workbench 0.8.174__py3-none-any.whl → 0.8.227__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of workbench might be problematic. Click here for more details.

Files changed (145) hide show
  1. workbench/__init__.py +1 -0
  2. workbench/algorithms/dataframe/__init__.py +1 -2
  3. workbench/algorithms/dataframe/compound_dataset_overlap.py +321 -0
  4. workbench/algorithms/dataframe/feature_space_proximity.py +168 -75
  5. workbench/algorithms/dataframe/fingerprint_proximity.py +422 -86
  6. workbench/algorithms/dataframe/projection_2d.py +44 -21
  7. workbench/algorithms/dataframe/proximity.py +259 -305
  8. workbench/algorithms/graph/light/proximity_graph.py +12 -11
  9. workbench/algorithms/models/cleanlab_model.py +382 -0
  10. workbench/algorithms/models/noise_model.py +388 -0
  11. workbench/algorithms/sql/column_stats.py +0 -1
  12. workbench/algorithms/sql/correlations.py +0 -1
  13. workbench/algorithms/sql/descriptive_stats.py +0 -1
  14. workbench/algorithms/sql/outliers.py +3 -3
  15. workbench/api/__init__.py +5 -1
  16. workbench/api/df_store.py +17 -108
  17. workbench/api/endpoint.py +14 -12
  18. workbench/api/feature_set.py +117 -11
  19. workbench/api/meta.py +0 -1
  20. workbench/api/meta_model.py +289 -0
  21. workbench/api/model.py +52 -21
  22. workbench/api/parameter_store.py +3 -52
  23. workbench/cached/cached_meta.py +0 -1
  24. workbench/cached/cached_model.py +49 -11
  25. workbench/core/artifacts/__init__.py +11 -2
  26. workbench/core/artifacts/artifact.py +7 -7
  27. workbench/core/artifacts/data_capture_core.py +8 -1
  28. workbench/core/artifacts/df_store_core.py +114 -0
  29. workbench/core/artifacts/endpoint_core.py +323 -205
  30. workbench/core/artifacts/feature_set_core.py +249 -45
  31. workbench/core/artifacts/model_core.py +133 -101
  32. workbench/core/artifacts/parameter_store_core.py +98 -0
  33. workbench/core/cloud_platform/aws/aws_account_clamp.py +48 -2
  34. workbench/core/cloud_platform/cloud_meta.py +0 -1
  35. workbench/core/pipelines/pipeline_executor.py +1 -1
  36. workbench/core/transforms/features_to_model/features_to_model.py +60 -44
  37. workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +43 -10
  38. workbench/core/transforms/pandas_transforms/pandas_to_features.py +38 -2
  39. workbench/core/views/training_view.py +113 -42
  40. workbench/core/views/view.py +53 -3
  41. workbench/core/views/view_utils.py +4 -4
  42. workbench/model_script_utils/model_script_utils.py +339 -0
  43. workbench/model_script_utils/pytorch_utils.py +405 -0
  44. workbench/model_script_utils/uq_harness.py +277 -0
  45. workbench/model_scripts/chemprop/chemprop.template +774 -0
  46. workbench/model_scripts/chemprop/generated_model_script.py +774 -0
  47. workbench/model_scripts/chemprop/model_script_utils.py +339 -0
  48. workbench/model_scripts/chemprop/requirements.txt +3 -0
  49. workbench/model_scripts/custom_models/chem_info/fingerprints.py +175 -0
  50. workbench/model_scripts/custom_models/chem_info/mol_descriptors.py +18 -7
  51. workbench/model_scripts/custom_models/chem_info/mol_standardize.py +80 -58
  52. workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py +0 -1
  53. workbench/model_scripts/custom_models/chem_info/morgan_fingerprints.py +1 -2
  54. workbench/model_scripts/custom_models/proximity/feature_space_proximity.py +194 -0
  55. workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +8 -10
  56. workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template +7 -8
  57. workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template +20 -21
  58. workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py +194 -0
  59. workbench/model_scripts/custom_models/uq_models/gaussian_process.template +5 -11
  60. workbench/model_scripts/custom_models/uq_models/ngboost.template +15 -16
  61. workbench/model_scripts/ensemble_xgb/ensemble_xgb.template +15 -17
  62. workbench/model_scripts/meta_model/generated_model_script.py +209 -0
  63. workbench/model_scripts/meta_model/meta_model.template +209 -0
  64. workbench/model_scripts/pytorch_model/generated_model_script.py +443 -499
  65. workbench/model_scripts/pytorch_model/model_script_utils.py +339 -0
  66. workbench/model_scripts/pytorch_model/pytorch.template +440 -496
  67. workbench/model_scripts/pytorch_model/pytorch_utils.py +405 -0
  68. workbench/model_scripts/pytorch_model/requirements.txt +1 -1
  69. workbench/model_scripts/pytorch_model/uq_harness.py +277 -0
  70. workbench/model_scripts/scikit_learn/generated_model_script.py +7 -12
  71. workbench/model_scripts/scikit_learn/scikit_learn.template +4 -9
  72. workbench/model_scripts/script_generation.py +15 -12
  73. workbench/model_scripts/uq_models/generated_model_script.py +248 -0
