workbench 0.8.174__py3-none-any.whl → 0.8.227__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of workbench might be problematic. Click here for more details.
- workbench/__init__.py +1 -0
- workbench/algorithms/dataframe/__init__.py +1 -2
- workbench/algorithms/dataframe/compound_dataset_overlap.py +321 -0
- workbench/algorithms/dataframe/feature_space_proximity.py +168 -75
- workbench/algorithms/dataframe/fingerprint_proximity.py +422 -86
- workbench/algorithms/dataframe/projection_2d.py +44 -21
- workbench/algorithms/dataframe/proximity.py +259 -305
- workbench/algorithms/graph/light/proximity_graph.py +12 -11
- workbench/algorithms/models/cleanlab_model.py +382 -0
- workbench/algorithms/models/noise_model.py +388 -0
- workbench/algorithms/sql/column_stats.py +0 -1
- workbench/algorithms/sql/correlations.py +0 -1
- workbench/algorithms/sql/descriptive_stats.py +0 -1
- workbench/algorithms/sql/outliers.py +3 -3
- workbench/api/__init__.py +5 -1
- workbench/api/df_store.py +17 -108
- workbench/api/endpoint.py +14 -12
- workbench/api/feature_set.py +117 -11
- workbench/api/meta.py +0 -1
- workbench/api/meta_model.py +289 -0
- workbench/api/model.py +52 -21
- workbench/api/parameter_store.py +3 -52
- workbench/cached/cached_meta.py +0 -1
- workbench/cached/cached_model.py +49 -11
- workbench/core/artifacts/__init__.py +11 -2
- workbench/core/artifacts/artifact.py +7 -7
- workbench/core/artifacts/data_capture_core.py +8 -1
- workbench/core/artifacts/df_store_core.py +114 -0
- workbench/core/artifacts/endpoint_core.py +323 -205
- workbench/core/artifacts/feature_set_core.py +249 -45
- workbench/core/artifacts/model_core.py +133 -101
- workbench/core/artifacts/parameter_store_core.py +98 -0
- workbench/core/cloud_platform/aws/aws_account_clamp.py +48 -2
- workbench/core/cloud_platform/cloud_meta.py +0 -1
- workbench/core/pipelines/pipeline_executor.py +1 -1
- workbench/core/transforms/features_to_model/features_to_model.py +60 -44
- workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +43 -10
- workbench/core/transforms/pandas_transforms/pandas_to_features.py +38 -2
- workbench/core/views/training_view.py +113 -42
- workbench/core/views/view.py +53 -3
- workbench/core/views/view_utils.py +4 -4
- workbench/model_script_utils/model_script_utils.py +339 -0
- workbench/model_script_utils/pytorch_utils.py +405 -0
- workbench/model_script_utils/uq_harness.py +277 -0
- workbench/model_scripts/chemprop/chemprop.template +774 -0
- workbench/model_scripts/chemprop/generated_model_script.py +774 -0
- workbench/model_scripts/chemprop/model_script_utils.py +339 -0
- workbench/model_scripts/chemprop/requirements.txt +3 -0
- workbench/model_scripts/custom_models/chem_info/fingerprints.py +175 -0
- workbench/model_scripts/custom_models/chem_info/mol_descriptors.py +18 -7
- workbench/model_scripts/custom_models/chem_info/mol_standardize.py +80 -58
- workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py +0 -1
- workbench/model_scripts/custom_models/chem_info/morgan_fingerprints.py +1 -2
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.py +194 -0
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +8 -10
- workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template +7 -8
- workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template +20 -21
- workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py +194 -0
- workbench/model_scripts/custom_models/uq_models/gaussian_process.template +5 -11
- workbench/model_scripts/custom_models/uq_models/ngboost.template +15 -16
- workbench/model_scripts/ensemble_xgb/ensemble_xgb.template +15 -17
- workbench/model_scripts/meta_model/generated_model_script.py +209 -0
- workbench/model_scripts/meta_model/meta_model.template +209 -0
- workbench/model_scripts/pytorch_model/generated_model_script.py +443 -499
- workbench/model_scripts/pytorch_model/model_script_utils.py +339 -0
- workbench/model_scripts/pytorch_model/pytorch.template +440 -496
- workbench/model_scripts/pytorch_model/pytorch_utils.py +405 -0
- workbench/model_scripts/pytorch_model/requirements.txt +1 -1
- workbench/model_scripts/pytorch_model/uq_harness.py +277 -0
- workbench/model_scripts/scikit_learn/generated_model_script.py +7 -12
- workbench/model_scripts/scikit_learn/scikit_learn.template +4 -9
- workbench/model_scripts/script_generation.py +15 -12
- workbench/model_scripts/uq_models/generated_model_script.py +248 -0
- workbench/model_scripts/xgb_model/generated_model_script.py +371 -403
- workbench/model_scripts/xgb_model/model_script_utils.py +339 -0
- workbench/model_scripts/xgb_model/uq_harness.py +277 -0
- workbench/model_scripts/xgb_model/xgb_model.template +367 -399
- workbench/repl/workbench_shell.py +18 -14
- workbench/resources/open_source_api.key +1 -1
- workbench/scripts/endpoint_test.py +162 -0
- workbench/scripts/lambda_test.py +73 -0
- workbench/scripts/meta_model_sim.py +35 -0
- workbench/scripts/ml_pipeline_sqs.py +122 -6
- workbench/scripts/training_test.py +85 -0
