workbench 0.8.177__py3-none-any.whl → 0.8.227__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of workbench might be problematic. Click here for more details.

Files changed (140) hide show
  1. workbench/__init__.py +1 -0
  2. workbench/algorithms/dataframe/__init__.py +1 -2
  3. workbench/algorithms/dataframe/compound_dataset_overlap.py +321 -0
  4. workbench/algorithms/dataframe/feature_space_proximity.py +168 -75
  5. workbench/algorithms/dataframe/fingerprint_proximity.py +422 -86
  6. workbench/algorithms/dataframe/projection_2d.py +44 -21
  7. workbench/algorithms/dataframe/proximity.py +259 -305
  8. workbench/algorithms/graph/light/proximity_graph.py +12 -11
  9. workbench/algorithms/models/cleanlab_model.py +382 -0
  10. workbench/algorithms/models/noise_model.py +388 -0
  11. workbench/algorithms/sql/column_stats.py +0 -1
  12. workbench/algorithms/sql/correlations.py +0 -1
  13. workbench/algorithms/sql/descriptive_stats.py +0 -1
  14. workbench/algorithms/sql/outliers.py +3 -3
  15. workbench/api/__init__.py +5 -1
  16. workbench/api/df_store.py +17 -108
  17. workbench/api/endpoint.py +14 -12
  18. workbench/api/feature_set.py +117 -11
  19. workbench/api/meta.py +0 -1
  20. workbench/api/meta_model.py +289 -0
  21. workbench/api/model.py +52 -21
  22. workbench/api/parameter_store.py +3 -52
  23. workbench/cached/cached_meta.py +0 -1
  24. workbench/cached/cached_model.py +49 -11
  25. workbench/core/artifacts/__init__.py +11 -2
  26. workbench/core/artifacts/artifact.py +5 -5
  27. workbench/core/artifacts/df_store_core.py +114 -0
  28. workbench/core/artifacts/endpoint_core.py +319 -204
  29. workbench/core/artifacts/feature_set_core.py +249 -45
  30. workbench/core/artifacts/model_core.py +135 -82
  31. workbench/core/artifacts/parameter_store_core.py +98 -0
  32. workbench/core/cloud_platform/cloud_meta.py +0 -1
  33. workbench/core/pipelines/pipeline_executor.py +1 -1
  34. workbench/core/transforms/features_to_model/features_to_model.py +60 -44
  35. workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +43 -10
  36. workbench/core/transforms/pandas_transforms/pandas_to_features.py +38 -2
  37. workbench/core/views/training_view.py +113 -42
  38. workbench/core/views/view.py +53 -3
  39. workbench/core/views/view_utils.py +4 -4
  40. workbench/model_script_utils/model_script_utils.py +339 -0
  41. workbench/model_script_utils/pytorch_utils.py +405 -0
  42. workbench/model_script_utils/uq_harness.py +277 -0
  43. workbench/model_scripts/chemprop/chemprop.template +774 -0
  44. workbench/model_scripts/chemprop/generated_model_script.py +774 -0
  45. workbench/model_scripts/chemprop/model_script_utils.py +339 -0
  46. workbench/model_scripts/chemprop/requirements.txt +3 -0
  47. workbench/model_scripts/custom_models/chem_info/fingerprints.py +175 -0
  48. workbench/model_scripts/custom_models/chem_info/mol_descriptors.py +0 -1
  49. workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py +0 -1
  50. workbench/model_scripts/custom_models/chem_info/morgan_fingerprints.py +1 -2
  51. workbench/model_scripts/custom_models/proximity/feature_space_proximity.py +194 -0
  52. workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +8 -10
  53. workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template +7 -8
  54. workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template +20 -21
  55. workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py +194 -0
  56. workbench/model_scripts/custom_models/uq_models/gaussian_process.template +5 -11
  57. workbench/model_scripts/custom_models/uq_models/ngboost.template +15 -16
  58. workbench/model_scripts/ensemble_xgb/ensemble_xgb.template +15 -17
  59. workbench/model_scripts/meta_model/generated_model_script.py +209 -0
  60. workbench/model_scripts/meta_model/meta_model.template +209 -0
  61. workbench/model_scripts/pytorch_model/generated_model_script.py +443 -499
  62. workbench/model_scripts/pytorch_model/model_script_utils.py +339 -0
  63. workbench/model_scripts/pytorch_model/pytorch.template +440 -496
  64. workbench/model_scripts/pytorch_model/pytorch_utils.py +405 -0
  65. workbench/model_scripts/pytorch_model/requirements.txt +1 -1