  74. workbench/model_scripts/xgb_model/generated_model_script.py +371 -403
  75. workbench/model_scripts/xgb_model/model_script_utils.py +339 -0
  76. workbench/model_scripts/xgb_model/uq_harness.py +277 -0
  77. workbench/model_scripts/xgb_model/xgb_model.template +367 -399
  78. workbench/repl/workbench_shell.py +18 -14
  79. workbench/resources/open_source_api.key +1 -1
  80. workbench/scripts/endpoint_test.py +162 -0
  81. workbench/scripts/lambda_test.py +73 -0
  82. workbench/scripts/meta_model_sim.py +35 -0
  83. workbench/scripts/ml_pipeline_sqs.py +122 -6
  84. workbench/scripts/training_test.py +85 -0
  85. workbench/themes/dark/custom.css +59 -0
  86. workbench/themes/dark/plotly.json +5 -5
  87. workbench/themes/light/custom.css +153 -40
  88. workbench/themes/light/plotly.json +9 -9
  89. workbench/themes/midnight_blue/custom.css +59 -0
  90. workbench/utils/aws_utils.py +0 -1
  91. workbench/utils/chem_utils/fingerprints.py +87 -46
  92. workbench/utils/chem_utils/mol_descriptors.py +18 -7
  93. workbench/utils/chem_utils/mol_standardize.py +80 -58
  94. workbench/utils/chem_utils/projections.py +16 -6
  95. workbench/utils/chem_utils/vis.py +25 -27
  96. workbench/utils/chemprop_utils.py +141 -0
  97. workbench/utils/config_manager.py +2 -6
  98. workbench/utils/endpoint_utils.py +5 -7
  99. workbench/utils/license_manager.py +2 -6
  100. workbench/utils/markdown_utils.py +57 -0
  101. workbench/utils/meta_model_simulator.py +499 -0
  102. workbench/utils/metrics_utils.py +256 -0
  103. workbench/utils/model_utils.py +274 -87
  104. workbench/utils/pipeline_utils.py +0 -1
  105. workbench/utils/plot_utils.py +159 -34
  106. workbench/utils/pytorch_utils.py +87 -0
  107. workbench/utils/shap_utils.py +11 -57
  108. workbench/utils/theme_manager.py +95 -30
  109. workbench/utils/xgboost_local_crossfold.py +267 -0
  110. workbench/utils/xgboost_model_utils.py +127 -220
  111. workbench/web_interface/components/experiments/outlier_plot.py +0 -1
  112. workbench/web_interface/components/model_plot.py +16 -2
  113. workbench/web_interface/components/plugin_unit_test.py +5 -3
  114. workbench/web_interface/components/plugins/ag_table.py +2 -4
  115. workbench/web_interface/components/plugins/confusion_matrix.py +3 -6
  116. workbench/web_interface/components/plugins/model_details.py +48 -80
  117. workbench/web_interface/components/plugins/scatter_plot.py +192 -92
  118. workbench/web_interface/components/settings_menu.py +184 -0
  119. workbench/web_interface/page_views/main_page.py +0 -1
  120. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/METADATA +31 -17
  121. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/RECORD +125 -111
  122. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/entry_points.txt +4 -0
  123. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/licenses/LICENSE +1 -1
  124. workbench/core/cloud_platform/aws/aws_df_store.py +0 -404
  125. workbench/core/cloud_platform/aws/aws_parameter_store.py +0 -280
  126. workbench/model_scripts/custom_models/meta_endpoints/example.py +0 -53
  127. workbench/model_scripts/custom_models/proximity/generated_model_script.py +0 -138
  128. workbench/model_scripts/custom_models/proximity/proximity.py +0 -384
  129. workbench/model_scripts/custom_models/uq_models/generated_model_script.py +0 -393
  130. workbench/model_scripts/custom_models/uq_models/mapie.template +0 -502
  131. workbench/model_scripts/custom_models/uq_models/meta_uq.template +0 -386
  132. workbench/model_scripts/custom_models/uq_models/proximity.py +0 -384
  133. workbench/model_scripts/ensemble_xgb/generated_model_script.py +0 -279
  134. workbench/model_scripts/quant_regression/quant_regression.template +0 -279
  135. workbench/model_scripts/quant_regression/requirements.txt +0 -1
  136. workbench/themes/quartz/base_css.url +0 -1
  137. workbench/themes/quartz/custom.css +0 -117
  138. workbench/themes/quartz/plotly.json +0 -642
  139. workbench/themes/quartz_dark/base_css.url +0 -1
  140. workbench/themes/quartz_dark/custom.css +0 -131
  141. workbench/themes/quartz_dark/plotly.json +0 -642
  142. workbench/utils/fast_inference.py +0 -167
  143. workbench/utils/resource_utils.py +0 -39
  144. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/WHEEL +0 -0
  145. {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/top_level.txt +0 -0
@@ -3,6 +3,7 @@
3
3
  import logging
4
4
  import pandas as pd
5
5
  import numpy as np
6
+ from scipy.stats import spearmanr
6
7
  import importlib.resources
7
8
  from pathlib import Path
8
9
  import os
@@ -92,13 +93,158 @@ def get_custom_script_path(package: str, script_name: str) -> Path:
92
93
  return script_path
93
94
 
