workbench 0.8.174__py3-none-any.whl → 0.8.227__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of workbench might be problematic. Click here for more details.

Files changed (145) hide show
  1. workbench/__init__.py +1 -0
  2. workbench/algorithms/dataframe/__init__.py +1 -2
  3. workbench/algorithms/dataframe/compound_dataset_overlap.py +321 -0
  4. workbench/algorithms/dataframe/feature_space_proximity.py +168 -75
  5. workbench/algorithms/dataframe/fingerprint_proximity.py +422 -86
  6. workbench/algorithms/dataframe/projection_2d.py +44 -21
  7. workbench/algorithms/dataframe/proximity.py +259 -305
  8. workbench/algorithms/graph/light/proximity_graph.py +12 -11
  9. workbench/algorithms/models/cleanlab_model.py +382 -0
  10. workbench/algorithms/models/noise_model.py +388 -0
  11. workbench/algorithms/sql/column_stats.py +0 -1
  12. workbench/algorithms/sql/correlations.py +0 -1
  13. workbench/algorithms/sql/descriptive_stats.py +0 -1
  14. workbench/algorithms/sql/outliers.py +3 -3
  15. workbench/api/__init__.py +5 -1
  16. workbench/api/df_store.py +17 -108
  17. workbench/api/endpoint.py +14 -12
  18. workbench/api/feature_set.py +117 -11
  19. workbench/api/meta.py +0 -1
  20. workbench/api/meta_model.py +289 -0
  21. workbench/api/model.py +52 -21
  22. workbench/api/parameter_store.py +3 -52
  23. workbench/cached/cached_meta.py +0 -1
  24. workbench/cached/cached_model.py +49 -11
  25. workbench/core/artifacts/__init__.py +11 -2
  26. workbench/core/artifacts/artifact.py +7 -7
  27. workbench/core/artifacts/data_capture_core.py +8 -1
  28. workbench/core/artifacts/df_store_core.py +114 -0
  29. workbench/core/artifacts/endpoint_core.py +323 -205
  30. workbench/core/artifacts/feature_set_core.py +249 -45
  31. workbench/core/artifacts/model_core.py +133 -101
  32. workbench/core/artifacts/parameter_store_core.py +98 -0
  33. workbench/core/cloud_platform/aws/aws_account_clamp.py +48 -2
  34. workbench/core/cloud_platform/cloud_meta.py +0 -1
  35. workbench/core/pipelines/pipeline_executor.py +1 -1
  36. workbench/core/transforms/features_to_model/features_to_model.py +60 -44
  37. workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +43 -10
  38. workbench/core/transforms/pandas_transforms/pandas_to_features.py +38 -2
  39. workbench/core/views/training_view.py +113 -42
  40. workbench/core/views/view.py +53 -3
  41. workbench/core/views/view_utils.py +4 -4
  42. workbench/model_script_utils/model_script_utils.py +339 -0
  43. workbench/model_script_utils/pytorch_utils.py +405 -0
  44. workbench/model_script_utils/uq_harness.py +277 -0
  45. workbench/model_scripts/chemprop/chemprop.template +774 -0
  46. workbench/model_scripts/chemprop/generated_model_script.py +774 -0
  47. workbench/model_scripts/chemprop/model_script_utils.py +339 -0
  48. workbench/model_scripts/chemprop/requirements.txt +3 -0
  49. workbench/model_scripts/custom_models/chem_info/fingerprints.py +175 -0
  50. workbench/model_scripts/custom_models/chem_info/mol_descriptors.py +18 -7
  51. workbench/model_scripts/custom_models/chem_info/mol_standardize.py +80 -58
  52. workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py +0 -1
  53. workbench/model_scripts/custom_models/chem_info/morgan_fingerprints.py +1 -2
  54. workbench/model_scripts/custom_models/proximity/feature_space_proximity.py +194 -0
  55. workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +8 -10
  56. workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template +7 -8