- workbench/themes/dark/custom.css +59 -0
- workbench/themes/dark/plotly.json +5 -5
- workbench/themes/light/custom.css +153 -40
- workbench/themes/light/plotly.json +9 -9
- workbench/themes/midnight_blue/custom.css +59 -0
- workbench/utils/aws_utils.py +0 -1
- workbench/utils/chem_utils/fingerprints.py +87 -46
- workbench/utils/chem_utils/mol_descriptors.py +18 -7
- workbench/utils/chem_utils/mol_standardize.py +80 -58
- workbench/utils/chem_utils/projections.py +16 -6
- workbench/utils/chem_utils/vis.py +25 -27
- workbench/utils/chemprop_utils.py +141 -0
- workbench/utils/config_manager.py +2 -6
- workbench/utils/endpoint_utils.py +5 -7
- workbench/utils/license_manager.py +2 -6
- workbench/utils/markdown_utils.py +57 -0
- workbench/utils/meta_model_simulator.py +499 -0
- workbench/utils/metrics_utils.py +256 -0
- workbench/utils/model_utils.py +274 -87
- workbench/utils/pipeline_utils.py +0 -1
- workbench/utils/plot_utils.py +159 -34
- workbench/utils/pytorch_utils.py +87 -0
- workbench/utils/shap_utils.py +11 -57
- workbench/utils/theme_manager.py +95 -30
- workbench/utils/xgboost_local_crossfold.py +267 -0
- workbench/utils/xgboost_model_utils.py +127 -220
- workbench/web_interface/components/experiments/outlier_plot.py +0 -1
- workbench/web_interface/components/model_plot.py +16 -2
- workbench/web_interface/components/plugin_unit_test.py +5 -3
- workbench/web_interface/components/plugins/ag_table.py +2 -4
- workbench/web_interface/components/plugins/confusion_matrix.py +3 -6
- workbench/web_interface/components/plugins/model_details.py +48 -80
- workbench/web_interface/components/plugins/scatter_plot.py +192 -92
- workbench/web_interface/components/settings_menu.py +184 -0
- workbench/web_interface/page_views/main_page.py +0 -1
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/METADATA +31 -17
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/RECORD +125 -111
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/entry_points.txt +4 -0
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/licenses/LICENSE +1 -1
- workbench/core/cloud_platform/aws/aws_df_store.py +0 -404
- workbench/core/cloud_platform/aws/aws_parameter_store.py +0 -280
- workbench/model_scripts/custom_models/meta_endpoints/example.py +0 -53
- workbench/model_scripts/custom_models/proximity/generated_model_script.py +0 -138
- workbench/model_scripts/custom_models/proximity/proximity.py +0 -384
- workbench/model_scripts/custom_models/uq_models/generated_model_script.py +0 -393
- workbench/model_scripts/custom_models/uq_models/mapie.template +0 -502
- workbench/model_scripts/custom_models/uq_models/meta_uq.template +0 -386
- workbench/model_scripts/custom_models/uq_models/proximity.py +0 -384
- workbench/model_scripts/ensemble_xgb/generated_model_script.py +0 -279
- workbench/model_scripts/quant_regression/quant_regression.template +0 -279
- workbench/model_scripts/quant_regression/requirements.txt +0 -1
- workbench/themes/quartz/base_css.url +0 -1
- workbench/themes/quartz/custom.css +0 -117
- workbench/themes/quartz/plotly.json +0 -642
- workbench/themes/quartz_dark/base_css.url +0 -1
- workbench/themes/quartz_dark/custom.css +0 -131
- workbench/themes/quartz_dark/plotly.json +0 -642
- workbench/utils/fast_inference.py +0 -167
- workbench/utils/resource_utils.py +0 -39
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/WHEEL +0 -0
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,339 @@
|
|
|
1
|
+
"""Shared utility functions for model training scripts (templates).
|
|
2
|
+
|
|
3
|
+
These functions are used across multiple model templates (XGBoost, PyTorch, ChemProp)
|
|
4
|
+
to reduce code duplication and ensure consistent behavior.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
from io import StringIO
|
|
8
|
+
import json
|
|
9
|
+
import numpy as np
|
|
10
|
+
import pandas as pd
|
|
11
|
+
from sklearn.metrics import (
|
|
12
|
+
confusion_matrix,
|
|
13
|
+
mean_absolute_error,
|
|
14
|
+
median_absolute_error,
|
|
15
|
+
precision_recall_fscore_support,
|
|
16
|
+
r2_score,
|
|
17
|
+
root_mean_squared_error,
|
|
18
|
+
)
|
|
19
|
+
from scipy.stats import spearmanr
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def check_dataframe(df: pd.DataFrame, df_name: str) -> None:
|
|
23
|
+
"""Check if the provided dataframe is empty and raise an exception if it is.
|
|
24
|
+
|
|
25
|
+
Args:
|
|
26
|
+
df: DataFrame to check
|
|
27
|
+
df_name: Name of the DataFrame (for error message)
|
|
28
|
+
|
|
29
|
+
Raises:
|
|
30
|
+
ValueError: If the DataFrame is empty
|
|
31
|
+
"""
|
|
32
|
+
if df.empty:
|
|
33
|
+
msg = f"*** The training data {df_name} has 0 rows! ***STOPPING***"
|
|
34
|
+
print(msg)
|
|
35
|
+
raise ValueError(msg)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def expand_proba_column(df: pd.DataFrame, class_labels: list[str]) -> pd.DataFrame:
|
|
39
|
+
"""Expands a column containing a list of probabilities into separate columns.
