xinference 0.14.1.post1__py3-none-any.whl → 0.14.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +15 -34
- xinference/client/restful/restful_client.py +2 -2
- xinference/core/chat_interface.py +45 -10
- xinference/core/image_interface.py +9 -0
- xinference/core/model.py +8 -5
- xinference/core/scheduler.py +1 -2
- xinference/core/worker.py +49 -42
- xinference/deploy/cmdline.py +2 -2
- xinference/deploy/test/test_cmdline.py +7 -7
- xinference/model/audio/chattts.py +24 -9
- xinference/model/audio/core.py +8 -2
- xinference/model/audio/fish_speech.py +228 -0
- xinference/model/audio/model_spec.json +8 -0
- xinference/model/embedding/core.py +23 -1
- xinference/model/image/model_spec.json +2 -1
- xinference/model/image/model_spec_modelscope.json +2 -1
- xinference/model/image/stable_diffusion/core.py +49 -1
- xinference/model/llm/__init__.py +26 -27
- xinference/model/llm/{ggml/llamacpp.py → llama_cpp/core.py} +2 -35
- xinference/model/llm/llm_family.json +606 -1266
- xinference/model/llm/llm_family.py +16 -139
- xinference/model/llm/llm_family_modelscope.json +276 -313
- xinference/model/llm/lmdeploy/__init__.py +0 -0
- xinference/model/llm/lmdeploy/core.py +557 -0
- xinference/model/llm/memory.py +9 -9
- xinference/model/llm/sglang/core.py +2 -2
- xinference/model/llm/{pytorch → transformers}/chatglm.py +6 -13
- xinference/model/llm/{pytorch → transformers}/cogvlm2.py +4 -45
- xinference/model/llm/transformers/cogvlm2_video.py +524 -0
- xinference/model/llm/{pytorch → transformers}/core.py +3 -10
- xinference/model/llm/{pytorch → transformers}/glm4v.py +2 -23
- xinference/model/llm/transformers/intern_vl.py +540 -0
- xinference/model/llm/{pytorch → transformers}/internlm2.py +4 -8
- xinference/model/llm/{pytorch → transformers}/minicpmv25.py +2 -23
- xinference/model/llm/{pytorch → transformers}/minicpmv26.py +66 -41
- xinference/model/llm/{pytorch → transformers}/utils.py +1 -2
- xinference/model/llm/{pytorch → transformers}/yi_vl.py +2 -24
- xinference/model/llm/utils.py +85 -70
- xinference/model/llm/vllm/core.py +110 -11
- xinference/model/utils.py +1 -95
- xinference/thirdparty/fish_speech/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/callbacks/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/callbacks/grad_norm.py +113 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +2 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/concat_repeat.py +53 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/text_data_pb2.py +33 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/text_data_stream.py +36 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/semantic.py +496 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/vqgan.py +147 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/core.py +40 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/pt_BR.json +133 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/scan.py +122 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/lit_module.py +202 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +779 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/lora.py +92 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/lit_module.py +442 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/discriminator.py +44 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +625 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +139 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/reference.py +115 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/wavenet.py +225 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/utils.py +94 -0
- xinference/thirdparty/fish_speech/fish_speech/scheduler.py +40 -0
- xinference/thirdparty/fish_speech/fish_speech/text/__init__.py +4 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_class.py +172 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_constant.py +30 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_util.py +342 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/cardinal.py +32 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/date.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/digit.py +32 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/fraction.py +35 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/money.py +43 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/percentage.py +33 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/telephone.py +51 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +177 -0
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +69 -0
