xinference 0.14.1.post1__py3-none-any.whl → 0.14.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +15 -34
- xinference/client/restful/restful_client.py +2 -2
- xinference/core/chat_interface.py +45 -10
- xinference/core/image_interface.py +9 -0
- xinference/core/model.py +8 -5
- xinference/core/scheduler.py +1 -2
- xinference/core/worker.py +49 -42
- xinference/deploy/cmdline.py +2 -2
- xinference/deploy/test/test_cmdline.py +7 -7
- xinference/model/audio/chattts.py +24 -9
- xinference/model/audio/core.py +8 -2
- xinference/model/audio/fish_speech.py +228 -0
- xinference/model/audio/model_spec.json +8 -0
- xinference/model/embedding/core.py +23 -1
- xinference/model/image/model_spec.json +2 -1
- xinference/model/image/model_spec_modelscope.json +2 -1
- xinference/model/image/stable_diffusion/core.py +49 -1
- xinference/model/llm/__init__.py +26 -27
- xinference/model/llm/{ggml/llamacpp.py → llama_cpp/core.py} +2 -35
- xinference/model/llm/llm_family.json +606 -1266
- xinference/model/llm/llm_family.py +16 -139
- xinference/model/llm/llm_family_modelscope.json +276 -313
- xinference/model/llm/lmdeploy/__init__.py +0 -0
- xinference/model/llm/lmdeploy/core.py +557 -0
- xinference/model/llm/memory.py +9 -9
- xinference/model/llm/sglang/core.py +2 -2
- xinference/model/llm/{pytorch → transformers}/chatglm.py +6 -13
- xinference/model/llm/{pytorch → transformers}/cogvlm2.py +4 -45
- xinference/model/llm/transformers/cogvlm2_video.py +524 -0
- xinference/model/llm/{pytorch → transformers}/core.py +3 -10
- xinference/model/llm/{pytorch → transformers}/glm4v.py +2 -23
- xinference/model/llm/transformers/intern_vl.py +540 -0
- xinference/model/llm/{pytorch → transformers}/internlm2.py +4 -8
- xinference/model/llm/{pytorch → transformers}/minicpmv25.py +2 -23
- xinference/model/llm/{pytorch → transformers}/minicpmv26.py +66 -41
- xinference/model/llm/{pytorch → transformers}/utils.py +1 -2
- xinference/model/llm/{pytorch → transformers}/yi_vl.py +2 -24
- xinference/model/llm/utils.py +85 -70
- xinference/model/llm/vllm/core.py +110 -11
- xinference/model/utils.py +1 -95
- xinference/thirdparty/fish_speech/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/callbacks/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/callbacks/grad_norm.py +113 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +2 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/concat_repeat.py +53 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/text_data_pb2.py +33 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/text_data_stream.py +36 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/semantic.py +496 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/vqgan.py +147 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/core.py +40 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/pt_BR.json +133 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/scan.py +122 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/lit_module.py +202 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +779 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/lora.py +92 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/lit_module.py +442 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/discriminator.py +44 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +625 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +139 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/reference.py +115 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/wavenet.py +225 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/utils.py +94 -0
- xinference/thirdparty/fish_speech/fish_speech/scheduler.py +40 -0
- xinference/thirdparty/fish_speech/fish_speech/text/__init__.py +4 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_class.py +172 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_constant.py +30 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_util.py +342 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/cardinal.py +32 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/date.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/digit.py +32 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/fraction.py +35 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/money.py +43 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/percentage.py +33 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/telephone.py +51 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +177 -0
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +69 -0
