workbench 0.8.177__py3-none-any.whl → 0.8.227__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of workbench might be problematic. Click here for more details.

Files changed (140) hide show
  1. workbench/__init__.py +1 -0
  2. workbench/algorithms/dataframe/__init__.py +1 -2
  3. workbench/algorithms/dataframe/compound_dataset_overlap.py +321 -0
  4. workbench/algorithms/dataframe/feature_space_proximity.py +168 -75
  5. workbench/algorithms/dataframe/fingerprint_proximity.py +422 -86
  6. workbench/algorithms/dataframe/projection_2d.py +44 -21
  7. workbench/algorithms/dataframe/proximity.py +259 -305
  8. workbench/algorithms/graph/light/proximity_graph.py +12 -11
  9. workbench/algorithms/models/cleanlab_model.py +382 -0
  10. workbench/algorithms/models/noise_model.py +388 -0
  11. workbench/algorithms/sql/column_stats.py +0 -1
  12. workbench/algorithms/sql/correlations.py +0 -1
  13. workbench/algorithms/sql/descriptive_stats.py +0 -1
  14. workbench/algorithms/sql/outliers.py +3 -3
  15. workbench/api/__init__.py +5 -1
  16. workbench/api/df_store.py +17 -108
  17. workbench/api/endpoint.py +14 -12
  18. workbench/api/feature_set.py +117 -11
  19. workbench/api/meta.py +0 -1
  20. workbench/api/meta_model.py +289 -0
  21. workbench/api/model.py +52 -21
  22. workbench/api/parameter_store.py +3 -52
  23. workbench/cached/cached_meta.py +0 -1
  24. workbench/cached/cached_model.py +49 -11
  25. workbench/core/artifacts/__init__.py +11 -2
  26. workbench/core/artifacts/artifact.py +5 -5
  27. workbench/core/artifacts/df_store_core.py +114 -0
  28. workbench/core/artifacts/endpoint_core.py +319 -204
  29. workbench/core/artifacts/feature_set_core.py +249 -45
  30. workbench/core/artifacts/model_core.py +135 -82
  31. workbench/core/artifacts/parameter_store_core.py +98 -0
  32. workbench/core/cloud_platform/cloud_meta.py +0 -1
  33. workbench/core/pipelines/pipeline_executor.py +1 -1
  34. workbench/core/transforms/features_to_model/features_to_model.py +60 -44
  35. workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +43 -10
  36. workbench/core/transforms/pandas_transforms/pandas_to_features.py +38 -2
  37. workbench/core/views/training_view.py +113 -42
  38. workbench/core/views/view.py +53 -3
  39. workbench/core/views/view_utils.py +4 -4
  40. workbench/model_script_utils/model_script_utils.py +339 -0
  41. workbench/model_script_utils/pytorch_utils.py +405 -0
  42. workbench/model_script_utils/uq_harness.py +277 -0
  43. workbench/model_scripts/chemprop/chemprop.template +774 -0
  44. workbench/model_scripts/chemprop/generated_model_script.py +774 -0
  45. workbench/model_scripts/chemprop/model_script_utils.py +339 -0
  46. workbench/model_scripts/chemprop/requirements.txt +3 -0
  47. workbench/model_scripts/custom_models/chem_info/fingerprints.py +175 -0
  48. workbench/model_scripts/custom_models/chem_info/mol_descriptors.py +0 -1
  49. workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py +0 -1
  50. workbench/model_scripts/custom_models/chem_info/morgan_fingerprints.py +1 -2
  51. workbench/model_scripts/custom_models/proximity/feature_space_proximity.py +194 -0
  52. workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +8 -10
  53. workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template +7 -8
  54. workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template +20 -21
  55. workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py +194 -0
  56. workbench/model_scripts/custom_models/uq_models/gaussian_process.template +5 -11
  57. workbench/model_scripts/custom_models/uq_models/ngboost.template +15 -16
  58. workbench/model_scripts/ensemble_xgb/ensemble_xgb.template +15 -17
  59. workbench/model_scripts/meta_model/generated_model_script.py +209 -0
  60. workbench/model_scripts/meta_model/meta_model.template +209 -0
  61. workbench/model_scripts/pytorch_model/generated_model_script.py +443 -499
  62. workbench/model_scripts/pytorch_model/model_script_utils.py +339 -0
  63. workbench/model_scripts/pytorch_model/pytorch.template +440 -496
  64. workbench/model_scripts/pytorch_model/pytorch_utils.py +405 -0
  65. workbench/model_scripts/pytorch_model/requirements.txt +1 -1
  66. workbench/model_scripts/pytorch_model/uq_harness.py +277 -0
  67. workbench/model_scripts/scikit_learn/generated_model_script.py +7 -12
  68. workbench/model_scripts/scikit_learn/scikit_learn.template +4 -9
  69. workbench/model_scripts/script_generation.py +15 -12
  70. workbench/model_scripts/uq_models/generated_model_script.py +248 -0
