:
|
|
299
|
+
emo_save_path = save_path / rel_path.parent / f"{file_stem}_{i:03d}.emo"
|
|
300
|
+
with open(
|
|
301
|
+
emo_save_path,
|
|
302
|
+
"w",
|
|
303
|
+
encoding="utf-8",
|
|
304
|
+
) as f:
|
|
305
|
+
f.write(emo)
|
|
306
|
+
|
|
307
|
+
if audios_path.resolve() == save_path.resolve():
|
|
308
|
+
file_path.unlink()
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
if __name__ == "__main__":
|
|
312
|
+
main()
|
|
313
|
+
exit(0)
|
|
314
|
+
from funasr.utils.postprocess_utils import rich_transcription_postprocess
|
|
315
|
+
|
|
316
|
+
# Load the audio file
|
|
317
|
+
audio_path = Path(r"D:\PythonProject\ok\1_output_(Vocals).wav")
|
|
318
|
+
model_dir = "iic/SenseVoiceSmall"
|
|
319
|
+
m, kwargs = SenseVoiceSmall.from_pretrained(model=model_dir, device="cuda:0")
|
|
320
|
+
m.eval()
|
|
321
|
+
|
|
322
|
+
res = m.inference(
|
|
323
|
+
data_in=f"{kwargs['model_path']}/example/zh.mp3",
|
|
324
|
+
language="auto", # "zh", "en", "yue", "ja", "ko", "nospeech"
|
|
325
|
+
use_itn=False,
|
|
326
|
+
ban_emo_unk=False,
|
|
327
|
+
**kwargs,
|
|
328
|
+
)
|
|
329
|
+
|
|
330
|
+
print(res)
|
|
331
|
+
text = rich_transcription_postprocess(res[0][0]["text"])
|
|
332
|
+
print(text)
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch.nn.utils.rnn import pad_sequence
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def slice_padding_fbank(speech, speech_lengths, vad_segments):
|
|
6
|
+
speech_list = []
|
|
7
|
+
speech_lengths_list = []
|
|
8
|
+
for i, segment in enumerate(vad_segments):
|
|
9
|
+
|
|
10
|
+
bed_idx = int(segment[0][0] * 16)
|
|
11
|
+
end_idx = min(int(segment[0][1] * 16), speech_lengths[0])
|
|
12
|
+
speech_i = speech[0, bed_idx:end_idx]
|
|
13
|
+
speech_lengths_i = end_idx - bed_idx
|
|
14
|
+
speech_list.append(speech_i)
|
|
15
|
+
speech_lengths_list.append(speech_lengths_i)
|
|
16
|
+
feats_pad = pad_sequence(speech_list, batch_first=True, padding_value=0.0)
|
|
17
|
+
speech_lengths_pad = torch.Tensor(speech_lengths_list).int()
|
|
18
|
+
return feats_pad, speech_lengths_pad
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def slice_padding_audio_samples(speech, speech_lengths, vad_segments):
|
|
22
|
+
speech_list = []
|
|
23
|
+
speech_lengths_list = []
|
|
24
|
+
intervals = []
|
|
25
|
+
for i, segment in enumerate(vad_segments):
|
|
26
|
+
bed_idx = int(segment[0][0] * 16)
|
|
27
|
+
end_idx = min(int(segment[0][1] * 16), speech_lengths)
|
|
28
|
+
speech_i = speech[bed_idx:end_idx]
|
|
29
|
+
speech_lengths_i = end_idx - bed_idx
|
|
30
|
+
speech_list.append(speech_i)
|
|
31
|
+
speech_lengths_list.append(speech_lengths_i)
|
|
32
|
+
intervals.append([bed_idx // 16, end_idx // 16])
|
|
33
|
+
|
|
34
|
+
return speech_list, speech_lengths_list, intervals
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def merge_vad(vad_result, max_length=15000, min_length=0):
|
|
38
|
+
new_result = []
|
|
39
|
+
if len(vad_result) <= 1:
|
|
40
|
+
return vad_result
|
|
41
|
+
time_step = [t[0] for t in vad_result] + [t[1] for t in vad_result]