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +130 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +139 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +23 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/braceexpand.py +217 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/context.py +13 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/file.py +16 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/instantiators.py +50 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/logger.py +55 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/logging_utils.py +48 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/rich_utils.py +100 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/spectrogram.py +122 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +114 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +120 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1237 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +495 -0
- xinference/thirdparty/fish_speech/tools/auto_rerank.py +159 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +55 -0
- xinference/thirdparty/fish_speech/tools/extract_model.py +21 -0
- xinference/thirdparty/fish_speech/tools/file.py +108 -0
- xinference/thirdparty/fish_speech/tools/gen_ref.py +36 -0
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/llama/build_dataset.py +169 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +171 -0
- xinference/thirdparty/fish_speech/tools/llama/generate.py +698 -0
- xinference/thirdparty/fish_speech/tools/llama/merge_lora.py +95 -0
- xinference/thirdparty/fish_speech/tools/llama/quantize.py +497 -0
- xinference/thirdparty/fish_speech/tools/llama/rebuild_tokenizer.py +57 -0
- xinference/thirdparty/fish_speech/tools/merge_asr_files.py +55 -0
- xinference/thirdparty/fish_speech/tools/post_api.py +164 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/auto_model.py +573 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/fun_asr.py +332 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/vad_utils.py +61 -0
- xinference/thirdparty/fish_speech/tools/smart_pad.py +47 -0
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/vqgan/create_train_split.py +83 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +227 -0
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +120 -0
- xinference/thirdparty/fish_speech/tools/webui.py +619 -0
- xinference/thirdparty/fish_speech/tools/whisper_asr.py +176 -0
- xinference/thirdparty/internvl/__init__.py +0 -0
- xinference/thirdparty/internvl/conversation.py +393 -0
- xinference/thirdparty/omnilmm/model/utils.py +16 -1
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/main.661c7b0a.js +3 -0
- xinference/web/ui/build/static/js/{main.17ca0398.js.map → main.661c7b0a.js.map} +1 -1
- xinference/web/ui/node_modules/.cache/babel-loader/070d8c6b3b0f3485c6d3885f0b6bbfdf9643e088a468acbd5d596f2396071c16.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/213b5913e164773c2b0567455377765715f5f07225fbac77ad8e1e9dc9648a47.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5391543180fead1eeef5364300301498d58a7d91d62de3841a32768b67f4552f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5c26a23b5eacf5b752a08531577ae3840bb247745ef9a39583dc2d05ba93a82a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/714c37ce0ec5b5c591033f02be2f3f491fdd70da3ef568ee4a4f94689a3d5ca2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/978b57d1a04a701bc3fcfebc511f5f274eed6ed7eade67f6fb76c27d5fd9ecc8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a797831de0dc74897f4b50b3426555d748f328b4c2cc391de709eadaf6a5f3e3.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e91938976f229ce986b2907e51e1f00540b584ced0a315d498c172d13220739d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +1 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/METADATA +22 -13
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/RECORD +170 -79
- xinference/locale/utils.py +0 -39
- xinference/locale/zh_CN.json +0 -26
- xinference/model/llm/ggml/tools/__init__.py +0 -15
- xinference/model/llm/ggml/tools/convert_ggml_to_gguf.py +0 -498
- xinference/model/llm/ggml/tools/gguf.py +0 -884
- xinference/model/llm/pytorch/__init__.py +0 -13
- xinference/model/llm/pytorch/baichuan.py +0 -81
- xinference/model/llm/pytorch/falcon.py +0 -138
- xinference/model/llm/pytorch/intern_vl.py +0 -352
- xinference/model/llm/pytorch/vicuna.py +0 -69
- xinference/web/ui/build/static/js/main.17ca0398.js +0 -3