  66. workbench/model_scripts/pytorch_model/uq_harness.py +277 -0
  67. workbench/model_scripts/scikit_learn/generated_model_script.py +7 -12
  68. workbench/model_scripts/scikit_learn/scikit_learn.template +4 -9
  69. workbench/model_scripts/script_generation.py +15 -12
  70. workbench/model_scripts/uq_models/generated_model_script.py +248 -0
  71. workbench/model_scripts/xgb_model/generated_model_script.py +371 -403
  72. workbench/model_scripts/xgb_model/model_script_utils.py +339 -0
  73. workbench/model_scripts/xgb_model/uq_harness.py +277 -0
  74. workbench/model_scripts/xgb_model/xgb_model.template +367 -399
  75. workbench/repl/workbench_shell.py +18 -14
  76. workbench/resources/open_source_api.key +1 -1
  77. workbench/scripts/endpoint_test.py +162 -0
  78. workbench/scripts/lambda_test.py +73 -0
  79. workbench/scripts/meta_model_sim.py +35 -0
  80. workbench/scripts/ml_pipeline_sqs.py +122 -6
  81. workbench/scripts/training_test.py +85 -0
  82. workbench/themes/dark/custom.css +59 -0
  83. workbench/themes/dark/plotly.json +5 -5
  84. workbench/themes/light/custom.css +153 -40
  85. workbench/themes/light/plotly.json +9 -9
  86. workbench/themes/midnight_blue/custom.css +59 -0
  87. workbench/utils/aws_utils.py +0 -1
  88. workbench/utils/chem_utils/fingerprints.py +87 -46
  89. workbench/utils/chem_utils/mol_descriptors.py +0 -1
  90. workbench/utils/chem_utils/projections.py +16 -6
  91. workbench/utils/chem_utils/vis.py +25 -27
  92. workbench/utils/chemprop_utils.py +141 -0
  93. workbench/utils/config_manager.py +2 -6
  94. workbench/utils/endpoint_utils.py +5 -7
  95. workbench/utils/license_manager.py +2 -6
  96. workbench/utils/markdown_utils.py +57 -0
  97. workbench/utils/meta_model_simulator.py +499 -0
  98. workbench/utils/metrics_utils.py +256 -0
  99. workbench/utils/model_utils.py +260 -76
  100. workbench/utils/pipeline_utils.py +0 -1
  101. workbench/utils/plot_utils.py +159 -34
  102. workbench/utils/pytorch_utils.py +87 -0
  103. workbench/utils/shap_utils.py +11 -57
  104. workbench/utils/theme_manager.py +95 -30
  105. workbench/utils/xgboost_local_crossfold.py +267 -0
  106. workbench/utils/xgboost_model_utils.py +127 -220
  107. workbench/web_interface/components/experiments/outlier_plot.py +0 -1
  108. workbench/web_interface/components/model_plot.py +16 -2
  109. workbench/web_interface/components/plugin_unit_test.py +5 -3
  110. workbench/web_interface/components/plugins/ag_table.py +2 -4
  111. workbench/web_interface/components/plugins/confusion_matrix.py +3 -6
  112. workbench/web_interface/components/plugins/model_details.py +48 -80
  113. workbench/web_interface/components/plugins/scatter_plot.py +192 -92
  114. workbench/web_interface/components/settings_menu.py +184 -0
  115. workbench/web_interface/page_views/main_page.py +0 -1
  116. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/METADATA +31 -17
  117. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/RECORD +121 -106
  118. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/entry_points.txt +4 -0
  119. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/licenses/LICENSE +1 -1
  120. workbench/core/cloud_platform/aws/aws_df_store.py +0 -404
  121. workbench/core/cloud_platform/aws/aws_parameter_store.py +0 -280
  122. workbench/model_scripts/custom_models/meta_endpoints/example.py +0 -53
  123. workbench/model_scripts/custom_models/proximity/generated_model_script.py +0 -138
  124. workbench/model_scripts/custom_models/proximity/proximity.py +0 -384
  125. workbench/model_scripts/custom_models/uq_models/generated_model_script.py +0 -494
  126. workbench/model_scripts/custom_models/uq_models/mapie.template +0 -494
  127. workbench/model_scripts/custom_models/uq_models/meta_uq.template +0 -386
  128. workbench/model_scripts/custom_models/uq_models/proximity.py +0 -384
  129. workbench/model_scripts/ensemble_xgb/generated_model_script.py +0 -279
  130. workbench/model_scripts/quant_regression/quant_regression.template +0 -279
  131. workbench/model_scripts/quant_regression/requirements.txt +0 -1
  132. workbench/themes/quartz/base_css.url +0 -1
  133. workbench/themes/quartz/custom.css +0 -117
  134. workbench/themes/quartz/plotly.json +0 -642