|
|
42
|
+
time_step = sorted(list(set(time_step)))
|
|
43
|
+
if len(time_step) == 0:
|
|
44
|
+
return []
|
|
45
|
+
bg = 0
|
|
46
|
+
for i in range(len(time_step) - 1):
|
|
47
|
+
time = time_step[i]
|
|
48
|
+
if time_step[i + 1] - bg < max_length:
|
|
49
|
+
continue
|
|
50
|
+
if time - bg > min_length:
|
|
51
|
+
new_result.append([bg, time])
|
|
52
|
+
# if time - bg < max_length * 1.5:
|
|
53
|
+
# new_result.append([bg, time])
|
|
54
|
+
# else:
|
|
55
|
+
# split_num = int(time - bg) // max_length + 1
|
|
56
|
+
# spl_l = int(time - bg) // split_num
|
|
57
|
+
# for j in range(split_num):
|
|
58
|
+
# new_result.append([bg + j * spl_l, bg + (j + 1) * spl_l])
|
|
59
|
+
bg = time
|
|
60
|
+
new_result.append([bg, time_step[-1]])
|
|
61
|
+
return new_result
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
import random
|
|
2
|
+
from multiprocessing import Pool
|
|
3
|
+
from pathlib import Path
|
|
4
|
+
|
|
5
|
+
import click
|
|
6
|
+
import librosa
|
|
7
|
+
import torch.nn.functional as F
|
|
8
|
+
import torchaudio
|
|
9
|
+
from tqdm import tqdm
|
|
10
|
+
|
|
11
|
+
from tools.file import AUDIO_EXTENSIONS, list_files
|
|
12
|
+
|
|
13
|
+
threshold = 10 ** (-50 / 20.0)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def process(file):
|
|
17
|
+
waveform, sample_rate = torchaudio.load(str(file), backend="sox")
|
|
18
|
+
loudness = librosa.feature.rms(
|
|
19
|
+
y=waveform.numpy().squeeze(), frame_length=2048, hop_length=512, center=True
|
|
20
|
+
)[0]
|
|
21
|
+
for i in range(len(loudness) - 1, 0, -1):
|
|
22
|
+
if loudness[i] > threshold:
|
|
23
|
+
break
|
|
24
|
+
|
|
25
|
+
silent_time = (len(loudness) - i) * 512 / sample_rate
|
|
26
|
+
|
|
27
|
+
if silent_time <= 0.3:
|
|
28
|
+
random_time = random.uniform(0.3, 0.7)
|
|
29
|
+
waveform = F.pad(
|
|
30
|
+
waveform, (0, int(random_time * sample_rate)), mode="constant", value=0
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
torchaudio.save(uri=str(file), src=waveform, sample_rate=sample_rate)
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@click.command()
|
|
37
|
+
@click.argument("source", type=Path)
|
|
38
|
+
@click.option("--num-workers", type=int, default=12)
|
|
39
|
+
def main(source, num_workers):
|
|
40
|
+
files = list(list_files(source, AUDIO_EXTENSIONS, recursive=True))
|
|
41
|
+
|
|
42
|
+
with Pool(num_workers) as p:
|
|
43
|
+
list(tqdm(p.imap_unordered(process, files), total=len(files)))
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
if __name__ == "__main__":
|
|
47
|
+
main()
|
|
File without changes
|
|
@@ -0,0 +1,83 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
from random import Random
|
|
4
|
+
|
|
5
|
+
import click
|
|
6
|
+
from loguru import logger
|
|
7
|
+
from pydub import AudioSegment
|
|
8
|
+
from tqdm import tqdm
|
|
9
|
+
|
|
10
|
+
from tools.file import AUDIO_EXTENSIONS, list_files, load_filelist
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
@click.command()
|
|
14
|
+