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +130 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +139 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +23 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/braceexpand.py +217 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/context.py +13 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/file.py +16 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/instantiators.py +50 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/logger.py +55 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/logging_utils.py +48 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/rich_utils.py +100 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/spectrogram.py +122 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +114 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +120 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1237 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +495 -0
- xinference/thirdparty/fish_speech/tools/auto_rerank.py +159 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +55 -0
- xinference/thirdparty/fish_speech/tools/extract_model.py +21 -0
- xinference/thirdparty/fish_speech/tools/file.py +108 -0
- xinference/thirdparty/fish_speech/tools/gen_ref.py +36 -0
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/llama/build_dataset.py +169 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +171 -0
- xinference/thirdparty/fish_speech/tools/llama/generate.py +698 -0
- xinference/thirdparty/fish_speech/tools/llama/merge_lora.py +95 -0
- xinference/thirdparty/fish_speech/tools/llama/quantize.py +497 -0
- xinference/thirdparty/fish_speech/tools/llama/rebuild_tokenizer.py +57 -0
- xinference/thirdparty/fish_speech/tools/merge_asr_files.py +55 -0
- xinference/thirdparty/fish_speech/tools/post_api.py +164 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/auto_model.py +573 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/fun_asr.py +332 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/vad_utils.py +61 -0
- xinference/thirdparty/fish_speech/tools/smart_pad.py +47 -0
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/vqgan/create_train_split.py +83 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +227 -0
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +120 -0
- xinference/thirdparty/fish_speech/tools/webui.py +619 -0
- xinference/thirdparty/fish_speech/tools/whisper_asr.py +176 -0
- xinference/thirdparty/internvl/__init__.py +0 -0
- xinference/thirdparty/internvl/conversation.py +393 -0
- xinference/thirdparty/omnilmm/model/utils.py +16 -1
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/main.661c7b0a.js +3 -0
- xinference/web/ui/build/static/js/{main.17ca0398.js.map → main.661c7b0a.js.map} +1 -1
- xinference/web/ui/node_modules/.cache/babel-loader/070d8c6b3b0f3485c6d3885f0b6bbfdf9643e088a468acbd5d596f2396071c16.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/213b5913e164773c2b0567455377765715f5f07225fbac77ad8e1e9dc9648a47.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5391543180fead1eeef5364300301498d58a7d91d62de3841a32768b67f4552f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5c26a23b5eacf5b752a08531577ae3840bb247745ef9a39583dc2d05ba93a82a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/714c37ce0ec5b5c591033f02be2f3f491fdd70da3ef568ee4a4f94689a3d5ca2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/978b57d1a04a701bc3fcfebc511f5f274eed6ed7eade67f6fb76c27d5fd9ecc8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a797831de0dc74897f4b50b3426555d748f328b4c2cc391de709eadaf6a5f3e3.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e91938976f229ce986b2907e51e1f00540b584ced0a315d498c172d13220739d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +1 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/METADATA +22 -13
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/RECORD +170 -79
- xinference/locale/utils.py +0 -39
- xinference/locale/zh_CN.json +0 -26
- xinference/model/llm/ggml/tools/__init__.py +0 -15
- xinference/model/llm/ggml/tools/convert_ggml_to_gguf.py +0 -498
- xinference/model/llm/ggml/tools/gguf.py +0 -884
- xinference/model/llm/pytorch/__init__.py +0 -13
- xinference/model/llm/pytorch/baichuan.py +0 -81
- xinference/model/llm/pytorch/falcon.py +0 -138
- xinference/model/llm/pytorch/intern_vl.py +0 -352
- xinference/model/llm/pytorch/vicuna.py +0 -69
- xinference/web/ui/build/static/js/main.17ca0398.js +0 -3