  71. workbench/model_scripts/xgb_model/generated_model_script.py +371 -403
  72. workbench/model_scripts/xgb_model/model_script_utils.py +339 -0
  73. workbench/model_scripts/xgb_model/uq_harness.py +277 -0
  74. workbench/model_scripts/xgb_model/xgb_model.template +367 -399
  75. workbench/repl/workbench_shell.py +18 -14
  76. workbench/resources/open_source_api.key +1 -1
  77. workbench/scripts/endpoint_test.py +162 -0
  78. workbench/scripts/lambda_test.py +73 -0
  79. workbench/scripts/meta_model_sim.py +35 -0
  80. workbench/scripts/ml_pipeline_sqs.py +122 -6
  81. workbench/scripts/training_test.py +85 -0
  82. workbench/themes/dark/custom.css +59 -0
  83. workbench/themes/dark/plotly.json +5 -5
  84. workbench/themes/light/custom.css +153 -40
  85. workbench/themes/light/plotly.json +9 -9
  86. workbench/themes/midnight_blue/custom.css +59 -0
  87. workbench/utils/aws_utils.py +0 -1
  88. workbench/utils/chem_utils/fingerprints.py +87 -46
  89. workbench/utils/chem_utils/mol_descriptors.py +0 -1
  90. workbench/utils/chem_utils/projections.py +16 -6
  91. workbench/utils/chem_utils/vis.py +25 -27
  92. workbench/utils/chemprop_utils.py +141 -0
  93. workbench/utils/config_manager.py +2 -6
  94. workbench/utils/endpoint_utils.py +5 -7
  95. workbench/utils/license_manager.py +2 -6
  96. workbench/utils/markdown_utils.py +57 -0
  97. workbench/utils/meta_model_simulator.py +499 -0
  98. workbench/utils/metrics_utils.py +256 -0
  99. workbench/utils/model_utils.py +260 -76
  100. workbench/utils/pipeline_utils.py +0 -1
  101. workbench/utils/plot_utils.py +159 -34
  102. workbench/utils/pytorch_utils.py +87 -0
  103. workbench/utils/shap_utils.py +11 -57
  104. workbench/utils/theme_manager.py +95 -30
  105. workbench/utils/xgboost_local_crossfold.py +267 -0
  106. workbench/utils/xgboost_model_utils.py +127 -220
  107. workbench/web_interface/components/experiments/outlier_plot.py +0 -1
  108. workbench/web_interface/components/model_plot.py +16 -2
  109. workbench/web_interface/components/plugin_unit_test.py +5 -3
  110. workbench/web_interface/components/plugins/ag_table.py +2 -4
  111. workbench/web_interface/components/plugins/confusion_matrix.py +3 -6
  112. workbench/web_interface/components/plugins/model_details.py +48 -80
  113. workbench/web_interface/components/plugins/scatter_plot.py +192 -92
  114. workbench/web_interface/components/settings_menu.py +184 -0
  115. workbench/web_interface/page_views/main_page.py +0 -1
  116. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/METADATA +31 -17
  117. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/RECORD +121 -106
  118. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/entry_points.txt +4 -0
  119. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/licenses/LICENSE +1 -1
  120. workbench/core/cloud_platform/aws/aws_df_store.py +0 -404
  121. workbench/core/cloud_platform/aws/aws_parameter_store.py +0 -280
  122. workbench/model_scripts/custom_models/meta_endpoints/example.py +0 -53
  123. workbench/model_scripts/custom_models/proximity/generated_model_script.py +0 -138
  124. workbench/model_scripts/custom_models/proximity/proximity.py +0 -384
  125. workbench/model_scripts/custom_models/uq_models/generated_model_script.py +0 -494
  126. workbench/model_scripts/custom_models/uq_models/mapie.template +0 -494
  127. workbench/model_scripts/custom_models/uq_models/meta_uq.template +0 -386
  128. workbench/model_scripts/custom_models/uq_models/proximity.py +0 -384
  129. workbench/model_scripts/ensemble_xgb/generated_model_script.py +0 -279
  130. workbench/model_scripts/quant_regression/quant_regression.template +0 -279
  131. workbench/model_scripts/quant_regression/requirements.txt +0 -1
  132. workbench/themes/quartz/base_css.url +0 -1
  133. workbench/themes/quartz/custom.css +0 -117
  134. workbench/themes/quartz/plotly.json +0 -642
  135. workbench/themes/quartz_dark/base_css.url +0 -1
  136. workbench/themes/quartz_dark/custom.css +0 -131
  137. workbench/themes/quartz_dark/plotly.json +0 -642
  138. workbench/utils/resource_utils.py +0 -39
  139. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/WHEEL +0 -0
  140. {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/top_level.txt +0 -0
@@ -3,6 +3,7 @@
3
3
  import logging
4
4
  import pandas as pd
5
5
  import numpy as np
6
+ from scipy.stats import spearmanr
6
7
  import importlib.resources
7
8
  from pathlib import Path
8
9
  import os
@@ -92,13 +93,158 @@ def get_custom_script_path(package: str, script_name: str) -> Path:
92
93
  return script_path
93
94
 