  135. workbench/themes/quartz_dark/base_css.url +0 -1
  136. workbench/themes/quartz_dark/custom.css +0 -131
  137. workbench/themes/quartz_dark/plotly.json +0 -642
  138. workbench/utils/resource_utils.py +0 -39
  139. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/WHEEL +0 -0
  140. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/top_level.txt +0 -0
@@ -1,384 +0,0 @@
1
- import pandas as pd
2
- import numpy as np
3
- from sklearn.preprocessing import StandardScaler
4
- from sklearn.neighbors import NearestNeighbors
5
- from typing import List, Dict
6
- import logging
7
- import pickle
8
- import os
9
- import json
10
- from pathlib import Path
11
- from enum import Enum
12
-
13
- # Set up logging
14
- log = logging.getLogger("workbench")
15
-
16
-
17
- # ^Enumerated^ Proximity Types (distance or similarity)
18
- class ProximityType(Enum):
19
- DISTANCE = "distance"
20
- SIMILARITY = "similarity"
21
-
22
-
23
- class Proximity:
24
- def __init__(
25
- self,
26
- df: pd.DataFrame,
27
- id_column: str,
28
- features: List[str],
29
- target: str = None,
30
- track_columns: List[str] = None,
31
- n_neighbors: int = 10,
32
- ):
33
- """
34
- Initialize the Proximity class.
35
-
36
- Args:
37
- df (pd.DataFrame): DataFrame containing data for neighbor computations.
38
- id_column (str): Name of the column used as the identifier.
39
- features (List[str]): List of feature column names to be used for neighbor computations.
40
- target (str, optional): Name of the target column. Defaults to None.
41
- track_columns (List[str], optional): Additional columns to track in results. Defaults to None.
42
- n_neighbors (int): Number of neighbors to compute. Defaults to 10.
43
- """
44
- self.df = df.dropna(subset=features).copy()
45
- self.id_column = id_column
46
- self.n_neighbors = min(n_neighbors, len(self.df) - 1)
47
- self.target = target
48
- self.features = features
49
- self.scaler = None
50
- self.X = None
51
- self.nn = None
52
- self.proximity_type = None
53
- self.track_columns = track_columns or []
54
-
55
- # Right now we only support numeric features, so remove any columns that are not numeric
56
- non_numeric_features = self.df[self.features].select_dtypes(exclude=["number"]).columns.tolist()
57
- if non_numeric_features:
58
- log.warning(f"Non-numeric features {non_numeric_features} aren't currently supported...")
59
- self.features = [f for f in self.features if f not in non_numeric_features]
60
-
61
- # Build the proximity model
62
- self.build_proximity_model()
63
-
64
- def build_proximity_model(self) -> None:
65
- """Standardize features and fit Nearest Neighbors model.
66
- Note: This method can be overridden in subclasses for custom behavior."""
67
- self.proximity_type = ProximityType.DISTANCE
68
- self.scaler = StandardScaler()
69
- self.X = self.scaler.fit_transform(self.df[self.features])
70
- self.nn = NearestNeighbors(n_neighbors=self.n_neighbors + 1).fit(self.X)
71
-
72
- def all_neighbors(self) -> pd.DataFrame:
73
- """
74
- Compute nearest neighbors for all rows in the dataset.
75
-
76
- Returns:
77
- pd.DataFrame: A DataFrame of neighbors and their distances.
78
- """
79
- distances, indices = self.nn.kneighbors(self.X)
80
- results = []
81
-
82
- for i, (dists, nbrs) in enumerate(zip(distances, indices)):
83
- query_id = self.df.iloc[i][self.id_column]
84
-
85
- # Process neighbors
86
- for neighbor_idx, dist in zip(nbrs, dists):
87
- # Skip self (neighbor index == current row index)
88
- if neighbor_idx == i:
89
- continue
90
- results.append(self._build_neighbor_result(query_id=query_id, neighbor_idx=neighbor_idx, distance=dist))
91
-
92
- return pd.DataFrame(results)
93
-
94
- def neighbors(
95
- self,
96
- query_df: pd.DataFrame,
97
- radius: float = None,
98
- include_self: bool = True,
99
- ) -> pd.DataFrame:
100
- """
101
- Return neighbors for rows in a query DataFrame.
102
-
103
- Args:
104
- query_df: DataFrame containing query points
105
- radius: If provided, find all neighbors within this radius
106
- include_self: Whether to include self in results (if present)
107
-
108
- Returns:
109
- DataFrame containing neighbors and distances
110
-
111
- Note: The query DataFrame must include the feature columns. The id_column is optional.