|
|
40
|
+
|
|
41
|
+
Handles None values for rows where predictions couldn't be made.
|
|
42
|
+
|
|
43
|
+
Args:
|
|
44
|
+
df: DataFrame containing a "pred_proba" column
|
|
45
|
+
class_labels: List of class labels
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
DataFrame with the "pred_proba" expanded into separate columns (e.g., "class1_proba")
|
|
49
|
+
|
|
50
|
+
Raises:
|
|
51
|
+
ValueError: If DataFrame does not contain a "pred_proba" column
|
|
52
|
+
"""
|
|
53
|
+
proba_column = "pred_proba"
|
|
54
|
+
if proba_column not in df.columns:
|
|
55
|
+
raise ValueError('DataFrame does not contain a "pred_proba" column')
|
|
56
|
+
|
|
57
|
+
proba_splits = [f"{label}_proba" for label in class_labels]
|
|
58
|
+
n_classes = len(class_labels)
|
|
59
|
+
|
|
60
|
+
# Handle None values by replacing with list of NaNs
|
|
61
|
+
proba_values = []
|
|
62
|
+
for val in df[proba_column]:
|
|
63
|
+
if val is None:
|
|
64
|
+
proba_values.append([np.nan] * n_classes)
|
|
65
|
+
else:
|
|
66
|
+
proba_values.append(val)
|
|
67
|
+
|
|
68
|
+
proba_df = pd.DataFrame(proba_values, columns=proba_splits)
|
|
69
|
+
|
|
70
|
+
# Drop any existing proba columns and reset index for concat
|
|
71
|
+
df = df.drop(columns=[proba_column] + proba_splits, errors="ignore")
|
|
72
|
+
df = df.reset_index(drop=True)
|
|
73
|
+
df = pd.concat([df, proba_df], axis=1)
|
|
74
|
+
return df
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def match_features_case_insensitive(df: pd.DataFrame, model_features: list[str]) -> pd.DataFrame:
|
|
78
|
+
"""Matches and renames DataFrame columns to match model feature names (case-insensitive).
|
|
79
|
+
|
|
80
|
+
Prioritizes exact matches, then case-insensitive matches.
|
|
81
|
+
|
|
82
|
+
Args:
|
|
83
|
+
df: Input DataFrame
|
|
84
|
+
model_features: List of feature names expected by the model
|
|
85
|
+
|
|
86
|
+
Returns:
|
|
87
|
+
DataFrame with columns renamed to match model features
|
|
88
|
+
|
|
89
|
+
Raises:
|
|
90
|
+
ValueError: If any model features cannot be matched
|
|
91
|
+
"""
|
|
92
|
+
df_columns_lower = {col.lower(): col for col in df.columns}
|
|
93
|
+
rename_dict = {}
|
|
94
|
+
missing = []
|
|
95
|
+
for feature in model_features:
|
|
96
|
+
if feature in df.columns:
|
|
97
|
+
continue # Exact match
|
|
98
|
+
elif feature.lower() in df_columns_lower:
|
|
99
|
+
rename_dict[df_columns_lower[feature.lower()]] = feature
|
|
100
|
+
else:
|
|
101
|
+
missing.append(feature)
|
|
102
|
+
|
|
103
|
+
if missing:
|
|
104
|
+
raise ValueError(f"Features not found: {missing}")
|
|
105
|
+
|
|
106
|
+
return df.rename(columns=rename_dict)
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
def convert_categorical_types(
|
|
110
|
+
df: pd.DataFrame, features: list[str], category_mappings: dict[str, list[str]] | None = None
|
|
111
|
+
) -> tuple[pd.DataFrame, dict[str, list[str]]]:
|
|
112
|
+
"""Converts appropriate columns to categorical type with consistent mappings.
|
|
113
|
+
|
|
114
|
+
In training mode (category_mappings is None or empty), detects object/string columns
|
|
115
|
+
with <20 unique values and converts them to categorical.
|
|
116
|
+
In inference mode (category_mappings provided), applies the stored mappings.
|
|
117
|
+
|
|
118
|
+
Args:
|
|
119
|
+
df: The DataFrame to process
|
|
120
|
+
features: List of feature names to consider for conversion
|
|
121
|
+
category_mappings: Existing category mappings. If None or empty, training mode.
|
|
122
|
+
If populated, inference mode.
|
|
123
|
+
|
|
124
|
+
Returns:
|
|
125
|
+
Tuple of (processed DataFrame, category mappings dictionary)
|
|
126
|
+
"""
|
|
127
|
+
if category_mappings is None:
|
|
128
|
+
category_mappings = {}
|
|
129
|
+
|
|
130
|
+
# Training mode
|
|
131
|
+
if not category_mappings:
|
|
132
|
+
for col in df.select_dtypes(include=["object", "string"]):
|
|
133
|
+
if col in features and df[col].nunique() < 20:
|
|
134
|
+
print(f"Training mode: Converting {col} to category")
|
|
135
|
+
df[col] = df[col].astype("category")
|
|
136
|
+
category_mappings[col] = df[col].cat.categories.tolist()
|
|
137
|
+
|
|
138
|
+
# Inference mode
|
|
139
|
+
else:
|
|
140
|
+
for col, categories in category_mappings.items():
|
|
141
|
+
if col in df.columns:
|
|
142
|
+
print(f"Inference mode: Applying categorical mapping for {col}")
|
|
143
|
+
df[col] = pd.Categorical(df[col], categories=categories)
|
|
144
|
+
|
|
145
|
+
return df, category_mappings
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
def decompress_features(
|
|
149
|
+
df: pd.DataFrame, features: list[str], compressed_features: list[str]
|
|
150
|
+
) -> tuple[pd.DataFrame, list[str]]:
|
|
151
|
+
"""Decompress compressed features (bitstrings or count vectors) into individual columns.