  57. workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template +20 -21
  58. workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py +194 -0
  59. workbench/model_scripts/custom_models/uq_models/gaussian_process.template +5 -11
  60. workbench/model_scripts/custom_models/uq_models/ngboost.template +15 -16
  61. workbench/model_scripts/ensemble_xgb/ensemble_xgb.template +15 -17
  62. workbench/model_scripts/meta_model/generated_model_script.py +209 -0
  63. workbench/model_scripts/meta_model/meta_model.template +209 -0
  64. workbench/model_scripts/pytorch_model/generated_model_script.py +443 -499
  65. workbench/model_scripts/pytorch_model/model_script_utils.py +339 -0
  66. workbench/model_scripts/pytorch_model/pytorch.template +440 -496
  67. workbench/model_scripts/pytorch_model/pytorch_utils.py +405 -0
  68. workbench/model_scripts/pytorch_model/requirements.txt +1 -1
  69. workbench/model_scripts/pytorch_model/uq_harness.py +277 -0
  70. workbench/model_scripts/scikit_learn/generated_model_script.py +7 -12
  71. workbench/model_scripts/scikit_learn/scikit_learn.template +4 -9
  72. workbench/model_scripts/script_generation.py +15 -12
  73. workbench/model_scripts/uq_models/generated_model_script.py +248 -0
  74. workbench/model_scripts/xgb_model/generated_model_script.py +371 -403
  75. workbench/model_scripts/xgb_model/model_script_utils.py +339 -0
  76. workbench/model_scripts/xgb_model/uq_harness.py +277 -0
  77. workbench/model_scripts/xgb_model/xgb_model.template +367 -399
  78. workbench/repl/workbench_shell.py +18 -14
  79. workbench/resources/open_source_api.key +1 -1
  80. workbench/scripts/endpoint_test.py +162 -0
  81. workbench/scripts/lambda_test.py +73 -0
  82. workbench/scripts/meta_model_sim.py +35 -0
  83. workbench/scripts/ml_pipeline_sqs.py +122 -6
  84. workbench/scripts/training_test.py +85 -0
  85. workbench/themes/dark/custom.css +59 -0
  86. workbench/themes/dark/plotly.json +5 -5
  87. workbench/themes/light/custom.css +153 -40
  88. workbench/themes/light/plotly.json +9 -9
  89. workbench/themes/midnight_blue/custom.css +59 -0
  90. workbench/utils/aws_utils.py +0 -1
  91. workbench/utils/chem_utils/fingerprints.py +87 -46
  92. workbench/utils/chem_utils/mol_descriptors.py +18 -7
  93. workbench/utils/chem_utils/mol_standardize.py +80 -58
  94. workbench/utils/chem_utils/projections.py +16 -6
  95. workbench/utils/chem_utils/vis.py +25 -27
  96. workbench/utils/chemprop_utils.py +141 -0
  97. workbench/utils/config_manager.py +2 -6
  98. workbench/utils/endpoint_utils.py +5 -7
  99. workbench/utils/license_manager.py +2 -6
  100. workbench/utils/markdown_utils.py +57 -0
  101. workbench/utils/meta_model_simulator.py +499 -0
  102. workbench/utils/metrics_utils.py +256 -0
  103. workbench/utils/model_utils.py +274 -87
  104. workbench/utils/pipeline_utils.py +0 -1
  105. workbench/utils/plot_utils.py +159 -34
  106. workbench/utils/pytorch_utils.py +87 -0
  107. workbench/utils/shap_utils.py +11 -57
  108. workbench/utils/theme_manager.py +95 -30
  109. workbench/utils/xgboost_local_crossfold.py +267 -0
  110. workbench/utils/xgboost_model_utils.py +127 -220
  111. workbench/web_interface/components/experiments/outlier_plot.py +0 -1
  112. workbench/web_interface/components/model_plot.py +16 -2
  113. workbench/web_interface/components/plugin_unit_test.py +5 -3
  114. workbench/web_interface/components/plugins/ag_table.py +2 -4
  115. workbench/web_interface/components/plugins/confusion_matrix.py +3 -6
  116. workbench/web_interface/components/plugins/model_details.py +48 -80