94
95
 
95
- def proximity_model(model: "Model", prox_model_name: str, track_columns: list = None) -> "Model":
96
- """Create a proximity model based on the given model
96
+ def proximity_model_local(model: "Model", include_all_columns: bool = False):
97
+ """Create a FeatureSpaceProximity Model for this Model
98
+
99
+ Args:
100
+ model (Model): The Model/FeatureSet used to create the proximity model
101
+ include_all_columns (bool): Include all DataFrame columns in neighbor results (default: False)
102
+
103
+ Returns:
104
+ FeatureSpaceProximity: The proximity model
105
+ """
106
+ from workbench.algorithms.dataframe.feature_space_proximity import FeatureSpaceProximity # noqa: F401
107
+ from workbench.api import Model, FeatureSet # noqa: F401 (avoid circular import)
108
+
109
+ # Get Feature and Target Columns from the existing given Model
110
+ features = model.features()
111
+ target = model.target()
112
+
113
+ # Backtrack our FeatureSet to get the ID column
114
+ fs = FeatureSet(model.get_input())
115
+ id_column = fs.id_column
116
+
117
+ # Create the Proximity Model from both the full FeatureSet and the Model training data
118
+ full_df = fs.pull_dataframe()
119
+ model_df = model.training_view().pull_dataframe()
120
+
121
+ # Mark rows that are in the model
122
+ model_ids = set(model_df[id_column])
123
+ full_df["in_model"] = full_df[id_column].isin(model_ids)
124
+
125
+ # Create and return the FeatureSpaceProximity Model
126
+ return FeatureSpaceProximity(
127
+ full_df, id_column=id_column, features=features, target=target, include_all_columns=include_all_columns
128
+ )
129
+
130
+
131
+ def fingerprint_prox_model_local(
132
+ model: "Model",
133
+ include_all_columns: bool = False,
134
+ radius: int = 2,
135
+ n_bits: int = 1024,
136
+ counts: bool = False,
137
+ ):
138
+ """Create a FingerprintProximity Model for this Model
139
+
140
+ Args:
141
+ model (Model): The Model used to create the fingerprint proximity model
142
+ include_all_columns (bool): Include all DataFrame columns in neighbor results (default: False)
143
+ radius (int): Morgan fingerprint radius (default: 2)
144
+ n_bits (int): Number of bits for the fingerprint (default: 1024)
145
+ counts (bool): Use count fingerprints instead of binary (default: False)
146
+
147
+ Returns:
148
+ FingerprintProximity: The fingerprint proximity model
149
+ """
150
+ from workbench.algorithms.dataframe.fingerprint_proximity import FingerprintProximity # noqa: F401
151
+ from workbench.api import Model, FeatureSet # noqa: F401 (avoid circular import)
152
+
153
+ # Get Target Column from the existing given Model
154
+ target = model.target()
155
+
156
+ # Backtrack our FeatureSet to get the ID column
157
+ fs = FeatureSet(model.get_input())
158
+ id_column = fs.id_column
159
+
160
+ # Create the Proximity Model from both the full FeatureSet and the Model training data
161
+ full_df = fs.pull_dataframe()
162
+ model_df = model.training_view().pull_dataframe()
163
+
164
+ # Mark rows that are in the model
165
+ model_ids = set(model_df[id_column])