- xinference/web/ui/node_modules/.cache/babel-loader/1444c41a4d04494f1cbc2d8c1537df107b451cb569cb2c1fbf5159f3a4841a5f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/2f40209b32e7e46a2eab6b8c8a355eb42c3caa8bc3228dd929f32fd2b3940294.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/44774c783428f952d8e2e4ad0998a9c5bc16a57cd9c68b7c5ff18aaa5a41d65c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/5262556baf9207738bf6a8ba141ec6599d0a636345c245d61fdf88d3171998cb.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/6450605fac003812485f6251b9f0caafbf2e5bfc3bbe2f000050d9e2fdb8dcd3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/71684495d995c7e266eecc6a0ad8ea0284cc785f80abddf863789c57a6134969.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/80acd1edf31542ab1dcccfad02cb4b38f3325cff847a781fcce97500cfd6f878.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8a9742ddd8ba8546ef42dc14caca443f2b4524fabed7bf269e0eff3b7b64ee7d.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d06a96a3c9c32e42689094aa3aaad41c8125894e956b8f84a70fadce6e3f65b3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d93730e2b5d7e8c957b4d0965d2ed1dac9045a649adbd47c220d11f255d4b1e0.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e656dc00b4d8b387f0a81ba8fc558767df1601c66369e2eb86a5ef27cf080572.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f28b83886159d83b84f099b05d607a822dca4dd7f2d8aa6d56fe08bab0b5b086.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f3e02274cb1964e99b1fe69cbb6db233d3d8d7dd05d50ebcdb8e66d50b224b7b.json +0 -1
- /xinference/{locale → model/llm/llama_cpp}/__init__.py +0 -0
- /xinference/model/llm/{ggml → transformers}/__init__.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/compression.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/deepseek_vl.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/llama_2.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/omnilmm.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/qwen_vl.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/tensorizer_utils.py +0 -0
- /xinference/web/ui/build/static/js/{main.17ca0398.js.LICENSE.txt → main.661c7b0a.js.LICENSE.txt} +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/LICENSE +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/WHEEL +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/entry_points.txt +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
import click
|
|
2
|
+
import torch
|
|
3
|
+
from loguru import logger
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
@click.command()
|
|
7
|
+
@click.argument("model_path")
|
|
8
|
+
@click.argument("output_path")
|
|
9
|
+
def main(model_path, output_path):
|
|
10
|
+
if model_path == output_path:
|
|
11
|
+
logger.error("Model path and output path are the same")
|
|
12
|
+
return
|
|
13
|
+
|
|
14
|
+
logger.info(f"Loading model from {model_path}")
|
|
15
|
+
state_dict = torch.load(model_path, map_location="cpu")["state_dict"]
|
|
16
|
+
torch.save(state_dict, output_path)
|
|
17
|
+
logger.info(f"Model saved to {output_path}")
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
if __name__ == "__main__":
|
|
21
|
+
main()
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
from pathlib import Path
|
|
2
|
+
from typing import Union
|
|
3
|
+
|
|
4
|
+
from loguru import logger
|
|
5
|
+
from natsort import natsorted
|
|
6
|
+
|
|
7
|
+
AUDIO_EXTENSIONS = {
|
|
8
|
+
".mp3",
|
|
9
|
+
".wav",
|
|
10
|
+
".flac",
|
|
11
|
+
".ogg",
|
|
12
|
+
".m4a",
|
|
13
|
+
".wma",
|
|
14
|
+
".aac",
|
|
15
|
+
".aiff",
|
|
16
|
+
".aif",
|
|
17
|
+
".aifc",
|
|
18
|
+
}
|
|
19
|
+
|
|
20
|
+
VIDEO_EXTENSIONS = {
|
|
21
|
+
".mp4",
|
|
22
|
+
".avi",
|
|
23
|
+
}
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def list_files(
|
|
27
|
+
path: Union[Path, str],
|
|
28
|
+
extensions: set[str] = None,
|
|
29
|
+
recursive: bool = False,
|
|
30
|
+
sort: bool = True,
|
|
31
|
+
) -> list[Path]:
|
|
32
|
+
"""List files in a directory.
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
path (Path): Path to the directory.
|
|
36
|
+
extensions (set, optional): Extensions to filter. Defaults to None.
|
|
37
|
+
recursive (bool, optional): Whether to search recursively. Defaults to False.
|
|
38
|
+
sort (bool, optional): Whether to sort the files. Defaults to True.
|
|
39
|
+
|
|
40
|
+
Returns:
|
|
41
|
+
list: List of files.
|
|
42
|
+
"""
|
|
43
|
+
|
|
44
|
+
if isinstance(path, str):
|
|
45
|
+
path = Path(path)
|
|
46
|
+
|
|
47
|
+
if not path.exists():
|
|
48
|
+
raise FileNotFoundError(f"Directory {path} does not exist.")