|
|
152
|
+
|
|
153
|
+
Supports two formats (auto-detected):
|
|
154
|
+
- Bitstrings: "10110010..." → individual uint8 columns (0 or 1)
|
|
155
|
+
- Count vectors: "0,3,0,1,5,..." → individual uint8 columns (0-255)
|
|
156
|
+
|
|
157
|
+
Args:
|
|
158
|
+
df: The features DataFrame
|
|
159
|
+
features: Full list of feature names
|
|
160
|
+
compressed_features: List of feature names to decompress
|
|
161
|
+
|
|
162
|
+
Returns:
|
|
163
|
+
Tuple of (DataFrame with decompressed features, updated feature list)
|
|
164
|
+
"""
|
|
165
|
+
# Check for any missing values in the required features
|
|
166
|
+
missing_counts = df[features].isna().sum()
|
|
167
|
+
if missing_counts.any():
|
|
168
|
+
missing_features = missing_counts[missing_counts > 0]
|
|
169
|
+
print(
|
|
170
|
+
f"WARNING: Found missing values in features: {missing_features.to_dict()}. "
|
|
171
|
+
"WARNING: You might want to remove/replace all NaN values before processing."
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
# Make a copy to avoid mutating the original list
|
|
175
|
+
decompressed_features = features.copy()
|
|
176
|
+
|
|
177
|
+
for feature in compressed_features:
|
|
178
|
+
if (feature not in df.columns) or (feature not in decompressed_features):
|
|
179
|
+
print(f"Feature '{feature}' not in the features list, skipping decompression.")
|
|
180
|
+
continue
|
|
181
|
+
|
|
182
|
+
# Remove the feature from the list to avoid duplication
|
|
183
|
+
decompressed_features.remove(feature)
|
|
184
|
+
|
|
185
|
+
# Auto-detect format and parse: comma-separated counts or bitstring
|
|
186
|
+
sample = str(df[feature].dropna().iloc[0]) if not df[feature].dropna().empty else ""
|
|
187
|
+
parse_fn = (lambda s: list(map(int, s.split(",")))) if "," in sample else list
|
|
188
|
+
feature_matrix = np.array([parse_fn(s) for s in df[feature]], dtype=np.uint8)
|
|
189
|
+
|
|
190
|
+
# Create new columns with prefix from feature name
|
|
191
|
+
prefix = feature[:3]
|
|
192
|
+
new_col_names = [f"{prefix}_{i}" for i in range(feature_matrix.shape[1])]
|
|
193
|
+
new_df = pd.DataFrame(feature_matrix, columns=new_col_names, index=df.index)
|
|
194
|
+
|
|
195
|
+
# Update features list and dataframe
|
|
196
|
+
decompressed_features.extend(new_col_names)
|
|
197
|
+
df = df.drop(columns=[feature])
|
|
198
|
+
df = pd.concat([df, new_df], axis=1)
|
|
199
|
+
|
|
200
|
+
return df, decompressed_features
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
def input_fn(input_data, content_type: str) -> pd.DataFrame:
|
|
204
|
+
"""Parse input data and return a DataFrame.
|
|
205
|
+
|
|
206
|
+
Args:
|
|
207
|
+
input_data: Raw input data (bytes or string)
|
|
208
|
+
content_type: MIME type of the input data
|
|
209
|
+
|
|
210
|
+
Returns:
|
|
211
|
+
Parsed DataFrame
|
|
212
|
+
|
|
213
|
+
Raises:
|
|
214
|
+
ValueError: If input is empty or content_type is not supported
|
|
215
|
+
"""
|
|
216
|
+
if not input_data:
|
|
217
|
+
raise ValueError("Empty input data is not supported!")
|
|
218
|
+
|
|
219
|
+
if isinstance(input_data, bytes):
|
|
220
|
+
input_data = input_data.decode("utf-8")
|
|
221
|
+
|
|
222
|
+
if "text/csv" in content_type:
|
|
223
|
+
return pd.read_csv(StringIO(input_data))
|
|
224
|
+
elif "application/json" in content_type:
|
|
225
|
+
return pd.DataFrame(json.loads(input_data))
|
|
226
|
+
else:
|
|
227
|
+
raise ValueError(f"{content_type} not supported!")
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
def output_fn(output_df: pd.DataFrame, accept_type: str) -> tuple[str, str]:
|
|
231
|
+
"""Convert output DataFrame to requested format.
|
|
232
|
+
|
|
233
|
+
Args:
|
|
234
|
+
output_df: DataFrame to convert
|
|
235
|
+
accept_type: Requested MIME type
|
|
236
|
+
|
|
237
|
+
Returns:
|
|
238
|
+
Tuple of (formatted output string, MIME type)
|
|
239
|
+
|
|
240
|
+
Raises:
|
|
241
|
+
RuntimeError: If accept_type is not supported
|
|
242
|
+
"""
|
|
243
|
+
if "text/csv" in accept_type:
|
|
244
|
+
csv_output = output_df.fillna("N/A").to_csv(index=False)
|
|
245
|
+
return csv_output, "text/csv"
|
|
246
|
+
elif "application/json" in accept_type:
|
|
247
|
+
return output_df.to_json(orient="records"), "application/json"
|
|
248
|
+
else:
|
|
249
|
+
raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
def compute_regression_metrics(y_true: np.ndarray, y_pred: np.ndarray) -> dict[str, float]:
|
|
253
|
+
"""Compute standard regression metrics.