  117. workbench/web_interface/components/plugins/scatter_plot.py +192 -92
  118. workbench/web_interface/components/settings_menu.py +184 -0
  119. workbench/web_interface/page_views/main_page.py +0 -1
  120. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/METADATA +31 -17
  121. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/RECORD +125 -111
  122. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/entry_points.txt +4 -0
  123. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/licenses/LICENSE +1 -1
  124. workbench/core/cloud_platform/aws/aws_df_store.py +0 -404
  125. workbench/core/cloud_platform/aws/aws_parameter_store.py +0 -280
  126. workbench/model_scripts/custom_models/meta_endpoints/example.py +0 -53
  127. workbench/model_scripts/custom_models/proximity/generated_model_script.py +0 -138
  128. workbench/model_scripts/custom_models/proximity/proximity.py +0 -384
  129. workbench/model_scripts/custom_models/uq_models/generated_model_script.py +0 -393
  130. workbench/model_scripts/custom_models/uq_models/mapie.template +0 -502
  131. workbench/model_scripts/custom_models/uq_models/meta_uq.template +0 -386
  132. workbench/model_scripts/custom_models/uq_models/proximity.py +0 -384
  133. workbench/model_scripts/ensemble_xgb/generated_model_script.py +0 -279
  134. workbench/model_scripts/quant_regression/quant_regression.template +0 -279
  135. workbench/model_scripts/quant_regression/requirements.txt +0 -1
  136. workbench/themes/quartz/base_css.url +0 -1
  137. workbench/themes/quartz/custom.css +0 -117
  138. workbench/themes/quartz/plotly.json +0 -642
  139. workbench/themes/quartz_dark/base_css.url +0 -1
  140. workbench/themes/quartz_dark/custom.css +0 -131
  141. workbench/themes/quartz_dark/plotly.json +0 -642
  142. workbench/utils/fast_inference.py +0 -167
  143. workbench/utils/resource_utils.py +0 -39
  144. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/WHEEL +0 -0
  145. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/top_level.txt +0 -0
@@ -1,279 +0,0 @@
1
- # Imports for XGB Model
2
- import xgboost as xgb
3
- import awswrangler as wr
4
- from sklearn.model_selection import train_test_split
5
-
6
- # Model Performance Scores
7
- from sklearn.metrics import (
8
- mean_absolute_error,
9
- r2_score,
10
- root_mean_squared_error
11
- )
12
-
13
- from io import StringIO
14
- import json
15
- import argparse
16
- import os
17
- import pandas as pd
18
-
19
- # Template Placeholders
20
- TEMPLATE_PARAMS = {
21
- "model_type": "{{model_type}}",
22
- "target_column": "{{target_column}}",
23
- "features": "{{feature_list}}",
24
- "model_metrics_s3_path": "{{model_metrics_s3_path}}",
25
- "train_all_data": "{{train_all_data}}"
26
- }
27
-
28
- # Function to check if dataframe is empty
29
- def check_dataframe(df: pd.DataFrame, df_name: str) -> None:
30
- """
31
- Check if the provided dataframe is empty and raise an exception if it is.
32
-
33
- Args:
34
- df (pd.DataFrame): DataFrame to check
35
- df_name (str): Name of the DataFrame
36
- """
37
- if df.empty:
38
- msg = f"*** The training data {df_name} has 0 rows! ***STOPPING***"
39
- print(msg)
40
- raise ValueError(msg)
41
-
42
-
43
- def match_features_case_insensitive(df: pd.DataFrame, model_features: list) -> pd.DataFrame:
44
- """
45
- Matches and renames DataFrame columns to match model feature names (case-insensitive).
46
- Prioritizes exact matches, then case-insensitive matches.
47
-
48
- Raises ValueError if any model features cannot be matched.