166
+ full_df["in_model"] = full_df[id_column].isin(model_ids)
167
+
168
+ # Create and return the FingerprintProximity Model
169
+ return FingerprintProximity(
170
+ full_df,
171
+ id_column=id_column,
172
+ target=target,
173
+ include_all_columns=include_all_columns,
174
+ radius=radius,
175
+ n_bits=n_bits,
176
+ )
177
+
178
+
179
+ def noise_model_local(model: "Model"):
180
+ """Create a NoiseModel for detecting noisy/problematic samples in a Model's training data.
181
+
182
+ Args:
183
+ model (Model): The Model used to create the noise model
184
+
185
+ Returns:
186
+ NoiseModel: The noise model with precomputed noise scores for all samples
187
+ """
188
+ from workbench.algorithms.models.noise_model import NoiseModel # noqa: F401 (avoid circular import)
189
+ from workbench.api import Model, FeatureSet # noqa: F401 (avoid circular import)
190
+
191
+ # Get Feature and Target Columns from the existing given Model
192
+ features = model.features()
193
+ target = model.target()
194
+
195
+ # Backtrack our FeatureSet to get the ID column
196
+ fs = FeatureSet(model.get_input())
197
+ id_column = fs.id_column
198
+
199
+ # Create the NoiseModel from both the full FeatureSet and the Model training data
200
+ full_df = fs.pull_dataframe()
201
+ model_df = model.training_view().pull_dataframe()
202
+
203
+ # Mark rows that are in the model
204
+ model_ids = set(model_df[id_column])
205
+ full_df["in_model"] = full_df[id_column].isin(model_ids)
206
+
207
+ # Create and return the NoiseModel
208
+ return NoiseModel(full_df, id_column, features, target)
209
+
210
+
211
+ def cleanlab_model_local(model: "Model"):
212
+ """Create a CleanlabModels instance for detecting data quality issues in a Model's training data.
213
+
214
+ Args:
215
+ model (Model): The Model used to create the cleanlab models
216
+
217
+ Returns:
218
+ CleanlabModels: Factory providing access to CleanLearning and Datalab models.
219
+ - clean_learning(): CleanLearning model with enhanced get_label_issues()
220
+ - datalab(): Datalab instance with report(), get_issues()
221
+ """
222
+ from workbench.algorithms.models.cleanlab_model import create_cleanlab_model # noqa: F401 (avoid circular import)
223
+ from workbench.api import Model, FeatureSet # noqa: F401 (avoid circular import)
224
+
225
+ # Get Feature and Target Columns from the existing given Model
226
+ features = model.features()
227
+ target = model.target()
228
+ model_type = model.model_type
229
+
230
+ # Backtrack our FeatureSet to get the ID column
231
+ fs = FeatureSet(model.get_input())
232
+ id_column = fs.id_column
233
+
234
+ # Get the full FeatureSet data
235
+ full_df = fs.pull_dataframe()
236
+
237
+ # Create and return the CleanLearning model
238
+ return create_cleanlab_model(full_df, id_column, features, target, model_type=model_type)
239
+
240
+
241
+ def published_proximity_model(model: "Model", prox_model_name: str, include_all_columns: bool = False) -> "Model":
242
+ """Create a published proximity model based on the given model
97
243
 