|
|
254
|
+
|
|
255
|
+
Args:
|
|
256
|
+
y_true: Ground truth target values
|
|
257
|
+
y_pred: Predicted values
|
|
258
|
+
|
|
259
|
+
Returns:
|
|
260
|
+
Dictionary with keys: rmse, mae, medae, r2, spearmanr, support
|
|
261
|
+
"""
|
|
262
|
+
return {
|
|
263
|
+
"rmse": root_mean_squared_error(y_true, y_pred),
|
|
264
|
+
"mae": mean_absolute_error(y_true, y_pred),
|
|
265
|
+
"medae": median_absolute_error(y_true, y_pred),
|
|
266
|
+
"r2": r2_score(y_true, y_pred),
|
|
267
|
+
"spearmanr": spearmanr(y_true, y_pred).correlation,
|
|
268
|
+
"support": len(y_true),
|
|
269
|
+
}
|
|
270
|
+
|
|
271
|
+
|
|
272
|
+
def print_regression_metrics(metrics: dict[str, float]) -> None:
|
|
273
|
+
"""Print regression metrics in the format expected by SageMaker metric definitions.
|
|
274
|
+
|
|
275
|
+
Args:
|
|
276
|
+
metrics: Dictionary of metric name -> value
|
|
277
|
+
"""
|
|
278
|
+
print(f"rmse: {metrics['rmse']:.3f}")
|
|
279
|
+
print(f"mae: {metrics['mae']:.3f}")
|
|
280
|
+
print(f"medae: {metrics['medae']:.3f}")
|
|
281
|
+
print(f"r2: {metrics['r2']:.3f}")
|
|
282
|
+
print(f"spearmanr: {metrics['spearmanr']:.3f}")
|
|
283
|
+
print(f"support: {metrics['support']}")
|
|
284
|
+
|
|
285
|
+
|
|
286
|
+
def compute_classification_metrics(
|
|
287
|
+
y_true: np.ndarray, y_pred: np.ndarray, label_names: list[str], target_col: str
|
|
288
|
+
) -> pd.DataFrame:
|
|
289
|
+
"""Compute per-class classification metrics.
|
|
290
|
+
|
|
291
|
+
Args:
|
|
292
|
+
y_true: Ground truth labels
|
|
293
|
+
y_pred: Predicted labels
|
|
294
|
+
label_names: List of class label names
|
|
295
|
+
target_col: Name of the target column (for DataFrame output)
|
|
296
|
+
|
|
297
|
+
Returns:
|
|
298
|
+
DataFrame with columns: target_col, precision, recall, f1, support
|
|
299
|
+
"""
|
|
300
|
+
scores = precision_recall_fscore_support(y_true, y_pred, average=None, labels=label_names)
|
|
301
|
+
return pd.DataFrame(
|
|
302
|
+
{
|
|
303
|
+
target_col: label_names,
|
|
304
|
+
"precision": scores[0],
|
|
305
|
+
"recall": scores[1],
|
|
306
|
+
"f1": scores[2],
|
|
307
|
+
"support": scores[3],
|
|
308
|
+
}
|
|
309
|
+
)
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
def print_classification_metrics(score_df: pd.DataFrame, target_col: str, label_names: list[str]) -> None:
|
|
313
|
+
"""Print per-class classification metrics in the format expected by SageMaker.
|
|
314
|
+
|
|
315
|
+
Args:
|
|
316
|
+
score_df: DataFrame from compute_classification_metrics
|
|
317
|
+
target_col: Name of the target column
|
|
318
|
+
label_names: List of class label names
|
|
319
|
+
"""
|
|
320
|
+
metrics = ["precision", "recall", "f1", "support"]
|
|
321
|
+
for t in label_names:
|
|
322
|
+
for m in metrics:
|
|
323
|
+
value = score_df.loc[score_df[target_col] == t, m].iloc[0]
|
|
324
|
+
print(f"Metrics:{t}:{m} {value}")
|
|
325
|
+
|
|
326
|
+
|
|
327
|
+
def print_confusion_matrix(y_true: np.ndarray, y_pred: np.ndarray, label_names: list[str]) -> None:
|
|
328
|
+
"""Print confusion matrix in the format expected by SageMaker.
|
|
329
|
+
|
|
330
|
+
Args:
|
|
331
|
+
y_true: Ground truth labels
|
|
332
|
+
y_pred: Predicted labels
|
|
333
|
+
label_names: List of class label names
|
|
334
|
+
"""
|
|
335
|
+
conf_mtx = confusion_matrix(y_true, y_pred, labels=label_names)
|
|
336
|
+
for i, row_name in enumerate(label_names):
|
|
337
|
+
for j, col_name in enumerate(label_names):
|
|
338
|
+
value = conf_mtx[i, j]
|
|
339
|
+
print(f"ConfusionMatrix:{row_name}:{col_name} {value}")
|
|
@@ -0,0 +1,277 @@
|
|
|
1
|
+
"""UQ Harness: Uncertainty Quantification using MAPIE Conformalized Quantile Regression.
|
|
2
|
+
|
|
3
|
+
This module provides a reusable UQ harness that can wrap any point predictor model
|
|
4
|
+
(XGBoost, PyTorch, ChemProp, etc.) to provide calibrated prediction intervals.