|
|
49
|
+
|
|
50
|
+
files = [file for ext in extensions for file in path.rglob(f"*{ext}")]
|
|
51
|
+
|
|
52
|
+
if sort:
|
|
53
|
+
files = natsorted(files)
|
|
54
|
+
|
|
55
|
+
return files
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def load_filelist(path: Path | str) -> list[tuple[Path, str, str, str]]:
|
|
59
|
+
"""
|
|
60
|
+
Load a Bert-VITS2 style filelist.
|
|
61
|
+
"""
|
|
62
|
+
|
|
63
|
+
files = set()
|
|
64
|
+
results = []
|
|
65
|
+
count_duplicated, count_not_found = 0, 0
|
|
66
|
+
|
|
67
|
+
LANGUAGE_TO_LANGUAGES = {
|
|
68
|
+
"zh": ["zh", "en"],
|
|
69
|
+
"jp": ["jp", "en"],
|
|
70
|
+
"en": ["en"],
|
|
71
|
+
}
|
|
72
|
+
|
|
73
|
+
with open(path, "r", encoding="utf-8") as f:
|
|
74
|
+
for line in f.readlines():
|
|
75
|
+
splits = line.strip().split("|", maxsplit=3)
|
|
76
|
+
if len(splits) != 4:
|
|
77
|
+
logger.warning(f"Invalid line: {line}")
|
|
78
|
+
continue
|
|
79
|
+
|
|
80
|
+
filename, speaker, language, text = splits
|
|
81
|
+
file = Path(filename)
|
|
82
|
+
language = language.strip().lower()
|
|
83
|
+
|
|
84
|
+
if language == "ja":
|
|
85
|
+
language = "jp"
|
|
86
|
+
|
|
87
|
+
assert language in ["zh", "jp", "en"], f"Invalid language {language}"
|
|
88
|
+
languages = LANGUAGE_TO_LANGUAGES[language]
|
|
89
|
+
|
|
90
|
+
if file in files:
|
|
91
|
+
logger.warning(f"Duplicated file: {file}")
|
|
92
|
+
count_duplicated += 1
|
|
93
|
+
continue
|
|
94
|
+
|
|
95
|
+
if not file.exists():
|
|
96
|
+
logger.warning(f"File not found: {file}")
|
|
97
|
+
count_not_found += 1
|
|
98
|
+
continue
|
|
99
|
+
|
|
100
|
+
results.append((file, speaker, languages, text))
|
|
101
|
+
|
|
102
|
+
if count_duplicated > 0:
|
|
103
|
+
logger.warning(f"Total duplicated files: {count_duplicated}")
|
|
104
|
+
|
|
105
|
+
if count_not_found > 0:
|
|
106
|
+
logger.warning(f"Total files not found: {count_not_found}")
|
|
107
|
+
|
|
108
|
+
return results
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
import json
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def scan_folder(base_path):
|
|
6
|
+
wav_lab_pairs = {}
|
|
7
|
+
|
|
8
|
+
base = Path(base_path)
|
|
9
|
+
for suf in ["wav", "lab"]:
|
|
10
|
+
for f in base.rglob(f"*.{suf}"):
|
|
11
|
+
relative_path = f.relative_to(base)
|
|
12
|
+
parts = relative_path.parts
|
|
13
|
+
print(parts)
|
|
14
|
+
if len(parts) >= 3:
|
|
15
|
+
character = parts[0]
|
|
16
|
+
emotion = parts[1]
|
|
17
|
+
|
|
18
|
+
if character not in wav_lab_pairs:
|
|
19
|
+
wav_lab_pairs[character] = {}
|
|
20
|
+
if emotion not in wav_lab_pairs[character]:
|
|
21
|
+
wav_lab_pairs[character][emotion] = []
|
|
22
|
+
wav_lab_pairs[character][emotion].append(str(f.name))
|
|
23
|
+
|
|
24
|
+
return wav_lab_pairs
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def save_to_json(data, output_file):
|
|
28
|
+
with open(output_file, "w", encoding="utf-8") as file:
|
|
29
|
+
json.dump(data, file, ensure_ascii=False, indent=2)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