49
- """
50
- df_columns_lower = {col.lower(): col for col in df.columns}
51
- rename_dict = {}
52
- missing = []
53
- for feature in model_features:
54
- if feature in df.columns:
55
- continue # Exact match
56
- elif feature.lower() in df_columns_lower:
57
- rename_dict[df_columns_lower[feature.lower()]] = feature
58
- else:
59
- missing.append(feature)
60
-
61
- if missing:
62
- raise ValueError(f"Features not found: {missing}")
63
-
64
- # Rename the DataFrame columns to match the model features
65
- return df.rename(columns=rename_dict)
66
-
67
- if __name__ == "__main__":
68
- """The main function is for training the XGBoost Quantile Regression models"""
69
-
70
- # Harness Template Parameters
71
- target = TEMPLATE_PARAMS["target_column"]
72
- features = TEMPLATE_PARAMS["features"]
73
- model_metrics_s3_path = TEMPLATE_PARAMS["model_metrics_s3_path"]
74
- train_all_data = TEMPLATE_PARAMS["train_all_data"]
75
- validation_split = 0.2
76
- quantiles = [0.025, 0.25, 0.50, 0.75, 0.975]
77
- q_models = {}
78
-
79
- # Script arguments for input/output directories
80
- parser = argparse.ArgumentParser()
81
- parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
82
- parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
83
- parser.add_argument(
84
- "--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data")
85
- )
86
- args = parser.parse_args()
87
-
88
- # Load training data from the specified directory
89
- training_files = [
90
- os.path.join(args.train, file)
91
- for file in os.listdir(args.train) if file.endswith(".csv")
92
- ]
93
- print(f"Training Files: {training_files}")
94
-
95
- # Combine files and read them all into a single pandas dataframe
96
- df = pd.concat([pd.read_csv(file, engine="python") for file in training_files])
97
-
98
- # Check if the DataFrame is empty
99
- check_dataframe(df, "training_df")
100
-
101
- # Training data split logic
102
- if train_all_data:
103
- # Use all data for both training and validation
104
- print("Training on all data...")
105
- df_train = df.copy()
106
- df_val = df.copy()
107
- elif "training" in df.columns:
108
- # Split data based on a 'training' column if it exists
109
- print("Splitting data based on 'training' column...")
110
- df_train = df[df["training"]].copy()
111
- df_val = df[~df["training"]].copy()
112
- else:
113
- # Perform a random split if no 'training' column is found
114
- print("Splitting data randomly...")
115
- df_train, df_val = train_test_split(df, test_size=validation_split, random_state=42)
116
-
117
- # Features/Target output
118
- print(f"Target: {target}")
119
- print(f"Features: {str(features)}")
120
- print(f"Data Shape: {df.shape}")
121
-
122
- # Prepare features and targets for training
123
- X_train = df_train[features]
124
- X_val = df_val[features]
125
- y_train = df_train[target]
126
- y_val = df_val[target]
127
-
128
- # Train models for each of the quantiles
129
- for q in quantiles:
130
- params = {
131
- "objective": "reg:quantileerror",
132
- "quantile_alpha": q,
133
- }
134
- model = xgb.XGBRegressor(**params)
135
- model.fit(X_train, y_train)
136
-
137
- # Convert quantile to string
138
- q_str = f"q_{int(q * 100)}" if (q * 100) == int(q * 100) else f"q_{int(q * 1000):03d}"
139
-
140
- # Store the model
141
- q_models[q_str] = model
142
-
143
- # Run predictions for each quantile
144
- quantile_predictions = {q: model.predict(X_val) for q, model in q_models.items()}
145
-
146
- # Create a copy of the validation DataFrame and add the new columns
147
- result_df = df_val[[target]].copy()
148
-
149
- # Add the quantile predictions to the DataFrame
150
- for name, preds in quantile_predictions.items():
151
- result_df[name] = preds
152
-
153
- # Add the median as the main prediction
154
- result_df["prediction"] = result_df["q_50"]
155
-
156
- # Now compute residuals on the prediction
157
- result_df["residual"] = result_df[target] - result_df["prediction"]
158
- result_df["residual_abs"] = result_df["residual"].abs()
159
-
160
- # Save the results dataframe to S3
161
- wr.s3.to_csv(
162
- result_df,
163
- path=f"{model_metrics_s3_path}/validation_predictions.csv",
164
- index=False,
165
- )
166
-
167
- # Report Performance Metrics
168
- rmse = root_mean_squared_error(result_df[target], result_df["prediction"])
169
- mae = mean_absolute_error(result_df[target], result_df["prediction"])
170
- r2 = r2_score(result_df[target], result_df["prediction"])
171
- print(f"RMSE: {rmse:.3f}")
172
- print(f"MAE: {mae:.3f}")
173
- print(f"R2: {r2:.3f}")
174
- print(f"NumRows: {len(result_df)}")
175
-
176
- # Now save the quantile models
177
- for name, model in q_models.items():
178
- model_path = os.path.join(args.model_dir, f"{name}.json")
179
- print(f"Saving model: {model_path}")
180
- model.save_model(model_path)
181
-
182
- # Also save the features (this will validate input during predictions)
183
- with open(os.path.join(args.model_dir, "feature_columns.json"), "w") as fp:
184
- json.dump(features, fp)
185
-
186
-
187
- def model_fn(model_dir) -> dict:
188
- """Deserialized and return all the fitted models from the model directory.