@click.argument("root", type=click.Path(exists=True, path_type=Path))
|
|
15
|
+
@click.option("--val-ratio", type=float, default=None)
|
|
16
|
+
@click.option("--val-count", type=int, default=None)
|
|
17
|
+
@click.option("--filelist", default=None, type=Path)
|
|
18
|
+
@click.option("--min-duration", default=None, type=float)
|
|
19
|
+
@click.option("--max-duration", default=None, type=float)
|
|
20
|
+
def main(root, val_ratio, val_count, filelist, min_duration, max_duration):
|
|
21
|
+
if filelist:
|
|
22
|
+
files = [i[0] for i in load_filelist(filelist)]
|
|
23
|
+
else:
|
|
24
|
+
files = list_files(root, AUDIO_EXTENSIONS, recursive=True, sort=True)
|
|
25
|
+
|
|
26
|
+
if min_duration is None and max_duration is None:
|
|
27
|
+
filtered_files = list(map(str, [file.relative_to(root) for file in files]))
|
|
28
|
+
else:
|
|
29
|
+
filtered_files = []
|
|
30
|
+
for file in tqdm(files):
|
|
31
|
+
try:
|
|
32
|
+
audio = AudioSegment.from_file(str(file))
|
|
33
|
+
duration = len(audio) / 1000.0
|
|
34
|
+
|
|
35
|
+
if min_duration is not None and duration < min_duration:
|
|
36
|
+
logger.info(
|
|
37
|
+
f"Skipping {file} due to duration {duration:.2f} < {min_duration:.2f}"
|
|
38
|
+
)
|
|
39
|
+
continue
|
|
40
|
+
|
|
41
|
+
if max_duration is not None and duration > max_duration:
|
|
42
|
+
logger.info(
|
|
43
|
+
f"Skipping {file} due to duration {duration:.2f} > {max_duration:.2f}"
|
|
44
|
+
)
|
|
45
|
+
continue
|
|
46
|
+
|
|
47
|
+
filtered_files.append(str(file.relative_to(root)))
|
|
48
|
+
except Exception as e:
|
|
49
|
+
logger.info(f"Error processing {file}: {e}")
|
|
50
|
+
|
|
51
|
+
logger.info(
|
|
52
|
+
f"Found {len(files)} files, remaining {len(filtered_files)} files after filtering"
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
Random(42).shuffle(filtered_files)
|
|
56
|
+
|
|
57
|
+
if val_count is None and val_ratio is None:
|
|
58
|
+
logger.info("Validation ratio and count not specified, using min(20%, 100)")
|
|
59
|
+
val_size = min(100, math.ceil(len(filtered_files) * 0.2))
|
|
60
|
+
elif val_count is not None and val_ratio is not None:
|
|
61
|
+
logger.error("Cannot specify both val_count and val_ratio")
|
|
62
|
+
return
|
|
63
|
+
elif val_count is not None:
|
|
64
|
+
if val_count < 1 or val_count > len(filtered_files):
|
|
65
|
+
logger.error("val_count must be between 1 and number of files")
|
|
66
|
+
return
|
|
67
|
+
val_size = val_count
|
|
68
|
+
else:
|
|
69
|
+
val_size = math.ceil(len(filtered_files) * val_ratio)
|
|
70
|
+
|
|
71
|
+
logger.info(f"Using {val_size} files for validation")
|
|
72
|
+
|
|
73
|
+
with open(root / "vq_train_filelist.txt", "w", encoding="utf-8") as f:
|
|
74
|
+
f.write("\n".join(filtered_files[val_size:]))
|
|
75
|
+
|
|
76
|
+
with open(root / "vq_val_filelist.txt", "w", encoding="utf-8") as f:
|
|
77
|
+
f.write("\n".join(filtered_files[:val_size]))
|
|
78
|
+
|
|
79
|
+
logger.info("Done")
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
if __name__ == "__main__":
|
|
83
|
+
main()
|