base_path = "ref_data"
|
|
33
|
+
out_ref_file = "ref_data.json"
|
|
34
|
+
|
|
35
|
+
wav_lab_pairs = scan_folder(base_path)
|
|
36
|
+
save_to_json(wav_lab_pairs, out_ref_file)
|
|
File without changes
|
|
@@ -0,0 +1,169 @@
|
|
|
1
|
+
import itertools
|
|
2
|
+
import os
|
|
3
|
+
import re
|
|
4
|
+
from collections import defaultdict
|
|
5
|
+
from functools import partial
|
|
6
|
+
from multiprocessing import Pool
|
|
7
|
+
from pathlib import Path
|
|
8
|
+
|
|
9
|
+
import click
|
|
10
|
+
import numpy as np
|
|
11
|
+
from loguru import logger
|
|
12
|
+
from tqdm import tqdm
|
|
13
|
+
|
|
14
|
+
from fish_speech.datasets.protos.text_data_pb2 import Semantics, Sentence, TextData
|
|
15
|
+
from fish_speech.datasets.protos.text_data_stream import pack_pb_stream
|
|
16
|
+
from fish_speech.utils.file import load_filelist
|
|
17
|
+
|
|
18
|
+
# To avoid CPU overload
|
|
19
|
+
os.environ["MKL_NUM_THREADS"] = "1"
|
|
20
|
+
os.environ["OMP_NUM_THREADS"] = "1"
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def task_generator_folder(root: Path, text_extension: str):
|
|
24
|
+
files = list(tqdm(Path(root).rglob("*.npy"), desc=f"Loading {root}"))
|
|
25
|
+
files = sorted(files)
|
|
26
|
+
|
|
27
|
+
grouped_files = defaultdict(list)
|
|
28
|
+
for file in tqdm(files, desc=f"Grouping {root}"):
|
|
29
|
+
p = str(file.parent)
|
|
30
|
+
speaker = file.parent.name
|
|
31
|
+
|
|
32
|
+
try:
|
|
33
|
+
if isinstance(text_extension, str):
|
|
34
|
+
texts = [file.with_suffix(text_extension).read_text(encoding="utf-8")]
|
|
35
|
+
else:
|
|
36
|
+
texts = [
|
|
37
|
+
file.with_suffix(ext).read_text(encoding="utf-8")
|
|
38
|
+
for ext in text_extension
|
|
39
|
+
]
|
|
40
|
+
except Exception as e:
|
|
41
|
+
logger.error(f"Failed to read text {file}: {e}")
|
|
42
|
+
continue
|
|
43
|
+
|
|
44
|
+
grouped_files[p].append((speaker, file, texts))
|
|
45
|
+
|
|
46
|
+
logger.info(
|
|
47
|
+
f"Found {len(grouped_files)} groups in {root}, {list(grouped_files.keys())[:5]}..."
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
for i in grouped_files.values():
|
|
51
|
+
subset = [(f, t) for _, f, t in i]
|
|
52
|
+
yield i[0][0], subset, "folder"
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def task_generator_filelist(filelist):
|
|
56
|
+
grouped_files = defaultdict(list)
|
|
57
|
+
for filename, speaker, _, text in load_filelist(filelist):
|
|
58
|
+
grouped_files[speaker].append((Path(filename), [text]))
|
|
59
|
+
|
|
60
|
+
logger.info(f"Found {len(grouped_files)} groups in {filelist}")
|
|
61
|
+
for speaker, values in grouped_files.items():
|
|
62
|
+
yield speaker, values, "filelist"
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def run_task(task):
|
|
66
|
+
name, subset, source = task
|
|
67
|
+
|
|
68
|
+
# Parse the files
|
|
69
|
+
sentences = []
|
|
70
|
+
for file, texts in subset:
|
|
71
|
+
np_file = file.with_suffix(".npy")
|
|
72
|
+
if np_file.exists() is False:
|
|
73
|
+
logger.warning(f"Can't find {np_file}")
|
|
74