112
- """
113
- # Check if all required features are present
114
- missing = set(self.features) - set(query_df.columns)
115
- if missing:
116
- raise ValueError(f"Query DataFrame is missing required feature columns: {missing}")
117
-
118
- # Check if id_column is present
119
- id_column_present = self.id_column in query_df.columns
120
-
121
- # None of the features can be NaNs, so report rows with NaNs and then drop them
122
- rows_with_nan = query_df[self.features].isna().any(axis=1)
123
-
124
- # Print the ID column for rows with NaNs
125
- if rows_with_nan.any():
126
- log.warning(f"Found {rows_with_nan.sum()} rows with NaNs in feature columns:")
127
- log.warning(query_df.loc[rows_with_nan, self.id_column])
128
-
129
- # Drop rows with NaNs in feature columns and reassign to query_df
130
- query_df = query_df.dropna(subset=self.features)
131
-
132
- # Transform the query features using the model's scaler
133
- X_query = self.scaler.transform(query_df[self.features])
134
-
135
- # Get neighbors using either radius or k-nearest neighbors
136
- if radius is not None:
137
- distances, indices = self.nn.radius_neighbors(X_query, radius=radius)
138
- else:
139
- distances, indices = self.nn.kneighbors(X_query)
140
-
141
- # Build results
142
- all_results = []
143
- for i, (dists, nbrs) in enumerate(zip(distances, indices)):
144
- # Use the ID from the query DataFrame if available, otherwise use the row index
145
- query_id = query_df.iloc[i][self.id_column] if id_column_present else f"query_{i}"
146
-
147
- for neighbor_idx, dist in zip(nbrs, dists):
148
- # Skip if the neighbor is the query itself and include_self is False
149
- neighbor_id = self.df.iloc[neighbor_idx][self.id_column]
150
- if not include_self and neighbor_id == query_id:
151
- continue
152
-
153
- all_results.append(
154
- self._build_neighbor_result(query_id=query_id, neighbor_idx=neighbor_idx, distance=dist)
155
- )
156
-
157
- return pd.DataFrame(all_results)
158
-
159
- def _build_neighbor_result(self, query_id, neighbor_idx: int, distance: float) -> Dict:
160
- """
161
- Internal: Build a result dictionary for a single neighbor.
162
-
163
- Args:
164
- query_id: ID of the query point
165
- neighbor_idx: Index of the neighbor in the original DataFrame
166
- distance: Distance between query and neighbor
167
-
168
- Returns:
169
- Dictionary containing neighbor information
170
- """
171
- neighbor_id = self.df.iloc[neighbor_idx][self.id_column]
172
-
173
- # Basic neighbor info
174
- neighbor_info = {
175
- self.id_column: query_id,
176
- "neighbor_id": neighbor_id,
177
- "distance": distance,
178
- }
179
-
180
- # Determine which additional columns to include
181
- relevant_cols = [self.target, "prediction"] if self.target else []
182
- relevant_cols += [c for c in self.df.columns if "_proba" in c or "residual" in c]
183
- relevant_cols += ["outlier"]
184
-
185
- # Add user-specified columns
186
- relevant_cols += self.track_columns
187
-
188
- # Add values for each relevant column that exists in the dataframe
189
- for col in filter(lambda c: c in self.df.columns, relevant_cols):
190
- neighbor_info[col] = self.df.iloc[neighbor_idx][col]
191
-
192
- return neighbor_info
193
-
194
- def serialize(self, directory: str) -> None:
195
- """
196
- Serialize the Proximity model to a directory.
197
-
198
- Args:
199
- directory: Directory path to save the model components
200
- """
201
- # Create directory if it doesn't exist
202
- os.makedirs(directory, exist_ok=True)
203
-
204
- # Save metadata
205
- metadata = {
206
- "id_column": self.id_column,
207
- "features": self.features,
208
- "target": self.target,
209
- "track_columns": self.track_columns,
210
- "n_neighbors": self.n_neighbors,
211
- }
212
-
213
- with open(os.path.join(directory, "metadata.json"), "w") as f:
214
- json.dump(metadata, f)
215
-
216
- # Save the DataFrame
217
- self.df.to_pickle(os.path.join(directory, "df.pkl"))
218
-
219
- # Save the scaler and nearest neighbors model
220
- with open(os.path.join(directory, "scaler.pkl"), "wb") as f:
221
- pickle.dump(self.scaler, f)
222
-
223
- with open(os.path.join(directory, "nn_model.pkl"), "wb") as f:
224
- pickle.dump(self.nn, f)
225
-
226
- log.info(f"Proximity model serialized to {directory}")
227
-
228
- @classmethod
229
- def deserialize(cls, directory: str) -> "Proximity":
230
- """
231
- Deserialize a Proximity model from a directory.