94
95
 
95
- def proximity_model(model: "Model", prox_model_name: str, track_columns: list = None) -> "Model":
96
- """Create a proximity model based on the given model
96
+ def proximity_model_local(model: "Model", include_all_columns: bool = False):
97
+ """Create a FeatureSpaceProximity Model for this Model
98
+
99
+ Args:
100
+ model (Model): The Model/FeatureSet used to create the proximity model
101
+ include_all_columns (bool): Include all DataFrame columns in neighbor results (default: False)
102
+
103
+ Returns:
104
+ FeatureSpaceProximity: The proximity model
105
+ """
106
+ from workbench.algorithms.dataframe.feature_space_proximity import FeatureSpaceProximity # noqa: F401
107
+ from workbench.api import Model, FeatureSet # noqa: F401 (avoid circular import)
108
+
109
+ # Get Feature and Target Columns from the existing given Model
110
+ features = model.features()
111
+ target = model.target()
112
+
113
+ # Backtrack our FeatureSet to get the ID column
114
+ fs = FeatureSet(model.get_input())
115
+ id_column = fs.id_column
116
+
117
+ # Create the Proximity Model from both the full FeatureSet and the Model training data
118
+ full_df = fs.pull_dataframe()
119
+ model_df = model.training_view().pull_dataframe()
120
+
121
+ # Mark rows that are in the model
122
+ model_ids = set(model_df[id_column])
123
+ full_df["in_model"] = full_df[id_column].isin(model_ids)
124
+
125
+ # Create and return the FeatureSpaceProximity Model
126
+ return FeatureSpaceProximity(
127
+ full_df, id_column=id_column, features=features, target=target, include_all_columns=include_all_columns
128
+ )
129
+
130
+
131
+ def fingerprint_prox_model_local(
132
+ model: "Model",
133
+ include_all_columns: bool = False,
134
+ radius: int = 2,
135
+ n_bits: int = 1024,
136
+ counts: bool = False,
137
+ ):
138
+ """Create a FingerprintProximity Model for this Model
139
+
140
+ Args:
141
+ model (Model): The Model used to create the fingerprint proximity model
142
+ include_all_columns (bool): Include all DataFrame columns in neighbor results (default: False)
143
+ radius (int): Morgan fingerprint radius (default: 2)
144
+ n_bits (int): Number of bits for the fingerprint (default: 1024)
145
+ counts (bool): Use count fingerprints instead of binary (default: False)
146
+
147
+ Returns:
148
+ FingerprintProximity: The fingerprint proximity model
149
+ """
150
+ from workbench.algorithms.dataframe.fingerprint_proximity import FingerprintProximity # noqa: F401
151
+ from workbench.api import Model, FeatureSet # noqa: F401 (avoid circular import)
152
+
153
+ # Get Target Column from the existing given Model
154
+ target = model.target()
155
+
156
+ # Backtrack our FeatureSet to get the ID column
157
+ fs = FeatureSet(model.get_input())
158
+ id_column = fs.id_column
159
+
160
+ # Create the Proximity Model from both the full FeatureSet and the Model training data
161
+ full_df = fs.pull_dataframe()
162
+ model_df = model.training_view().pull_dataframe()
163
+
164
+ # Mark rows that are in the model
165
+ model_ids = set(model_df[id_column])