|
+
continue
|
|
75
|
+
|
|
76
|
+
new_texts = []
|
|
77
|
+
|
|
78
|
+
for text in texts:
|
|
79
|
+
# Simple cleaning: replace { xxx } and < xxx > with space
|
|
80
|
+
text = re.sub(r"\{.*?\}", " ", text)
|
|
81
|
+
text = re.sub(r"<.*?>", " ", text)
|
|
82
|
+
text = re.sub(r"\s+", " ", text)
|
|
83
|
+
new_texts.append(text)
|
|
84
|
+
|
|
85
|
+
try:
|
|
86
|
+
semantics = np.load(np_file)
|
|
87
|
+
except Exception as e:
|
|
88
|
+
logger.error(f"Failed to parse {file}: {e}")
|
|
89
|
+
continue
|
|
90
|
+
|
|
91
|
+
if isinstance(semantics, np.ndarray):
|
|
92
|
+
semantics = semantics.tolist()
|
|
93
|
+
|
|
94
|
+
sentences.append(
|
|
95
|
+
Sentence(
|
|
96
|
+
texts=new_texts,
|
|
97
|
+
semantics=[Semantics(values=s) for s in semantics],
|
|
98
|
+
)
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
# Pack the sentences
|
|
102
|
+
return pack_pb_stream(
|
|
103
|
+
TextData(
|
|
104
|
+
source=source,
|
|
105
|
+
name=name,
|
|
106
|
+
sentences=sentences,
|
|
107
|
+
)
|
|
108
|
+
)
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
@click.command()
|
|
112
|
+
@click.option(
|
|
113
|
+
"--input",
|
|
114
|
+
type=click.Path(path_type=Path),
|
|
115
|
+
required=True,
|
|
116
|
+
help="A folder containing the dataset or a filelist",
|
|
117
|
+
multiple=True,
|
|
118
|
+
)
|
|
119
|
+
@click.option(
|
|
120
|
+
"--output", type=click.Path(path_type=Path), default="data/quantized-dataset-ft"
|
|
121
|
+
)
|
|
122
|
+
@click.option("--num-workers", type=int, default=16)
|
|
123
|
+
@click.option("--text-extension", type=str, default=[".txt"], multiple=True)
|
|
124
|
+
@click.option(
|
|
125
|
+
"--shard-size", type=int, default=10, help="The maximum size of each shard in mb"
|
|
126
|
+
)
|
|
127
|
+
def main(input, output, num_workers, text_extension, shard_size):
|
|
128
|
+
generator_fns = []
|
|
129
|
+
|
|
130
|
+
for f in input:
|
|
131
|
+
assert f.exists(), f"{f} not found"
|
|
132
|
+
|
|
133
|
+
if f.is_dir():
|
|
134
|
+
generator_fn = task_generator_folder(f, text_extension)
|
|
135
|
+
else:
|
|
136
|
+
generator_fn = task_generator_filelist(f)
|
|
137
|
+
|
|
138
|
+
generator_fns.append(generator_fn)
|
|
139
|
+
|
|
140
|
+
generator_fn = itertools.chain(*generator_fns)
|
|
141
|
+
output.mkdir(parents=True, exist_ok=True)
|
|
142
|
+
|
|
143
|
+
dataset_fp = None
|
|
144
|
+
tar_idx = 0
|
|
145
|
+
written_size = 0
|
|
146
|
+
|
|
147
|
+
with Pool(num_workers) as p:
|
|
148
|
+
for result in tqdm(p.imap_unordered(run_task, generator_fn)):
|
|
149
|
+
if dataset_fp is None:
|
|
150
|
+
dataset_fp = open(Path(output) / f"{tar_idx:08d}.protos", "wb")
|
|
151
|
+
|
|
152
|
+
dataset_fp.write(result)
|
|
153
|
+
written_size += len(result)
|
|
154
|
+
|
|
155
|
+
if written_size > shard_size * 1024 * 1024:
|
|
156
|
+
logger.info(f"Finished writing {tar_idx} shards to {output}")
|
|
157
|
+
dataset_fp.close()
|
|
158
|
+
dataset_fp = None
|
|
159
|
+
written_size = 0
|
|
160
|
+
tar_idx += 1
|
|
161
|
+
|
|
162
|
+