98
244
  Args:
99
245
  model (Model): The model to create the proximity model from
100
246
  prox_model_name (str): The name of the proximity model to create
101
- track_columns (list, optional): List of columns to track in the proximity model
247
+ include_all_columns (bool): Include all DataFrame columns in results (default: False)
102
248
  Returns:
103
249
  Model: The proximity model
104
250
  """
@@ -121,45 +267,23 @@ def proximity_model(model: "Model", prox_model_name: str, track_columns: list =
121
267
  description=f"Proximity Model for {model.name}",
122
268
  tags=["proximity", model.name],
123
269
  custom_script=script_path,
124
- custom_args={"track_columns": track_columns},
270
+ custom_args={"include_all_columns": include_all_columns},
125
271
  )
126
272
  return prox_model
127
273
 
128
274
 
129
- def uq_model(model: "Model", uq_model_name: str, train_all_data: bool = False) -> "Model":
130
- """Create a Uncertainty Quantification (UQ) model based on the given model
131
-
132
- Args:
133
- model (Model): The model to create the UQ model from
134
- uq_model_name (str): The name of the UQ model to create
135
- train_all_data (bool, optional): Whether to train the UQ model on all data (default: False)
136
-
137
- Returns:
138
- Model: The UQ model
275
+ def safe_extract_tarfile(tar_path: str, extract_path: str) -> None:
139
276
  """
140
- from workbench.api import Model, ModelType, FeatureSet # noqa: F401 (avoid circular import)
277
+ Extract a tarball safely, using data filter if available.
141
278
 
142
- # Get the custom script path for the UQ model
143
- script_path = get_custom_script_path("uq_models", "mapie.template")
144
-
145
- # Get Feature and Target Columns from the existing given Model
146
- features = model.features()
147
- target = model.target()
148
-
149
- # Create the Proximity Model from our FeatureSet
150
- fs = FeatureSet(model.get_input())
151
- uq_model = fs.to_model(
152
- name=uq_model_name,
153
- model_type=ModelType.UQ_REGRESSOR,
154
- feature_list=features,
155
- target_column=target,
156
- description=f"UQ Model for {model.name}",
157
- tags=["uq", model.name],
158
- train_all_data=train_all_data,
159
- custom_script=script_path,
160
- custom_args={"id_column": fs.id_column, "track_columns": [target]},
161
- )
162
- return uq_model
279
+ The filter parameter was backported to Python 3.8+, 3.9+, 3.10.13+, 3.11+
280
+ as a security patch, but may not be present in older patch versions.
281
+ """
282
+ with tarfile.open(tar_path, "r:gz") as tar:
283
+ if hasattr(tarfile, "data_filter"):
284
+ tar.extractall(path=extract_path, filter="data")
285
+ else:
286
+ tar.extractall(path=extract_path)
163
287
 
164
288
 
165
289
  def load_category_mappings_from_s3(model_artifact_uri: str) -> Optional[dict]:
@@ -180,8 +304,7 @@ def load_category_mappings_from_s3(model_artifact_uri: str) -> Optional[dict]:
180
304
  wr.s3.download(path=model_artifact_uri, local_file=local_tar_path)
181
305
 
182
306
  # Extract tarball
183
- with tarfile.open(local_tar_path, "r:gz") as tar:
184
- tar.extractall(path=tmpdir, filter="data")
307
+ safe_extract_tarfile(local_tar_path, tmpdir)
185
308
 