232
-
233
- Args:
234
- directory: Directory path containing the serialized model components
235
-
236
- Returns:
237
- Proximity: A new Proximity instance
238
- """
239
- directory_path = Path(directory)
240
- if not directory_path.exists() or not directory_path.is_dir():
241
- raise ValueError(f"Directory {directory} does not exist or is not a directory")
242
-
243
- # Load metadata
244
- with open(os.path.join(directory, "metadata.json"), "r") as f:
245
- metadata = json.load(f)
246
-
247
- # Load DataFrame
248
- df_path = os.path.join(directory, "df.pkl")
249
- if not os.path.exists(df_path):
250
- raise FileNotFoundError(f"DataFrame file not found at {df_path}")
251
- df = pd.read_pickle(df_path)
252
-
253
- # Create instance but skip _prepare_data
254
- instance = cls.__new__(cls)
255
- instance.df = df
256
- instance.id_column = metadata["id_column"]
257
- instance.features = metadata["features"]
258
- instance.target = metadata["target"]
259
- instance.track_columns = metadata["track_columns"]
260
- instance.n_neighbors = metadata["n_neighbors"]
261
-
262
- # Load scaler and nn model
263
- with open(os.path.join(directory, "scaler.pkl"), "rb") as f:
264
- instance.scaler = pickle.load(f)
265
-
266
- with open(os.path.join(directory, "nn_model.pkl"), "rb") as f:
267
- instance.nn = pickle.load(f)
268
-
269
- # Load X from scaler transform
270
- instance.X = instance.scaler.transform(instance.df[instance.features])
271
-
272
- log.info(f"Proximity model deserialized from {directory}")
273
- return instance
274
-
275
-
276
- # Testing the Proximity class
277
- if __name__ == "__main__":
278
-
279
- pd.set_option("display.max_columns", None)
280
- pd.set_option("display.width", 1000)
281
-
282
- # Create a sample DataFrame
283
- data = {
284
- "ID": [1, 2, 3, 4, 5],
285
- "Feature1": [0.1, 0.2, 0.3, 0.4, 0.5],
286
- "Feature2": [0.5, 0.4, 0.3, 0.2, 0.1],
287
- "Feature3": [2.5, 2.4, 2.3, 2.3, np.nan],
288
- }
289
- df = pd.DataFrame(data)
290
-
291
- # Test the Proximity class
292
- features = ["Feature1", "Feature2", "Feature3"]
293
- prox = Proximity(df, id_column="ID", features=features, n_neighbors=3)
294
- print(prox.all_neighbors())
295
-
296
- # Test the neighbors method
297
- print(prox.neighbors(query_df=df.iloc[[0]]))
298
-
299
- # Test the neighbors method with radius
300
- print(prox.neighbors(query_df=df.iloc[0:2], radius=2.0))
301
-
302
- # Test with data that isn't in the 'train' dataframe
303
- query_data = {
304
- "ID": [6],
305
- "Feature1": [0.31],
306
- "Feature2": [0.31],
307
- "Feature3": [2.31],
308
- }
309
- query_df = pd.DataFrame(query_data)
310
- print(prox.neighbors(query_df=query_df))
311
-
312
- # Test with Features list
313
- prox = Proximity(df, id_column="ID", features=["Feature1"], n_neighbors=2)
314
- print(prox.all_neighbors())
315
-
316
- # Create a sample DataFrame
317
- data = {
318
- "foo_id": ["a", "b", "c", "d", "e"], # Testing string IDs
319
- "Feature1": [0.1, 0.2, 0.3, 0.4, 0.5],
320
- "Feature2": [0.5, 0.4, 0.3, 0.2, 0.1],
321
- "target": [1, 0, 1, 0, 5],
322
- }
323
- df = pd.DataFrame(data)
324
-
325
- # Test with String Ids
326
- prox = Proximity(
327
- df,
328
- id_column="foo_id",
329
- features=["Feature1", "Feature2"],
330
- target="target",
331
- track_columns=["Feature1", "Feature2"],
332
- n_neighbors=3,
333
- )
334
- print(prox.all_neighbors())
335
-
336
- # Test the neighbors method
337
- print(prox.neighbors(query_df=df.iloc[0:2]))
338
-
339
- # Time neighbors with all IDs versus calling all_neighbors
340
- import time
341
-
342
- start_time = time.time()
343
- prox_df = prox.neighbors(query_df=df, include_self=False)
344
- end_time = time.time()
345
- print(f"Time taken for neighbors: {end_time - start_time:.4f} seconds")
346
- start_time = time.time()
347
- prox_df_all = prox.all_neighbors()
348
- end_time = time.time()
349
- print(f"Time taken for all_neighbors: {end_time - start_time:.4f} seconds")
350
-
351
- # Now compare the two dataframes
352
- print("Neighbors DataFrame:")
353
- print(prox_df)
354
- print("\nAll Neighbors DataFrame:")
355
- print(prox_df_all)
356
- # Check for any discrepancies
357
- if prox_df.equals(prox_df_all):
358
- print("The two DataFrames are equal :)")
359
- else:
360
- print("ERROR: The two DataFrames are not equal!")