166
+ full_df["in_model"] = full_df[id_column].isin(model_ids)
167
+
168
+ # Create and return the FingerprintProximity Model
169
+ return FingerprintProximity(
170
+ full_df,
171
+ id_column=id_column,
172
+ target=target,
173
+ include_all_columns=include_all_columns,
174
+ radius=radius,
175
+ n_bits=n_bits,
176
+ )
177
+
178
+
179
+ def noise_model_local(model: "Model"):
180
+ """Create a NoiseModel for detecting noisy/problematic samples in a Model's training data.
181
+
182
+ Args:
183
+ model (Model): The Model used to create the noise model
184
+
185
+ Returns:
186
+ NoiseModel: The noise model with precomputed noise scores for all samples
187
+ """
188
+ from workbench.algorithms.models.noise_model import NoiseModel # noqa: F401 (avoid circular import)
189
+ from workbench.api import Model, FeatureSet # noqa: F401 (avoid circular import)
190
+
191
+ # Get Feature and Target Columns from the existing given Model
192
+ features = model.features()
193
+ target = model.target()
194
+
195
+ # Backtrack our FeatureSet to get the ID column
196
+ fs = FeatureSet(model.get_input())
197
+ id_column = fs.id_column
198
+
199
+ # Create the NoiseModel from both the full FeatureSet and the Model training data
200
+ full_df = fs.pull_dataframe()
201
+ model_df = model.training_view().pull_dataframe()
202
+
203
+ # Mark rows that are in the model
204
+ model_ids = set(model_df[id_column])
205
+ full_df["in_model"] = full_df[id_column].isin(model_ids)
206
+
207
+ # Create and return the NoiseModel
208
+ return NoiseModel(full_df, id_column, features, target)
209
+
210
+
211
+ def cleanlab_model_local(model: "Model"):
212
+ """Create a CleanlabModels instance for detecting data quality issues in a Model's training data.
213
+
214
+ Args:
215
+ model (Model): The Model used to create the cleanlab models
216
+
217
+ Returns:
218
+ CleanlabModels: Factory providing access to CleanLearning and Datalab models.
219
+ - clean_learning(): CleanLearning model with enhanced get_label_issues()
220
+ - datalab(): Datalab instance with report(), get_issues()
221
+ """
222
+ from workbench.algorithms.models.cleanlab_model import create_cleanlab_model # noqa: F401 (avoid circular import)
223
+ from workbench.api import Model, FeatureSet # noqa: F401 (avoid circular import)
224
+
225
+ # Get Feature and Target Columns from the existing given Model
226
+ features = model.features()
227
+ target = model.target()
228
+ model_type = model.model_type
229
+
230
+ # Backtrack our FeatureSet to get the ID column
231
+ fs = FeatureSet(model.get_input())
232
+ id_column = fs.id_column
233
+
234
+ # Get the full FeatureSet data
235
+ full_df = fs.pull_dataframe()
236
+
237
+ # Create and return the CleanLearning model
238
+ return create_cleanlab_model(full_df, id_column, features, target, model_type=model_type)
239
+
240
+
241
+ def published_proximity_model(model: "Model", prox_model_name: str, include_all_columns: bool = False) -> "Model":
242
+ """Create a published proximity model based on the given model
97
243
 