186
309
  # Look for category mappings in base directory only
187
310
  mappings_path = os.path.join(tmpdir, "category_mappings.json")
@@ -197,6 +320,63 @@ def load_category_mappings_from_s3(model_artifact_uri: str) -> Optional[dict]:
197
320
  return category_mappings
198
321
 
199
322
 
323
+ def load_hyperparameters_from_s3(model_artifact_uri: str) -> Optional[dict]:
324
+ """
325
+ Download and extract hyperparameters from a model artifact in S3.
326
+
327
+ Args:
328
+ model_artifact_uri (str): S3 URI of the model artifact (model.tar.gz).
329
+
330
+ Returns:
331
+ dict: The loaded hyperparameters or None if not found.
332
+ """
333
+ hyperparameters = None
334
+
335
+ with tempfile.TemporaryDirectory() as tmpdir:
336
+ # Download model artifact
337
+ local_tar_path = os.path.join(tmpdir, "model.tar.gz")
338
+ wr.s3.download(path=model_artifact_uri, local_file=local_tar_path)
339
+
340
+ # Extract tarball
341
+ safe_extract_tarfile(local_tar_path, tmpdir)
342
+
343
+ # Look for hyperparameters in base directory only
344
+ hyperparameters_path = os.path.join(tmpdir, "hyperparameters.json")
345
+
346
+ if os.path.exists(hyperparameters_path):
347
+ try:
348
+ with open(hyperparameters_path, "r") as f:
349
+ hyperparameters = json.load(f)
350
+ log.info(f"Loaded hyperparameters from {hyperparameters_path}")
351
+ except Exception as e:
352
+ log.warning(f"Failed to load hyperparameters from {hyperparameters_path}: {e}")
353
+
354
+ return hyperparameters
355
+
356
+
357
+ def get_model_hyperparameters(workbench_model: Any) -> Optional[dict]:
358
+ """Get the hyperparameters used to train a Workbench model.
359
+
360
+ This retrieves the hyperparameters.json file from the model artifacts
361
+ that was saved during model training.
362
+
363
+ Args:
364
+ workbench_model: Workbench model object
365
+
366
+ Returns:
367
+ dict: The hyperparameters used during training, or None if not found
368
+ """
369
+ # Get the model artifact URI
370
+ model_artifact_uri = workbench_model.model_data_url()
371
+
372
+ if model_artifact_uri is None:
373
+ log.warning(f"No model artifact found for {workbench_model.uuid}")
374
+ return None
375
+
376
+ log.info(f"Loading hyperparameters from {model_artifact_uri}")
377
+ return load_hyperparameters_from_s3(model_artifact_uri)
378
+
379
+
200
380
  def uq_metrics(df: pd.DataFrame, target_col: str) -> Dict[str, Any]:
201
381
  """
202
382
  Evaluate uncertainty quantification model with essential metrics.
@@ -217,11 +397,20 @@ def uq_metrics(df: pd.DataFrame, target_col: str) -> Dict[str, Any]:
217
397
  if "prediction" not in df.columns:
218
398
  raise ValueError("Prediction column 'prediction' not found in DataFrame.")
219
399
 