- xinference/web/ui/node_modules/.cache/babel-loader/1444c41a4d04494f1cbc2d8c1537df107b451cb569cb2c1fbf5159f3a4841a5f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/2f40209b32e7e46a2eab6b8c8a355eb42c3caa8bc3228dd929f32fd2b3940294.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/44774c783428f952d8e2e4ad0998a9c5bc16a57cd9c68b7c5ff18aaa5a41d65c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/5262556baf9207738bf6a8ba141ec6599d0a636345c245d61fdf88d3171998cb.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/6450605fac003812485f6251b9f0caafbf2e5bfc3bbe2f000050d9e2fdb8dcd3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/71684495d995c7e266eecc6a0ad8ea0284cc785f80abddf863789c57a6134969.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/80acd1edf31542ab1dcccfad02cb4b38f3325cff847a781fcce97500cfd6f878.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8a9742ddd8ba8546ef42dc14caca443f2b4524fabed7bf269e0eff3b7b64ee7d.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d06a96a3c9c32e42689094aa3aaad41c8125894e956b8f84a70fadce6e3f65b3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d93730e2b5d7e8c957b4d0965d2ed1dac9045a649adbd47c220d11f255d4b1e0.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e656dc00b4d8b387f0a81ba8fc558767df1601c66369e2eb86a5ef27cf080572.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f28b83886159d83b84f099b05d607a822dca4dd7f2d8aa6d56fe08bab0b5b086.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f3e02274cb1964e99b1fe69cbb6db233d3d8d7dd05d50ebcdb8e66d50b224b7b.json +0 -1
- /xinference/{locale → model/llm/llama_cpp}/__init__.py +0 -0
- /xinference/model/llm/{ggml → transformers}/__init__.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/compression.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/deepseek_vl.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/llama_2.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/omnilmm.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/qwen_vl.py +0 -0
- /xinference/model/llm/{pytorch → transformers}/tensorizer_utils.py +0 -0
- /xinference/web/ui/build/static/js/{main.17ca0398.js.LICENSE.txt → main.661c7b0a.js.LICENSE.txt} +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/LICENSE +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/WHEEL +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/entry_points.txt +0 -0
- {xinference-0.14.1.post1.dist-info → xinference-0.14.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,625 @@
|
|
|
1
|
+
# A inference only version of the FireflyGAN model
|
|
2
|
+
|
|
3
|
+
import math
|
|
4
|
+
from functools import partial
|
|
5
|
+
from math import prod
|
|
6
|
+
from typing import Callable
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import torch
|
|
10
|
+
import torch.nn.functional as F
|
|
11
|
+
from torch import nn
|
|
12
|
+
from torch.nn import Conv1d
|
|
13
|
+
from torch.nn.utils.parametrizations import weight_norm
|
|
14
|
+
from torch.nn.utils.parametrize import remove_parametrizations
|
|
15
|
+
from torch.utils.checkpoint import checkpoint
|
|
16
|
+
|
|
17
|
+
from fish_speech.models.vqgan.utils import sequence_mask
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def init_weights(m, mean=0.0, std=0.01):
|
|
21
|
+
classname = m.__class__.__name__
|
|
22
|
+
if classname.find("Conv") != -1:
|
|
23
|
+
m.weight.data.normal_(mean, std)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def get_padding(kernel_size, dilation=1):
|
|
27
|
+
return (kernel_size * dilation - dilation) // 2
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class ResBlock1(torch.nn.Module):
|
|
31
|
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
|
32
|
+
super().__init__()
|
|
33
|
+
|
|
34
|
+
self.convs1 = nn.ModuleList(
|
|
35
|
+
[
|
|
36
|
+
weight_norm(
|
|
37
|
+
Conv1d(
|
|
38
|
+
channels,
|
|
39
|
+
channels,
|
|
40
|
+
kernel_size,
|
|
41
|
+
1,
|
|
42
|
+
dilation=dilation[0],
|
|
43
|
+
padding=get_padding(kernel_size, dilation[0]),
|
|
44
|
+
)
|
|
45
|
+
),
|
|
46
|
+
weight_norm(
|
|
47
|
+
Conv1d(
|
|
48
|
+
channels,
|
|
49
|
+
channels,
|
|
50
|
+
kernel_size,
|
|
51
|
+
1,
|
|
52
|
+
dilation=dilation[1],
|
|
53
|
+
padding=get_padding(kernel_size, dilation[1]),
|
|
54
|
+
)
|
|
55
|
+
),
|
|
56
|
+
weight_norm(
|
|
57
|
+
Conv1d(
|
|
58
|
+
channels,
|
|
59
|
+
channels,
|
|
60
|
+
kernel_size,
|
|
61
|
+
1,
|
|
62
|
+
dilation=dilation[2],
|
|
63
|
+
padding=get_padding(kernel_size, dilation[2]),
|
|
64
|
+
)
|
|
65
|
+
),
|
|
66
|
+
]
|
|
67
|
+
)
|
|
68
|
+
self.convs1.apply(init_weights)
|
|
69
|
+
|
|
70
|
+
self.convs2 = nn.ModuleList(
|
|
71
|
+
[
|
|
72
|
+
weight_norm(
|
|
73
|
+
Conv1d(
|
|
74
|
+
channels,
|
|
75
|
+
channels,
|
|
76
|
+
kernel_size,
|
|
77
|
+
1,
|
|
78
|
+
dilation=1,
|
|
79
|
+
padding=get_padding(kernel_size, 1),
|
|
80
|
+
)
|
|
81
|
+
),
|
|
82
|
+
weight_norm(
|
|
83
|
+
Conv1d(
|
|
84
|
+
channels,
|
|
85
|
+
channels,
|
|
86
|
+
kernel_size,
|
|
87
|
+
1,
|
|
88
|
+