361
-
362
- # Test querying without the id_column
363
- df_no_id = df.drop(columns=["foo_id"])
364
- print(prox.neighbors(query_df=df_no_id, include_self=False))
365
-
366
- # Test duplicate IDs
367
- data = {
368
- "foo_id": ["a", "b", "c", "d", "d"], # Duplicate ID (d)
369
- "Feature1": [0.1, 0.2, 0.3, 0.4, 0.5],
370
- "Feature2": [0.5, 0.4, 0.3, 0.2, 0.1],
371
- "target": [1, 0, 1, 0, 5],
372
- }
373
- df = pd.DataFrame(data)
374
- prox = Proximity(df, id_column="foo_id", features=["Feature1", "Feature2"], target="target", n_neighbors=3)
375
- print(df.equals(prox.df))
376
-
377
- # Test with a categorical feature
378
- from workbench.api import FeatureSet, Model
379
-
380
- fs = FeatureSet("abalone_features")
381
- model = Model("abalone-regression")
382
- df = fs.pull_dataframe()
383
- prox = Proximity(df, id_column=fs.id_column, features=model.features(), target=model.target())
384
- print(prox.neighbors(query_df=df[0:2]))
@@ -1,279 +0,0 @@
1
- # Template Placeholders
2
- TEMPLATE_PARAMS = {
3
- "model_type": "ensemble_regressor",
4
- "target_column": "solubility",
5
- "feature_list": ['molwt', 'mollogp', 'molmr', 'heavyatomcount', 'numhacceptors', 'numhdonors', 'numheteroatoms', 'numrotatablebonds', 'numvalenceelectrons', 'numaromaticrings', 'numsaturatedrings', 'numaliphaticrings', 'ringcount', 'tpsa', 'labuteasa', 'balabanj', 'bertzct'],
6
- "model_metrics_s3_path": "s3://sandbox-sageworks-artifacts/models/aqsol-ensemble/training"
7
- }
8
-
9
- # Imports for XGB Model
10
- import xgboost as xgb
11
- import awswrangler as wr
12
- import numpy as np
13
-
14
- # Model Performance Scores
15
- from sklearn.metrics import (
16
- mean_absolute_error,
17
- r2_score,
18
- root_mean_squared_error
19
- )
20
-
21
- from io import StringIO
22
- import json
23
- import argparse
24
- import os
25
- import pandas as pd
26
-
27
-
28
- # Function to check if dataframe is empty
29
- def check_dataframe(df: pd.DataFrame, df_name: str) -> None:
30
- """
31
- Check if the provided dataframe is empty and raise an exception if it is.
32
-
33
- Args:
34
- df (pd.DataFrame): DataFrame to check
35
- df_name (str): Name of the DataFrame
36
- """
37
- if df.empty:
38
- msg = f"*** The training data {df_name} has 0 rows! ***STOPPING***"
39
- print(msg)
40
- raise ValueError(msg)
41
-
42
- def match_features_case_insensitive(df: pd.DataFrame, model_features: list) -> pd.DataFrame:
43
- """
44
- Matches and renames the DataFrame's column names to match the model's feature names (case-insensitive).
45
- Prioritizes exact case matches first, then falls back to case-insensitive matching if no exact match exists.
46
-
47
- Args:
48
- df (pd.DataFrame): The DataFrame with the original columns.
49
- model_features (list): The desired list of feature names (mixed case allowed).
50
-
51
- Returns:
52
- pd.DataFrame: The DataFrame with renamed columns to match the model's feature names.