400
+ # Drop rows with NaN predictions (e.g., from models that can't handle missing features)
401
+ n_total = len(df)
402
+ df = df.dropna(subset=["prediction", target_col])
403
+ n_valid = len(df)
404
+ if n_valid < n_total:
405
+ log.info(f"UQ metrics: dropped {n_total - n_valid} rows with NaN predictions")
406
+
220
407
  # --- Coverage and Interval Width ---
221
408
  if "q_025" in df.columns and "q_975" in df.columns:
222
409
  lower_95, upper_95 = df["q_025"], df["q_975"]
223
410
  lower_90, upper_90 = df["q_05"], df["q_95"]
224
411
  lower_80, upper_80 = df["q_10"], df["q_90"]
412
+ lower_68 = df.get("q_16", df["q_10"]) # fallback to 80% interval
413
+ upper_68 = df.get("q_84", df["q_90"]) # fallback to 80% interval
225
414
  lower_50, upper_50 = df["q_25"], df["q_75"]
226
415
  elif "prediction_std" in df.columns:
227
416
  lower_95 = df["prediction"] - 1.96 * df["prediction_std"]
@@ -230,22 +419,24 @@ def uq_metrics(df: pd.DataFrame, target_col: str) -> Dict[str, Any]:
230
419
  upper_90 = df["prediction"] + 1.645 * df["prediction_std"]
231
420
  lower_80 = df["prediction"] - 1.282 * df["prediction_std"]
232
421
  upper_80 = df["prediction"] + 1.282 * df["prediction_std"]
422
+ lower_68 = df["prediction"] - 1.0 * df["prediction_std"]
423
+ upper_68 = df["prediction"] + 1.0 * df["prediction_std"]
233
424
  lower_50 = df["prediction"] - 0.674 * df["prediction_std"]
234
425
  upper_50 = df["prediction"] + 0.674 * df["prediction_std"]
235
426
  else:
236
427
  raise ValueError(
237
428
  "Either quantile columns (q_025, q_975, q_25, q_75) or 'prediction_std' column must be present."
238
429
  )
239
- avg_std = df["prediction_std"].mean()
240
430
  median_std = df["prediction_std"].median()
241
431
  coverage_95 = np.mean((df[target_col] >= lower_95) & (df[target_col] <= upper_95))
242
432
  coverage_90 = np.mean((df[target_col] >= lower_90) & (df[target_col] <= upper_90))
243
433
  coverage_80 = np.mean((df[target_col] >= lower_80) & (df[target_col] <= upper_80))
244
- coverage_50 = np.mean((df[target_col] >= lower_50) & (df[target_col] <= upper_50))
245
- avg_width_95 = np.mean(upper_95 - lower_95)
246
- avg_width_90 = np.mean(upper_90 - lower_90)
247
- avg_width_80 = np.mean(upper_80 - lower_80)
248
- avg_width_50 = np.mean(upper_50 - lower_50)
434
+ coverage_68 = np.mean((df[target_col] >= lower_68) & (df[target_col] <= upper_68))
435
+ median_width_95 = np.median(upper_95 - lower_95)
436
+ median_width_90 = np.median(upper_90 - lower_90)
437
+ median_width_80 = np.median(upper_80 - lower_80)
438
+ median_width_50 = np.median(upper_50 - lower_50)
439
+ median_width_68 = np.median(upper_68 - lower_68)
249
440
 
250
441
  # --- CRPS (measures calibration + sharpness) ---
251
442
  z = (df[target_col] - df["prediction"]) / df["prediction_std"]
@@ -261,50 +452,50 @@ def uq_metrics(df: pd.DataFrame, target_col: str) -> Dict[str, Any]:
261
452
  )
262
453
  mean_is_95 = np.mean(is_95)
263
454
 
264
- # --- Adaptive Calibration (correlation between errors and uncertainty) ---
455
+ # --- Interval to Error Correlation ---
265
456
  abs_residuals = np.abs(df[target_col] - df["prediction"])
266
- width_95 = upper_95 - lower_95
267
- adaptive_calibration = np.corrcoef(abs_residuals, width_95)[0, 1]
457
+ width_68 = upper_68 - lower_68
458
+
459
+ # Spearman correlation for robustness
460
+ interval_to_error_corr = spearmanr(width_68, abs_residuals)[0]
268
461
 
