workbench 0.8.177__py3-none-any.whl → 0.8.227__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of workbench might be problematic. Click here for more details.
- workbench/__init__.py +1 -0
- workbench/algorithms/dataframe/__init__.py +1 -2
- workbench/algorithms/dataframe/compound_dataset_overlap.py +321 -0
- workbench/algorithms/dataframe/feature_space_proximity.py +168 -75
- workbench/algorithms/dataframe/fingerprint_proximity.py +422 -86
- workbench/algorithms/dataframe/projection_2d.py +44 -21
- workbench/algorithms/dataframe/proximity.py +259 -305
- workbench/algorithms/graph/light/proximity_graph.py +12 -11
- workbench/algorithms/models/cleanlab_model.py +382 -0
- workbench/algorithms/models/noise_model.py +388 -0
- workbench/algorithms/sql/column_stats.py +0 -1
- workbench/algorithms/sql/correlations.py +0 -1
- workbench/algorithms/sql/descriptive_stats.py +0 -1
- workbench/algorithms/sql/outliers.py +3 -3
- workbench/api/__init__.py +5 -1
- workbench/api/df_store.py +17 -108
- workbench/api/endpoint.py +14 -12
- workbench/api/feature_set.py +117 -11
- workbench/api/meta.py +0 -1
- workbench/api/meta_model.py +289 -0
- workbench/api/model.py +52 -21
- workbench/api/parameter_store.py +3 -52
- workbench/cached/cached_meta.py +0 -1
- workbench/cached/cached_model.py +49 -11
- workbench/core/artifacts/__init__.py +11 -2
- workbench/core/artifacts/artifact.py +5 -5
- workbench/core/artifacts/df_store_core.py +114 -0
- workbench/core/artifacts/endpoint_core.py +319 -204
- workbench/core/artifacts/feature_set_core.py +249 -45
- workbench/core/artifacts/model_core.py +135 -82
- workbench/core/artifacts/parameter_store_core.py +98 -0
- workbench/core/cloud_platform/cloud_meta.py +0 -1
- workbench/core/pipelines/pipeline_executor.py +1 -1
- workbench/core/transforms/features_to_model/features_to_model.py +60 -44
- workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +43 -10
- workbench/core/transforms/pandas_transforms/pandas_to_features.py +38 -2
- workbench/core/views/training_view.py +113 -42
- workbench/core/views/view.py +53 -3
- workbench/core/views/view_utils.py +4 -4
- workbench/model_script_utils/model_script_utils.py +339 -0
- workbench/model_script_utils/pytorch_utils.py +405 -0
- workbench/model_script_utils/uq_harness.py +277 -0
- workbench/model_scripts/chemprop/chemprop.template +774 -0
- workbench/model_scripts/chemprop/generated_model_script.py +774 -0
- workbench/model_scripts/chemprop/model_script_utils.py +339 -0
- workbench/model_scripts/chemprop/requirements.txt +3 -0
- workbench/model_scripts/custom_models/chem_info/fingerprints.py +175 -0
- workbench/model_scripts/custom_models/chem_info/mol_descriptors.py +0 -1
- workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py +0 -1
- workbench/model_scripts/custom_models/chem_info/morgan_fingerprints.py +1 -2
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.py +194 -0
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +8 -10
- workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template +7 -8
- workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template +20 -21
- workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py +194 -0
- workbench/model_scripts/custom_models/uq_models/gaussian_process.template +5 -11
- workbench/model_scripts/custom_models/uq_models/ngboost.template +15 -16
- workbench/model_scripts/ensemble_xgb/ensemble_xgb.template +15 -17
- workbench/model_scripts/meta_model/generated_model_script.py +209 -0
- workbench/model_scripts/meta_model/meta_model.template +209 -0
- workbench/model_scripts/pytorch_model/generated_model_script.py +443 -499
- workbench/model_scripts/pytorch_model/model_script_utils.py +339 -0
- workbench/model_scripts/pytorch_model/pytorch.template +440 -496
- workbench/model_scripts/pytorch_model/pytorch_utils.py +405 -0
- workbench/model_scripts/pytorch_model/requirements.txt +1 -1
- workbench/model_scripts/pytorch_model/uq_harness.py +277 -0
- workbench/model_scripts/scikit_learn/generated_model_script.py +7 -12
- workbench/model_scripts/scikit_learn/scikit_learn.template +4 -9