98
244
  Args:
99
245
  model (Model): The model to create the proximity model from
100
246
  prox_model_name (str): The name of the proximity model to create
101
- track_columns (list, optional): List of columns to track in the proximity model
247
+ include_all_columns (bool): Include all DataFrame columns in results (default: False)
102
248
  Returns:
103
249
  Model: The proximity model
104
250
  """
@@ -121,45 +267,23 @@ def proximity_model(model: "Model", prox_model_name: str, track_columns: list =
121
267
  description=f"Proximity Model for {model.name}",
122
268
  tags=["proximity", model.name],
123
269
  custom_script=script_path,
124
- custom_args={"track_columns": track_columns},
270
+ custom_args={"include_all_columns": include_all_columns},
125
271
  )
126
272
  return prox_model
127
273
 
128
274
 
129
- def uq_model(model: "Model", uq_model_name: str, train_all_data: bool = False) -> "Model":
130
- """Create a Uncertainty Quantification (UQ) model based on the given model
131
-
132
- Args:
133
- model (Model): The model to create the UQ model from
134
- uq_model_name (str): The name of the UQ model to create
135
- train_all_data (bool, optional): Whether to train the UQ model on all data (default: False)
136
-
137
- Returns:
138
- Model: The UQ model
275
+ def safe_extract_tarfile(tar_path: str, extract_path: str) -> None:
139
276
  """
140
- from workbench.api import Model, ModelType, FeatureSet # noqa: F401 (avoid circular import)
141
-
142
- # Get the custom script path for the UQ model
143
- script_path = get_custom_script_path("uq_models", "mapie.template")
144
-
145
- # Get Feature and Target Columns from the existing given Model
146
- features = model.features()
147
- target = model.target()
277
+ Extract a tarball safely, using data filter if available.
148
278
 
149
- # Create the Proximity Model from our FeatureSet
150
- fs = FeatureSet(model.get_input())
151
- uq_model = fs.to_model(
152
- name=uq_model_name,
153
- model_type=ModelType.UQ_REGRESSOR,
154
- feature_list=features,
155
- target_column=target,
156
- description=f"UQ Model for {model.name}",
157
- tags=["uq", model.name],
158
- train_all_data=train_all_data,
159
- custom_script=script_path,
160
- custom_args={"id_column": fs.id_column, "track_columns": [target]},
161
- )
162
- return uq_model
279
+ The filter parameter was backported to Python 3.8+, 3.9+, 3.10.13+, 3.11+
280
+ as a security patch, but may not be present in older patch versions.
281
+ """
282
+ with tarfile.open(tar_path, "r:gz") as tar:
283
+ if hasattr(tarfile, "data_filter"):
284
+ tar.extractall(path=extract_path, filter="data")
285
+ else:
286
+ tar.extractall(path=extract_path)
163
287
 
164
288
 
165
289
  def load_category_mappings_from_s3(model_artifact_uri: str) -> Optional[dict]:
@@ -180,8 +304,7 @@ def load_category_mappings_from_s3(model_artifact_uri: str) -> Optional[dict]:
180
304
  wr.s3.download(path=model_artifact_uri, local_file=local_tar_path)
181
305
 
182
306
  # Extract tarball
183
- with tarfile.open(local_tar_path, "r:gz") as tar:
184
- tar.extractall(path=tmpdir, filter="data")
307
+ safe_extract_tarfile(local_tar_path, tmpdir)
185
308
 
186
309
  # Look for category mappings in base directory only
187
310
  mappings_path = os.path.join(tmpdir, "category_mappings.json")
@@ -197,6 +320,63 @@ def load_category_mappings_from_s3(model_artifact_uri: str) -> Optional[dict]:
197
320
  return category_mappings
198
321
 