|
|
5
|
+
|
|
6
|
+
Usage:
|
|
7
|
+
# Training
|
|
8
|
+
uq_models, uq_metadata = train_uq_models(X_train, y_train, X_val, y_val)
|
|
9
|
+
save_uq_models(uq_models, uq_metadata, model_dir)
|
|
10
|
+
|
|
11
|
+
# Inference
|
|
12
|
+
uq_models, uq_metadata = load_uq_models(model_dir)
|
|
13
|
+
df = predict_intervals(df, X, uq_models, uq_metadata)
|
|
14
|
+
df = compute_confidence(df, uq_metadata["median_interval_width"])
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
import json
|
|
18
|
+
import os
|
|
19
|
+
import numpy as np
|
|
20
|
+
import pandas as pd
|
|
21
|
+
import joblib
|
|
22
|
+
from lightgbm import LGBMRegressor
|
|
23
|
+
from mapie.regression import ConformalizedQuantileRegressor
|
|
24
|
+
|
|
25
|
+
# Default confidence levels for prediction intervals
|
|
26
|
+
DEFAULT_CONFIDENCE_LEVELS = [0.50, 0.68, 0.80, 0.90, 0.95]
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def train_uq_models(
|
|
30
|
+
X_train: pd.DataFrame | np.ndarray,
|
|
31
|
+
y_train: pd.Series | np.ndarray,
|
|
32
|
+
X_val: pd.DataFrame | np.ndarray,
|
|
33
|
+
y_val: pd.Series | np.ndarray,
|
|
34
|
+
confidence_levels: list[float] | None = None,
|
|
35
|
+
) -> tuple[dict, dict]:
|
|
36
|
+
"""Train MAPIE UQ models for multiple confidence levels.
|
|
37
|
+
|
|
38
|
+
Args:
|
|
39
|
+
X_train: Training features
|
|
40
|
+
y_train: Training targets
|
|
41
|
+
X_val: Validation features for conformalization
|
|
42
|
+
y_val: Validation targets for conformalization
|
|
43
|
+
confidence_levels: List of confidence levels (default: [0.50, 0.68, 0.80, 0.90, 0.95])
|
|
44
|
+
|
|
45
|
+
Returns:
|
|
46
|
+
Tuple of (uq_models dict, uq_metadata dict)
|
|
47
|
+
"""
|
|
48
|
+
if confidence_levels is None:
|
|
49
|
+
confidence_levels = DEFAULT_CONFIDENCE_LEVELS
|
|
50
|
+
|
|
51
|
+
mapie_models = {}
|
|
52
|
+
|
|
53
|
+
for confidence_level in confidence_levels:
|
|
54
|
+
alpha = 1 - confidence_level
|
|
55
|
+
lower_q = alpha / 2
|
|
56
|
+
upper_q = 1 - alpha / 2
|
|
57
|
+
|
|
58
|
+
print(f"\nTraining quantile models for {confidence_level * 100:.0f}% confidence interval...")
|
|
59
|
+
print(f" Quantiles: {lower_q:.3f}, {upper_q:.3f}, 0.500")
|
|
60
|
+
|
|
61
|
+
# Train three LightGBM quantile models for this confidence level
|
|
62
|
+
quantile_estimators = []
|
|
63
|
+
for q in [lower_q, upper_q, 0.5]:
|
|
64
|
+
print(f" Training model for quantile {q:.3f}...")
|
|
65
|
+
est = LGBMRegressor(
|
|
66
|
+
objective="quantile",
|
|
67
|
+
alpha=q,
|
|
68
|
+
n_estimators=1000,
|
|
69
|
+
max_depth=6,
|
|
70
|
+
learning_rate=0.01,
|
|
71
|
+
num_leaves=31,
|
|
72
|
+
min_child_samples=20,
|
|
73
|
+
subsample=0.8,
|
|
74
|
+
colsample_bytree=0.8,
|
|
75
|
+
random_state=42,
|
|
76
|
+
verbose=-1,
|
|
77
|
+
force_col_wise=True,
|
|
78
|
+
)
|
|
79
|
+
est.fit(X_train, y_train)
|
|
80
|
+
quantile_estimators.append(est)
|
|
81
|
+
|
|
82
|
+
# Create MAPIE CQR model for this confidence level
|
|
83
|
+
print(f" Setting up MAPIE CQR for {confidence_level * 100:.0f}% confidence...")
|
|
84
|
+
mapie_model = ConformalizedQuantileRegressor(
|
|
85
|
+
quantile_estimators, confidence_level=confidence_level, prefit=True
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
# Conformalize the model with validation data
|
|
89
|
+
print(" Conformalizing with validation data...")
|
|
90
|
+
mapie_model.conformalize(X_val, y_val)
|
|
91
|
+
|
|
92
|
+
# Store the model
|
|
93
|
+
model_name = f"mapie_{confidence_level:.2f}"
|
|
94
|
+
mapie_models[model_name] = mapie_model
|
|
95
|
+
|
|
96
|
+
# Validate coverage for this confidence level
|
|
97
|
+
y_pred, y_pis = mapie_model.predict_interval(X_val)
|
|
98
|
+
coverage = np.mean((y_val >= y_pis[:, 0, 0]) & (y_val <= y_pis[:, 1, 0]))
|
|
99
|
+
print(f" Coverage: Target={confidence_level * 100:.0f}%, Empirical={coverage * 100:.1f}%")
|
|
100
|
+
|
|
101
|
+
# Compute median interval width for confidence calculation (using 80% CI = q_10 to q_90)
|
|
102
|
+
print("\nComputing normalization statistics for confidence scores...")