53
- """
54
- # Create a mapping for exact and case-insensitive matching
55
- exact_match_set = set(df.columns)
56
- column_map = {}
57
-
58
- # Build the case-insensitive map (if we have any duplicate columns, the first one wins)
59
- for col in df.columns:
60
- lower_col = col.lower()
61
- if lower_col not in column_map:
62
- column_map[lower_col] = col
63
-
64
- # Create a dictionary for renaming
65
- rename_dict = {}
66
- for feature in model_features:
67
- # Check for an exact match first
68
- if feature in exact_match_set:
69
- rename_dict[feature] = feature
70
-
71
- # If not an exact match, fall back to case-insensitive matching
72
- elif feature.lower() in column_map:
73
- rename_dict[column_map[feature.lower()]] = feature
74
-
75
- # Rename the columns in the DataFrame to match the model's feature names
76
- return df.rename(columns=rename_dict)
77
-
78
-
79
- if __name__ == "__main__":
80
- """The main function is for training the XGBoost Quantile Regression models"""
81
-
82
- # Harness Template Parameters
83
- target = TEMPLATE_PARAMS["target_column"]
84
- feature_list = TEMPLATE_PARAMS["feature_list"]
85
- model_metrics_s3_path = TEMPLATE_PARAMS["model_metrics_s3_path"]
86
- models = {}
87
-
88
- # Script arguments for input/output directories
89
- parser = argparse.ArgumentParser()
90
- parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
91
- parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
92
- parser.add_argument(
93
- "--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data")
94
- )
95
- args = parser.parse_args()
96
-
97
- # Read the training data into DataFrames
98
- training_files = [
99
- os.path.join(args.train, file)
100
- for file in os.listdir(args.train)
101
- if file.endswith(".csv")
102
- ]
103
- print(f"Training Files: {training_files}")
104
-
105
- # Combine files and read them all into a single pandas dataframe
106
- df = pd.concat([pd.read_csv(file, engine="python") for file in training_files])
107
-
108
- # Check if the dataframe is empty
109
- check_dataframe(df, "training_df")
110
-
111
- # Features/Target output
112
- print(f"Target: {target}")
113
- print(f"Features: {str(feature_list)}")
114
- print(f"Data Shape: {df.shape}")
115
-
116
- # Grab our Features and Target with traditional X, y handles
117
- y = df[target]
118
- X = df[feature_list]
119
-
120
- # Train 50 models with random 70/30 splits of the data
121
- for model_id in range(50):
122
- # Model Name
123
- model_name = f"m_{model_id:02}"
124
-
125
- # Bootstrap sample (50% with replacement)
126
- sample_size = int(0.5 * len(X))
127
- bootstrap_indices = np.random.choice(len(X), size=sample_size, replace=True)
128
- X_train, y_train = X.iloc[bootstrap_indices], y.iloc[bootstrap_indices]
129
- print(f"Training Model {model_name} with {len(X_train)} rows")
130
- model = xgb.XGBRegressor(reg_alpha=0.1, reg_lambda=1.0)
131
- model.fit(X_train, y_train)
132
-
133
- # Store the model
134
- models[model_name] = model
135
-
136
- # Run predictions for each model
137
- all_predictions = {model_name: model.predict(X) for model_name, model in models.items()}
138
-
139
- # Create a copy of the provided DataFrame and add the new columns
140
- result_df = df[[target]].copy()
141
-
142
- # Add the model predictions to the DataFrame
143
- for name, preds in all_predictions.items():
144
- result_df[name] = preds
145
-
146
- # Add the main prediction to the DataFrame (mean of all models)
147
- result_df["prediction"] = result_df[[name for name in result_df.columns if name.startswith("m_")]].mean(axis=1)
148
-
149
- # Now compute residuals on the rmse prediction
150
- result_df["residual"] = result_df[target] - result_df["prediction"]
151
- result_df["residual_abs"] = result_df["residual"].abs()
152
-
153
-
154
- # Save the results dataframe to S3
155
- wr.s3.to_csv(
156
- result_df,
157
- path=f"{model_metrics_s3_path}/validation_predictions.csv",
158
- index=False,
159
- )
160
-
161
- # Report Performance Metrics
162
- rmse = root_mean_squared_error(result_df[target], result_df["prediction"])
163
- mae = mean_absolute_error(result_df[target], result_df["prediction"])
164
- r2 = r2_score(result_df[target], result_df["prediction"])
165
- print(f"RMSE: {rmse:.3f}")
166
- print(f"MAE: {mae:.3f}")
167
- print(f"R2: {r2:.3f}")
168
- print(f"NumRows: {len(result_df)}")
169
-
170
- # Now save the models
171
- for name, model in models.items():
172
- model_path = os.path.join(args.model_dir, f"{name}.json")
173
- print(f"Saving model: {model_path}")
174
- model.save_model(model_path)
175
-
176
- # Also save the features (this will validate input during predictions)
177
- with open(os.path.join(args.model_dir, "feature_columns.json"), "w") as fp:
178
- json.dump(feature_list, fp)
179
-
180
-
181
- def model_fn(model_dir) -> dict:
182
- """Deserialized and return all the fitted models from the model directory.