199
322
 
323
+ def load_hyperparameters_from_s3(model_artifact_uri: str) -> Optional[dict]:
324
+ """
325
+ Download and extract hyperparameters from a model artifact in S3.
326
+
327
+ Args:
328
+ model_artifact_uri (str): S3 URI of the model artifact (model.tar.gz).
329
+
330
+ Returns:
331
+ dict: The loaded hyperparameters or None if not found.
332
+ """
333
+ hyperparameters = None
334
+
335
+ with tempfile.TemporaryDirectory() as tmpdir:
336
+ # Download model artifact
337
+ local_tar_path = os.path.join(tmpdir, "model.tar.gz")
338
+ wr.s3.download(path=model_artifact_uri, local_file=local_tar_path)
339
+
340
+ # Extract tarball
341
+ safe_extract_tarfile(local_tar_path, tmpdir)
342
+
343
+ # Look for hyperparameters in base directory only
344
+ hyperparameters_path = os.path.join(tmpdir, "hyperparameters.json")
345
+
346
+ if os.path.exists(hyperparameters_path):
347
+ try:
348
+ with open(hyperparameters_path, "r") as f:
349
+ hyperparameters = json.load(f)
350
+ log.info(f"Loaded hyperparameters from {hyperparameters_path}")
351
+ except Exception as e:
352
+ log.warning(f"Failed to load hyperparameters from {hyperparameters_path}: {e}")
353
+
354
+ return hyperparameters
355
+
356
+
357
+ def get_model_hyperparameters(workbench_model: Any) -> Optional[dict]:
358
+ """Get the hyperparameters used to train a Workbench model.
359
+
360
+ This retrieves the hyperparameters.json file from the model artifacts
361
+ that was saved during model training.
362
+
363
+ Args:
364
+ workbench_model: Workbench model object
365
+
366
+ Returns:
367
+ dict: The hyperparameters used during training, or None if not found
368
+ """
369
+ # Get the model artifact URI
370
+ model_artifact_uri = workbench_model.model_data_url()
371
+
372
+ if model_artifact_uri is None:
373
+ log.warning(f"No model artifact found for {workbench_model.uuid}")
374
+ return None
375
+
376
+ log.info(f"Loading hyperparameters from {model_artifact_uri}")
377
+ return load_hyperparameters_from_s3(model_artifact_uri)
378
+
379
+
200
380
  def uq_metrics(df: pd.DataFrame, target_col: str) -> Dict[str, Any]:
201
381
  """
202
382
  Evaluate uncertainty quantification model with essential metrics.
@@ -217,37 +397,51 @@ def uq_metrics(df: pd.DataFrame, target_col: str) -> Dict[str, Any]:
217
397
  if "prediction" not in df.columns:
218
398
  raise ValueError("Prediction column 'prediction' not found in DataFrame.")
219
399
 