- workbench/model_scripts/script_generation.py +15 -12
- workbench/model_scripts/uq_models/generated_model_script.py +248 -0
- workbench/model_scripts/xgb_model/generated_model_script.py +371 -403
- workbench/model_scripts/xgb_model/model_script_utils.py +339 -0
- workbench/model_scripts/xgb_model/uq_harness.py +277 -0
- workbench/model_scripts/xgb_model/xgb_model.template +367 -399
- workbench/repl/workbench_shell.py +18 -14
- workbench/resources/open_source_api.key +1 -1
- workbench/scripts/endpoint_test.py +162 -0
- workbench/scripts/lambda_test.py +73 -0
- workbench/scripts/meta_model_sim.py +35 -0
- workbench/scripts/ml_pipeline_sqs.py +122 -6
- workbench/scripts/training_test.py +85 -0
- workbench/themes/dark/custom.css +59 -0
- workbench/themes/dark/plotly.json +5 -5
- workbench/themes/light/custom.css +153 -40
- workbench/themes/light/plotly.json +9 -9
- workbench/themes/midnight_blue/custom.css +59 -0
- workbench/utils/aws_utils.py +0 -1
- workbench/utils/chem_utils/fingerprints.py +87 -46
- workbench/utils/chem_utils/mol_descriptors.py +0 -1
- workbench/utils/chem_utils/projections.py +16 -6
- workbench/utils/chem_utils/vis.py +25 -27
- workbench/utils/chemprop_utils.py +141 -0
- workbench/utils/config_manager.py +2 -6
- workbench/utils/endpoint_utils.py +5 -7
- workbench/utils/license_manager.py +2 -6
- workbench/utils/markdown_utils.py +57 -0
- workbench/utils/meta_model_simulator.py +499 -0
- workbench/utils/metrics_utils.py +256 -0
- workbench/utils/model_utils.py +260 -76
- workbench/utils/pipeline_utils.py +0 -1
- workbench/utils/plot_utils.py +159 -34
- workbench/utils/pytorch_utils.py +87 -0
- workbench/utils/shap_utils.py +11 -57
- workbench/utils/theme_manager.py +95 -30
- workbench/utils/xgboost_local_crossfold.py +267 -0
- workbench/utils/xgboost_model_utils.py +127 -220
- workbench/web_interface/components/experiments/outlier_plot.py +0 -1
- workbench/web_interface/components/model_plot.py +16 -2
- workbench/web_interface/components/plugin_unit_test.py +5 -3
- workbench/web_interface/components/plugins/ag_table.py +2 -4
- workbench/web_interface/components/plugins/confusion_matrix.py +3 -6
- workbench/web_interface/components/plugins/model_details.py +48 -80
- workbench/web_interface/components/plugins/scatter_plot.py +192 -92
- workbench/web_interface/components/settings_menu.py +184 -0
- workbench/web_interface/page_views/main_page.py +0 -1
- {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/METADATA +31 -17
- {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/RECORD +121 -106
- {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/entry_points.txt +4 -0
- {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/licenses/LICENSE +1 -1
- workbench/core/cloud_platform/aws/aws_df_store.py +0 -404
- workbench/core/cloud_platform/aws/aws_parameter_store.py +0 -280
- workbench/model_scripts/custom_models/meta_endpoints/example.py +0 -53
- workbench/model_scripts/custom_models/proximity/generated_model_script.py +0 -138
- workbench/model_scripts/custom_models/proximity/proximity.py +0 -384
- workbench/model_scripts/custom_models/uq_models/generated_model_script.py +0 -494
- workbench/model_scripts/custom_models/uq_models/mapie.template +0 -494
- workbench/model_scripts/custom_models/uq_models/meta_uq.template +0 -386
- workbench/model_scripts/custom_models/uq_models/proximity.py +0 -384
- workbench/model_scripts/ensemble_xgb/generated_model_script.py +0 -279
- workbench/model_scripts/quant_regression/quant_regression.template +0 -279
- workbench/model_scripts/quant_regression/requirements.txt +0 -1
- workbench/themes/quartz/base_css.url +0 -1
- workbench/themes/quartz/custom.css +0 -117
- workbench/themes/quartz/plotly.json +0 -642
- workbench/themes/quartz_dark/base_css.url +0 -1
- workbench/themes/quartz_dark/custom.css +0 -131
- workbench/themes/quartz_dark/plotly.json +0 -642
- workbench/utils/resource_utils.py +0 -39
- {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/WHEEL +0 -0
- {workbench-0.8.177.dist-info → workbench-0.8.227.dist-info}/top_level.txt +0 -0
|
@@ -3,11 +3,8 @@ from ngboost import NGBRegressor
|
|