if dataset_fp is not None:
|
|
163
|
+
dataset_fp.close()
|
|
164
|
+
|
|
165
|
+
logger.info(f"Finished writing {tar_idx + 1} shards to {output}")
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
if __name__ == "__main__":
|
|
169
|
+
main()
|
|
@@ -0,0 +1,171 @@
|
|
|
1
|
+
# import pyrootutils
|
|
2
|
+
import torch
|
|
3
|
+
import torch.nn.functional as F
|
|
4
|
+
from matplotlib import pyplot as plt
|
|
5
|
+
from transformers import AutoTokenizer
|
|
6
|
+
|
|
7
|
+
# register eval resolver and root
|
|
8
|
+
# pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
|
|
9
|
+
|
|
10
|
+
from torch.utils.data import DataLoader
|
|
11
|
+
|
|
12
|
+
from fish_speech.datasets.semantic import AutoAugTextDataset, TextDataCollator
|
|
13
|
+
from tools.llama.generate import load_model
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def smooth(
|
|
17
|
+
scalars: list[float], weight: float
|
|
18
|
+
) -> list[float]: # Weight between 0 and 1
|
|
19
|
+
last = scalars[0] # First value in the plot (first timestep)
|
|
20
|
+
smoothed = list()
|
|
21
|
+
for point in scalars:
|
|
22
|
+
smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value
|
|
23
|
+
smoothed.append(smoothed_val) # Save it
|
|
24
|
+
last = smoothed_val # Anchor the last smoothed value
|
|
25
|
+
|
|
26
|
+
return smoothed
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@torch.inference_mode()
|
|
30
|
+
def analyze_one_model(loader, config, weight, max_length):
|
|
31
|
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
32
|
+
model = load_model(
|
|
33
|
+
config,
|
|
34
|
+
weight,
|
|
35
|
+
device,
|
|
36
|
+
torch.bfloat16,
|
|
37
|
+
max_length,
|
|
38
|
+
compile=False,
|
|
39
|
+
)[0]
|
|
40
|
+
|
|
41
|
+
current_step = 0
|
|
42
|
+
model.eval()
|
|
43
|
+
|
|
44
|
+
semantic_loss_sum = torch.zeros(
|
|
45
|
+
max_length,
|
|
46
|
+
dtype=torch.float32,
|
|
47
|
+
device=device,
|
|
48
|
+
)
|
|
49
|
+
counter = torch.zeros(
|
|
50
|
+
max_length,
|
|
51
|
+
dtype=torch.long,
|
|
52
|
+
device=device,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
for batch in loader:
|
|
56
|
+
batch = {k: v.to(device) for k, v in batch.items()}
|
|
57
|
+
|
|
58
|
+
labels = batch["labels"]
|
|
59
|
+
outputs = model(
|
|
60
|
+
inp=batch["inputs"],
|
|
61
|
+
key_padding_mask=batch["attention_masks"],
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
token_logits = outputs.token_logits
|
|
65
|
+
codebook_logits = outputs.codebook_logits
|
|
66
|
+
|
|
67
|
+
# Generate labels
|
|
68
|
+
base_loss = F.cross_entropy(
|
|
69
|
+
token_logits.reshape(-1, token_logits.size(-1)),
|
|
70
|
+
labels[:, 0].reshape(-1),
|
|
71
|
+
ignore_index=-100,
|
|
72
|
+
reduction="none",
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
codebook_labels = labels[:, 1 : 1 + model.config.num_codebooks].mT
|
|
76
|
+
semantic_loss = F.cross_entropy(
|
|
77
|
+
codebook_logits.reshape(-1, codebook_logits.size(-1)),
|
|
78
|
+
codebook_labels.reshape(-1),
|
|
79
|
+
ignore_index=-100,
|
|
80
|
+