189
-
190
- Args:
191
- model_dir (str): The directory where the models are stored.
192
-
193
- Returns:
194
- dict: A dictionary of the models.
195
- """
196
-
197
- # Load ALL the Quantile models from the model directory
198
- models = {}
199
- for file in os.listdir(model_dir):
200
- if file.startswith("q") and file.endswith(".json"): # The Quantile models
201
- # Load the model
202
- model_path = os.path.join(model_dir, file)
203
- print(f"Loading model: {model_path}")
204
- model = xgb.XGBRegressor()
205
- model.load_model(model_path)
206
-
207
- # Store the quantile model
208
- q_name = os.path.splitext(file)[0]
209
- models[q_name] = model
210
-
211
- # Return all the models
212
- return models
213
-
214
-
215
- def input_fn(input_data, content_type):
216
- """Parse input data and return a DataFrame."""
217
- if not input_data:
218
- raise ValueError("Empty input data is not supported!")
219
-
220
- # Decode bytes to string if necessary
221
- if isinstance(input_data, bytes):
222
- input_data = input_data.decode("utf-8")
223
-
224
- if "text/csv" in content_type:
225
- return pd.read_csv(StringIO(input_data))
226
- elif "application/json" in content_type:
227
- return pd.DataFrame(json.loads(input_data)) # Assumes JSON array of records
228
- else:
229
- raise ValueError(f"{content_type} not supported!")
230
-
231
-
232
- def output_fn(output_df, accept_type):
233
- """Supports both CSV and JSON output formats."""
234
- if "text/csv" in accept_type:
235
- csv_output = output_df.fillna("N/A").to_csv(index=False) # CSV with N/A for missing values
236
- return csv_output, "text/csv"
237
- elif "application/json" in accept_type:
238
- return output_df.to_json(orient="records"), "application/json" # JSON array of records (NaNs -> null)
239
- else:
240
- raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
241
-
242
-
243
- def predict_fn(df, models) -> pd.DataFrame:
244
- """Make Predictions with our XGB Quantile Regression Model
245
-
246
- Args:
247
- df (pd.DataFrame): The input DataFrame
248
- models (dict): The dictionary of models to use for predictions
249
-
250
- Returns:
251
- pd.DataFrame: The DataFrame with the predictions added
252
- """
253
-
254
- # Grab our feature columns (from training)
255
- model_dir = os.environ.get("SM_MODEL_DIR", "/opt/ml/model")
256
- with open(os.path.join(model_dir, "feature_columns.json")) as fp:
257
- model_features = json.load(fp)
258
- print(f"Model Features: {model_features}")
259
-
260
- # We're going match features in a case-insensitive manner, accounting for all the permutations
261
- # - Model has a feature list that's any case ("Id", "taCos", "cOunT", "likes_tacos")
262
- # - Incoming data has columns that are mixed case ("ID", "Tacos", "Count", "Likes_Tacos")
263
- matched_df = match_features_case_insensitive(df, model_features)
264
-
265
- # Predict the features against all the models
266
- for name, model in models.items():
267
- df[name] = model.predict(matched_df[model_features])
268
-
269
- # Use the median prediction as the main prediction
270
- df["prediction"] = df["q_50"]
271
-
272
- # Estimate the standard deviation of the predictions using the interquartile range
273