|
3
3
|
from sklearn.model_selection import train_test_split
|
|
4
4
|
|
|
5
5
|
# Model Performance Scores
|
|
6
|
-
from sklearn.metrics import
|
|
7
|
-
|
|
8
|
-
r2_score,
|
|
9
|
-
root_mean_squared_error
|
|
10
|
-
)
|
|
6
|
+
from sklearn.metrics import mean_absolute_error, median_absolute_error, r2_score, root_mean_squared_error
|
|
7
|
+
from scipy.stats import spearmanr
|
|
11
8
|
|
|
12
9
|
from io import StringIO
|
|
13
10
|
import json
|
|
@@ -21,7 +18,7 @@ import pandas as pd
|
|
|
21
18
|
TEMPLATE_PARAMS = {
|
|
22
19
|
"features": "{{feature_list}}",
|
|
23
20
|
"target": "{{target_column}}",
|
|
24
|
-
"train_all_data": "{{train_all_data}}"
|
|
21
|
+
"train_all_data": "{{train_all_data}}",
|
|
25
22
|
}
|
|
26
23
|
|
|
27
24
|
|
|
@@ -87,10 +84,7 @@ if __name__ == "__main__":
|
|
|
87
84
|
args = parser.parse_args()
|
|
88
85
|
|
|
89
86
|
# Load training data from the specified directory
|
|
90
|
-
training_files = [
|
|
91
|
-
os.path.join(args.train, file)
|
|
92
|
-
for file in os.listdir(args.train) if file.endswith(".csv")
|
|
93
|
-
]
|
|
87
|
+
training_files = [os.path.join(args.train, file) for file in os.listdir(args.train) if file.endswith(".csv")]
|
|
94
88
|
print(f"Training Files: {training_files}")
|
|
95
89
|
|
|
96
90
|
# Combine files and read them all into a single pandas dataframe
|
|
@@ -136,11 +130,16 @@ if __name__ == "__main__":
|
|
|
136
130
|
# Calculate various model performance metrics (regression)
|
|
137
131
|
rmse = root_mean_squared_error(y_validate, preds)
|
|
138
132
|
mae = mean_absolute_error(y_validate, preds)
|
|
133
|
+
medae = median_absolute_error(y_validate, preds)
|
|
139
134
|
r2 = r2_score(y_validate, preds)
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
print(f"
|
|
143
|
-
print(f"
|
|
135
|
+
spearman_corr = spearmanr(y_validate, preds).correlation
|
|
136
|
+
support = len(df_val)
|
|
137
|
+
print(f"rmse: {rmse:.3f}")
|
|
138
|
+
print(f"mae: {mae:.3f}")
|
|
139
|
+
print(f"medae: {medae:.3f}")
|
|
140
|
+
print(f"r2: {r2:.3f}")
|
|
141
|
+
print(f"spearmanr: {spearman_corr:.3f}")
|
|
142
|
+
print(f"support: {support}")
|
|
144
143
|
|
|
145
144
|
# Save the trained NGBoost model
|
|
146
145
|
joblib.dump(ngb_model, os.path.join(args.model_dir, "ngb_model.joblib"))
|
|
@@ -212,8 +211,8 @@ def predict_fn(df, model) -> pd.DataFrame:
|
|
|
212
211
|
dist_params = y_dists.params
|
|
213
212
|
|
|
214
213
|
# Extract mean and std from distribution parameters
|
|
215
|
-
df["prediction"] = dist_params[
|
|
216
|
-
df["prediction_std"] = dist_params[
|
|
214
|
+
df["prediction"] = dist_params["loc"] # mean
|
|
215
|
+
df["prediction_std"] = dist_params["scale"] # standard deviation
|
|
217
216
|
|
|
218
217
|
# Add 95% prediction intervals using ppf (percent point function)
|
|
219
218
|
df["q_025"] = y_dists.ppf(0.025) # 2.5th percentile
|
|
@@ -3,7 +3,7 @@ TEMPLATE_PARAMS = {
|
|
|
3
3
|
"model_type": "{{model_type}}",
|
|
4
4
|
"target_column": "{{target_column}}",
|
|
5
5
|
"feature_list": "{{feature_list}}",
|
|
6
|
-
"model_metrics_s3_path": "{{model_metrics_s3_path}}"
|
|
6
|
+
"model_metrics_s3_path": "{{model_metrics_s3_path}}",
|
|
7
7
|
}
|
|
8
8
|
|
|
9
9
|
# Imports for XGB Model
|
|
@@ -12,11 +12,8 @@ import awswrangler as wr
|
|
|
12
12
|
import numpy as np
|
|
13
13
|
|
|
14
14
|
# Model Performance Scores
|
|
15
|
-
from sklearn.metrics import
|
|
16
|
-
|
|
17
|
-
r2_score,
|
|
18
|
-
root_mean_squared_error
|
|
19
|
-
)
|
|
15
|
+
from sklearn.metrics import mean_absolute_error, median_absolute_error, r2_score, root_mean_squared_error
|
|
16
|
+
from scipy.stats import spearmanr
|
|
20
17
|
|
|
21
18
|
from io import StringIO
|
|
22
19
|
import json
|
|
@@ -39,6 +36,7 @@ def check_dataframe(df: pd.DataFrame, df_name: str) -> None:
|
|
|
39
36
|
print(msg)
|
|
40
37
|
raise ValueError(msg)
|
|
41
38
|
|
|
39
|
+
|
|
42
40
|
def match_features_case_insensitive(df: pd.DataFrame, model_features: list) -> pd.DataFrame:
|
|
43
41
|
"""
|
|
44
42
|
Matches and renames the DataFrame's column names to match the model's feature names (case-insensitive).