400
+ # Drop rows with NaN predictions (e.g., from models that can't handle missing features)
401
+ n_total = len(df)
402
+ df = df.dropna(subset=["prediction", target_col])
403
+ n_valid = len(df)
404
+ if n_valid < n_total:
405
+ log.info(f"UQ metrics: dropped {n_total - n_valid} rows with NaN predictions")
406
+
220
407
  # --- Coverage and Interval Width ---
221
408
  if "q_025" in df.columns and "q_975" in df.columns:
222
409
  lower_95, upper_95 = df["q_025"], df["q_975"]
223
410
  lower_90, upper_90 = df["q_05"], df["q_95"]
224
411
  lower_80, upper_80 = df["q_10"], df["q_90"]
412
+ lower_68 = df.get("q_16", df["q_10"]) # fallback to 80% interval
413
+ upper_68 = df.get("q_84", df["q_90"]) # fallback to 80% interval
225
414
  lower_50, upper_50 = df["q_25"], df["q_75"]
226
415
  elif "prediction_std" in df.columns:
227
416
  lower_95 = df["prediction"] - 1.96 * df["prediction_std"]
228
417
  upper_95 = df["prediction"] + 1.96 * df["prediction_std"]
418
+ lower_90 = df["prediction"] - 1.645 * df["prediction_std"]
419
+ upper_90 = df["prediction"] + 1.645 * df["prediction_std"]
420
+ lower_80 = df["prediction"] - 1.282 * df["prediction_std"]
421
+ upper_80 = df["prediction"] + 1.282 * df["prediction_std"]
422
+ lower_68 = df["prediction"] - 1.0 * df["prediction_std"]
423
+ upper_68 = df["prediction"] + 1.0 * df["prediction_std"]
229
424
  lower_50 = df["prediction"] - 0.674 * df["prediction_std"]
230
425
  upper_50 = df["prediction"] + 0.674 * df["prediction_std"]
231
426
  else:
232
427
  raise ValueError(
233
428
  "Either quantile columns (q_025, q_975, q_25, q_75) or 'prediction_std' column must be present."
234
429
  )
430
+ median_std = df["prediction_std"].median()
235
431
  coverage_95 = np.mean((df[target_col] >= lower_95) & (df[target_col] <= upper_95))
236
432
  coverage_90 = np.mean((df[target_col] >= lower_90) & (df[target_col] <= upper_90))
237
433
  coverage_80 = np.mean((df[target_col] >= lower_80) & (df[target_col] <= upper_80))
238
- coverage_50 = np.mean((df[target_col] >= lower_50) & (df[target_col] <= upper_50))
239
- avg_width_95 = np.mean(upper_95 - lower_95)
240
- avg_width_90 = np.mean(upper_90 - lower_90)
241
- avg_width_80 = np.mean(upper_80 - lower_80)
242
- avg_width_50 = np.mean(upper_50 - lower_50)
434
+ coverage_68 = np.mean((df[target_col] >= lower_68) & (df[target_col] <= upper_68))
435
+ median_width_95 = np.median(upper_95 - lower_95)
436
+ median_width_90 = np.median(upper_90 - lower_90)
437
+ median_width_80 = np.median(upper_80 - lower_80)
438
+ median_width_50 = np.median(upper_50 - lower_50)
439
+ median_width_68 = np.median(upper_68 - lower_68)
243
440
 
244
441
  # --- CRPS (measures calibration + sharpness) ---
245
- if "prediction_std" in df.columns:
246
- z = (df[target_col] - df["prediction"]) / df["prediction_std"]
247
- crps = df["prediction_std"] * (z * (2 * norm.cdf(z) - 1) + 2 * norm.pdf(z) - 1 / np.sqrt(np.pi))
248
- mean_crps = np.mean(crps)
249
- else:
250
- mean_crps = np.nan
442
+ z = (df[target_col] - df["prediction"]) / df["prediction_std"]
443
+ crps = df["prediction_std"] * (z * (2 * norm.cdf(z) - 1) + 2 * norm.pdf(z) - 1 / np.sqrt(np.pi))
444
+ mean_crps = np.mean(crps)
251
445
 
252
446
  # --- Interval Score @ 95% (penalizes miscoverage) ---
253
447
  alpha_95 = 0.05
@@ -258,44 +452,50 @@ def uq_metrics(df: pd.DataFrame, target_col: str) -> Dict[str, Any]:
258
452
  )
259
453
  mean_is_95 = np.mean(is_95)
260
454
 
261
- # --- Adaptive Calibration (correlation between errors and uncertainty) ---
455
+ # --- Interval to Error Correlation ---
262
456
  abs_residuals = np.abs(df[target_col] - df["prediction"])
263
- width_95 = upper_95 - lower_95
264
- adaptive_calibration = np.corrcoef(abs_residuals, width_95)[0, 1]
457
+ width_68 = upper_68 - lower_68
458
+
459
+ # Spearman correlation for robustness
460
+ interval_to_error_corr = spearmanr(width_68, abs_residuals)[0]
265
461
 
266
462
  # Collect results
267
463
  results = {
268
- "coverage_95": coverage_95,
269
- "coverage_90": coverage_90,
464
+ "coverage_68": coverage_68,
270
465
  "coverage_80": coverage_80,
271
- "coverage_50": coverage_50,
272
- "avg_width_95": avg_width_95,
273
- "avg_width_50": avg_width_50,
274
- "crps": mean_crps,
275
- "interval_score_95": mean_is_95,
276
- "adaptive_calibration": adaptive_calibration,
466
+ "coverage_90": coverage_90,
467
+ "coverage_95": coverage_95,
468
+ "median_std": median_std,
469
+ "median_width_50": median_width_50,
470
+ "median_width_68": median_width_68,
471
+ "median_width_80": median_width_80,
472
+ "median_width_90": median_width_90,
473
+ "median_width_95": median_width_95,
474
+ "interval_to_error_corr": interval_to_error_corr,
277
475
  "n_samples": len(df),
278
476
  }
279
477
 