dilation=1,
|
|
89
|
+
padding=get_padding(kernel_size, 1),
|
|
90
|
+
)
|
|
91
|
+
),
|
|
92
|
+
weight_norm(
|
|
93
|
+
Conv1d(
|
|
94
|
+
channels,
|
|
95
|
+
channels,
|
|
96
|
+
kernel_size,
|
|
97
|
+
1,
|
|
98
|
+
dilation=1,
|
|
99
|
+
padding=get_padding(kernel_size, 1),
|
|
100
|
+
)
|
|
101
|
+
),
|
|
102
|
+
]
|
|
103
|
+
)
|
|
104
|
+
self.convs2.apply(init_weights)
|
|
105
|
+
|
|
106
|
+
def forward(self, x):
|
|
107
|
+
for c1, c2 in zip(self.convs1, self.convs2):
|
|
108
|
+
xt = F.silu(x)
|
|
109
|
+
xt = c1(xt)
|
|
110
|
+
xt = F.silu(xt)
|
|
111
|
+
xt = c2(xt)
|
|
112
|
+
x = xt + x
|
|
113
|
+
return x
|
|
114
|
+
|
|
115
|
+
def remove_parametrizations(self):
|
|
116
|
+
for conv in self.convs1:
|
|
117
|
+
remove_parametrizations(conv, tensor_name="weight")
|
|
118
|
+
for conv in self.convs2:
|
|
119
|
+
remove_parametrizations(conv, tensor_name="weight")
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
class ParralelBlock(nn.Module):
|
|
123
|
+
def __init__(
|
|
124
|
+
self,
|
|
125
|
+
channels: int,
|
|
126
|
+
kernel_sizes: tuple[int] = (3, 7, 11),
|
|
127
|
+
dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)),
|
|
128
|
+
):
|
|
129
|
+
super().__init__()
|
|
130
|
+
|
|
131
|
+
assert len(kernel_sizes) == len(dilation_sizes)
|
|
132
|
+
|
|
133
|
+
self.blocks = nn.ModuleList()
|
|
134
|
+
for k, d in zip(kernel_sizes, dilation_sizes):
|
|
135
|
+
self.blocks.append(ResBlock1(channels, k, d))
|
|
136
|
+
|
|
137
|
+
def forward(self, x):
|
|
138
|
+
return torch.stack([block(x) for block in self.blocks], dim=0).mean(dim=0)
|
|
139
|
+
|
|
140
|
+
def remove_parametrizations(self):
|
|
141
|
+
for block in self.blocks:
|
|
142
|
+
block.remove_parametrizations()
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
class HiFiGANGenerator(nn.Module):
|
|
146
|
+
def __init__(
|
|
147
|
+
self,
|
|
148
|
+
*,
|
|
149
|
+
hop_length: int = 512,
|
|
150
|
+
upsample_rates: tuple[int] = (8, 8, 2, 2, 2),
|
|
151
|
+
upsample_kernel_sizes: tuple[int] = (16, 16, 8, 2, 2),
|
|
152
|
+
resblock_kernel_sizes: tuple[int] = (3, 7, 11),
|
|
153
|
+
resblock_dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)),
|
|
154
|
+
num_mels: int = 128,
|
|
155
|
+
upsample_initial_channel: int = 512,
|
|
156
|
+
use_template: bool = True,
|
|
157
|
+
pre_conv_kernel_size: int = 7,
|
|
158
|
+
post_conv_kernel_size: int = 7,
|
|
159
|
+
post_activation: Callable = partial(nn.SiLU, inplace=True),
|
|
160
|
+
):
|
|
161
|
+
super().__init__()
|
|
162
|
+
|
|
163
|
+
assert (
|
|
164
|
+
prod(upsample_rates) == hop_length
|
|
165
|
+
), f"hop_length must be {prod(upsample_rates)}"
|
|
166
|
+
|
|
167
|
+
self.conv_pre = weight_norm(
|
|
168
|
+
nn.Conv1d(
|
|
169
|
+
num_mels,
|
|
170
|
+
upsample_initial_channel,
|
|
171
|
+
pre_conv_kernel_size,
|
|
172
|
+
1,
|
|
173
|
+
padding=get_padding(pre_conv_kernel_size),
|
|
174
|
+
)
|
|
175
|
+
)
|
|
176
|
+
|
|
177
|
+
self.num_upsamples = len(upsample_rates)
|
|
178
|
+
self.num_kernels = len(resblock_kernel_sizes)
|
|
179
|
+
|
|
180
|
+
self.noise_convs = nn.ModuleList()
|
|
181
|
+
self.use_template = use_template
|
|
182
|
+
self.ups = nn.ModuleList()
|
|
183
|
+
|
|
184
|
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
|
185
|
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
|
186
|
+
self.ups.append(
|
|
187
|
+
weight_norm(
|
|
188
|
+
nn.ConvTranspose1d(
|
|
189
|
+
upsample_initial_channel // (2**i),
|
|
190
|
+
upsample_initial_channel // (2 ** (i + 1)),
|
|
191
|
+
k,
|
|
192
|
+
u,
|
|
193
|
+
padding=(k - u) // 2,
|
|
194
|
+
)
|
|
195
|
+
)
|
|
196
|
+
)
|
|
197
|
+
|
|
198
|
+
if not use_template:
|
|
199
|
+
continue
|
|
200
|
+
|
|
201
|
+
if i + 1 < len(upsample_rates):
|
|
202
|
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
|
203
|
+
self.noise_convs.append(
|
|
204
|
+
Conv1d(
|
|
205
|
+
1,
|
|
206
|
+
c_cur,
|
|
207
|
+
kernel_size=stride_f0 * 2,
|
|
208
|
+
stride=stride_f0,
|
|
209
|
+
padding=stride_f0 // 2,
|
|
210
|
+
)
|
|
211
|
+
)
|
|
212
|
+
else:
|
|
213
|
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
|
214
|
+
|
|
215
|
+
self.resblocks = nn.ModuleList()
|
|
216
|
+
for i in range(len(self.ups)):
|
|
217
|
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
218
|
+
self.resblocks.append(
|
|
219
|
+
ParralelBlock(ch, resblock_kernel_sizes, resblock_dilation_sizes)
|
|
220
|
+
)
|
|
221
|
+
|
|
222
|
+
self.activation_post = post_activation()
|
|
223
|
+
self.conv_post = weight_norm(
|
|
224
|
+
nn.Conv1d(
|
|
225
|
+
ch,
|
|
226
|
+
1,
|
|
227
|
+
post_conv_kernel_size,
|
|
228
|
+
1,
|
|
229
|
+
padding=get_padding(post_conv_kernel_size),
|
|