|
|
@@ -95,11 +93,7 @@ if __name__ == "__main__":
|
|
|
95
93
|
args = parser.parse_args()
|
|
96
94
|
|
|
97
95
|
# Read the training data into DataFrames
|
|
98
|
-
training_files = [
|
|
99
|
-
os.path.join(args.train, file)
|
|
100
|
-
for file in os.listdir(args.train)
|
|
101
|
-
if file.endswith(".csv")
|
|
102
|
-
]
|
|
96
|
+
training_files = [os.path.join(args.train, file) for file in os.listdir(args.train) if file.endswith(".csv")]
|
|
103
97
|
print(f"Training Files: {training_files}")
|
|
104
98
|
|
|
105
99
|
# Combine files and read them all into a single pandas dataframe
|
|
@@ -150,7 +144,6 @@ if __name__ == "__main__":
|
|
|
150
144
|
result_df["residual"] = result_df[target] - result_df["prediction"]
|
|
151
145
|
result_df["residual_abs"] = result_df["residual"].abs()
|
|
152
146
|
|
|
153
|
-
|
|
154
147
|
# Save the results dataframe to S3
|
|
155
148
|
wr.s3.to_csv(
|
|
156
149
|
result_df,
|
|
@@ -161,11 +154,16 @@ if __name__ == "__main__":
|
|
|
161
154
|
# Report Performance Metrics
|
|
162
155
|
rmse = root_mean_squared_error(result_df[target], result_df["prediction"])
|
|
163
156
|
mae = mean_absolute_error(result_df[target], result_df["prediction"])
|
|
157
|
+
medae = median_absolute_error(result_df[target], result_df["prediction"])
|
|
164
158
|
r2 = r2_score(result_df[target], result_df["prediction"])
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
print(f"
|
|
168
|
-
print(f"
|
|
159
|
+
spearman_corr = spearmanr(result_df[target], result_df["prediction"]).correlation
|
|
160
|
+
support = len(result_df)
|
|
161
|
+
print(f"rmse: {rmse:.3f}")
|
|
162
|
+
print(f"mae: {mae:.3f}")
|
|
163
|
+
print(f"medae: {medae:.3f}")
|
|
164
|
+
print(f"r2: {r2:.3f}")
|
|
165
|
+
print(f"spearmanr: {spearman_corr:.3f}")
|
|
166
|
+
print(f"support: {support}")
|
|
169
167
|
|
|
170
168
|
# Now save the models
|
|
171
169
|
for name, model in models.items():
|
|
@@ -210,7 +208,7 @@ def input_fn(input_data, content_type):
|
|
|
210
208
|
"""Parse input data and return a DataFrame."""
|
|
211
209
|
if not input_data:
|
|
212
210
|
raise ValueError("Empty input data is not supported!")
|
|
213
|
-
|
|
211
|
+
|
|
214
212
|
# Decode bytes to string if necessary
|
|
215
213
|
if isinstance(input_data, bytes):
|
|
216
214
|
input_data = input_data.decode("utf-8")
|
|
@@ -0,0 +1,209 @@
|
|
|
1
|
+
# Meta Model Template for Workbench
|
|
2
|
+
#
|
|
3
|
+
# NOTE: This is called a "meta model" but it's really a "meta endpoint" - it aggregates
|
|
4
|
+
# predictions from multiple child endpoints. We call it a "model" because Workbench
|
|
5
|
+
# creates Model artifacts that get deployed as Endpoints, so this follows that pattern.
|
|
6
|
+
#
|
|
7
|
+
# Assumptions/Shortcuts:
|
|
8
|
+
# - All child endpoints are regression models
|
|
9
|
+
# - All child endpoints output 'prediction' and 'confidence' columns
|
|
10
|
+
# - Aggregation uses model weights (provided at meta model creation time)
|
|
11
|
+
#
|
|
12
|
+
# This template:
|
|
13
|
+
# - Has no real training phase (just saves metadata including model weights)
|
|
14
|
+
# - At inference time, calls child endpoints and aggregates their predictions
|
|
15
|
+
|
|
16
|
+
import argparse
|
|
17
|
+
import json
|
|
18
|
+
import os
|
|
19
|
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
20
|
+
from io import StringIO
|
|
21
|
+
|
|
22
|
+
import pandas as pd
|
|
23
|
+
|
|
24
|
+
from workbench_bridges.endpoints.fast_inference import fast_inference
|
|
25
|
+
|
|
26
|
+
# Template parameters (filled in by Workbench)
|
|
27
|
+
TEMPLATE_PARAMS = {
|
|
28
|
+
"child_endpoints": ['logd-reg-pytorch', 'logd-reg-chemprop'],
|
|
29
|
+
"target_column": "logd",
|
|
30
|
+
"model_weights": {'logd-reg-pytorch': 0.4228205813233993, 'logd-reg-chemprop': 0.5771794186766008},
|
|
31
|
+
"model_metrics_s3_path": "s3://sandbox-sageworks-artifacts/models/logd-meta/training",
|
|
32
|
+
"aws_region": "us-west-2",
|
|
33
|
+
}
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def invoke_endpoints_parallel(endpoint_names: list[str], df: pd.DataFrame) -> dict[str, pd.DataFrame]:
|
|
37
|
+
"""Call multiple child endpoints in parallel and collect their results.