|
|
103
|
+
model_80 = mapie_models["mapie_0.80"]
|
|
104
|
+
_, y_pis_80 = model_80.predict_interval(X_val)
|
|
105
|
+
interval_width = np.abs(y_pis_80[:, 1, 0] - y_pis_80[:, 0, 0])
|
|
106
|
+
median_interval_width = float(np.median(interval_width))
|
|
107
|
+
print(f" Median interval width (q_10-q_90): {median_interval_width:.6f}")
|
|
108
|
+
|
|
109
|
+
# Analyze interval widths across confidence levels
|
|
110
|
+
print("\nInterval Width Analysis:")
|
|
111
|
+
for conf_level in confidence_levels:
|
|
112
|
+
model = mapie_models[f"mapie_{conf_level:.2f}"]
|
|
113
|
+
_, y_pis = model.predict_interval(X_val)
|
|
114
|
+
widths = y_pis[:, 1, 0] - y_pis[:, 0, 0]
|
|
115
|
+
print(f" {conf_level * 100:.0f}% CI: Mean width={np.mean(widths):.3f}, Std={np.std(widths):.3f}")
|
|
116
|
+
|
|
117
|
+
uq_metadata = {
|
|
118
|
+
"confidence_levels": confidence_levels,
|
|
119
|
+
"median_interval_width": median_interval_width,
|
|
120
|
+
}
|
|
121
|
+
|
|
122
|
+
return mapie_models, uq_metadata
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def save_uq_models(uq_models: dict, uq_metadata: dict, model_dir: str) -> None:
|
|
126
|
+
"""Save UQ models and metadata to disk.
|
|
127
|
+
|
|
128
|
+
Args:
|
|
129
|
+
uq_models: Dictionary of MAPIE models keyed by name (e.g., "mapie_0.80")
|
|
130
|
+
uq_metadata: Dictionary with confidence_levels and median_interval_width
|
|
131
|
+
model_dir: Directory to save models
|
|
132
|
+
"""
|
|
133
|
+
# Save each MAPIE model
|
|
134
|
+
for model_name, model in uq_models.items():
|
|
135
|
+
joblib.dump(model, os.path.join(model_dir, f"{model_name}.joblib"))
|
|
136
|
+
|
|
137
|
+
# Save median interval width
|
|
138
|
+
with open(os.path.join(model_dir, "median_interval_width.json"), "w") as fp:
|
|
139
|
+
json.dump(uq_metadata["median_interval_width"], fp)
|
|
140
|
+
|
|
141
|
+
# Save UQ metadata
|
|
142
|
+
with open(os.path.join(model_dir, "uq_metadata.json"), "w") as fp:
|
|
143
|
+
json.dump(uq_metadata, fp, indent=2)
|
|
144
|
+
|
|
145
|
+
print(f"Saved {len(uq_models)} UQ models to {model_dir}")
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
def load_uq_models(model_dir: str) -> tuple[dict, dict]:
|
|
149
|
+
"""Load UQ models and metadata from disk.
|
|
150
|
+
|
|
151
|
+
Args:
|
|
152
|
+
model_dir: Directory containing saved models
|
|
153
|
+
|
|
154
|
+
Returns:
|
|
155
|
+
Tuple of (uq_models dict, uq_metadata dict)
|
|
156
|
+
"""
|
|
157
|
+
# Load UQ metadata
|
|
158
|
+
uq_metadata_path = os.path.join(model_dir, "uq_metadata.json")
|
|
159
|
+
if os.path.exists(uq_metadata_path):
|
|
160
|
+
with open(uq_metadata_path) as fp:
|
|
161
|
+
uq_metadata = json.load(fp)
|
|
162
|
+
else:
|
|
163
|
+
# Fallback for older models that only have median_interval_width.json
|
|
164
|
+
uq_metadata = {"confidence_levels": DEFAULT_CONFIDENCE_LEVELS}
|
|
165
|
+
median_width_path = os.path.join(model_dir, "median_interval_width.json")
|
|
166
|
+
if os.path.exists(median_width_path):
|
|
167
|
+
with open(median_width_path) as fp:
|
|
168
|
+
uq_metadata["median_interval_width"] = json.load(fp)
|
|
169
|
+
|
|
170
|
+
# Load all MAPIE models
|
|
171
|
+
uq_models = {}
|
|
172
|
+
for conf_level in uq_metadata["confidence_levels"]:
|
|
173
|
+
model_name = f"mapie_{conf_level:.2f}"
|
|
174
|
+
model_path = os.path.join(model_dir, f"{model_name}.joblib")
|
|
175
|
+
if os.path.exists(model_path):
|
|
176
|
+
uq_models[model_name] = joblib.load(model_path)
|
|
177
|
+
|
|
178
|
+
return uq_models, uq_metadata
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
def predict_intervals(
|
|
182
|
+
df: pd.DataFrame,
|
|
183
|
+
X: pd.DataFrame | np.ndarray,
|
|
184
|
+
uq_models: dict,
|
|
185
|
+
uq_metadata: dict,
|
|
186
|
+
) -> pd.DataFrame:
|
|
187
|
+
"""Add prediction intervals to a DataFrame.