183
-
184
- Args:
185
- model_dir (str): The directory where the models are stored.
186
-
187
- Returns:
188
- dict: A dictionary of the models.
189
- """
190
-
191
- # Load ALL the models from the model directory
192
- models = {}
193
- for file in os.listdir(model_dir):
194
- if file.startswith("m_") and file.endswith(".json"): # The Quantile models
195
- # Load the model
196
- model_path = os.path.join(model_dir, file)
197
- print(f"Loading model: {model_path}")
198
- model = xgb.XGBRegressor()
199
- model.load_model(model_path)
200
-
201
- # Store the model
202
- m_name = os.path.splitext(file)[0]
203
- models[m_name] = model
204
-
205
- # Return all the models
206
- return models
207
-
208
-
209
- def input_fn(input_data, content_type):
210
- """Parse input data and return a DataFrame."""
211
- if not input_data:
212
- raise ValueError("Empty input data is not supported!")
213
-
214
- # Decode bytes to string if necessary
215
- if isinstance(input_data, bytes):
216
- input_data = input_data.decode("utf-8")
217
-
218
- if "text/csv" in content_type:
219
- return pd.read_csv(StringIO(input_data))
220
- elif "application/json" in content_type:
221
- return pd.DataFrame(json.loads(input_data)) # Assumes JSON array of records
222
- else:
223
- raise ValueError(f"{content_type} not supported!")
224
-
225
-
226
- def output_fn(output_df, accept_type):
227
- """Supports both CSV and JSON output formats."""
228
- if "text/csv" in accept_type:
229
- csv_output = output_df.fillna("N/A").to_csv(index=False) # CSV with N/A for missing values
230
- return csv_output, "text/csv"
231
- elif "application/json" in accept_type:
232
- return output_df.to_json(orient="records"), "application/json" # JSON array of records (NaNs -> null)
233
- else:
234
- raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
235
-
236
-
237
- def predict_fn(df, models) -> pd.DataFrame:
238
- """Make Predictions with our XGB Quantile Regression Model
239
-
240
- Args:
241
- df (pd.DataFrame): The input DataFrame
242
- models (dict): The dictionary of models to use for predictions
243
-
244
- Returns:
245
- pd.DataFrame: The DataFrame with the predictions added
246
- """
247
-
248
- # Grab our feature columns (from training)
249
- model_dir = os.environ.get("SM_MODEL_DIR", "/opt/ml/model")
250
- with open(os.path.join(model_dir, "feature_columns.json")) as fp:
251
- model_features = json.load(fp)
252
- print(f"Model Features: {model_features}")
253
-
254
- # We're going match features in a case-insensitive manner, accounting for all the permutations
255
- # - Model has a feature list that's any case ("Id", "taCos", "cOunT", "likes_tacos")
256
- # - Incoming data has columns that are mixed case ("ID", "Tacos", "Count", "Likes_Tacos")
257
- matched_df = match_features_case_insensitive(df, model_features)
258
-
259
- # Predict the features against all the models
260
- for name, model in models.items():
261
- df[name] = model.predict(matched_df[model_features])
262
-
263
- # Add quantiles for consistency with other UQ models
264
- df["q_025"] = df[[name for name in df.columns if name.startswith("m_")]].quantile(0.025, axis=1)
265
- df["q_975"] = df[[name for name in df.columns if name.startswith("m_")]].quantile(0.975, axis=1)
266
- df["q_25"] = df[[name for name in df.columns if name.startswith("m_")]].quantile(0.25, axis=1)
267
- df["q_75"] = df[[name for name in df.columns if name.startswith("m_")]].quantile(0.75, axis=1)
268
-
269
- # Compute the mean, min, max and stddev of the predictions
270
- df["prediction"] = df[[name for name in df.columns if name.startswith("m_")]].mean(axis=1)
271
- df["p_min"] = df[[name for name in df.columns if name.startswith("m_")]].min(axis=1)
272
- df["p_max"] = df[[name for name in df.columns if name.startswith("m_")]].max(axis=1)
273
- df["prediction_std"] = df[[name for name in df.columns if name.startswith("m_")]].std(axis=1)
274
-
275
- # Reorganize the columns so they are in alphabetical order
276
- df = df.reindex(sorted(df.columns), axis=1)
277
-
278
- # All done, return the DataFrame
279
- return df