230
|
+
)
|
|
231
|
+
)
|
|
232
|
+
self.ups.apply(init_weights)
|
|
233
|
+
self.conv_post.apply(init_weights)
|
|
234
|
+
|
|
235
|
+
def forward(self, x, template=None):
|
|
236
|
+
x = self.conv_pre(x)
|
|
237
|
+
|
|
238
|
+
for i in range(self.num_upsamples):
|
|
239
|
+
x = F.silu(x, inplace=True)
|
|
240
|
+
x = self.ups[i](x)
|
|
241
|
+
|
|
242
|
+
if self.use_template:
|
|
243
|
+
x = x + self.noise_convs[i](template)
|
|
244
|
+
|
|
245
|
+
if self.training:
|
|
246
|
+
x = checkpoint(
|
|
247
|
+
self.resblocks[i],
|
|
248
|
+
x,
|
|
249
|
+
use_reentrant=False,
|
|
250
|
+
)
|
|
251
|
+
else:
|
|
252
|
+
x = self.resblocks[i](x)
|
|
253
|
+
|
|
254
|
+
x = self.activation_post(x)
|
|
255
|
+
x = self.conv_post(x)
|
|
256
|
+
x = torch.tanh(x)
|
|
257
|
+
|
|
258
|
+
return x
|
|
259
|
+
|
|
260
|
+
def remove_parametrizations(self):
|
|
261
|
+
for up in self.ups:
|
|
262
|
+
remove_parametrizations(up, tensor_name="weight")
|
|
263
|
+
for block in self.resblocks:
|
|
264
|
+
block.remove_parametrizations()
|
|
265
|
+
remove_parametrizations(self.conv_pre, tensor_name="weight")
|
|
266
|
+
remove_parametrizations(self.conv_post, tensor_name="weight")
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
# DropPath copied from timm library
|
|
270
|
+
def drop_path(
|
|
271
|
+
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
|
|
272
|
+
):
|
|
273
|
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
274
|
+
|
|
275
|
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
|
276
|
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
|
277
|
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
|
278
|
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
|
279
|
+
'survival rate' as the argument.
|
|
280
|
+
|
|
281
|
+
""" # noqa: E501
|
|
282
|
+
|
|
283
|
+
if drop_prob == 0.0 or not training:
|
|
284
|
+
return x
|
|
285
|
+
keep_prob = 1 - drop_prob
|
|
286
|
+
shape = (x.shape[0],) + (1,) * (
|
|
287
|
+
x.ndim - 1
|
|
288
|
+
) # work with diff dim tensors, not just 2D ConvNets
|
|
289
|
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
|
290
|
+
if keep_prob > 0.0 and scale_by_keep:
|
|
291
|
+
random_tensor.div_(keep_prob)
|
|
292
|
+
return x * random_tensor
|
|
293
|
+
|
|
294
|
+
|
|
295
|
+
class DropPath(nn.Module):
|
|
296
|
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501
|
|
297
|
+
|
|
298
|
+
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
|
|
299
|
+
super(DropPath, self).__init__()
|
|
300
|
+
self.drop_prob = drop_prob
|
|
301
|
+
self.scale_by_keep = scale_by_keep
|
|
302
|
+
|
|
303
|
+
def forward(self, x):
|
|
304
|
+
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
|
305
|
+
|
|
306
|
+
def extra_repr(self):
|
|
307
|
+
return f"drop_prob={round(self.drop_prob,3):0.3f}"
|
|
308
|
+
|
|
309
|
+
|
|
310
|
+
class LayerNorm(nn.Module):
|
|
311
|
+
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
|
312
|
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
|
313
|
+
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
|
314
|
+
with shape (batch_size, channels, height, width).
|
|
315
|
+
""" # noqa: E501
|
|
316
|
+
|
|
317
|
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
|
318
|
+
super().__init__()
|
|
319
|
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
|
320
|
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
|
321
|
+
self.eps = eps
|
|
322
|
+
self.data_format = data_format
|
|
323
|
+
if self.data_format not in ["channels_last", "channels_first"]:
|
|
324
|
+
raise NotImplementedError
|
|
325
|
+
self.normalized_shape = (normalized_shape,)
|
|
326
|
+
|
|
327
|
+
def forward(self, x):
|
|
328
|
+
if self.data_format == "channels_last":
|
|
329
|
+
return F.layer_norm(
|
|
330
|
+
x, self.normalized_shape, self.weight, self.bias, self.eps
|
|
331
|
+
)
|
|
332
|
+
elif self.data_format == "channels_first":
|
|
333
|
+
u = x.mean(1, keepdim=True)
|
|
334
|
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
|
335
|
+
x = (x - u) / torch.sqrt(s + self.eps)
|
|
336
|
+
x = self.weight[:, None] * x + self.bias[:, None]
|
|
337
|
+
return x
|
|
338
|
+
|
|
339
|
+
|
|
340
|
+
# ConvNeXt Block copied from https://github.com/fishaudio/fish-diffusion/blob/main/fish_diffusion/modules/convnext.py
|
|
341
|
+
class ConvNeXtBlock(nn.Module):
|
|
342
|
+
r"""ConvNeXt Block. There are two equivalent implementations:
|
|
343
|
+
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
|
344
|
+
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
|
345
|
+
We use (2) as we find it slightly faster in PyTorch
|
|
346
|
+
|
|
347
|
+
Args:
|
|
348
|
+
dim (int): Number of input channels.