reduction="none",
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
base_loss = base_loss.reshape(labels[:, 0].shape)
|
|
84
|
+
semantic_loss = semantic_loss.reshape(codebook_labels.shape)
|
|
85
|
+
|
|
86
|
+
semantic_loss_frame = semantic_loss.mean(-1)
|
|
87
|
+
pad_pos = codebook_labels.sum(-1) == -100 * model.config.num_codebooks
|
|
88
|
+
|
|
89
|
+
for loss_sample, pad in zip(semantic_loss_frame, pad_pos):
|
|
90
|
+
semantic_loss_sum[~pad] += loss_sample[~pad]
|
|
91
|
+
counter[~pad] += 1
|
|
92
|
+
|
|
93
|
+
current_step += 1
|
|
94
|
+
if current_step == 10:
|
|
95
|
+
break
|
|
96
|
+
|
|
97
|
+
semantic_loss = semantic_loss.cpu()
|
|
98
|
+
counter = counter.cpu()
|
|
99
|
+
xs, ys = [], []
|
|
100
|
+
|
|
101
|
+
for i, (loss, count) in enumerate(zip(semantic_loss_sum, counter)):
|
|
102
|
+
if count > 0:
|
|
103
|
+
xs.append(i)
|
|
104
|
+
ys.append((loss / count).item()) # for better loss visualization
|
|
105
|
+
|
|
106
|
+
smoothed_ys = smooth(ys, 0.95)
|
|
107
|
+
|
|
108
|
+
# Unload model
|
|
109
|
+
del model
|
|
110
|
+
torch.cuda.empty_cache()
|
|
111
|
+
|
|
112
|
+
return xs, ys, smoothed_ys
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
def main():
|
|
116
|
+
tokenizer = AutoTokenizer.from_pretrained("fishaudio/fish-speech-1")
|
|
117
|
+
max_length = 4096
|
|
118
|
+
|
|
119
|
+
ds = AutoAugTextDataset(
|
|
120
|
+
["data/protos/sft/云天河"],
|
|
121
|
+
tokenizer=tokenizer,
|
|
122
|
+
use_speaker=False,
|
|
123
|
+
interactive_prob=1.0,
|
|
124
|
+
max_length=max_length,
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
loader = DataLoader(
|
|
128
|
+
ds,
|
|
129
|
+
batch_size=8,
|
|
130
|
+
collate_fn=TextDataCollator(tokenizer, max_length=max_length),
|
|
131
|
+
num_workers=0,
|
|
132
|
+
shuffle=False,
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
plt.figure(figsize=(10, 5), dpi=200)
|
|
136
|
+
|
|
137
|
+
plt.xlabel("Frame")
|
|
138
|
+
plt.ylabel("Loss")
|
|
139
|
+
plt.yscale("log")
|
|
140
|
+
plt.title("Semantic Loss")
|
|
141
|
+
plt.grid(which="both", axis="both")
|
|
142
|
+
plt.xlim(0, max_length)
|
|
143
|
+
|
|
144
|
+
tests = [
|
|
145
|
+
(
|
|
146
|
+
"pertrain-medium",
|
|
147
|
+
"dual_ar_2_codebook_medium",
|
|
148
|
+
"checkpoints/text2semantic-pretrain-medium-2k-v1.pth",
|
|
149
|
+
),
|
|
150
|
+
(
|
|
151
|
+
"sft-medium",
|
|
152
|
+
"dual_ar_2_codebook_medium",
|
|
153
|
+
"checkpoints/text2semantic-sft-medium-v1.1-4k.pth",
|
|
154
|
+
),
|
|
155
|
+
(
|
|
156
|
+
"sft-large",
|
|
157
|
+
"dual_ar_2_codebook_large",
|
|
158
|
+
"checkpoints/text2semantic-sft-large-v1.1-4k.pth",
|
|
159
|
+
),
|
|
160
|
+
]
|
|
161
|
+
|
|
162
|
+
for name, config, weight in tests:
|
|
163
|
+
xs, _, smoothed_ys = analyze_one_model(loader, config, weight, max_length)
|
|
164
|
+
plt.plot(xs, smoothed_ys, label=name)
|
|
165
|
+
|
|
166
|
+
plt.legend()
|
|
167
|
+
plt.savefig("semantic_loss.png")
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
if __name__ == "__main__":
|
|
171
|
+
main()
|