269
462
  # Collect results
270
463
  results = {
271
- "coverage_50": coverage_50,
464
+ "coverage_68": coverage_68,
272
465
  "coverage_80": coverage_80,
273
466
  "coverage_90": coverage_90,
274
467
  "coverage_95": coverage_95,
275
- "avg_std": avg_std,
276
468
  "median_std": median_std,
277
- "avg_width_50": avg_width_50,
278
- "avg_width_80": avg_width_80,
279
- "avg_width_90": avg_width_90,
280
- "avg_width_95": avg_width_95,
281
- # "crps": mean_crps,
282
- # "interval_score_95": mean_is_95,
283
- # "adaptive_calibration": adaptive_calibration,
469
+ "median_width_50": median_width_50,
470
+ "median_width_68": median_width_68,
471
+ "median_width_80": median_width_80,
472
+ "median_width_90": median_width_90,
473
+ "median_width_95": median_width_95,
474
+ "interval_to_error_corr": interval_to_error_corr,
284
475
  "n_samples": len(df),
285
476
  }
286
477
 
287
478
  print("\n=== UQ Metrics ===")
288
- print(f"Coverage @ 50%: {coverage_50:.3f} (target: 0.50)")
479
+ print(f"Coverage @ 68%: {coverage_68:.3f} (target: 0.68)")
289
480
  print(f"Coverage @ 80%: {coverage_80:.3f} (target: 0.80)")
290
481
  print(f"Coverage @ 90%: {coverage_90:.3f} (target: 0.90)")
291
482
  print(f"Coverage @ 95%: {coverage_95:.3f} (target: 0.95)")
292
- print(f"Avg Prediction StdDev: {avg_std:.3f}")
293
483
  print(f"Median Prediction StdDev: {median_std:.3f}")
294
- print(f"Average 50% Width: {avg_width_50:.3f}")
295
- print(f"Average 80% Width: {avg_width_80:.3f}")
296
- print(f"Average 90% Width: {avg_width_90:.3f}")
297
- print(f"Average 95% Width: {avg_width_95:.3f}")
484
+ print(f"Median 50% Width: {median_width_50:.3f}")
485
+ print(f"Median 68% Width: {median_width_68:.3f}")
486
+ print(f"Median 80% Width: {median_width_80:.3f}")
487
+ print(f"Median 90% Width: {median_width_90:.3f}")
488
+ print(f"Median 95% Width: {median_width_95:.3f}")
298
489
  print(f"CRPS: {mean_crps:.3f} (lower is better)")
299
490
  print(f"Interval Score 95%: {mean_is_95:.3f} (lower is better)")
300
- print(f"Adaptive Calibration: {adaptive_calibration:.3f} (higher is better, target: >0.5)")
491
+ print(f"Interval/Error Corr: {interval_to_error_corr:.3f} (higher is better, target: >0.5)")
301
492
  print(f"Samples: {len(df)}")
302
493
  return results
303
494
 
304
495
 
305
496
  if __name__ == "__main__":
306
497
  """Exercise the Model Utilities"""
307
- from workbench.api import Model, Endpoint
498
+ from workbench.api import Model
308
499
 
309
500
  # Get the instance information
310
501
  print(model_instance_info())
@@ -319,18 +510,11 @@ if __name__ == "__main__":
319
510
  # Get the custom script path
320
511
  print(get_custom_script_path("chem_info", "molecular_descriptors.py"))
321
512
 
322
- # Test the proximity model
513
+ # Test loading hyperparameters
323
514
  m = Model("aqsol-regression")
515
+ hyperparams = get_model_hyperparameters(m)
516
+ print(hyperparams)
517
+
518
+ # Test the proximity model
324
519
  # prox_model = proximity_model(m, "aqsol-prox")
325
520
  # print(prox_model)#
326
-
327
- # Test the UQ model
328
- # uq_model_instance = uq_model(m, "aqsol-uq")
329
- # print(uq_model_instance)
330
- # uq_model_instance.to_endpoint()
331
-
332
- # Test the uq_metrics function
333
- end = Endpoint("aqsol-uq")
334
- df = end.auto_inference(capture=True)
335
- results = uq_metrics(df, target_col="solubility")
336
- print(results)
@@ -6,7 +6,6 @@ import json
6
6
  # Workbench Imports
7
7
  from workbench.api import DataSource, FeatureSet, Model, Endpoint, ParameterStore
8
8
 
9
-
10
9
  # Set up the logging
11
10
  log = logging.getLogger("workbench")
12
11