|
|
349
|
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
|
350
|
+
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
|
351
|
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
|
|
352
|
+
kernel_size (int): Kernel size for depthwise conv. Default: 7.
|
|
353
|
+
dilation (int): Dilation for depthwise conv. Default: 1.
|
|
354
|
+
""" # noqa: E501
|
|
355
|
+
|
|
356
|
+
def __init__(
|
|
357
|
+
self,
|
|
358
|
+
dim: int,
|
|
359
|
+
drop_path: float = 0.0,
|
|
360
|
+
layer_scale_init_value: float = 1e-6,
|
|
361
|
+
mlp_ratio: float = 4.0,
|
|
362
|
+
kernel_size: int = 7,
|
|
363
|
+
dilation: int = 1,
|
|
364
|
+
):
|
|
365
|
+
super().__init__()
|
|
366
|
+
|
|
367
|
+
self.dwconv = nn.Conv1d(
|
|
368
|
+
dim,
|
|
369
|
+
dim,
|
|
370
|
+
kernel_size=kernel_size,
|
|
371
|
+
padding=int(dilation * (kernel_size - 1) / 2),
|
|
372
|
+
groups=dim,
|
|
373
|
+
) # depthwise conv
|
|
374
|
+
self.norm = LayerNorm(dim, eps=1e-6)
|
|
375
|
+
self.pwconv1 = nn.Linear(
|
|
376
|
+
dim, int(mlp_ratio * dim)
|
|
377
|
+
) # pointwise/1x1 convs, implemented with linear layers
|
|
378
|
+
self.act = nn.GELU()
|
|
379
|
+
self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim)
|
|
380
|
+
self.gamma = (
|
|
381
|
+
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
|
382
|
+
if layer_scale_init_value > 0
|
|
383
|
+
else None
|
|
384
|
+
)
|
|
385
|
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
386
|
+
|
|
387
|
+
def forward(self, x, apply_residual: bool = True):
|
|
388
|
+
input = x
|
|
389
|
+
|
|
390
|
+
x = self.dwconv(x)
|
|
391
|
+
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C)
|
|
392
|
+
x = self.norm(x)
|
|
393
|
+
x = self.pwconv1(x)
|
|
394
|
+
x = self.act(x)
|
|
395
|
+
x = self.pwconv2(x)
|
|
396
|
+
|
|
397
|
+
if self.gamma is not None:
|
|
398
|
+
x = self.gamma * x
|
|
399
|
+
|
|
400
|
+
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L)
|
|
401
|
+
x = self.drop_path(x)
|
|
402
|
+
|
|
403
|
+
if apply_residual:
|
|
404
|
+
x = input + x
|
|
405
|
+
|
|
406
|
+
return x
|
|
407
|
+
|
|
408
|
+
|
|
409
|
+
class ConvNeXtEncoder(nn.Module):
|
|
410
|
+
def __init__(
|
|
411
|
+
self,
|
|
412
|
+
input_channels: int = 3,
|
|
413
|
+
depths: list[int] = [3, 3, 9, 3],
|
|
414
|
+
dims: list[int] = [96, 192, 384, 768],
|
|
415
|
+
drop_path_rate: float = 0.0,
|
|
416
|
+
layer_scale_init_value: float = 1e-6,
|
|
417
|
+
kernel_size: int = 7,
|
|
418
|
+
):
|
|
419
|
+
super().__init__()
|
|
420
|
+
assert len(depths) == len(dims)
|
|
421
|
+
|
|
422
|
+
self.downsample_layers = nn.ModuleList()
|
|
423
|
+
stem = nn.Sequential(
|
|
424
|
+
nn.Conv1d(
|
|
425
|
+
input_channels,
|
|
426
|
+
dims[0],
|
|
427
|
+
kernel_size=kernel_size,
|
|
428
|
+
padding=kernel_size // 2,
|
|
429
|
+
padding_mode="zeros",
|
|
430
|
+
),
|
|
431
|
+
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
|
|
432
|
+
)
|
|
433
|
+
self.downsample_layers.append(stem)
|
|
434
|
+
|
|
435
|
+
for i in range(len(depths) - 1):
|
|
436
|
+
mid_layer = nn.Sequential(
|
|
437
|
+
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
|
|
438
|
+
nn.Conv1d(dims[i], dims[i + 1], kernel_size=1),
|
|
439
|
+
)
|
|
440
|
+
self.downsample_layers.append(mid_layer)
|
|
441
|
+
|