|
|
38
|
+
|
|
39
|
+
Args:
|
|
40
|
+
endpoint_names: List of endpoint names to call
|
|
41
|
+
df: Input DataFrame to send to each endpoint
|
|
42
|
+
|
|
43
|
+
Returns:
|
|
44
|
+
Dict mapping endpoint_name -> result DataFrame (or None if failed)
|
|
45
|
+
"""
|
|
46
|
+
results = {}
|
|
47
|
+
|
|
48
|
+
def call_endpoint(name: str) -> tuple[str, pd.DataFrame | None]:
|
|
49
|
+
try:
|
|
50
|
+
return name, fast_inference(name, df)
|
|
51
|
+
except Exception as e:
|
|
52
|
+
print(f"Error calling endpoint {name}: {e}")
|
|
53
|
+
return name, None
|
|
54
|
+
|
|
55
|
+
with ThreadPoolExecutor(max_workers=len(endpoint_names)) as executor:
|
|
56
|
+
futures = {executor.submit(call_endpoint, name): name for name in endpoint_names}
|
|
57
|
+
for future in as_completed(futures):
|
|
58
|
+
name, result = future.result()
|
|
59
|
+
results[name] = result
|
|
60
|
+
|
|
61
|
+
return results
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def aggregate_predictions(results: dict[str, pd.DataFrame], model_weights: dict[str, float]) -> pd.DataFrame:
|
|
65
|
+
"""Aggregate predictions from multiple endpoints using model weights.
|
|
66
|
+
|
|
67
|
+
Args:
|
|
68
|
+
results: Dict mapping endpoint_name -> predictions DataFrame
|
|
69
|
+
Each DataFrame must have 'prediction' and 'confidence' columns
|
|
70
|
+
model_weights: Dict mapping endpoint_name -> weight
|
|
71
|
+
|
|
72
|
+
Returns:
|
|
73
|
+
DataFrame with aggregated prediction, prediction_std, and confidence
|
|
74
|
+
"""
|
|
75
|
+
# Filter out failed endpoints
|
|
76
|
+
valid_results = {k: v for k, v in results.items() if v is not None}
|
|
77
|
+
if not valid_results:
|
|
78
|
+
raise ValueError("All child endpoints failed")
|
|
79
|
+
|
|
80
|
+
# Use first result as base (for id columns, etc.)
|
|
81
|
+
first_df = list(valid_results.values())[0]
|
|
82
|
+
output_df = first_df.drop(columns=["prediction", "confidence", "prediction_std"], errors="ignore").copy()
|
|
83
|
+
|
|
84
|
+
# Build DataFrames of predictions and confidences from all endpoints
|
|
85
|
+
pred_df = pd.DataFrame({name: df["prediction"] for name, df in valid_results.items()})
|
|
86
|
+
conf_df = pd.DataFrame({name: df["confidence"] for name, df in valid_results.items()})
|
|
87
|
+
|
|
88
|
+
# Apply model weights (renormalize for valid endpoints only)
|
|
89
|
+
valid_weights = {k: model_weights.get(k, 1.0) for k in valid_results}
|
|
90
|
+
weight_sum = sum(valid_weights.values())
|
|
91
|
+
normalized_weights = {k: v / weight_sum for k, v in valid_weights.items()}
|
|
92
|
+
|
|
93
|
+
# Weighted average
|
|
94
|
+
output_df["prediction"] = sum(pred_df[name] * w for name, w in normalized_weights.items())
|
|
95
|
+
|
|
96
|
+
# Ensemble std across child endpoints
|
|
97
|
+
output_df["prediction_std"] = pred_df.std(axis=1)
|
|
98
|
+
|
|
99
|
+
# Aggregated confidence: weighted mean of child confidences
|
|
100
|
+
output_df["confidence"] = sum(conf_df[name] * w for name, w in normalized_weights.items())
|
|
101
|
+
|
|
102
|
+
return output_df
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
# =============================================================================
|
|
106
|
+
# Model Loading (for SageMaker inference)
|
|
107
|
+
# =============================================================================
|
|
108
|
+
def model_fn(model_dir: str) -> dict:
|
|
109
|
+
"""Load meta model configuration."""
|
|
110
|
+
with open(os.path.join(model_dir, "meta_config.json")) as f:
|
|
111
|
+
config = json.load(f)
|
|
112
|
+
|
|
113
|
+
# Set AWS_REGION for fast_inference (baked in at training time)
|
|
114
|
+
if config.get("aws_region"):
|
|
115
|
+
os.environ["AWS_REGION"] = config["aws_region"]
|
|
116
|
+
|
|
117
|
+
print(f"Meta model loaded: {len(config['child_endpoints'])} child endpoints")
|
|
118
|
+
print(f"Model weights: {config.get('model_weights')}")
|
|
119
|
+
print(f"AWS region: {config.get('aws_region')}")
|
|
120
|
+
return config
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
def input_fn(input_data, content_type):
|
|
124
|
+
"""Parse input data and return a DataFrame."""
|
|
125
|
+
if not input_data:
|
|
126
|
+
raise ValueError("Empty input data is not supported!")
|
|
127
|
+
|
|
128
|
+
# Decode bytes to string if necessary
|
|
129
|
+
if isinstance(input_data, bytes):
|
|
130
|
+
input_data = input_data.decode("utf-8")
|
|
131
|
+
|
|
132
|
+
if "text/csv" in content_type:
|
|
133
|
+
return pd.read_csv(StringIO(input_data))
|
|
134
|
+
elif "application/json" in content_type:
|
|
135
|
+
return pd.DataFrame(json.loads(input_data))
|
|
136
|
+
else:
|
|
137
|
+
raise ValueError(f"{content_type} not supported!")