|
|
188
|
+
|
|
189
|
+
Args:
|
|
190
|
+
df: DataFrame to add interval columns to
|
|
191
|
+
X: Features for prediction (must match training features)
|
|
192
|
+
uq_models: Dictionary of MAPIE models
|
|
193
|
+
uq_metadata: Dictionary with confidence_levels
|
|
194
|
+
|
|
195
|
+
Returns:
|
|
196
|
+
DataFrame with added quantile columns (q_025, q_05, ..., q_975)
|
|
197
|
+
"""
|
|
198
|
+
confidence_levels = uq_metadata["confidence_levels"]
|
|
199
|
+
|
|
200
|
+
for conf_level in confidence_levels:
|
|
201
|
+
model_name = f"mapie_{conf_level:.2f}"
|
|
202
|
+
model = uq_models[model_name]
|
|
203
|
+
|
|
204
|
+
# Get conformalized predictions
|
|
205
|
+
y_pred, y_pis = model.predict_interval(X)
|
|
206
|
+
|
|
207
|
+
# Map confidence levels to quantile column names
|
|
208
|
+
if conf_level == 0.50: # 50% CI
|
|
209
|
+
df["q_25"] = y_pis[:, 0, 0]
|
|
210
|
+
df["q_75"] = y_pis[:, 1, 0]
|
|
211
|
+
df["q_50"] = y_pred # Median prediction
|
|
212
|
+
elif conf_level == 0.68: # 68% CI (~1 std)
|
|
213
|
+
df["q_16"] = y_pis[:, 0, 0]
|
|
214
|
+
df["q_84"] = y_pis[:, 1, 0]
|
|
215
|
+
elif conf_level == 0.80: # 80% CI
|
|
216
|
+
df["q_10"] = y_pis[:, 0, 0]
|
|
217
|
+
df["q_90"] = y_pis[:, 1, 0]
|
|
218
|
+
elif conf_level == 0.90: # 90% CI
|
|
219
|
+
df["q_05"] = y_pis[:, 0, 0]
|
|
220
|
+
df["q_95"] = y_pis[:, 1, 0]
|
|
221
|
+
elif conf_level == 0.95: # 95% CI
|
|
222
|
+
df["q_025"] = y_pis[:, 0, 0]
|
|
223
|
+
df["q_975"] = y_pis[:, 1, 0]
|
|
224
|
+
|
|
225
|
+
# Calculate pseudo-standard deviation from the 68% interval width
|
|
226
|
+
if "q_84" in df.columns and "q_16" in df.columns:
|
|
227
|
+
df["prediction_std"] = (df["q_84"] - df["q_16"]).abs() / 2.0
|
|
228
|
+
|
|
229
|
+
# Reorder quantile columns for easier reading
|
|
230
|
+
quantile_cols = ["q_025", "q_05", "q_10", "q_16", "q_25", "q_50", "q_75", "q_84", "q_90", "q_95", "q_975"]
|
|
231
|
+
existing_q_cols = [c for c in quantile_cols if c in df.columns]
|
|
232
|
+
other_cols = [c for c in df.columns if c not in quantile_cols]
|
|
233
|
+
df = df[other_cols + existing_q_cols]
|
|
234
|
+
|
|
235
|
+
return df
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
def compute_confidence(
|
|
239
|
+
df: pd.DataFrame,
|
|
240
|
+
median_interval_width: float,
|
|
241
|
+
lower_q: str = "q_10",
|
|
242
|
+
upper_q: str = "q_90",
|
|
243
|
+
alpha: float = 1.0,
|
|
244
|
+
beta: float = 1.0,
|
|
245
|
+
) -> pd.DataFrame:
|
|
246
|
+
"""Compute confidence scores (0.0 to 1.0) based on prediction interval width.
|
|
247
|
+
|
|
248
|
+
Uses exponential decay based on:
|
|
249
|
+
1. Interval width relative to median (alpha weight)
|
|
250
|
+
2. Distance from median prediction (beta weight)
|
|
251
|
+
|
|
252
|
+
Args:
|
|
253
|
+
df: DataFrame with 'prediction', 'q_50', and quantile columns
|
|
254
|
+
median_interval_width: Pre-computed median interval width from training data
|
|
255
|
+
lower_q: Lower quantile column name (default: 'q_10')
|
|
256
|
+
upper_q: Upper quantile column name (default: 'q_90')
|
|
257
|
+
alpha: Weight for interval width term (default: 1.0)
|
|
258
|
+
beta: Weight for distance from median term (default: 1.0)
|
|
259
|
+
|
|
260
|
+
Returns:
|
|
261
|
+
DataFrame with added 'confidence' column
|
|
262
|
+
"""
|
|
263
|
+
# Interval width
|
|
264
|
+
interval_width = (df[upper_q] - df[lower_q]).abs()
|
|
265
|
+
|
|
266
|
+
# Distance from median, normalized by interval width
|
|
267
|
+
distance_from_median = (df["prediction"] - df["q_50"]).abs()
|
|
268
|
+
normalized_distance = distance_from_median / (interval_width + 1e-6)
|
|
269
|
+
|
|
270
|
+
# Cap the distance penalty at 1.0
|
|
271
|
+
normalized_distance = np.minimum(normalized_distance, 1.0)
|
|
272
|
+
|
|
273
|
+
# Confidence using exponential decay
|
|
274
|
+
interval_term = interval_width / median_interval_width
|
|
275
|
+
df["confidence"] = np.exp(-(alpha * interval_term + beta * normalized_distance))
|
|
276
|
+
|
|
277
|
+
return df
|