|
442
|
+
self.stages = nn.ModuleList()
|
|
443
|
+
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
|
444
|
+
|
|
445
|
+
cur = 0
|
|
446
|
+
for i in range(len(depths)):
|
|
447
|
+
stage = nn.Sequential(
|
|
448
|
+
*[
|
|
449
|
+
ConvNeXtBlock(
|
|
450
|
+
dim=dims[i],
|
|
451
|
+
drop_path=dp_rates[cur + j],
|
|
452
|
+
layer_scale_init_value=layer_scale_init_value,
|
|
453
|
+
kernel_size=kernel_size,
|
|
454
|
+
)
|
|
455
|
+
for j in range(depths[i])
|
|
456
|
+
]
|
|
457
|
+
)
|
|
458
|
+
self.stages.append(stage)
|
|
459
|
+
cur += depths[i]
|
|
460
|
+
|
|
461
|
+
self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first")
|
|
462
|
+
self.apply(self._init_weights)
|
|
463
|
+
|
|
464
|
+
def _init_weights(self, m):
|
|
465
|
+
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
|
466
|
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
467
|
+
nn.init.constant_(m.bias, 0)
|
|
468
|
+
|
|
469
|
+
def forward(
|
|
470
|
+
self,
|
|
471
|
+
x: torch.Tensor,
|
|
472
|
+
) -> torch.Tensor:
|
|
473
|
+
for i in range(len(self.downsample_layers)):
|
|
474
|
+
x = self.downsample_layers[i](x)
|
|
475
|
+
x = self.stages[i](x)
|
|
476
|
+
|
|
477
|
+
return self.norm(x)
|
|
478
|
+
|
|
479
|
+
|
|
480
|
+
class FireflyArchitecture(nn.Module):
|
|
481
|
+
def __init__(
|
|
482
|
+
self,
|
|
483
|
+
backbone: nn.Module,
|
|
484
|
+
head: nn.Module,
|
|
485
|
+
quantizer: nn.Module,
|
|
486
|
+
spec_transform: nn.Module,
|
|
487
|
+
):
|
|
488
|
+
super().__init__()
|
|
489
|
+
|
|
490
|
+
self.backbone = backbone
|
|
491
|
+
self.head = head
|
|
492
|
+
self.quantizer = quantizer
|
|
493
|
+
self.spec_transform = spec_transform
|
|
494
|
+
|
|
495
|
+
def forward(self, x: torch.Tensor, template=None, mask=None) -> torch.Tensor:
|
|
496
|
+
if self.spec_transform is not None:
|
|
497
|
+
x = self.spec_transform(x)
|
|
498
|
+
|
|
499
|
+
x = self.backbone(x)
|
|
500
|
+
if mask is not None:
|
|
501
|
+
x = x * mask
|
|
502
|
+
|
|
503
|
+
if self.quantizer is not None:
|
|
504
|
+
vq_result = self.quantizer(x)
|
|
505
|
+
x = vq_result.z
|
|
506
|
+
|
|
507
|
+
if mask is not None:
|
|
508
|
+
x = x * mask
|
|
509
|
+
|
|
510
|
+
x = self.head(x, template=template)
|
|
511
|
+
|
|
512
|
+
if x.ndim == 2:
|
|
513
|
+
x = x[:, None, :]
|
|
514
|
+
|
|
515
|
+
if self.quantizer is not None:
|
|
516
|
+
return x, vq_result
|
|
517
|
+
|
|
518
|
+
return x
|
|
519
|
+
|
|
520
|
+
def encode(self, audios, audio_lengths):
|
|
521
|
+
audios = audios.float()
|
|
522
|
+
|
|
523
|
+
mels = self.spec_transform(audios)
|
|
524
|
+
mel_lengths = audio_lengths // self.spec_transform.hop_length
|
|
525
|
+
mel_masks = sequence_mask(mel_lengths, mels.shape[2])
|
|
526
|
+
mel_masks_float_conv = mel_masks[:, None, :].float()
|
|
527
|
+
mels = mels * mel_masks_float_conv
|
|
528
|
+
|
|
529
|
+
# Encode
|
|
530
|
+
encoded_features = self.backbone(mels) * mel_masks_float_conv
|
|
531
|
+
feature_lengths = mel_lengths // math.prod(self.quantizer.downsample_factor)
|
|
532
|
+
|
|
533
|
+
return self.quantizer.encode(encoded_features), feature_lengths
|
|
534
|
+
|
|
535
|
+
def decode(self, indices, feature_lengths) -> torch.Tensor:
|
|
536
|
+
factor = math.prod(self.quantizer.downsample_factor)