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
def output_fn(output_df, accept_type):
|
|
141
|
+
"""Supports both CSV and JSON output formats."""
|
|
142
|
+
if "text/csv" in accept_type:
|
|
143
|
+
return output_df.to_csv(index=False), "text/csv"
|
|
144
|
+
elif "application/json" in accept_type:
|
|
145
|
+
return output_df.to_json(orient="records"), "application/json"
|
|
146
|
+
else:
|
|
147
|
+
raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
# =============================================================================
|
|
151
|
+
# Inference (for SageMaker inference)
|
|
152
|
+
# =============================================================================
|
|
153
|
+
def predict_fn(df: pd.DataFrame, config: dict) -> pd.DataFrame:
|
|
154
|
+
"""Run inference by calling child endpoints and aggregating results."""
|
|
155
|
+
child_endpoints = config["child_endpoints"]
|
|
156
|
+
model_weights = config.get("model_weights", {})
|
|
157
|
+
|
|
158
|
+
print(f"Calling {len(child_endpoints)} child endpoints: {child_endpoints}")
|
|
159
|
+
|
|
160
|
+
# Call all child endpoints
|
|
161
|
+
results = invoke_endpoints_parallel(child_endpoints, df)
|
|
162
|
+
|
|
163
|
+
# Report status
|
|
164
|
+
for name, result in results.items():
|
|
165
|
+
status = f"{len(result)} rows" if result is not None else "FAILED"
|
|
166
|
+
print(f" {name}: {status}")
|
|
167
|
+
|
|
168
|
+
# Aggregate predictions using model weights
|
|
169
|
+
output_df = aggregate_predictions(results, model_weights)
|
|
170
|
+
|
|
171
|
+
print(f"Aggregated {len(output_df)} predictions from {len(results)} endpoints")
|
|
172
|
+
return output_df
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
# =============================================================================
|
|
176
|
+
# Training (just saves configuration - no actual training)
|
|
177
|
+
# =============================================================================
|
|
178
|
+
if __name__ == "__main__":
|
|
179
|
+
parser = argparse.ArgumentParser()
|
|
180
|
+
parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
|
|
181
|
+
parser.add_argument("--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data"))
|
|
182
|
+
parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
|
|
183
|
+
args = parser.parse_args()
|
|
184
|
+
|
|
185
|
+
child_endpoints = TEMPLATE_PARAMS["child_endpoints"]
|
|
186
|
+
target_column = TEMPLATE_PARAMS["target_column"]
|
|
187
|
+
model_weights = TEMPLATE_PARAMS["model_weights"]
|
|
188
|
+
aws_region = TEMPLATE_PARAMS["aws_region"]
|
|
189
|
+
|
|
190
|
+
print("=" * 60)
|
|
191
|
+
print("Meta Model Configuration")
|
|
192
|
+
print("=" * 60)
|
|
193
|
+
print(f"Child endpoints: {child_endpoints}")
|
|
194
|
+
print(f"Target column: {target_column}")
|
|
195
|
+
print(f"Model weights: {model_weights}")
|
|
196
|
+
print(f"AWS region: {aws_region}")
|
|
197
|
+
|
|
198
|
+
# Save configuration for inference
|
|
199
|
+
config = {
|
|
200
|
+
"child_endpoints": child_endpoints,
|
|
201
|
+
"target_column": target_column,
|
|
202
|
+
"model_weights": model_weights,
|
|
203
|
+
"aws_region": aws_region,
|
|
204
|
+
}
|
|
205
|
+
|
|
206
|
+
with open(os.path.join(args.model_dir, "meta_config.json"), "w") as f:
|
|
207
|
+
json.dump(config, f, indent=2)
|
|
208
|
+
|
|
209
|
+
print(f"\nMeta model configuration saved to {args.model_dir}")
|
|
@@ -0,0 +1,209 @@
|
|
|
1
|
+
# Meta Model Template for Workbench
|
|
2
|
+
#
|
|
3
|
+
# NOTE: This is called a "meta model" but it's really a "meta endpoint" - it aggregates
|
|
4
|
+
# predictions from multiple child endpoints. We call it a "model" because Workbench
|
|
5
|
+
# creates Model artifacts that get deployed as Endpoints, so this follows that pattern.
|
|
6
|
+
#
|
|
7
|
+
# Assumptions/Shortcuts:
|
|
8
|
+
# - All child endpoints are regression models
|
|
9
|
+
# - All child endpoints output 'prediction' and 'confidence' columns
|
|
10
|
+
# - Aggregation uses model weights (provided at meta model creation time)
|
|
11
|
+
#
|
|
12
|
+
# This template:
|
|
13
|
+
# - Has no real training phase (just saves metadata including model weights)
|
|
14
|
+
# - At inference time, calls child endpoints and aggregates their predictions
|
|
15
|
+
|
|
16
|
+
import argparse
|
|
17
|
+
import json
|
|
18
|
+
import os
|
|
19
|
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
20
|
+
from io import StringIO
|
|
21
|
+
|
|
22
|
+
import pandas as pd
|
|
23
|
+
|
|
24
|
+
from workbench_bridges.endpoints.fast_inference import fast_inference
|
|
25
|
+
|
|
26
|
+
# Template parameters (filled in by Workbench)
|
|
27
|
+
TEMPLATE_PARAMS = {
|
|
28
|
+
"child_endpoints": "{{child_endpoints}}",
|
|
29
|
+
"target_column": "{{target_column}}",
|
|
30
|
+
"model_weights": "{{model_weights}}",
|
|
31
|
+
"model_metrics_s3_path": "{{model_metrics_s3_path}}",
|
|
32
|
+
"aws_region": "{{aws_region}}",
|
|
33
|
+
}
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def invoke_endpoints_parallel(endpoint_names: list[str], df: pd.DataFrame) -> dict[str, pd.DataFrame]:
|
|
37
|
+
"""Call multiple child endpoints in parallel and collect their results.