- df["prediction_std"] = (df["q_75"] - df["q_25"]) / 1.35
274
-
275
- # Reorganize the columns so they are in alphabetical order
276
- df = df.reindex(sorted(df.columns), axis=1)
277
-
278
- # All done, return the DataFrame
279
- return df
@@ -1 +0,0 @@
1
- # Note: In general this file should be empty (as the default inference image has all required libraries)
@@ -1 +0,0 @@
1
- dbc.themes.QUARTZ
@@ -1,117 +0,0 @@
1
- h1, h2, h3, h4 {
2
- color: rgb(255, 255, 255); /* We want the text to dark gray */
3
- }
4
- body {
5
- color: rgb(240, 240, 240); /* We want the text to dark gray */
6
- }
7
-
8
- /* Custom CSS to style bold text */
9
- b, strong {
10
- color: rgb(220, 140, 240); /* Replace with your desired RGB color */
11
- }
12
-
13
- /* Links in Quartz are pink and hard to see */
14
- /* Default link color */
15
- a {
16
- color: rgb(80, 80, 240); /* Change to your preferred color */
17
- }
18
-
19
- /* Reduce spacing around lists */
20
- p {
21
- margin-bottom: 0 !important;
22
- }
23
- ul, ol {
24
- margin-top: 0 !important;
25
- margin-bottom: 0.25em !important;
26
- }
27
-
28
- /* Hover effect */
29
- a:hover {
30
- color: rgb(100, 100, 255); /* Change hover color */
31
- }
32
-
33
- /* AgGrid custom CSS */
34
-
35
- /* There's a one pixel border around the grid that we want to remove */
36
- .ag-root-wrapper {
37
- border: none !important; /* Force removal with !important */
38
- }
39
-
40
-
41
- /* Box shadow and rounded corners for all AgGrid themes */
42
- [class*="ag-theme-"] {
43
- box-shadow: 2px 2px 6px 5px rgba(0, 0, 0, 0.25);
44
- border-radius: 12px; /* Rounded corners */
45
- border: 0.5px solid rgba(0, 0, 0, 0.5);
46
- margin: 0;
47
- padding: 0;
48
- }
49
-
50
- /* Apply styling to Workbench containers */
51
- .workbench-container {
52
- box-shadow: 2px 2px 6px 5px rgba(0, 0, 0, 0.2);
53
- border-radius: 12px; /* Rounded corners */
54
- background-color: rgb(104, 109, 195) /* Light Purple */
55
- }
56
-
57
- /* Apply styling to custom tooltips */
58
- .custom-tooltip {
59
- box-shadow: 2px 2px 6px 5px rgba(0, 0, 0, 0.25);
60
- border-radius: 25px; /* Rounded corners */
61
- overflow: hidden; /* Ensure contents fit inside the rounded corners */
62
- border: 1px solid rgba(40, 40, 40, 1); /* 1-pixel grey */
63
- }
64
-
65
- /* Some of the HTML/Markdown will use color hints like 'green-text' or 'blue-text' */
66
- .green-text {
67
- color: rgb(140, 255, 140);
68
- }
69
-
70
- .blue-text {
71
- color: rgb(170, 170, 255);
72
- }
73
-
74
- .pink-text {
75
- color: rgb(240, 140, 240);
76
- }
77
-
78
- .red-text {
79
- color: rgb(255, 140, 140);
80
- }
81
-
82
- .orange-text {
83
- color: rgb(255, 195, 140);
84
- }
85
-
86
- .alert {
87
- color: rgb(200, 60, 100);
88
- }
89
-
90
- .warning {
91
- color: rgb(200, 140, 90);
92
- }
93
-
94
- .good {
95
- color: rgb(40, 100, 40);
96
- }
97
-
98
-
99
- /* Table styling */
100
- table {
101
- width: 100%;
102
- }
103
-
104
- th {
105
- padding: 10px;
106
- border: 1px solid #444;
107
- background-color: rgb(40, 40, 40);
108
- color: rgb(160, 120, 240);
109
- font-weight: bold;
110
- text-align: center !important;
111
- }
112
-
113
- td {
114
- padding: 5px;
115
- border: 0.5px solid #444;
116
- text-align: center !important;
117
- }