|
|
537
|
+
mel_masks = sequence_mask(feature_lengths * factor, indices.shape[2] * factor)
|
|
538
|
+
mel_masks_float_conv = mel_masks[:, None, :].float()
|
|
539
|
+
|
|
540
|
+
audio_masks = sequence_mask(
|
|
541
|
+
feature_lengths * factor * self.spec_transform.hop_length,
|
|
542
|
+
indices.shape[2] * factor * self.spec_transform.hop_length,
|
|
543
|
+
)
|
|
544
|
+
audio_masks_float_conv = audio_masks[:, None, :].float()
|
|
545
|
+
|
|
546
|
+
z = self.quantizer.decode(indices) * mel_masks_float_conv
|
|
547
|
+
x = self.head(z) * audio_masks_float_conv
|
|
548
|
+
|
|
549
|
+
return x
|
|
550
|
+
|
|
551
|
+
def remove_parametrizations(self):
|
|
552
|
+
if hasattr(self.backbone, "remove_parametrizations"):
|
|
553
|
+
self.backbone.remove_parametrizations()
|
|
554
|
+
|
|
555
|
+
if hasattr(self.head, "remove_parametrizations"):
|
|
556
|
+
self.head.remove_parametrizations()
|
|
557
|
+
|
|
558
|
+
@property
|
|
559
|
+
def device(self):
|
|
560
|
+
return next(self.parameters()).device
|
|
561
|
+
|
|
562
|
+
|
|
563
|
+
class FireflyBase(nn.Module):
|
|
564
|
+
def __init__(self, ckpt_path: str = None, pretrained: bool = True):
|
|
565
|
+
super().__init__()
|
|
566
|
+
|
|
567
|
+
self.backbone = ConvNeXtEncoder(
|
|
568
|
+
input_channels=128,
|
|
569
|
+
depths=[3, 3, 9, 3],
|
|
570
|
+
dims=[128, 256, 384, 512],
|
|
571
|
+
drop_path_rate=0.2,
|
|
572
|
+
kernel_size=7,
|
|
573
|
+
)
|
|
574
|
+
|
|
575
|
+
self.head = HiFiGANGenerator(
|
|
576
|
+
hop_length=512,
|
|
577
|
+
upsample_rates=[8, 8, 2, 2, 2],
|
|
578
|
+
upsample_kernel_sizes=[16, 16, 4, 4, 4],
|
|
579
|
+
resblock_kernel_sizes=[3, 7, 11],
|
|
580
|
+
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
|
581
|
+
num_mels=512,
|
|
582
|
+
upsample_initial_channel=512,
|
|
583
|
+
use_template=False,
|
|
584
|
+
pre_conv_kernel_size=13,
|
|
585
|
+
post_conv_kernel_size=13,
|
|
586
|
+
)
|
|
587
|
+
|
|
588
|
+
if ckpt_path is not None:
|
|
589
|
+
state_dict = torch.load(ckpt_path, map_location="cpu")
|
|
590
|
+
elif pretrained:
|
|
591
|
+
state_dict = torch.hub.load_state_dict_from_url(
|
|
592
|
+
"https://github.com/fishaudio/vocoder/releases/download/1.0.0/firefly-gan-base-generator.ckpt",
|
|
593
|
+
map_location="cpu",
|
|
594
|
+
model_dir="checkpoints",
|
|
595
|
+
)
|
|
596
|
+
|
|
597
|
+
if "state_dict" in state_dict:
|
|
598
|
+
state_dict = state_dict["state_dict"]
|
|
599
|
+
|
|
600
|
+
if any("generator." in k for k in state_dict):
|
|
601
|
+
state_dict = {
|
|
602
|
+
k.replace("generator.", ""): v
|
|
603
|
+
for k, v in state_dict.items()
|
|
604
|
+
if "generator." in k
|
|
605
|
+
}
|
|
606
|
+
|
|
607
|
+
self.load_state_dict(state_dict, strict=True)
|
|
608
|
+
self.head.remove_parametrizations()
|
|
609
|
+
|
|
610
|
+
@torch.no_grad()
|
|
611
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
612
|
+
x = self.backbone(x)
|
|
613
|
+
x = self.head(x)
|
|
614
|
+
if x.ndim == 2:
|
|
615
|
+
x = x[:, None, :]
|
|
616
|
+
return x
|
|
617
|
+
|
|
618
|
+
|
|
619
|
+
if __name__ == "__main__":
|
|
620
|
+
model = FireflyBase()
|
|
621
|
+
model.eval()
|
|
622
|
+
x = torch.randn(1, 128, 128)
|
|
623
|
+
with torch.no_grad():
|
|
624
|
+
y = model(x)
|
|
625
|
+
print(y.shape)
|