|
|
38
|
+
|
|
39
|
+
Args:
|
|
40
|
+
endpoint_names: List of endpoint names to call
|
|
41
|
+
df: Input DataFrame to send to each endpoint
|
|
42
|
+
|
|
43
|
+
Returns:
|
|
44
|
+
Dict mapping endpoint_name -> result DataFrame (or None if failed)
|
|
45
|
+
"""
|
|
46
|
+
results = {}
|
|
47
|
+
|
|
48
|
+
def call_endpoint(name: str) -> tuple[str, pd.DataFrame | None]:
|
|
49
|
+
try:
|
|
50
|
+
return name, fast_inference(name, df)
|
|
51
|
+
except Exception as e:
|
|
52
|
+
print(f"Error calling endpoint {name}: {e}")
|
|
53
|
+
return name, None
|
|
54
|
+
|
|
55
|
+
with ThreadPoolExecutor(max_workers=len(endpoint_names)) as executor:
|
|
56
|
+
futures = {executor.submit(call_endpoint, name): name for name in endpoint_names}
|
|
57
|
+
for future in as_completed(futures):
|
|
58
|
+
name, result = future.result()
|
|
59
|
+
results[name] = result
|
|
60
|
+
|
|
61
|
+
return results
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def aggregate_predictions(results: dict[str, pd.DataFrame], model_weights: dict[str, float]) -> pd.DataFrame:
|
|
65
|
+
"""Aggregate predictions from multiple endpoints using model weights.
|
|
66
|
+
|
|
67
|
+
Args:
|
|
68
|
+
results: Dict mapping endpoint_name -> predictions DataFrame
|
|
69
|
+
Each DataFrame must have 'prediction' and 'confidence' columns
|
|
70
|
+
model_weights: Dict mapping endpoint_name -> weight
|
|
71
|
+
|
|
72
|
+
Returns:
|
|
73
|
+
DataFrame with aggregated prediction, prediction_std, and confidence
|
|
74
|
+
"""
|
|
75
|
+
# Filter out failed endpoints
|
|
76
|
+
valid_results = {k: v for k, v in results.items() if v is not None}
|
|
77
|
+
if not valid_results:
|
|
78
|
+
raise ValueError("All child endpoints failed")
|
|
79
|
+
|
|
80
|
+
# Use first result as base (for id columns, etc.)
|
|
81
|
+
first_df = list(valid_results.values())[0]
|
|
82
|
+
output_df = first_df.drop(columns=["prediction", "confidence", "prediction_std"], errors="ignore").copy()
|
|
83
|
+
|
|
84
|
+
# Build DataFrames of predictions and confidences from all endpoints
|
|
85
|
+
pred_df = pd.DataFrame({name: df["prediction"] for name, df in valid_results.items()})
|
|
86
|
+
conf_df = pd.DataFrame({name: df["confidence"] for name, df in valid_results.items()})
|
|
87
|
+
|
|
88
|
+
# Apply model weights (renormalize for valid endpoints only)
|
|
89
|
+
valid_weights = {k: model_weights.get(k, 1.0) for k in valid_results}
|
|
90
|
+
weight_sum = sum(valid_weights.values())
|
|
91
|
+
normalized_weights = {k: v / weight_sum for k, v in valid_weights.items()}
|
|
92
|
+
|
|
93
|
+
# Weighted average
|
|
94
|
+
output_df["prediction"] = sum(pred_df[name] * w for name, w in normalized_weights.items())
|
|
95
|
+
|
|
96
|
+
# Ensemble std across child endpoints
|
|
97
|
+
output_df["prediction_std"] = pred_df.std(axis=1)
|
|
98
|
+
|
|
99
|
+
# Aggregated confidence: weighted mean of child confidences
|
|
100
|
+
output_df["confidence"] = sum(conf_df[name] * w for name, w in normalized_weights.items())
|
|
101
|
+
|
|
102
|
+
return output_df
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
# =============================================================================
|
|
106
|
+
# Model Loading (for SageMaker inference)
|
|
107
|
+
# =============================================================================
|
|
108
|
+
def model_fn(model_dir: str) -> dict:
|
|
109
|
+
"""Load meta model configuration."""