280
478
  print("\n=== UQ Metrics ===")
281
- print(f"Coverage @ 95%: {coverage_95:.3f} (target: 0.95)")
282
- print(f"Coverage @ 90%: {coverage_90:.3f} (target: 0.90)")
479
+ print(f"Coverage @ 68%: {coverage_68:.3f} (target: 0.68)")
283
480
  print(f"Coverage @ 80%: {coverage_80:.3f} (target: 0.80)")
284
- print(f"Coverage @ 50%: {coverage_50:.3f} (target: 0.50)")
285
- print(f"Average 95% Width: {avg_width_95:.3f}")
286
- print(f"Average 90% Width: {avg_width_90:.3f}")
287
- print(f"Average 80% Width: {avg_width_80:.3f}")
288
- print(f"Average 50% Width: {avg_width_50:.3f}")
481
+ print(f"Coverage @ 90%: {coverage_90:.3f} (target: 0.90)")
482
+ print(f"Coverage @ 95%: {coverage_95:.3f} (target: 0.95)")
483
+ print(f"Median Prediction StdDev: {median_std:.3f}")
484
+ print(f"Median 50% Width: {median_width_50:.3f}")
485
+ print(f"Median 68% Width: {median_width_68:.3f}")
486
+ print(f"Median 80% Width: {median_width_80:.3f}")
487
+ print(f"Median 90% Width: {median_width_90:.3f}")
488
+ print(f"Median 95% Width: {median_width_95:.3f}")
289
489
  print(f"CRPS: {mean_crps:.3f} (lower is better)")
290
490
  print(f"Interval Score 95%: {mean_is_95:.3f} (lower is better)")
291
- print(f"Adaptive Calibration: {adaptive_calibration:.3f} (higher is better, target: >0.5)")
491
+ print(f"Interval/Error Corr: {interval_to_error_corr:.3f} (higher is better, target: >0.5)")
292
492
  print(f"Samples: {len(df)}")
293
493
  return results
294
494
 
295
495
 
296
496
  if __name__ == "__main__":
297
497
  """Exercise the Model Utilities"""
298
- from workbench.api import Model, Endpoint
498
+ from workbench.api import Model
299
499
 
300
500
  # Get the instance information
301
501
  print(model_instance_info())
@@ -310,24 +510,11 @@ if __name__ == "__main__":
310
510
  # Get the custom script path
311
511
  print(get_custom_script_path("chem_info", "molecular_descriptors.py"))
312
512
 
313
- # Test the proximity model
513
+ # Test loading hyperparameters
314
514
  m = Model("aqsol-regression")
515
+ hyperparams = get_model_hyperparameters(m)
516
+ print(hyperparams)
517
+
518
+ # Test the proximity model
315
519
  # prox_model = proximity_model(m, "aqsol-prox")
316
520
  # print(prox_model)#
317
-
318
- # Test the UQ model
319
- # uq_model_instance = uq_model(m, "aqsol-uq")
320
- # print(uq_model_instance)
321
- # uq_model_instance.to_endpoint()
322
-
323
- # Test the uq_metrics function
324
- end = Endpoint("aqsol-uq")
325
- df = end.auto_inference(capture=True)
326
- results = uq_metrics(df, target_col="solubility")
327
- print(results)
328
-
329
- # Test the uq_metrics function
330
- end = Endpoint("aqsol-uq-100")
331
- df = end.auto_inference(capture=True)
332
- results = uq_metrics(df, target_col="solubility")
333
- print(results)
@@ -6,7 +6,6 @@ import json
6
6
  # Workbench Imports
7
7
  from workbench.api import DataSource, FeatureSet, Model, Endpoint, ParameterStore
8
8
 
9
-
10
9
  # Set up the logging
11
10
  log = logging.getLogger("workbench")
12
11