|
|
110
|
+
with open(os.path.join(model_dir, "meta_config.json")) as f:
|
|
111
|
+
config = json.load(f)
|
|
112
|
+
|
|
113
|
+
# Set AWS_REGION for fast_inference (baked in at training time)
|
|
114
|
+
if config.get("aws_region"):
|
|
115
|
+
os.environ["AWS_REGION"] = config["aws_region"]
|
|
116
|
+
|
|
117
|
+
print(f"Meta model loaded: {len(config['child_endpoints'])} child endpoints")
|
|
118
|
+
print(f"Model weights: {config.get('model_weights')}")
|
|
119
|
+
print(f"AWS region: {config.get('aws_region')}")
|
|
120
|
+
return config
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
def input_fn(input_data, content_type):
|
|
124
|
+
"""Parse input data and return a DataFrame."""
|
|
125
|
+
if not input_data:
|
|
126
|
+
raise ValueError("Empty input data is not supported!")
|
|
127
|
+
|
|
128
|
+
# Decode bytes to string if necessary
|
|
129
|
+
if isinstance(input_data, bytes):
|
|
130
|
+
input_data = input_data.decode("utf-8")
|
|
131
|
+
|
|
132
|
+
if "text/csv" in content_type:
|
|
133
|
+
return pd.read_csv(StringIO(input_data))
|
|
134
|
+
elif "application/json" in content_type:
|
|
135
|
+
return pd.DataFrame(json.loads(input_data))
|
|
136
|
+
else:
|
|
137
|
+
raise ValueError(f"{content_type} not supported!")
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
def output_fn(output_df, accept_type):
|
|
141
|
+
"""Supports both CSV and JSON output formats."""
|
|
142
|
+
if "text/csv" in accept_type:
|
|
143
|
+
return output_df.to_csv(index=False), "text/csv"
|
|
144
|
+
elif "application/json" in accept_type:
|
|
145
|
+
return output_df.to_json(orient="records"), "application/json"
|
|
146
|
+
else:
|
|
147
|
+
raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
# =============================================================================
|
|
151
|
+
# Inference (for SageMaker inference)
|
|
152
|
+
# =============================================================================
|
|
153
|
+
def predict_fn(df: pd.DataFrame, config: dict) -> pd.DataFrame:
|
|
154
|
+
"""Run inference by calling child endpoints and aggregating results."""
|
|
155
|
+
child_endpoints = config["child_endpoints"]
|
|
156
|
+
model_weights = config.get("model_weights", {})
|
|
157
|
+
|
|
158
|
+
print(f"Calling {len(child_endpoints)} child endpoints: {child_endpoints}")
|
|
159
|
+
|
|
160
|
+
# Call all child endpoints
|
|
161
|
+
results = invoke_endpoints_parallel(child_endpoints, df)
|
|
162
|
+
|
|
163
|
+
# Report status
|
|
164
|
+
for name, result in results.items():
|
|
165
|
+
status = f"{len(result)} rows" if result is not None else "FAILED"
|
|
166
|
+
print(f" {name}: {status}")
|
|
167
|
+
|
|
168
|
+
# Aggregate predictions using model weights
|
|
169
|
+
output_df = aggregate_predictions(results, model_weights)
|
|
170
|
+
|
|
171
|
+
print(f"Aggregated {len(output_df)} predictions from {len(results)} endpoints")
|
|
172
|
+
return output_df
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
# =============================================================================
|
|
176
|
+
# Training (just saves configuration - no actual training)
|
|
177
|
+
# =============================================================================
|
|
178
|
+
if __name__ == "__main__":
|
|
179
|
+
parser = argparse.ArgumentParser()
|
|
180
|
+
parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
|
|
181
|
+
parser.add_argument("--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data"))
|
|
182
|
+
parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
|
|
183
|
+
args = parser.parse_args()
|
|
184
|
+
|
|
185
|
+
child_endpoints = TEMPLATE_PARAMS["child_endpoints"]
|
|
186
|
+
target_column = TEMPLATE_PARAMS["target_column"]
|
|
187
|
+
model_weights = TEMPLATE_PARAMS["model_weights"]
|
|
188
|
+
aws_region = TEMPLATE_PARAMS["aws_region"]
|
|
189
|
+
|
|
190
|
+
print("=" * 60)
|
|
191
|
+
print("Meta Model Configuration")
|
|
192
|
+
print("=" * 60)
|
|
193
|
+
print(f"Child endpoints: {child_endpoints}")
|
|
194
|
+
print(f"Target column: {target_column}")
|
|
195
|
+
print(f"Model weights: {model_weights}")
|
|
196
|
+
print(f"AWS region: {aws_region}")
|
|
197
|
+
|
|
198
|
+
# Save configuration for inference
|
|
199
|
+
config = {
|
|
200
|
+
"child_endpoints": child_endpoints,
|
|
201
|
+
"target_column": target_column,
|
|
202
|
+
"model_weights": model_weights,
|
|
203
|
+
"aws_region": aws_region,
|
|
204
|
+
}
|
|
205
|
+
|
|
206
|
+
with open(os.path.join(args.model_dir, "meta_config.json"), "w") as f:
|
|
207
|
+
json.dump(config, f, indent=2)
|
|
208
|
+
|
|
209
|
+
print(f"\nMeta model configuration saved to {args.model_dir}")
|